Remove regcache_descr::nr_raw_registers
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "agent.h"
62 #include "tracepoint.h"
63 #include "buffer.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "fileio.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good:
83
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
87 reaped.
88
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
92
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167
168 Exec events
169 ===========
170
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader. */
184
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188
189 /* Does the current host support PTRACE_GETREGSET? */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
191
192 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
193 the use of the multi-threaded target. */
194 static struct target_ops *linux_ops;
195 static struct target_ops linux_ops_saved;
196
197 /* The method to call, if any, when a new thread is attached. */
198 static void (*linux_nat_new_thread) (struct lwp_info *);
199
200 /* The method to call, if any, when a thread is destroyed. */
201 static void (*linux_nat_delete_thread) (struct arch_lwp_info *);
202
203 /* The method to call, if any, when a new fork is attached. */
204 static linux_nat_new_fork_ftype *linux_nat_new_fork;
205
206 /* The method to call, if any, when a process is no longer
207 attached. */
208 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
209
210 /* Hook to call prior to resuming a thread. */
211 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static target_xfer_partial_ftype *super_xfer_partial;
223
224 /* The saved to_close method, inherited from inf-ptrace.c.
225 Called by our to_close. */
226 static void (*super_close) (struct target_ops *);
227
228 static unsigned int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 struct simple_pid_list
238 {
239 int pid;
240 int status;
241 struct simple_pid_list *next;
242 };
243 struct simple_pid_list *stopped_pids;
244
245 /* Whether target_thread_events is in effect. */
246 static int report_thread_events;
247
248 /* Async mode support. */
249
250 /* The read/write ends of the pipe registered as waitable file in the
251 event loop. */
252 static int linux_nat_event_pipe[2] = { -1, -1 };
253
254 /* True if we're currently in async mode. */
255 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
256
257 /* Flush the event pipe. */
258
259 static void
260 async_file_flush (void)
261 {
262 int ret;
263 char buf;
264
265 do
266 {
267 ret = read (linux_nat_event_pipe[0], &buf, 1);
268 }
269 while (ret >= 0 || (ret == -1 && errno == EINTR));
270 }
271
272 /* Put something (anything, doesn't matter what, or how much) in event
273 pipe, so that the select/poll in the event-loop realizes we have
274 something to process. */
275
276 static void
277 async_file_mark (void)
278 {
279 int ret;
280
281 /* It doesn't really matter what the pipe contains, as long we end
282 up with something in it. Might as well flush the previous
283 left-overs. */
284 async_file_flush ();
285
286 do
287 {
288 ret = write (linux_nat_event_pipe[1], "+", 1);
289 }
290 while (ret == -1 && errno == EINTR);
291
292 /* Ignore EAGAIN. If the pipe is full, the event loop will already
293 be awakened anyway. */
294 }
295
296 static int kill_lwp (int lwpid, int signo);
297
298 static int stop_callback (struct lwp_info *lp, void *data);
299 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
300
301 static void block_child_signals (sigset_t *prev_mask);
302 static void restore_child_signals_mask (sigset_t *prev_mask);
303
304 struct lwp_info;
305 static struct lwp_info *add_lwp (ptid_t ptid);
306 static void purge_lwp_list (int pid);
307 static void delete_lwp (ptid_t ptid);
308 static struct lwp_info *find_lwp_pid (ptid_t ptid);
309
310 static int lwp_status_pending_p (struct lwp_info *lp);
311
312 static int sigtrap_is_event (int status);
313 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
314
315 static void save_stop_reason (struct lwp_info *lp);
316
317 \f
318 /* LWP accessors. */
319
320 /* See nat/linux-nat.h. */
321
322 ptid_t
323 ptid_of_lwp (struct lwp_info *lwp)
324 {
325 return lwp->ptid;
326 }
327
328 /* See nat/linux-nat.h. */
329
330 void
331 lwp_set_arch_private_info (struct lwp_info *lwp,
332 struct arch_lwp_info *info)
333 {
334 lwp->arch_private = info;
335 }
336
337 /* See nat/linux-nat.h. */
338
339 struct arch_lwp_info *
340 lwp_arch_private_info (struct lwp_info *lwp)
341 {
342 return lwp->arch_private;
343 }
344
345 /* See nat/linux-nat.h. */
346
347 int
348 lwp_is_stopped (struct lwp_info *lwp)
349 {
350 return lwp->stopped;
351 }
352
353 /* See nat/linux-nat.h. */
354
355 enum target_stop_reason
356 lwp_stop_reason (struct lwp_info *lwp)
357 {
358 return lwp->stop_reason;
359 }
360
361 /* See nat/linux-nat.h. */
362
363 int
364 lwp_is_stepping (struct lwp_info *lwp)
365 {
366 return lwp->step;
367 }
368
369 \f
370 /* Trivial list manipulation functions to keep track of a list of
371 new stopped processes. */
372 static void
373 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
374 {
375 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
376
377 new_pid->pid = pid;
378 new_pid->status = status;
379 new_pid->next = *listp;
380 *listp = new_pid;
381 }
382
383 static int
384 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
385 {
386 struct simple_pid_list **p;
387
388 for (p = listp; *p != NULL; p = &(*p)->next)
389 if ((*p)->pid == pid)
390 {
391 struct simple_pid_list *next = (*p)->next;
392
393 *statusp = (*p)->status;
394 xfree (*p);
395 *p = next;
396 return 1;
397 }
398 return 0;
399 }
400
401 /* Return the ptrace options that we want to try to enable. */
402
403 static int
404 linux_nat_ptrace_options (int attached)
405 {
406 int options = 0;
407
408 if (!attached)
409 options |= PTRACE_O_EXITKILL;
410
411 options |= (PTRACE_O_TRACESYSGOOD
412 | PTRACE_O_TRACEVFORKDONE
413 | PTRACE_O_TRACEVFORK
414 | PTRACE_O_TRACEFORK
415 | PTRACE_O_TRACEEXEC);
416
417 return options;
418 }
419
420 /* Initialize ptrace warnings and check for supported ptrace
421 features given PID.
422
423 ATTACHED should be nonzero iff we attached to the inferior. */
424
425 static void
426 linux_init_ptrace (pid_t pid, int attached)
427 {
428 int options = linux_nat_ptrace_options (attached);
429
430 linux_enable_event_reporting (pid, options);
431 linux_ptrace_init_warnings ();
432 }
433
434 static void
435 linux_child_post_attach (struct target_ops *self, int pid)
436 {
437 linux_init_ptrace (pid, 1);
438 }
439
440 static void
441 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
442 {
443 linux_init_ptrace (ptid_get_pid (ptid), 0);
444 }
445
446 /* Return the number of known LWPs in the tgid given by PID. */
447
448 static int
449 num_lwps (int pid)
450 {
451 int count = 0;
452 struct lwp_info *lp;
453
454 for (lp = lwp_list; lp; lp = lp->next)
455 if (ptid_get_pid (lp->ptid) == pid)
456 count++;
457
458 return count;
459 }
460
461 /* Call delete_lwp with prototype compatible for make_cleanup. */
462
463 static void
464 delete_lwp_cleanup (void *lp_voidp)
465 {
466 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
467
468 delete_lwp (lp->ptid);
469 }
470
471 /* Target hook for follow_fork. On entry inferior_ptid must be the
472 ptid of the followed inferior. At return, inferior_ptid will be
473 unchanged. */
474
475 static int
476 linux_child_follow_fork (struct target_ops *ops, int follow_child,
477 int detach_fork)
478 {
479 if (!follow_child)
480 {
481 struct lwp_info *child_lp = NULL;
482 int status = W_STOPCODE (0);
483 int has_vforked;
484 ptid_t parent_ptid, child_ptid;
485 int parent_pid, child_pid;
486
487 has_vforked = (inferior_thread ()->pending_follow.kind
488 == TARGET_WAITKIND_VFORKED);
489 parent_ptid = inferior_ptid;
490 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
491 parent_pid = ptid_get_lwp (parent_ptid);
492 child_pid = ptid_get_lwp (child_ptid);
493
494 /* We're already attached to the parent, by default. */
495 child_lp = add_lwp (child_ptid);
496 child_lp->stopped = 1;
497 child_lp->last_resume_kind = resume_stop;
498
499 /* Detach new forked process? */
500 if (detach_fork)
501 {
502 struct cleanup *old_chain = make_cleanup (delete_lwp_cleanup,
503 child_lp);
504
505 if (linux_nat_prepare_to_resume != NULL)
506 linux_nat_prepare_to_resume (child_lp);
507
508 /* When debugging an inferior in an architecture that supports
509 hardware single stepping on a kernel without commit
510 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
511 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
512 set if the parent process had them set.
513 To work around this, single step the child process
514 once before detaching to clear the flags. */
515
516 /* Note that we consult the parent's architecture instead of
517 the child's because there's no inferior for the child at
518 this point. */
519 if (!gdbarch_software_single_step_p (target_thread_architecture
520 (parent_ptid)))
521 {
522 linux_disable_event_reporting (child_pid);
523 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
524 perror_with_name (_("Couldn't do single step"));
525 if (my_waitpid (child_pid, &status, 0) < 0)
526 perror_with_name (_("Couldn't wait vfork process"));
527 }
528
529 if (WIFSTOPPED (status))
530 {
531 int signo;
532
533 signo = WSTOPSIG (status);
534 if (signo != 0
535 && !signal_pass_state (gdb_signal_from_host (signo)))
536 signo = 0;
537 ptrace (PTRACE_DETACH, child_pid, 0, signo);
538 }
539
540 do_cleanups (old_chain);
541 }
542 else
543 {
544 scoped_restore save_inferior_ptid
545 = make_scoped_restore (&inferior_ptid);
546 inferior_ptid = child_ptid;
547
548 /* Let the thread_db layer learn about this new process. */
549 check_for_thread_db ();
550 }
551
552 if (has_vforked)
553 {
554 struct lwp_info *parent_lp;
555
556 parent_lp = find_lwp_pid (parent_ptid);
557 gdb_assert (linux_supports_tracefork () >= 0);
558
559 if (linux_supports_tracevforkdone ())
560 {
561 if (debug_linux_nat)
562 fprintf_unfiltered (gdb_stdlog,
563 "LCFF: waiting for VFORK_DONE on %d\n",
564 parent_pid);
565 parent_lp->stopped = 1;
566
567 /* We'll handle the VFORK_DONE event like any other
568 event, in target_wait. */
569 }
570 else
571 {
572 /* We can't insert breakpoints until the child has
573 finished with the shared memory region. We need to
574 wait until that happens. Ideal would be to just
575 call:
576 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
577 - waitpid (parent_pid, &status, __WALL);
578 However, most architectures can't handle a syscall
579 being traced on the way out if it wasn't traced on
580 the way in.
581
582 We might also think to loop, continuing the child
583 until it exits or gets a SIGTRAP. One problem is
584 that the child might call ptrace with PTRACE_TRACEME.
585
586 There's no simple and reliable way to figure out when
587 the vforked child will be done with its copy of the
588 shared memory. We could step it out of the syscall,
589 two instructions, let it go, and then single-step the
590 parent once. When we have hardware single-step, this
591 would work; with software single-step it could still
592 be made to work but we'd have to be able to insert
593 single-step breakpoints in the child, and we'd have
594 to insert -just- the single-step breakpoint in the
595 parent. Very awkward.
596
597 In the end, the best we can do is to make sure it
598 runs for a little while. Hopefully it will be out of
599 range of any breakpoints we reinsert. Usually this
600 is only the single-step breakpoint at vfork's return
601 point. */
602
603 if (debug_linux_nat)
604 fprintf_unfiltered (gdb_stdlog,
605 "LCFF: no VFORK_DONE "
606 "support, sleeping a bit\n");
607
608 usleep (10000);
609
610 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
611 and leave it pending. The next linux_nat_resume call
612 will notice a pending event, and bypasses actually
613 resuming the inferior. */
614 parent_lp->status = 0;
615 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
616 parent_lp->stopped = 1;
617
618 /* If we're in async mode, need to tell the event loop
619 there's something here to process. */
620 if (target_is_async_p ())
621 async_file_mark ();
622 }
623 }
624 }
625 else
626 {
627 struct lwp_info *child_lp;
628
629 child_lp = add_lwp (inferior_ptid);
630 child_lp->stopped = 1;
631 child_lp->last_resume_kind = resume_stop;
632
633 /* Let the thread_db layer learn about this new process. */
634 check_for_thread_db ();
635 }
636
637 return 0;
638 }
639
640 \f
641 static int
642 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
643 {
644 return !linux_supports_tracefork ();
645 }
646
647 static int
648 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
649 {
650 return 0;
651 }
652
653 static int
654 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
655 {
656 return !linux_supports_tracefork ();
657 }
658
659 static int
660 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
661 {
662 return 0;
663 }
664
665 static int
666 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
667 {
668 return !linux_supports_tracefork ();
669 }
670
671 static int
672 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
673 {
674 return 0;
675 }
676
677 static int
678 linux_child_set_syscall_catchpoint (struct target_ops *self,
679 int pid, int needed, int any_count,
680 int table_size, int *table)
681 {
682 if (!linux_supports_tracesysgood ())
683 return 1;
684
685 /* On GNU/Linux, we ignore the arguments. It means that we only
686 enable the syscall catchpoints, but do not disable them.
687
688 Also, we do not use the `table' information because we do not
689 filter system calls here. We let GDB do the logic for us. */
690 return 0;
691 }
692
693 /* List of known LWPs, keyed by LWP PID. This speeds up the common
694 case of mapping a PID returned from the kernel to our corresponding
695 lwp_info data structure. */
696 static htab_t lwp_lwpid_htab;
697
698 /* Calculate a hash from a lwp_info's LWP PID. */
699
700 static hashval_t
701 lwp_info_hash (const void *ap)
702 {
703 const struct lwp_info *lp = (struct lwp_info *) ap;
704 pid_t pid = ptid_get_lwp (lp->ptid);
705
706 return iterative_hash_object (pid, 0);
707 }
708
709 /* Equality function for the lwp_info hash table. Compares the LWP's
710 PID. */
711
712 static int
713 lwp_lwpid_htab_eq (const void *a, const void *b)
714 {
715 const struct lwp_info *entry = (const struct lwp_info *) a;
716 const struct lwp_info *element = (const struct lwp_info *) b;
717
718 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
719 }
720
721 /* Create the lwp_lwpid_htab hash table. */
722
723 static void
724 lwp_lwpid_htab_create (void)
725 {
726 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
727 }
728
729 /* Add LP to the hash table. */
730
731 static void
732 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
733 {
734 void **slot;
735
736 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
737 gdb_assert (slot != NULL && *slot == NULL);
738 *slot = lp;
739 }
740
741 /* Head of doubly-linked list of known LWPs. Sorted by reverse
742 creation order. This order is assumed in some cases. E.g.,
743 reaping status after killing alls lwps of a process: the leader LWP
744 must be reaped last. */
745 struct lwp_info *lwp_list;
746
747 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
748
749 static void
750 lwp_list_add (struct lwp_info *lp)
751 {
752 lp->next = lwp_list;
753 if (lwp_list != NULL)
754 lwp_list->prev = lp;
755 lwp_list = lp;
756 }
757
758 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
759 list. */
760
761 static void
762 lwp_list_remove (struct lwp_info *lp)
763 {
764 /* Remove from sorted-by-creation-order list. */
765 if (lp->next != NULL)
766 lp->next->prev = lp->prev;
767 if (lp->prev != NULL)
768 lp->prev->next = lp->next;
769 if (lp == lwp_list)
770 lwp_list = lp->next;
771 }
772
773 \f
774
775 /* Original signal mask. */
776 static sigset_t normal_mask;
777
778 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
779 _initialize_linux_nat. */
780 static sigset_t suspend_mask;
781
782 /* Signals to block to make that sigsuspend work. */
783 static sigset_t blocked_mask;
784
785 /* SIGCHLD action. */
786 struct sigaction sigchld_action;
787
788 /* Block child signals (SIGCHLD and linux threads signals), and store
789 the previous mask in PREV_MASK. */
790
791 static void
792 block_child_signals (sigset_t *prev_mask)
793 {
794 /* Make sure SIGCHLD is blocked. */
795 if (!sigismember (&blocked_mask, SIGCHLD))
796 sigaddset (&blocked_mask, SIGCHLD);
797
798 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
799 }
800
801 /* Restore child signals mask, previously returned by
802 block_child_signals. */
803
804 static void
805 restore_child_signals_mask (sigset_t *prev_mask)
806 {
807 sigprocmask (SIG_SETMASK, prev_mask, NULL);
808 }
809
810 /* Mask of signals to pass directly to the inferior. */
811 static sigset_t pass_mask;
812
813 /* Update signals to pass to the inferior. */
814 static void
815 linux_nat_pass_signals (struct target_ops *self,
816 int numsigs, unsigned char *pass_signals)
817 {
818 int signo;
819
820 sigemptyset (&pass_mask);
821
822 for (signo = 1; signo < NSIG; signo++)
823 {
824 int target_signo = gdb_signal_from_host (signo);
825 if (target_signo < numsigs && pass_signals[target_signo])
826 sigaddset (&pass_mask, signo);
827 }
828 }
829
830 \f
831
832 /* Prototypes for local functions. */
833 static int stop_wait_callback (struct lwp_info *lp, void *data);
834 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
835 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
836 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
837
838 \f
839
840 /* Destroy and free LP. */
841
842 static void
843 lwp_free (struct lwp_info *lp)
844 {
845 /* Let the arch specific bits release arch_lwp_info. */
846 if (linux_nat_delete_thread != NULL)
847 linux_nat_delete_thread (lp->arch_private);
848 else
849 gdb_assert (lp->arch_private == NULL);
850
851 xfree (lp);
852 }
853
854 /* Traversal function for purge_lwp_list. */
855
856 static int
857 lwp_lwpid_htab_remove_pid (void **slot, void *info)
858 {
859 struct lwp_info *lp = (struct lwp_info *) *slot;
860 int pid = *(int *) info;
861
862 if (ptid_get_pid (lp->ptid) == pid)
863 {
864 htab_clear_slot (lwp_lwpid_htab, slot);
865 lwp_list_remove (lp);
866 lwp_free (lp);
867 }
868
869 return 1;
870 }
871
872 /* Remove all LWPs belong to PID from the lwp list. */
873
874 static void
875 purge_lwp_list (int pid)
876 {
877 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
878 }
879
880 /* Add the LWP specified by PTID to the list. PTID is the first LWP
881 in the process. Return a pointer to the structure describing the
882 new LWP.
883
884 This differs from add_lwp in that we don't let the arch specific
885 bits know about this new thread. Current clients of this callback
886 take the opportunity to install watchpoints in the new thread, and
887 we shouldn't do that for the first thread. If we're spawning a
888 child ("run"), the thread executes the shell wrapper first, and we
889 shouldn't touch it until it execs the program we want to debug.
890 For "attach", it'd be okay to call the callback, but it's not
891 necessary, because watchpoints can't yet have been inserted into
892 the inferior. */
893
894 static struct lwp_info *
895 add_initial_lwp (ptid_t ptid)
896 {
897 struct lwp_info *lp;
898
899 gdb_assert (ptid_lwp_p (ptid));
900
901 lp = XNEW (struct lwp_info);
902
903 memset (lp, 0, sizeof (struct lwp_info));
904
905 lp->last_resume_kind = resume_continue;
906 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
907
908 lp->ptid = ptid;
909 lp->core = -1;
910
911 /* Add to sorted-by-reverse-creation-order list. */
912 lwp_list_add (lp);
913
914 /* Add to keyed-by-pid htab. */
915 lwp_lwpid_htab_add_lwp (lp);
916
917 return lp;
918 }
919
920 /* Add the LWP specified by PID to the list. Return a pointer to the
921 structure describing the new LWP. The LWP should already be
922 stopped. */
923
924 static struct lwp_info *
925 add_lwp (ptid_t ptid)
926 {
927 struct lwp_info *lp;
928
929 lp = add_initial_lwp (ptid);
930
931 /* Let the arch specific bits know about this new thread. Current
932 clients of this callback take the opportunity to install
933 watchpoints in the new thread. We don't do this for the first
934 thread though. See add_initial_lwp. */
935 if (linux_nat_new_thread != NULL)
936 linux_nat_new_thread (lp);
937
938 return lp;
939 }
940
941 /* Remove the LWP specified by PID from the list. */
942
943 static void
944 delete_lwp (ptid_t ptid)
945 {
946 struct lwp_info *lp;
947 void **slot;
948 struct lwp_info dummy;
949
950 dummy.ptid = ptid;
951 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
952 if (slot == NULL)
953 return;
954
955 lp = *(struct lwp_info **) slot;
956 gdb_assert (lp != NULL);
957
958 htab_clear_slot (lwp_lwpid_htab, slot);
959
960 /* Remove from sorted-by-creation-order list. */
961 lwp_list_remove (lp);
962
963 /* Release. */
964 lwp_free (lp);
965 }
966
967 /* Return a pointer to the structure describing the LWP corresponding
968 to PID. If no corresponding LWP could be found, return NULL. */
969
970 static struct lwp_info *
971 find_lwp_pid (ptid_t ptid)
972 {
973 struct lwp_info *lp;
974 int lwp;
975 struct lwp_info dummy;
976
977 if (ptid_lwp_p (ptid))
978 lwp = ptid_get_lwp (ptid);
979 else
980 lwp = ptid_get_pid (ptid);
981
982 dummy.ptid = ptid_build (0, lwp, 0);
983 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
984 return lp;
985 }
986
987 /* See nat/linux-nat.h. */
988
989 struct lwp_info *
990 iterate_over_lwps (ptid_t filter,
991 iterate_over_lwps_ftype callback,
992 void *data)
993 {
994 struct lwp_info *lp, *lpnext;
995
996 for (lp = lwp_list; lp; lp = lpnext)
997 {
998 lpnext = lp->next;
999
1000 if (ptid_match (lp->ptid, filter))
1001 {
1002 if ((*callback) (lp, data) != 0)
1003 return lp;
1004 }
1005 }
1006
1007 return NULL;
1008 }
1009
1010 /* Update our internal state when changing from one checkpoint to
1011 another indicated by NEW_PTID. We can only switch single-threaded
1012 applications, so we only create one new LWP, and the previous list
1013 is discarded. */
1014
1015 void
1016 linux_nat_switch_fork (ptid_t new_ptid)
1017 {
1018 struct lwp_info *lp;
1019
1020 purge_lwp_list (ptid_get_pid (inferior_ptid));
1021
1022 lp = add_lwp (new_ptid);
1023 lp->stopped = 1;
1024
1025 /* This changes the thread's ptid while preserving the gdb thread
1026 num. Also changes the inferior pid, while preserving the
1027 inferior num. */
1028 thread_change_ptid (inferior_ptid, new_ptid);
1029
1030 /* We've just told GDB core that the thread changed target id, but,
1031 in fact, it really is a different thread, with different register
1032 contents. */
1033 registers_changed ();
1034 }
1035
1036 /* Handle the exit of a single thread LP. */
1037
1038 static void
1039 exit_lwp (struct lwp_info *lp)
1040 {
1041 struct thread_info *th = find_thread_ptid (lp->ptid);
1042
1043 if (th)
1044 {
1045 if (print_thread_events)
1046 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1047
1048 delete_thread (lp->ptid);
1049 }
1050
1051 delete_lwp (lp->ptid);
1052 }
1053
1054 /* Wait for the LWP specified by LP, which we have just attached to.
1055 Returns a wait status for that LWP, to cache. */
1056
1057 static int
1058 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1059 {
1060 pid_t new_pid, pid = ptid_get_lwp (ptid);
1061 int status;
1062
1063 if (linux_proc_pid_is_stopped (pid))
1064 {
1065 if (debug_linux_nat)
1066 fprintf_unfiltered (gdb_stdlog,
1067 "LNPAW: Attaching to a stopped process\n");
1068
1069 /* The process is definitely stopped. It is in a job control
1070 stop, unless the kernel predates the TASK_STOPPED /
1071 TASK_TRACED distinction, in which case it might be in a
1072 ptrace stop. Make sure it is in a ptrace stop; from there we
1073 can kill it, signal it, et cetera.
1074
1075 First make sure there is a pending SIGSTOP. Since we are
1076 already attached, the process can not transition from stopped
1077 to running without a PTRACE_CONT; so we know this signal will
1078 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1079 probably already in the queue (unless this kernel is old
1080 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1081 is not an RT signal, it can only be queued once. */
1082 kill_lwp (pid, SIGSTOP);
1083
1084 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1085 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1086 ptrace (PTRACE_CONT, pid, 0, 0);
1087 }
1088
1089 /* Make sure the initial process is stopped. The user-level threads
1090 layer might want to poke around in the inferior, and that won't
1091 work if things haven't stabilized yet. */
1092 new_pid = my_waitpid (pid, &status, __WALL);
1093 gdb_assert (pid == new_pid);
1094
1095 if (!WIFSTOPPED (status))
1096 {
1097 /* The pid we tried to attach has apparently just exited. */
1098 if (debug_linux_nat)
1099 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1100 pid, status_to_str (status));
1101 return status;
1102 }
1103
1104 if (WSTOPSIG (status) != SIGSTOP)
1105 {
1106 *signalled = 1;
1107 if (debug_linux_nat)
1108 fprintf_unfiltered (gdb_stdlog,
1109 "LNPAW: Received %s after attaching\n",
1110 status_to_str (status));
1111 }
1112
1113 return status;
1114 }
1115
1116 static void
1117 linux_nat_create_inferior (struct target_ops *ops,
1118 const char *exec_file, const std::string &allargs,
1119 char **env, int from_tty)
1120 {
1121 struct cleanup *restore_personality
1122 = maybe_disable_address_space_randomization (disable_randomization);
1123
1124 /* The fork_child mechanism is synchronous and calls target_wait, so
1125 we have to mask the async mode. */
1126
1127 /* Make sure we report all signals during startup. */
1128 linux_nat_pass_signals (ops, 0, NULL);
1129
1130 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1131
1132 do_cleanups (restore_personality);
1133 }
1134
1135 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1136 already attached. Returns true if a new LWP is found, false
1137 otherwise. */
1138
1139 static int
1140 attach_proc_task_lwp_callback (ptid_t ptid)
1141 {
1142 struct lwp_info *lp;
1143
1144 /* Ignore LWPs we're already attached to. */
1145 lp = find_lwp_pid (ptid);
1146 if (lp == NULL)
1147 {
1148 int lwpid = ptid_get_lwp (ptid);
1149
1150 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1151 {
1152 int err = errno;
1153
1154 /* Be quiet if we simply raced with the thread exiting.
1155 EPERM is returned if the thread's task still exists, and
1156 is marked as exited or zombie, as well as other
1157 conditions, so in that case, confirm the status in
1158 /proc/PID/status. */
1159 if (err == ESRCH
1160 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1161 {
1162 if (debug_linux_nat)
1163 {
1164 fprintf_unfiltered (gdb_stdlog,
1165 "Cannot attach to lwp %d: "
1166 "thread is gone (%d: %s)\n",
1167 lwpid, err, safe_strerror (err));
1168 }
1169 }
1170 else
1171 {
1172 warning (_("Cannot attach to lwp %d: %s"),
1173 lwpid,
1174 linux_ptrace_attach_fail_reason_string (ptid,
1175 err));
1176 }
1177 }
1178 else
1179 {
1180 if (debug_linux_nat)
1181 fprintf_unfiltered (gdb_stdlog,
1182 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1183 target_pid_to_str (ptid));
1184
1185 lp = add_lwp (ptid);
1186
1187 /* The next time we wait for this LWP we'll see a SIGSTOP as
1188 PTRACE_ATTACH brings it to a halt. */
1189 lp->signalled = 1;
1190
1191 /* We need to wait for a stop before being able to make the
1192 next ptrace call on this LWP. */
1193 lp->must_set_ptrace_flags = 1;
1194
1195 /* So that wait collects the SIGSTOP. */
1196 lp->resumed = 1;
1197
1198 /* Also add the LWP to gdb's thread list, in case a
1199 matching libthread_db is not found (or the process uses
1200 raw clone). */
1201 add_thread (lp->ptid);
1202 set_running (lp->ptid, 1);
1203 set_executing (lp->ptid, 1);
1204 }
1205
1206 return 1;
1207 }
1208 return 0;
1209 }
1210
1211 static void
1212 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1213 {
1214 struct lwp_info *lp;
1215 int status;
1216 ptid_t ptid;
1217
1218 /* Make sure we report all signals during attach. */
1219 linux_nat_pass_signals (ops, 0, NULL);
1220
1221 TRY
1222 {
1223 linux_ops->to_attach (ops, args, from_tty);
1224 }
1225 CATCH (ex, RETURN_MASK_ERROR)
1226 {
1227 pid_t pid = parse_pid_to_attach (args);
1228 struct buffer buffer;
1229 char *message, *buffer_s;
1230
1231 message = xstrdup (ex.message);
1232 make_cleanup (xfree, message);
1233
1234 buffer_init (&buffer);
1235 linux_ptrace_attach_fail_reason (pid, &buffer);
1236
1237 buffer_grow_str0 (&buffer, "");
1238 buffer_s = buffer_finish (&buffer);
1239 make_cleanup (xfree, buffer_s);
1240
1241 if (*buffer_s != '\0')
1242 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1243 else
1244 throw_error (ex.error, "%s", message);
1245 }
1246 END_CATCH
1247
1248 /* The ptrace base target adds the main thread with (pid,0,0)
1249 format. Decorate it with lwp info. */
1250 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1251 ptid_get_pid (inferior_ptid),
1252 0);
1253 thread_change_ptid (inferior_ptid, ptid);
1254
1255 /* Add the initial process as the first LWP to the list. */
1256 lp = add_initial_lwp (ptid);
1257
1258 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1259 if (!WIFSTOPPED (status))
1260 {
1261 if (WIFEXITED (status))
1262 {
1263 int exit_code = WEXITSTATUS (status);
1264
1265 target_terminal::ours ();
1266 target_mourn_inferior (inferior_ptid);
1267 if (exit_code == 0)
1268 error (_("Unable to attach: program exited normally."));
1269 else
1270 error (_("Unable to attach: program exited with code %d."),
1271 exit_code);
1272 }
1273 else if (WIFSIGNALED (status))
1274 {
1275 enum gdb_signal signo;
1276
1277 target_terminal::ours ();
1278 target_mourn_inferior (inferior_ptid);
1279
1280 signo = gdb_signal_from_host (WTERMSIG (status));
1281 error (_("Unable to attach: program terminated with signal "
1282 "%s, %s."),
1283 gdb_signal_to_name (signo),
1284 gdb_signal_to_string (signo));
1285 }
1286
1287 internal_error (__FILE__, __LINE__,
1288 _("unexpected status %d for PID %ld"),
1289 status, (long) ptid_get_lwp (ptid));
1290 }
1291
1292 lp->stopped = 1;
1293
1294 /* Save the wait status to report later. */
1295 lp->resumed = 1;
1296 if (debug_linux_nat)
1297 fprintf_unfiltered (gdb_stdlog,
1298 "LNA: waitpid %ld, saving status %s\n",
1299 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1300
1301 lp->status = status;
1302
1303 /* We must attach to every LWP. If /proc is mounted, use that to
1304 find them now. The inferior may be using raw clone instead of
1305 using pthreads. But even if it is using pthreads, thread_db
1306 walks structures in the inferior's address space to find the list
1307 of threads/LWPs, and those structures may well be corrupted.
1308 Note that once thread_db is loaded, we'll still use it to list
1309 threads and associate pthread info with each LWP. */
1310 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1311 attach_proc_task_lwp_callback);
1312
1313 if (target_can_async_p ())
1314 target_async (1);
1315 }
1316
1317 /* Get pending signal of THREAD as a host signal number, for detaching
1318 purposes. This is the signal the thread last stopped for, which we
1319 need to deliver to the thread when detaching, otherwise, it'd be
1320 suppressed/lost. */
1321
1322 static int
1323 get_detach_signal (struct lwp_info *lp)
1324 {
1325 enum gdb_signal signo = GDB_SIGNAL_0;
1326
1327 /* If we paused threads momentarily, we may have stored pending
1328 events in lp->status or lp->waitstatus (see stop_wait_callback),
1329 and GDB core hasn't seen any signal for those threads.
1330 Otherwise, the last signal reported to the core is found in the
1331 thread object's stop_signal.
1332
1333 There's a corner case that isn't handled here at present. Only
1334 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1335 stop_signal make sense as a real signal to pass to the inferior.
1336 Some catchpoint related events, like
1337 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1338 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1339 those traps are debug API (ptrace in our case) related and
1340 induced; the inferior wouldn't see them if it wasn't being
1341 traced. Hence, we should never pass them to the inferior, even
1342 when set to pass state. Since this corner case isn't handled by
1343 infrun.c when proceeding with a signal, for consistency, neither
1344 do we handle it here (or elsewhere in the file we check for
1345 signal pass state). Normally SIGTRAP isn't set to pass state, so
1346 this is really a corner case. */
1347
1348 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1349 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1350 else if (lp->status)
1351 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1352 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1353 {
1354 struct thread_info *tp = find_thread_ptid (lp->ptid);
1355
1356 if (tp->suspend.waitstatus_pending_p)
1357 signo = tp->suspend.waitstatus.value.sig;
1358 else
1359 signo = tp->suspend.stop_signal;
1360 }
1361 else if (!target_is_non_stop_p ())
1362 {
1363 struct target_waitstatus last;
1364 ptid_t last_ptid;
1365
1366 get_last_target_status (&last_ptid, &last);
1367
1368 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1369 {
1370 struct thread_info *tp = find_thread_ptid (lp->ptid);
1371
1372 signo = tp->suspend.stop_signal;
1373 }
1374 }
1375
1376 if (signo == GDB_SIGNAL_0)
1377 {
1378 if (debug_linux_nat)
1379 fprintf_unfiltered (gdb_stdlog,
1380 "GPT: lwp %s has no pending signal\n",
1381 target_pid_to_str (lp->ptid));
1382 }
1383 else if (!signal_pass_state (signo))
1384 {
1385 if (debug_linux_nat)
1386 fprintf_unfiltered (gdb_stdlog,
1387 "GPT: lwp %s had signal %s, "
1388 "but it is in no pass state\n",
1389 target_pid_to_str (lp->ptid),
1390 gdb_signal_to_string (signo));
1391 }
1392 else
1393 {
1394 if (debug_linux_nat)
1395 fprintf_unfiltered (gdb_stdlog,
1396 "GPT: lwp %s has pending signal %s\n",
1397 target_pid_to_str (lp->ptid),
1398 gdb_signal_to_string (signo));
1399
1400 return gdb_signal_to_host (signo);
1401 }
1402
1403 return 0;
1404 }
1405
1406 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1407 signal number that should be passed to the LWP when detaching.
1408 Otherwise pass any pending signal the LWP may have, if any. */
1409
1410 static void
1411 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1412 {
1413 int lwpid = ptid_get_lwp (lp->ptid);
1414 int signo;
1415
1416 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1417
1418 if (debug_linux_nat && lp->status)
1419 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1420 strsignal (WSTOPSIG (lp->status)),
1421 target_pid_to_str (lp->ptid));
1422
1423 /* If there is a pending SIGSTOP, get rid of it. */
1424 if (lp->signalled)
1425 {
1426 if (debug_linux_nat)
1427 fprintf_unfiltered (gdb_stdlog,
1428 "DC: Sending SIGCONT to %s\n",
1429 target_pid_to_str (lp->ptid));
1430
1431 kill_lwp (lwpid, SIGCONT);
1432 lp->signalled = 0;
1433 }
1434
1435 if (signo_p == NULL)
1436 {
1437 /* Pass on any pending signal for this LWP. */
1438 signo = get_detach_signal (lp);
1439 }
1440 else
1441 signo = *signo_p;
1442
1443 /* Preparing to resume may try to write registers, and fail if the
1444 lwp is zombie. If that happens, ignore the error. We'll handle
1445 it below, when detach fails with ESRCH. */
1446 TRY
1447 {
1448 if (linux_nat_prepare_to_resume != NULL)
1449 linux_nat_prepare_to_resume (lp);
1450 }
1451 CATCH (ex, RETURN_MASK_ERROR)
1452 {
1453 if (!check_ptrace_stopped_lwp_gone (lp))
1454 throw_exception (ex);
1455 }
1456 END_CATCH
1457
1458 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1459 {
1460 int save_errno = errno;
1461
1462 /* We know the thread exists, so ESRCH must mean the lwp is
1463 zombie. This can happen if one of the already-detached
1464 threads exits the whole thread group. In that case we're
1465 still attached, and must reap the lwp. */
1466 if (save_errno == ESRCH)
1467 {
1468 int ret, status;
1469
1470 ret = my_waitpid (lwpid, &status, __WALL);
1471 if (ret == -1)
1472 {
1473 warning (_("Couldn't reap LWP %d while detaching: %s"),
1474 lwpid, strerror (errno));
1475 }
1476 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1477 {
1478 warning (_("Reaping LWP %d while detaching "
1479 "returned unexpected status 0x%x"),
1480 lwpid, status);
1481 }
1482 }
1483 else
1484 {
1485 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1486 safe_strerror (save_errno));
1487 }
1488 }
1489 else if (debug_linux_nat)
1490 {
1491 fprintf_unfiltered (gdb_stdlog,
1492 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1493 target_pid_to_str (lp->ptid),
1494 strsignal (signo));
1495 }
1496
1497 delete_lwp (lp->ptid);
1498 }
1499
1500 static int
1501 detach_callback (struct lwp_info *lp, void *data)
1502 {
1503 /* We don't actually detach from the thread group leader just yet.
1504 If the thread group exits, we must reap the zombie clone lwps
1505 before we're able to reap the leader. */
1506 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1507 detach_one_lwp (lp, NULL);
1508 return 0;
1509 }
1510
1511 static void
1512 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1513 {
1514 int pid;
1515 struct lwp_info *main_lwp;
1516
1517 pid = ptid_get_pid (inferior_ptid);
1518
1519 /* Don't unregister from the event loop, as there may be other
1520 inferiors running. */
1521
1522 /* Stop all threads before detaching. ptrace requires that the
1523 thread is stopped to sucessfully detach. */
1524 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1525 /* ... and wait until all of them have reported back that
1526 they're no longer running. */
1527 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1528
1529 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1530
1531 /* Only the initial process should be left right now. */
1532 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1533
1534 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1535
1536 if (forks_exist_p ())
1537 {
1538 /* Multi-fork case. The current inferior_ptid is being detached
1539 from, but there are other viable forks to debug. Detach from
1540 the current fork, and context-switch to the first
1541 available. */
1542 linux_fork_detach (args, from_tty);
1543 }
1544 else
1545 {
1546 int signo;
1547
1548 target_announce_detach (from_tty);
1549
1550 /* Pass on any pending signal for the last LWP, unless the user
1551 requested detaching with a different signal (most likely 0,
1552 meaning, discard the signal). */
1553 if (args != NULL)
1554 signo = atoi (args);
1555 else
1556 signo = get_detach_signal (main_lwp);
1557
1558 detach_one_lwp (main_lwp, &signo);
1559
1560 inf_ptrace_detach_success (ops);
1561 }
1562 }
1563
1564 /* Resume execution of the inferior process. If STEP is nonzero,
1565 single-step it. If SIGNAL is nonzero, give it that signal. */
1566
1567 static void
1568 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1569 enum gdb_signal signo)
1570 {
1571 lp->step = step;
1572
1573 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1574 We only presently need that if the LWP is stepped though (to
1575 handle the case of stepping a breakpoint instruction). */
1576 if (step)
1577 {
1578 struct regcache *regcache = get_thread_regcache (lp->ptid);
1579
1580 lp->stop_pc = regcache_read_pc (regcache);
1581 }
1582 else
1583 lp->stop_pc = 0;
1584
1585 if (linux_nat_prepare_to_resume != NULL)
1586 linux_nat_prepare_to_resume (lp);
1587 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1588
1589 /* Successfully resumed. Clear state that no longer makes sense,
1590 and mark the LWP as running. Must not do this before resuming
1591 otherwise if that fails other code will be confused. E.g., we'd
1592 later try to stop the LWP and hang forever waiting for a stop
1593 status. Note that we must not throw after this is cleared,
1594 otherwise handle_zombie_lwp_error would get confused. */
1595 lp->stopped = 0;
1596 lp->core = -1;
1597 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1598 registers_changed_ptid (lp->ptid);
1599 }
1600
1601 /* Called when we try to resume a stopped LWP and that errors out. If
1602 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1603 or about to become), discard the error, clear any pending status
1604 the LWP may have, and return true (we'll collect the exit status
1605 soon enough). Otherwise, return false. */
1606
1607 static int
1608 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1609 {
1610 /* If we get an error after resuming the LWP successfully, we'd
1611 confuse !T state for the LWP being gone. */
1612 gdb_assert (lp->stopped);
1613
1614 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1615 because even if ptrace failed with ESRCH, the tracee may be "not
1616 yet fully dead", but already refusing ptrace requests. In that
1617 case the tracee has 'R (Running)' state for a little bit
1618 (observed in Linux 3.18). See also the note on ESRCH in the
1619 ptrace(2) man page. Instead, check whether the LWP has any state
1620 other than ptrace-stopped. */
1621
1622 /* Don't assume anything if /proc/PID/status can't be read. */
1623 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1624 {
1625 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1626 lp->status = 0;
1627 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1628 return 1;
1629 }
1630 return 0;
1631 }
1632
1633 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1634 disappears while we try to resume it. */
1635
1636 static void
1637 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1638 {
1639 TRY
1640 {
1641 linux_resume_one_lwp_throw (lp, step, signo);
1642 }
1643 CATCH (ex, RETURN_MASK_ERROR)
1644 {
1645 if (!check_ptrace_stopped_lwp_gone (lp))
1646 throw_exception (ex);
1647 }
1648 END_CATCH
1649 }
1650
1651 /* Resume LP. */
1652
1653 static void
1654 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1655 {
1656 if (lp->stopped)
1657 {
1658 struct inferior *inf = find_inferior_ptid (lp->ptid);
1659
1660 if (inf->vfork_child != NULL)
1661 {
1662 if (debug_linux_nat)
1663 fprintf_unfiltered (gdb_stdlog,
1664 "RC: Not resuming %s (vfork parent)\n",
1665 target_pid_to_str (lp->ptid));
1666 }
1667 else if (!lwp_status_pending_p (lp))
1668 {
1669 if (debug_linux_nat)
1670 fprintf_unfiltered (gdb_stdlog,
1671 "RC: Resuming sibling %s, %s, %s\n",
1672 target_pid_to_str (lp->ptid),
1673 (signo != GDB_SIGNAL_0
1674 ? strsignal (gdb_signal_to_host (signo))
1675 : "0"),
1676 step ? "step" : "resume");
1677
1678 linux_resume_one_lwp (lp, step, signo);
1679 }
1680 else
1681 {
1682 if (debug_linux_nat)
1683 fprintf_unfiltered (gdb_stdlog,
1684 "RC: Not resuming sibling %s (has pending)\n",
1685 target_pid_to_str (lp->ptid));
1686 }
1687 }
1688 else
1689 {
1690 if (debug_linux_nat)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "RC: Not resuming sibling %s (not stopped)\n",
1693 target_pid_to_str (lp->ptid));
1694 }
1695 }
1696
1697 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1698 Resume LWP with the last stop signal, if it is in pass state. */
1699
1700 static int
1701 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1702 {
1703 enum gdb_signal signo = GDB_SIGNAL_0;
1704
1705 if (lp == except)
1706 return 0;
1707
1708 if (lp->stopped)
1709 {
1710 struct thread_info *thread;
1711
1712 thread = find_thread_ptid (lp->ptid);
1713 if (thread != NULL)
1714 {
1715 signo = thread->suspend.stop_signal;
1716 thread->suspend.stop_signal = GDB_SIGNAL_0;
1717 }
1718 }
1719
1720 resume_lwp (lp, 0, signo);
1721 return 0;
1722 }
1723
1724 static int
1725 resume_clear_callback (struct lwp_info *lp, void *data)
1726 {
1727 lp->resumed = 0;
1728 lp->last_resume_kind = resume_stop;
1729 return 0;
1730 }
1731
1732 static int
1733 resume_set_callback (struct lwp_info *lp, void *data)
1734 {
1735 lp->resumed = 1;
1736 lp->last_resume_kind = resume_continue;
1737 return 0;
1738 }
1739
1740 static void
1741 linux_nat_resume (struct target_ops *ops,
1742 ptid_t ptid, int step, enum gdb_signal signo)
1743 {
1744 struct lwp_info *lp;
1745 int resume_many;
1746
1747 if (debug_linux_nat)
1748 fprintf_unfiltered (gdb_stdlog,
1749 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1750 step ? "step" : "resume",
1751 target_pid_to_str (ptid),
1752 (signo != GDB_SIGNAL_0
1753 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1754 target_pid_to_str (inferior_ptid));
1755
1756 /* A specific PTID means `step only this process id'. */
1757 resume_many = (ptid_equal (minus_one_ptid, ptid)
1758 || ptid_is_pid (ptid));
1759
1760 /* Mark the lwps we're resuming as resumed. */
1761 iterate_over_lwps (ptid, resume_set_callback, NULL);
1762
1763 /* See if it's the current inferior that should be handled
1764 specially. */
1765 if (resume_many)
1766 lp = find_lwp_pid (inferior_ptid);
1767 else
1768 lp = find_lwp_pid (ptid);
1769 gdb_assert (lp != NULL);
1770
1771 /* Remember if we're stepping. */
1772 lp->last_resume_kind = step ? resume_step : resume_continue;
1773
1774 /* If we have a pending wait status for this thread, there is no
1775 point in resuming the process. But first make sure that
1776 linux_nat_wait won't preemptively handle the event - we
1777 should never take this short-circuit if we are going to
1778 leave LP running, since we have skipped resuming all the
1779 other threads. This bit of code needs to be synchronized
1780 with linux_nat_wait. */
1781
1782 if (lp->status && WIFSTOPPED (lp->status))
1783 {
1784 if (!lp->step
1785 && WSTOPSIG (lp->status)
1786 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1787 {
1788 if (debug_linux_nat)
1789 fprintf_unfiltered (gdb_stdlog,
1790 "LLR: Not short circuiting for ignored "
1791 "status 0x%x\n", lp->status);
1792
1793 /* FIXME: What should we do if we are supposed to continue
1794 this thread with a signal? */
1795 gdb_assert (signo == GDB_SIGNAL_0);
1796 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1797 lp->status = 0;
1798 }
1799 }
1800
1801 if (lwp_status_pending_p (lp))
1802 {
1803 /* FIXME: What should we do if we are supposed to continue
1804 this thread with a signal? */
1805 gdb_assert (signo == GDB_SIGNAL_0);
1806
1807 if (debug_linux_nat)
1808 fprintf_unfiltered (gdb_stdlog,
1809 "LLR: Short circuiting for status 0x%x\n",
1810 lp->status);
1811
1812 if (target_can_async_p ())
1813 {
1814 target_async (1);
1815 /* Tell the event loop we have something to process. */
1816 async_file_mark ();
1817 }
1818 return;
1819 }
1820
1821 if (resume_many)
1822 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1823
1824 if (debug_linux_nat)
1825 fprintf_unfiltered (gdb_stdlog,
1826 "LLR: %s %s, %s (resume event thread)\n",
1827 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1828 target_pid_to_str (lp->ptid),
1829 (signo != GDB_SIGNAL_0
1830 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1831
1832 linux_resume_one_lwp (lp, step, signo);
1833
1834 if (target_can_async_p ())
1835 target_async (1);
1836 }
1837
1838 /* Send a signal to an LWP. */
1839
1840 static int
1841 kill_lwp (int lwpid, int signo)
1842 {
1843 int ret;
1844
1845 errno = 0;
1846 ret = syscall (__NR_tkill, lwpid, signo);
1847 if (errno == ENOSYS)
1848 {
1849 /* If tkill fails, then we are not using nptl threads, a
1850 configuration we no longer support. */
1851 perror_with_name (("tkill"));
1852 }
1853 return ret;
1854 }
1855
1856 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1857 event, check if the core is interested in it: if not, ignore the
1858 event, and keep waiting; otherwise, we need to toggle the LWP's
1859 syscall entry/exit status, since the ptrace event itself doesn't
1860 indicate it, and report the trap to higher layers. */
1861
1862 static int
1863 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1864 {
1865 struct target_waitstatus *ourstatus = &lp->waitstatus;
1866 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1867 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1868
1869 if (stopping)
1870 {
1871 /* If we're stopping threads, there's a SIGSTOP pending, which
1872 makes it so that the LWP reports an immediate syscall return,
1873 followed by the SIGSTOP. Skip seeing that "return" using
1874 PTRACE_CONT directly, and let stop_wait_callback collect the
1875 SIGSTOP. Later when the thread is resumed, a new syscall
1876 entry event. If we didn't do this (and returned 0), we'd
1877 leave a syscall entry pending, and our caller, by using
1878 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1879 itself. Later, when the user re-resumes this LWP, we'd see
1880 another syscall entry event and we'd mistake it for a return.
1881
1882 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1883 (leaving immediately with LWP->signalled set, without issuing
1884 a PTRACE_CONT), it would still be problematic to leave this
1885 syscall enter pending, as later when the thread is resumed,
1886 it would then see the same syscall exit mentioned above,
1887 followed by the delayed SIGSTOP, while the syscall didn't
1888 actually get to execute. It seems it would be even more
1889 confusing to the user. */
1890
1891 if (debug_linux_nat)
1892 fprintf_unfiltered (gdb_stdlog,
1893 "LHST: ignoring syscall %d "
1894 "for LWP %ld (stopping threads), "
1895 "resuming with PTRACE_CONT for SIGSTOP\n",
1896 syscall_number,
1897 ptid_get_lwp (lp->ptid));
1898
1899 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1900 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1901 lp->stopped = 0;
1902 return 1;
1903 }
1904
1905 /* Always update the entry/return state, even if this particular
1906 syscall isn't interesting to the core now. In async mode,
1907 the user could install a new catchpoint for this syscall
1908 between syscall enter/return, and we'll need to know to
1909 report a syscall return if that happens. */
1910 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1911 ? TARGET_WAITKIND_SYSCALL_RETURN
1912 : TARGET_WAITKIND_SYSCALL_ENTRY);
1913
1914 if (catch_syscall_enabled ())
1915 {
1916 if (catching_syscall_number (syscall_number))
1917 {
1918 /* Alright, an event to report. */
1919 ourstatus->kind = lp->syscall_state;
1920 ourstatus->value.syscall_number = syscall_number;
1921
1922 if (debug_linux_nat)
1923 fprintf_unfiltered (gdb_stdlog,
1924 "LHST: stopping for %s of syscall %d"
1925 " for LWP %ld\n",
1926 lp->syscall_state
1927 == TARGET_WAITKIND_SYSCALL_ENTRY
1928 ? "entry" : "return",
1929 syscall_number,
1930 ptid_get_lwp (lp->ptid));
1931 return 0;
1932 }
1933
1934 if (debug_linux_nat)
1935 fprintf_unfiltered (gdb_stdlog,
1936 "LHST: ignoring %s of syscall %d "
1937 "for LWP %ld\n",
1938 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1939 ? "entry" : "return",
1940 syscall_number,
1941 ptid_get_lwp (lp->ptid));
1942 }
1943 else
1944 {
1945 /* If we had been syscall tracing, and hence used PT_SYSCALL
1946 before on this LWP, it could happen that the user removes all
1947 syscall catchpoints before we get to process this event.
1948 There are two noteworthy issues here:
1949
1950 - When stopped at a syscall entry event, resuming with
1951 PT_STEP still resumes executing the syscall and reports a
1952 syscall return.
1953
1954 - Only PT_SYSCALL catches syscall enters. If we last
1955 single-stepped this thread, then this event can't be a
1956 syscall enter. If we last single-stepped this thread, this
1957 has to be a syscall exit.
1958
1959 The points above mean that the next resume, be it PT_STEP or
1960 PT_CONTINUE, can not trigger a syscall trace event. */
1961 if (debug_linux_nat)
1962 fprintf_unfiltered (gdb_stdlog,
1963 "LHST: caught syscall event "
1964 "with no syscall catchpoints."
1965 " %d for LWP %ld, ignoring\n",
1966 syscall_number,
1967 ptid_get_lwp (lp->ptid));
1968 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1969 }
1970
1971 /* The core isn't interested in this event. For efficiency, avoid
1972 stopping all threads only to have the core resume them all again.
1973 Since we're not stopping threads, if we're still syscall tracing
1974 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1975 subsequent syscall. Simply resume using the inf-ptrace layer,
1976 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1977
1978 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1979 return 1;
1980 }
1981
1982 /* Handle a GNU/Linux extended wait response. If we see a clone
1983 event, we need to add the new LWP to our list (and not report the
1984 trap to higher layers). This function returns non-zero if the
1985 event should be ignored and we should wait again. If STOPPING is
1986 true, the new LWP remains stopped, otherwise it is continued. */
1987
1988 static int
1989 linux_handle_extended_wait (struct lwp_info *lp, int status)
1990 {
1991 int pid = ptid_get_lwp (lp->ptid);
1992 struct target_waitstatus *ourstatus = &lp->waitstatus;
1993 int event = linux_ptrace_get_extended_event (status);
1994
1995 /* All extended events we currently use are mid-syscall. Only
1996 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1997 you have to be using PTRACE_SEIZE to get that. */
1998 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1999
2000 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2001 || event == PTRACE_EVENT_CLONE)
2002 {
2003 unsigned long new_pid;
2004 int ret;
2005
2006 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2007
2008 /* If we haven't already seen the new PID stop, wait for it now. */
2009 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2010 {
2011 /* The new child has a pending SIGSTOP. We can't affect it until it
2012 hits the SIGSTOP, but we're already attached. */
2013 ret = my_waitpid (new_pid, &status, __WALL);
2014 if (ret == -1)
2015 perror_with_name (_("waiting for new child"));
2016 else if (ret != new_pid)
2017 internal_error (__FILE__, __LINE__,
2018 _("wait returned unexpected PID %d"), ret);
2019 else if (!WIFSTOPPED (status))
2020 internal_error (__FILE__, __LINE__,
2021 _("wait returned unexpected status 0x%x"), status);
2022 }
2023
2024 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2025
2026 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2027 {
2028 /* The arch-specific native code may need to know about new
2029 forks even if those end up never mapped to an
2030 inferior. */
2031 if (linux_nat_new_fork != NULL)
2032 linux_nat_new_fork (lp, new_pid);
2033 }
2034
2035 if (event == PTRACE_EVENT_FORK
2036 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2037 {
2038 /* Handle checkpointing by linux-fork.c here as a special
2039 case. We don't want the follow-fork-mode or 'catch fork'
2040 to interfere with this. */
2041
2042 /* This won't actually modify the breakpoint list, but will
2043 physically remove the breakpoints from the child. */
2044 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2045
2046 /* Retain child fork in ptrace (stopped) state. */
2047 if (!find_fork_pid (new_pid))
2048 add_fork (new_pid);
2049
2050 /* Report as spurious, so that infrun doesn't want to follow
2051 this fork. We're actually doing an infcall in
2052 linux-fork.c. */
2053 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2054
2055 /* Report the stop to the core. */
2056 return 0;
2057 }
2058
2059 if (event == PTRACE_EVENT_FORK)
2060 ourstatus->kind = TARGET_WAITKIND_FORKED;
2061 else if (event == PTRACE_EVENT_VFORK)
2062 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2063 else if (event == PTRACE_EVENT_CLONE)
2064 {
2065 struct lwp_info *new_lp;
2066
2067 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2068
2069 if (debug_linux_nat)
2070 fprintf_unfiltered (gdb_stdlog,
2071 "LHEW: Got clone event "
2072 "from LWP %d, new child is LWP %ld\n",
2073 pid, new_pid);
2074
2075 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2076 new_lp->stopped = 1;
2077 new_lp->resumed = 1;
2078
2079 /* If the thread_db layer is active, let it record the user
2080 level thread id and status, and add the thread to GDB's
2081 list. */
2082 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2083 {
2084 /* The process is not using thread_db. Add the LWP to
2085 GDB's list. */
2086 target_post_attach (ptid_get_lwp (new_lp->ptid));
2087 add_thread (new_lp->ptid);
2088 }
2089
2090 /* Even if we're stopping the thread for some reason
2091 internal to this module, from the perspective of infrun
2092 and the user/frontend, this new thread is running until
2093 it next reports a stop. */
2094 set_running (new_lp->ptid, 1);
2095 set_executing (new_lp->ptid, 1);
2096
2097 if (WSTOPSIG (status) != SIGSTOP)
2098 {
2099 /* This can happen if someone starts sending signals to
2100 the new thread before it gets a chance to run, which
2101 have a lower number than SIGSTOP (e.g. SIGUSR1).
2102 This is an unlikely case, and harder to handle for
2103 fork / vfork than for clone, so we do not try - but
2104 we handle it for clone events here. */
2105
2106 new_lp->signalled = 1;
2107
2108 /* We created NEW_LP so it cannot yet contain STATUS. */
2109 gdb_assert (new_lp->status == 0);
2110
2111 /* Save the wait status to report later. */
2112 if (debug_linux_nat)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "LHEW: waitpid of new LWP %ld, "
2115 "saving status %s\n",
2116 (long) ptid_get_lwp (new_lp->ptid),
2117 status_to_str (status));
2118 new_lp->status = status;
2119 }
2120 else if (report_thread_events)
2121 {
2122 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2123 new_lp->status = status;
2124 }
2125
2126 return 1;
2127 }
2128
2129 return 0;
2130 }
2131
2132 if (event == PTRACE_EVENT_EXEC)
2133 {
2134 if (debug_linux_nat)
2135 fprintf_unfiltered (gdb_stdlog,
2136 "LHEW: Got exec event from LWP %ld\n",
2137 ptid_get_lwp (lp->ptid));
2138
2139 ourstatus->kind = TARGET_WAITKIND_EXECD;
2140 ourstatus->value.execd_pathname
2141 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2142
2143 /* The thread that execed must have been resumed, but, when a
2144 thread execs, it changes its tid to the tgid, and the old
2145 tgid thread might have not been resumed. */
2146 lp->resumed = 1;
2147 return 0;
2148 }
2149
2150 if (event == PTRACE_EVENT_VFORK_DONE)
2151 {
2152 if (current_inferior ()->waiting_for_vfork_done)
2153 {
2154 if (debug_linux_nat)
2155 fprintf_unfiltered (gdb_stdlog,
2156 "LHEW: Got expected PTRACE_EVENT_"
2157 "VFORK_DONE from LWP %ld: stopping\n",
2158 ptid_get_lwp (lp->ptid));
2159
2160 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2161 return 0;
2162 }
2163
2164 if (debug_linux_nat)
2165 fprintf_unfiltered (gdb_stdlog,
2166 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2167 "from LWP %ld: ignoring\n",
2168 ptid_get_lwp (lp->ptid));
2169 return 1;
2170 }
2171
2172 internal_error (__FILE__, __LINE__,
2173 _("unknown ptrace event %d"), event);
2174 }
2175
2176 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2177 exited. */
2178
2179 static int
2180 wait_lwp (struct lwp_info *lp)
2181 {
2182 pid_t pid;
2183 int status = 0;
2184 int thread_dead = 0;
2185 sigset_t prev_mask;
2186
2187 gdb_assert (!lp->stopped);
2188 gdb_assert (lp->status == 0);
2189
2190 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2191 block_child_signals (&prev_mask);
2192
2193 for (;;)
2194 {
2195 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2196 if (pid == -1 && errno == ECHILD)
2197 {
2198 /* The thread has previously exited. We need to delete it
2199 now because if this was a non-leader thread execing, we
2200 won't get an exit event. See comments on exec events at
2201 the top of the file. */
2202 thread_dead = 1;
2203 if (debug_linux_nat)
2204 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2205 target_pid_to_str (lp->ptid));
2206 }
2207 if (pid != 0)
2208 break;
2209
2210 /* Bugs 10970, 12702.
2211 Thread group leader may have exited in which case we'll lock up in
2212 waitpid if there are other threads, even if they are all zombies too.
2213 Basically, we're not supposed to use waitpid this way.
2214 tkill(pid,0) cannot be used here as it gets ESRCH for both
2215 for zombie and running processes.
2216
2217 As a workaround, check if we're waiting for the thread group leader and
2218 if it's a zombie, and avoid calling waitpid if it is.
2219
2220 This is racy, what if the tgl becomes a zombie right after we check?
2221 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2222 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2223
2224 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2225 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2226 {
2227 thread_dead = 1;
2228 if (debug_linux_nat)
2229 fprintf_unfiltered (gdb_stdlog,
2230 "WL: Thread group leader %s vanished.\n",
2231 target_pid_to_str (lp->ptid));
2232 break;
2233 }
2234
2235 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2236 get invoked despite our caller had them intentionally blocked by
2237 block_child_signals. This is sensitive only to the loop of
2238 linux_nat_wait_1 and there if we get called my_waitpid gets called
2239 again before it gets to sigsuspend so we can safely let the handlers
2240 get executed here. */
2241
2242 if (debug_linux_nat)
2243 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2244 sigsuspend (&suspend_mask);
2245 }
2246
2247 restore_child_signals_mask (&prev_mask);
2248
2249 if (!thread_dead)
2250 {
2251 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2252
2253 if (debug_linux_nat)
2254 {
2255 fprintf_unfiltered (gdb_stdlog,
2256 "WL: waitpid %s received %s\n",
2257 target_pid_to_str (lp->ptid),
2258 status_to_str (status));
2259 }
2260
2261 /* Check if the thread has exited. */
2262 if (WIFEXITED (status) || WIFSIGNALED (status))
2263 {
2264 if (report_thread_events
2265 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2266 {
2267 if (debug_linux_nat)
2268 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2269 ptid_get_pid (lp->ptid));
2270
2271 /* If this is the leader exiting, it means the whole
2272 process is gone. Store the status to report to the
2273 core. Store it in lp->waitstatus, because lp->status
2274 would be ambiguous (W_EXITCODE(0,0) == 0). */
2275 store_waitstatus (&lp->waitstatus, status);
2276 return 0;
2277 }
2278
2279 thread_dead = 1;
2280 if (debug_linux_nat)
2281 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2282 target_pid_to_str (lp->ptid));
2283 }
2284 }
2285
2286 if (thread_dead)
2287 {
2288 exit_lwp (lp);
2289 return 0;
2290 }
2291
2292 gdb_assert (WIFSTOPPED (status));
2293 lp->stopped = 1;
2294
2295 if (lp->must_set_ptrace_flags)
2296 {
2297 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2298 int options = linux_nat_ptrace_options (inf->attach_flag);
2299
2300 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2301 lp->must_set_ptrace_flags = 0;
2302 }
2303
2304 /* Handle GNU/Linux's syscall SIGTRAPs. */
2305 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2306 {
2307 /* No longer need the sysgood bit. The ptrace event ends up
2308 recorded in lp->waitstatus if we care for it. We can carry
2309 on handling the event like a regular SIGTRAP from here
2310 on. */
2311 status = W_STOPCODE (SIGTRAP);
2312 if (linux_handle_syscall_trap (lp, 1))
2313 return wait_lwp (lp);
2314 }
2315 else
2316 {
2317 /* Almost all other ptrace-stops are known to be outside of system
2318 calls, with further exceptions in linux_handle_extended_wait. */
2319 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2320 }
2321
2322 /* Handle GNU/Linux's extended waitstatus for trace events. */
2323 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2324 && linux_is_extended_waitstatus (status))
2325 {
2326 if (debug_linux_nat)
2327 fprintf_unfiltered (gdb_stdlog,
2328 "WL: Handling extended status 0x%06x\n",
2329 status);
2330 linux_handle_extended_wait (lp, status);
2331 return 0;
2332 }
2333
2334 return status;
2335 }
2336
2337 /* Send a SIGSTOP to LP. */
2338
2339 static int
2340 stop_callback (struct lwp_info *lp, void *data)
2341 {
2342 if (!lp->stopped && !lp->signalled)
2343 {
2344 int ret;
2345
2346 if (debug_linux_nat)
2347 {
2348 fprintf_unfiltered (gdb_stdlog,
2349 "SC: kill %s **<SIGSTOP>**\n",
2350 target_pid_to_str (lp->ptid));
2351 }
2352 errno = 0;
2353 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2354 if (debug_linux_nat)
2355 {
2356 fprintf_unfiltered (gdb_stdlog,
2357 "SC: lwp kill %d %s\n",
2358 ret,
2359 errno ? safe_strerror (errno) : "ERRNO-OK");
2360 }
2361
2362 lp->signalled = 1;
2363 gdb_assert (lp->status == 0);
2364 }
2365
2366 return 0;
2367 }
2368
2369 /* Request a stop on LWP. */
2370
2371 void
2372 linux_stop_lwp (struct lwp_info *lwp)
2373 {
2374 stop_callback (lwp, NULL);
2375 }
2376
2377 /* See linux-nat.h */
2378
2379 void
2380 linux_stop_and_wait_all_lwps (void)
2381 {
2382 /* Stop all LWP's ... */
2383 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2384
2385 /* ... and wait until all of them have reported back that
2386 they're no longer running. */
2387 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2388 }
2389
2390 /* See linux-nat.h */
2391
2392 void
2393 linux_unstop_all_lwps (void)
2394 {
2395 iterate_over_lwps (minus_one_ptid,
2396 resume_stopped_resumed_lwps, &minus_one_ptid);
2397 }
2398
2399 /* Return non-zero if LWP PID has a pending SIGINT. */
2400
2401 static int
2402 linux_nat_has_pending_sigint (int pid)
2403 {
2404 sigset_t pending, blocked, ignored;
2405
2406 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2407
2408 if (sigismember (&pending, SIGINT)
2409 && !sigismember (&ignored, SIGINT))
2410 return 1;
2411
2412 return 0;
2413 }
2414
2415 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2416
2417 static int
2418 set_ignore_sigint (struct lwp_info *lp, void *data)
2419 {
2420 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2421 flag to consume the next one. */
2422 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2423 && WSTOPSIG (lp->status) == SIGINT)
2424 lp->status = 0;
2425 else
2426 lp->ignore_sigint = 1;
2427
2428 return 0;
2429 }
2430
2431 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2432 This function is called after we know the LWP has stopped; if the LWP
2433 stopped before the expected SIGINT was delivered, then it will never have
2434 arrived. Also, if the signal was delivered to a shared queue and consumed
2435 by a different thread, it will never be delivered to this LWP. */
2436
2437 static void
2438 maybe_clear_ignore_sigint (struct lwp_info *lp)
2439 {
2440 if (!lp->ignore_sigint)
2441 return;
2442
2443 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2444 {
2445 if (debug_linux_nat)
2446 fprintf_unfiltered (gdb_stdlog,
2447 "MCIS: Clearing bogus flag for %s\n",
2448 target_pid_to_str (lp->ptid));
2449 lp->ignore_sigint = 0;
2450 }
2451 }
2452
2453 /* Fetch the possible triggered data watchpoint info and store it in
2454 LP.
2455
2456 On some archs, like x86, that use debug registers to set
2457 watchpoints, it's possible that the way to know which watched
2458 address trapped, is to check the register that is used to select
2459 which address to watch. Problem is, between setting the watchpoint
2460 and reading back which data address trapped, the user may change
2461 the set of watchpoints, and, as a consequence, GDB changes the
2462 debug registers in the inferior. To avoid reading back a stale
2463 stopped-data-address when that happens, we cache in LP the fact
2464 that a watchpoint trapped, and the corresponding data address, as
2465 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2466 registers meanwhile, we have the cached data we can rely on. */
2467
2468 static int
2469 check_stopped_by_watchpoint (struct lwp_info *lp)
2470 {
2471 if (linux_ops->to_stopped_by_watchpoint == NULL)
2472 return 0;
2473
2474 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2475 inferior_ptid = lp->ptid;
2476
2477 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2478 {
2479 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2480
2481 if (linux_ops->to_stopped_data_address != NULL)
2482 lp->stopped_data_address_p =
2483 linux_ops->to_stopped_data_address (&current_target,
2484 &lp->stopped_data_address);
2485 else
2486 lp->stopped_data_address_p = 0;
2487 }
2488
2489 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2490 }
2491
2492 /* Returns true if the LWP had stopped for a watchpoint. */
2493
2494 static int
2495 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2496 {
2497 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2498
2499 gdb_assert (lp != NULL);
2500
2501 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2502 }
2503
2504 static int
2505 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2506 {
2507 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2508
2509 gdb_assert (lp != NULL);
2510
2511 *addr_p = lp->stopped_data_address;
2512
2513 return lp->stopped_data_address_p;
2514 }
2515
2516 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2517
2518 static int
2519 sigtrap_is_event (int status)
2520 {
2521 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2522 }
2523
2524 /* Set alternative SIGTRAP-like events recognizer. If
2525 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2526 applied. */
2527
2528 void
2529 linux_nat_set_status_is_event (struct target_ops *t,
2530 int (*status_is_event) (int status))
2531 {
2532 linux_nat_status_is_event = status_is_event;
2533 }
2534
2535 /* Wait until LP is stopped. */
2536
2537 static int
2538 stop_wait_callback (struct lwp_info *lp, void *data)
2539 {
2540 struct inferior *inf = find_inferior_ptid (lp->ptid);
2541
2542 /* If this is a vfork parent, bail out, it is not going to report
2543 any SIGSTOP until the vfork is done with. */
2544 if (inf->vfork_child != NULL)
2545 return 0;
2546
2547 if (!lp->stopped)
2548 {
2549 int status;
2550
2551 status = wait_lwp (lp);
2552 if (status == 0)
2553 return 0;
2554
2555 if (lp->ignore_sigint && WIFSTOPPED (status)
2556 && WSTOPSIG (status) == SIGINT)
2557 {
2558 lp->ignore_sigint = 0;
2559
2560 errno = 0;
2561 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2562 lp->stopped = 0;
2563 if (debug_linux_nat)
2564 fprintf_unfiltered (gdb_stdlog,
2565 "PTRACE_CONT %s, 0, 0 (%s) "
2566 "(discarding SIGINT)\n",
2567 target_pid_to_str (lp->ptid),
2568 errno ? safe_strerror (errno) : "OK");
2569
2570 return stop_wait_callback (lp, NULL);
2571 }
2572
2573 maybe_clear_ignore_sigint (lp);
2574
2575 if (WSTOPSIG (status) != SIGSTOP)
2576 {
2577 /* The thread was stopped with a signal other than SIGSTOP. */
2578
2579 if (debug_linux_nat)
2580 fprintf_unfiltered (gdb_stdlog,
2581 "SWC: Pending event %s in %s\n",
2582 status_to_str ((int) status),
2583 target_pid_to_str (lp->ptid));
2584
2585 /* Save the sigtrap event. */
2586 lp->status = status;
2587 gdb_assert (lp->signalled);
2588 save_stop_reason (lp);
2589 }
2590 else
2591 {
2592 /* We caught the SIGSTOP that we intended to catch, so
2593 there's no SIGSTOP pending. */
2594
2595 if (debug_linux_nat)
2596 fprintf_unfiltered (gdb_stdlog,
2597 "SWC: Expected SIGSTOP caught for %s.\n",
2598 target_pid_to_str (lp->ptid));
2599
2600 /* Reset SIGNALLED only after the stop_wait_callback call
2601 above as it does gdb_assert on SIGNALLED. */
2602 lp->signalled = 0;
2603 }
2604 }
2605
2606 return 0;
2607 }
2608
2609 /* Return non-zero if LP has a wait status pending. Discard the
2610 pending event and resume the LWP if the event that originally
2611 caused the stop became uninteresting. */
2612
2613 static int
2614 status_callback (struct lwp_info *lp, void *data)
2615 {
2616 /* Only report a pending wait status if we pretend that this has
2617 indeed been resumed. */
2618 if (!lp->resumed)
2619 return 0;
2620
2621 if (!lwp_status_pending_p (lp))
2622 return 0;
2623
2624 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2625 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2626 {
2627 struct regcache *regcache = get_thread_regcache (lp->ptid);
2628 CORE_ADDR pc;
2629 int discard = 0;
2630
2631 pc = regcache_read_pc (regcache);
2632
2633 if (pc != lp->stop_pc)
2634 {
2635 if (debug_linux_nat)
2636 fprintf_unfiltered (gdb_stdlog,
2637 "SC: PC of %s changed. was=%s, now=%s\n",
2638 target_pid_to_str (lp->ptid),
2639 paddress (target_gdbarch (), lp->stop_pc),
2640 paddress (target_gdbarch (), pc));
2641 discard = 1;
2642 }
2643
2644 #if !USE_SIGTRAP_SIGINFO
2645 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2646 {
2647 if (debug_linux_nat)
2648 fprintf_unfiltered (gdb_stdlog,
2649 "SC: previous breakpoint of %s, at %s gone\n",
2650 target_pid_to_str (lp->ptid),
2651 paddress (target_gdbarch (), lp->stop_pc));
2652
2653 discard = 1;
2654 }
2655 #endif
2656
2657 if (discard)
2658 {
2659 if (debug_linux_nat)
2660 fprintf_unfiltered (gdb_stdlog,
2661 "SC: pending event of %s cancelled.\n",
2662 target_pid_to_str (lp->ptid));
2663
2664 lp->status = 0;
2665 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2666 return 0;
2667 }
2668 }
2669
2670 return 1;
2671 }
2672
2673 /* Count the LWP's that have had events. */
2674
2675 static int
2676 count_events_callback (struct lwp_info *lp, void *data)
2677 {
2678 int *count = (int *) data;
2679
2680 gdb_assert (count != NULL);
2681
2682 /* Select only resumed LWPs that have an event pending. */
2683 if (lp->resumed && lwp_status_pending_p (lp))
2684 (*count)++;
2685
2686 return 0;
2687 }
2688
2689 /* Select the LWP (if any) that is currently being single-stepped. */
2690
2691 static int
2692 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2693 {
2694 if (lp->last_resume_kind == resume_step
2695 && lp->status != 0)
2696 return 1;
2697 else
2698 return 0;
2699 }
2700
2701 /* Returns true if LP has a status pending. */
2702
2703 static int
2704 lwp_status_pending_p (struct lwp_info *lp)
2705 {
2706 /* We check for lp->waitstatus in addition to lp->status, because we
2707 can have pending process exits recorded in lp->status and
2708 W_EXITCODE(0,0) happens to be 0. */
2709 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2710 }
2711
2712 /* Select the Nth LWP that has had an event. */
2713
2714 static int
2715 select_event_lwp_callback (struct lwp_info *lp, void *data)
2716 {
2717 int *selector = (int *) data;
2718
2719 gdb_assert (selector != NULL);
2720
2721 /* Select only resumed LWPs that have an event pending. */
2722 if (lp->resumed && lwp_status_pending_p (lp))
2723 if ((*selector)-- == 0)
2724 return 1;
2725
2726 return 0;
2727 }
2728
2729 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2730 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2731 and save the result in the LWP's stop_reason field. If it stopped
2732 for a breakpoint, decrement the PC if necessary on the lwp's
2733 architecture. */
2734
2735 static void
2736 save_stop_reason (struct lwp_info *lp)
2737 {
2738 struct regcache *regcache;
2739 struct gdbarch *gdbarch;
2740 CORE_ADDR pc;
2741 CORE_ADDR sw_bp_pc;
2742 #if USE_SIGTRAP_SIGINFO
2743 siginfo_t siginfo;
2744 #endif
2745
2746 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2747 gdb_assert (lp->status != 0);
2748
2749 if (!linux_nat_status_is_event (lp->status))
2750 return;
2751
2752 regcache = get_thread_regcache (lp->ptid);
2753 gdbarch = regcache->arch ();
2754
2755 pc = regcache_read_pc (regcache);
2756 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2757
2758 #if USE_SIGTRAP_SIGINFO
2759 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2760 {
2761 if (siginfo.si_signo == SIGTRAP)
2762 {
2763 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2764 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2765 {
2766 /* The si_code is ambiguous on this arch -- check debug
2767 registers. */
2768 if (!check_stopped_by_watchpoint (lp))
2769 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2770 }
2771 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2772 {
2773 /* If we determine the LWP stopped for a SW breakpoint,
2774 trust it. Particularly don't check watchpoint
2775 registers, because at least on s390, we'd find
2776 stopped-by-watchpoint as long as there's a watchpoint
2777 set. */
2778 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2779 }
2780 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2781 {
2782 /* This can indicate either a hardware breakpoint or
2783 hardware watchpoint. Check debug registers. */
2784 if (!check_stopped_by_watchpoint (lp))
2785 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2786 }
2787 else if (siginfo.si_code == TRAP_TRACE)
2788 {
2789 if (debug_linux_nat)
2790 fprintf_unfiltered (gdb_stdlog,
2791 "CSBB: %s stopped by trace\n",
2792 target_pid_to_str (lp->ptid));
2793
2794 /* We may have single stepped an instruction that
2795 triggered a watchpoint. In that case, on some
2796 architectures (such as x86), instead of TRAP_HWBKPT,
2797 si_code indicates TRAP_TRACE, and we need to check
2798 the debug registers separately. */
2799 check_stopped_by_watchpoint (lp);
2800 }
2801 }
2802 }
2803 #else
2804 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2805 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2806 sw_bp_pc))
2807 {
2808 /* The LWP was either continued, or stepped a software
2809 breakpoint instruction. */
2810 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2811 }
2812
2813 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2814 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2815
2816 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2817 check_stopped_by_watchpoint (lp);
2818 #endif
2819
2820 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2821 {
2822 if (debug_linux_nat)
2823 fprintf_unfiltered (gdb_stdlog,
2824 "CSBB: %s stopped by software breakpoint\n",
2825 target_pid_to_str (lp->ptid));
2826
2827 /* Back up the PC if necessary. */
2828 if (pc != sw_bp_pc)
2829 regcache_write_pc (regcache, sw_bp_pc);
2830
2831 /* Update this so we record the correct stop PC below. */
2832 pc = sw_bp_pc;
2833 }
2834 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2835 {
2836 if (debug_linux_nat)
2837 fprintf_unfiltered (gdb_stdlog,
2838 "CSBB: %s stopped by hardware breakpoint\n",
2839 target_pid_to_str (lp->ptid));
2840 }
2841 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2842 {
2843 if (debug_linux_nat)
2844 fprintf_unfiltered (gdb_stdlog,
2845 "CSBB: %s stopped by hardware watchpoint\n",
2846 target_pid_to_str (lp->ptid));
2847 }
2848
2849 lp->stop_pc = pc;
2850 }
2851
2852
2853 /* Returns true if the LWP had stopped for a software breakpoint. */
2854
2855 static int
2856 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2857 {
2858 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2859
2860 gdb_assert (lp != NULL);
2861
2862 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2863 }
2864
2865 /* Implement the supports_stopped_by_sw_breakpoint method. */
2866
2867 static int
2868 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2869 {
2870 return USE_SIGTRAP_SIGINFO;
2871 }
2872
2873 /* Returns true if the LWP had stopped for a hardware
2874 breakpoint/watchpoint. */
2875
2876 static int
2877 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2878 {
2879 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2880
2881 gdb_assert (lp != NULL);
2882
2883 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2884 }
2885
2886 /* Implement the supports_stopped_by_hw_breakpoint method. */
2887
2888 static int
2889 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2890 {
2891 return USE_SIGTRAP_SIGINFO;
2892 }
2893
2894 /* Select one LWP out of those that have events pending. */
2895
2896 static void
2897 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2898 {
2899 int num_events = 0;
2900 int random_selector;
2901 struct lwp_info *event_lp = NULL;
2902
2903 /* Record the wait status for the original LWP. */
2904 (*orig_lp)->status = *status;
2905
2906 /* In all-stop, give preference to the LWP that is being
2907 single-stepped. There will be at most one, and it will be the
2908 LWP that the core is most interested in. If we didn't do this,
2909 then we'd have to handle pending step SIGTRAPs somehow in case
2910 the core later continues the previously-stepped thread, as
2911 otherwise we'd report the pending SIGTRAP then, and the core, not
2912 having stepped the thread, wouldn't understand what the trap was
2913 for, and therefore would report it to the user as a random
2914 signal. */
2915 if (!target_is_non_stop_p ())
2916 {
2917 event_lp = iterate_over_lwps (filter,
2918 select_singlestep_lwp_callback, NULL);
2919 if (event_lp != NULL)
2920 {
2921 if (debug_linux_nat)
2922 fprintf_unfiltered (gdb_stdlog,
2923 "SEL: Select single-step %s\n",
2924 target_pid_to_str (event_lp->ptid));
2925 }
2926 }
2927
2928 if (event_lp == NULL)
2929 {
2930 /* Pick one at random, out of those which have had events. */
2931
2932 /* First see how many events we have. */
2933 iterate_over_lwps (filter, count_events_callback, &num_events);
2934 gdb_assert (num_events > 0);
2935
2936 /* Now randomly pick a LWP out of those that have had
2937 events. */
2938 random_selector = (int)
2939 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2940
2941 if (debug_linux_nat && num_events > 1)
2942 fprintf_unfiltered (gdb_stdlog,
2943 "SEL: Found %d events, selecting #%d\n",
2944 num_events, random_selector);
2945
2946 event_lp = iterate_over_lwps (filter,
2947 select_event_lwp_callback,
2948 &random_selector);
2949 }
2950
2951 if (event_lp != NULL)
2952 {
2953 /* Switch the event LWP. */
2954 *orig_lp = event_lp;
2955 *status = event_lp->status;
2956 }
2957
2958 /* Flush the wait status for the event LWP. */
2959 (*orig_lp)->status = 0;
2960 }
2961
2962 /* Return non-zero if LP has been resumed. */
2963
2964 static int
2965 resumed_callback (struct lwp_info *lp, void *data)
2966 {
2967 return lp->resumed;
2968 }
2969
2970 /* Check if we should go on and pass this event to common code.
2971 Return the affected lwp if we are, or NULL otherwise. */
2972
2973 static struct lwp_info *
2974 linux_nat_filter_event (int lwpid, int status)
2975 {
2976 struct lwp_info *lp;
2977 int event = linux_ptrace_get_extended_event (status);
2978
2979 lp = find_lwp_pid (pid_to_ptid (lwpid));
2980
2981 /* Check for stop events reported by a process we didn't already
2982 know about - anything not already in our LWP list.
2983
2984 If we're expecting to receive stopped processes after
2985 fork, vfork, and clone events, then we'll just add the
2986 new one to our list and go back to waiting for the event
2987 to be reported - the stopped process might be returned
2988 from waitpid before or after the event is.
2989
2990 But note the case of a non-leader thread exec'ing after the
2991 leader having exited, and gone from our lists. The non-leader
2992 thread changes its tid to the tgid. */
2993
2994 if (WIFSTOPPED (status) && lp == NULL
2995 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2996 {
2997 /* A multi-thread exec after we had seen the leader exiting. */
2998 if (debug_linux_nat)
2999 fprintf_unfiltered (gdb_stdlog,
3000 "LLW: Re-adding thread group leader LWP %d.\n",
3001 lwpid);
3002
3003 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
3004 lp->stopped = 1;
3005 lp->resumed = 1;
3006 add_thread (lp->ptid);
3007 }
3008
3009 if (WIFSTOPPED (status) && !lp)
3010 {
3011 if (debug_linux_nat)
3012 fprintf_unfiltered (gdb_stdlog,
3013 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3014 (long) lwpid, status_to_str (status));
3015 add_to_pid_list (&stopped_pids, lwpid, status);
3016 return NULL;
3017 }
3018
3019 /* Make sure we don't report an event for the exit of an LWP not in
3020 our list, i.e. not part of the current process. This can happen
3021 if we detach from a program we originally forked and then it
3022 exits. */
3023 if (!WIFSTOPPED (status) && !lp)
3024 return NULL;
3025
3026 /* This LWP is stopped now. (And if dead, this prevents it from
3027 ever being continued.) */
3028 lp->stopped = 1;
3029
3030 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3031 {
3032 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3033 int options = linux_nat_ptrace_options (inf->attach_flag);
3034
3035 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3036 lp->must_set_ptrace_flags = 0;
3037 }
3038
3039 /* Handle GNU/Linux's syscall SIGTRAPs. */
3040 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3041 {
3042 /* No longer need the sysgood bit. The ptrace event ends up
3043 recorded in lp->waitstatus if we care for it. We can carry
3044 on handling the event like a regular SIGTRAP from here
3045 on. */
3046 status = W_STOPCODE (SIGTRAP);
3047 if (linux_handle_syscall_trap (lp, 0))
3048 return NULL;
3049 }
3050 else
3051 {
3052 /* Almost all other ptrace-stops are known to be outside of system
3053 calls, with further exceptions in linux_handle_extended_wait. */
3054 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3055 }
3056
3057 /* Handle GNU/Linux's extended waitstatus for trace events. */
3058 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3059 && linux_is_extended_waitstatus (status))
3060 {
3061 if (debug_linux_nat)
3062 fprintf_unfiltered (gdb_stdlog,
3063 "LLW: Handling extended status 0x%06x\n",
3064 status);
3065 if (linux_handle_extended_wait (lp, status))
3066 return NULL;
3067 }
3068
3069 /* Check if the thread has exited. */
3070 if (WIFEXITED (status) || WIFSIGNALED (status))
3071 {
3072 if (!report_thread_events
3073 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3074 {
3075 if (debug_linux_nat)
3076 fprintf_unfiltered (gdb_stdlog,
3077 "LLW: %s exited.\n",
3078 target_pid_to_str (lp->ptid));
3079
3080 /* If there is at least one more LWP, then the exit signal
3081 was not the end of the debugged application and should be
3082 ignored. */
3083 exit_lwp (lp);
3084 return NULL;
3085 }
3086
3087 /* Note that even if the leader was ptrace-stopped, it can still
3088 exit, if e.g., some other thread brings down the whole
3089 process (calls `exit'). So don't assert that the lwp is
3090 resumed. */
3091 if (debug_linux_nat)
3092 fprintf_unfiltered (gdb_stdlog,
3093 "LWP %ld exited (resumed=%d)\n",
3094 ptid_get_lwp (lp->ptid), lp->resumed);
3095
3096 /* Dead LWP's aren't expected to reported a pending sigstop. */
3097 lp->signalled = 0;
3098
3099 /* Store the pending event in the waitstatus, because
3100 W_EXITCODE(0,0) == 0. */
3101 store_waitstatus (&lp->waitstatus, status);
3102 return lp;
3103 }
3104
3105 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3106 an attempt to stop an LWP. */
3107 if (lp->signalled
3108 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3109 {
3110 lp->signalled = 0;
3111
3112 if (lp->last_resume_kind == resume_stop)
3113 {
3114 if (debug_linux_nat)
3115 fprintf_unfiltered (gdb_stdlog,
3116 "LLW: resume_stop SIGSTOP caught for %s.\n",
3117 target_pid_to_str (lp->ptid));
3118 }
3119 else
3120 {
3121 /* This is a delayed SIGSTOP. Filter out the event. */
3122
3123 if (debug_linux_nat)
3124 fprintf_unfiltered (gdb_stdlog,
3125 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3126 lp->step ?
3127 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3128 target_pid_to_str (lp->ptid));
3129
3130 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3131 gdb_assert (lp->resumed);
3132 return NULL;
3133 }
3134 }
3135
3136 /* Make sure we don't report a SIGINT that we have already displayed
3137 for another thread. */
3138 if (lp->ignore_sigint
3139 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3140 {
3141 if (debug_linux_nat)
3142 fprintf_unfiltered (gdb_stdlog,
3143 "LLW: Delayed SIGINT caught for %s.\n",
3144 target_pid_to_str (lp->ptid));
3145
3146 /* This is a delayed SIGINT. */
3147 lp->ignore_sigint = 0;
3148
3149 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3150 if (debug_linux_nat)
3151 fprintf_unfiltered (gdb_stdlog,
3152 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3153 lp->step ?
3154 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3155 target_pid_to_str (lp->ptid));
3156 gdb_assert (lp->resumed);
3157
3158 /* Discard the event. */
3159 return NULL;
3160 }
3161
3162 /* Don't report signals that GDB isn't interested in, such as
3163 signals that are neither printed nor stopped upon. Stopping all
3164 threads can be a bit time-consuming so if we want decent
3165 performance with heavily multi-threaded programs, especially when
3166 they're using a high frequency timer, we'd better avoid it if we
3167 can. */
3168 if (WIFSTOPPED (status))
3169 {
3170 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3171
3172 if (!target_is_non_stop_p ())
3173 {
3174 /* Only do the below in all-stop, as we currently use SIGSTOP
3175 to implement target_stop (see linux_nat_stop) in
3176 non-stop. */
3177 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3178 {
3179 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3180 forwarded to the entire process group, that is, all LWPs
3181 will receive it - unless they're using CLONE_THREAD to
3182 share signals. Since we only want to report it once, we
3183 mark it as ignored for all LWPs except this one. */
3184 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3185 set_ignore_sigint, NULL);
3186 lp->ignore_sigint = 0;
3187 }
3188 else
3189 maybe_clear_ignore_sigint (lp);
3190 }
3191
3192 /* When using hardware single-step, we need to report every signal.
3193 Otherwise, signals in pass_mask may be short-circuited
3194 except signals that might be caused by a breakpoint. */
3195 if (!lp->step
3196 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3197 && !linux_wstatus_maybe_breakpoint (status))
3198 {
3199 linux_resume_one_lwp (lp, lp->step, signo);
3200 if (debug_linux_nat)
3201 fprintf_unfiltered (gdb_stdlog,
3202 "LLW: %s %s, %s (preempt 'handle')\n",
3203 lp->step ?
3204 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3205 target_pid_to_str (lp->ptid),
3206 (signo != GDB_SIGNAL_0
3207 ? strsignal (gdb_signal_to_host (signo))
3208 : "0"));
3209 return NULL;
3210 }
3211 }
3212
3213 /* An interesting event. */
3214 gdb_assert (lp);
3215 lp->status = status;
3216 save_stop_reason (lp);
3217 return lp;
3218 }
3219
3220 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3221 their exits until all other threads in the group have exited. */
3222
3223 static void
3224 check_zombie_leaders (void)
3225 {
3226 struct inferior *inf;
3227
3228 ALL_INFERIORS (inf)
3229 {
3230 struct lwp_info *leader_lp;
3231
3232 if (inf->pid == 0)
3233 continue;
3234
3235 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3236 if (leader_lp != NULL
3237 /* Check if there are other threads in the group, as we may
3238 have raced with the inferior simply exiting. */
3239 && num_lwps (inf->pid) > 1
3240 && linux_proc_pid_is_zombie (inf->pid))
3241 {
3242 if (debug_linux_nat)
3243 fprintf_unfiltered (gdb_stdlog,
3244 "CZL: Thread group leader %d zombie "
3245 "(it exited, or another thread execd).\n",
3246 inf->pid);
3247
3248 /* A leader zombie can mean one of two things:
3249
3250 - It exited, and there's an exit status pending
3251 available, or only the leader exited (not the whole
3252 program). In the latter case, we can't waitpid the
3253 leader's exit status until all other threads are gone.
3254
3255 - There are 3 or more threads in the group, and a thread
3256 other than the leader exec'd. See comments on exec
3257 events at the top of the file. We could try
3258 distinguishing the exit and exec cases, by waiting once
3259 more, and seeing if something comes out, but it doesn't
3260 sound useful. The previous leader _does_ go away, and
3261 we'll re-add the new one once we see the exec event
3262 (which is just the same as what would happen if the
3263 previous leader did exit voluntarily before some other
3264 thread execs). */
3265
3266 if (debug_linux_nat)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "CZL: Thread group leader %d vanished.\n",
3269 inf->pid);
3270 exit_lwp (leader_lp);
3271 }
3272 }
3273 }
3274
3275 /* Convenience function that is called when the kernel reports an exit
3276 event. This decides whether to report the event to GDB as a
3277 process exit event, a thread exit event, or to suppress the
3278 event. */
3279
3280 static ptid_t
3281 filter_exit_event (struct lwp_info *event_child,
3282 struct target_waitstatus *ourstatus)
3283 {
3284 ptid_t ptid = event_child->ptid;
3285
3286 if (num_lwps (ptid_get_pid (ptid)) > 1)
3287 {
3288 if (report_thread_events)
3289 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3290 else
3291 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3292
3293 exit_lwp (event_child);
3294 }
3295
3296 return ptid;
3297 }
3298
3299 static ptid_t
3300 linux_nat_wait_1 (struct target_ops *ops,
3301 ptid_t ptid, struct target_waitstatus *ourstatus,
3302 int target_options)
3303 {
3304 sigset_t prev_mask;
3305 enum resume_kind last_resume_kind;
3306 struct lwp_info *lp;
3307 int status;
3308
3309 if (debug_linux_nat)
3310 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3311
3312 /* The first time we get here after starting a new inferior, we may
3313 not have added it to the LWP list yet - this is the earliest
3314 moment at which we know its PID. */
3315 if (ptid_is_pid (inferior_ptid))
3316 {
3317 /* Upgrade the main thread's ptid. */
3318 thread_change_ptid (inferior_ptid,
3319 ptid_build (ptid_get_pid (inferior_ptid),
3320 ptid_get_pid (inferior_ptid), 0));
3321
3322 lp = add_initial_lwp (inferior_ptid);
3323 lp->resumed = 1;
3324 }
3325
3326 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3327 block_child_signals (&prev_mask);
3328
3329 /* First check if there is a LWP with a wait status pending. */
3330 lp = iterate_over_lwps (ptid, status_callback, NULL);
3331 if (lp != NULL)
3332 {
3333 if (debug_linux_nat)
3334 fprintf_unfiltered (gdb_stdlog,
3335 "LLW: Using pending wait status %s for %s.\n",
3336 status_to_str (lp->status),
3337 target_pid_to_str (lp->ptid));
3338 }
3339
3340 /* But if we don't find a pending event, we'll have to wait. Always
3341 pull all events out of the kernel. We'll randomly select an
3342 event LWP out of all that have events, to prevent starvation. */
3343
3344 while (lp == NULL)
3345 {
3346 pid_t lwpid;
3347
3348 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3349 quirks:
3350
3351 - If the thread group leader exits while other threads in the
3352 thread group still exist, waitpid(TGID, ...) hangs. That
3353 waitpid won't return an exit status until the other threads
3354 in the group are reapped.
3355
3356 - When a non-leader thread execs, that thread just vanishes
3357 without reporting an exit (so we'd hang if we waited for it
3358 explicitly in that case). The exec event is reported to
3359 the TGID pid. */
3360
3361 errno = 0;
3362 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3363
3364 if (debug_linux_nat)
3365 fprintf_unfiltered (gdb_stdlog,
3366 "LNW: waitpid(-1, ...) returned %d, %s\n",
3367 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3368
3369 if (lwpid > 0)
3370 {
3371 if (debug_linux_nat)
3372 {
3373 fprintf_unfiltered (gdb_stdlog,
3374 "LLW: waitpid %ld received %s\n",
3375 (long) lwpid, status_to_str (status));
3376 }
3377
3378 linux_nat_filter_event (lwpid, status);
3379 /* Retry until nothing comes out of waitpid. A single
3380 SIGCHLD can indicate more than one child stopped. */
3381 continue;
3382 }
3383
3384 /* Now that we've pulled all events out of the kernel, resume
3385 LWPs that don't have an interesting event to report. */
3386 iterate_over_lwps (minus_one_ptid,
3387 resume_stopped_resumed_lwps, &minus_one_ptid);
3388
3389 /* ... and find an LWP with a status to report to the core, if
3390 any. */
3391 lp = iterate_over_lwps (ptid, status_callback, NULL);
3392 if (lp != NULL)
3393 break;
3394
3395 /* Check for zombie thread group leaders. Those can't be reaped
3396 until all other threads in the thread group are. */
3397 check_zombie_leaders ();
3398
3399 /* If there are no resumed children left, bail. We'd be stuck
3400 forever in the sigsuspend call below otherwise. */
3401 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3402 {
3403 if (debug_linux_nat)
3404 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3405
3406 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3407
3408 restore_child_signals_mask (&prev_mask);
3409 return minus_one_ptid;
3410 }
3411
3412 /* No interesting event to report to the core. */
3413
3414 if (target_options & TARGET_WNOHANG)
3415 {
3416 if (debug_linux_nat)
3417 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3418
3419 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3420 restore_child_signals_mask (&prev_mask);
3421 return minus_one_ptid;
3422 }
3423
3424 /* We shouldn't end up here unless we want to try again. */
3425 gdb_assert (lp == NULL);
3426
3427 /* Block until we get an event reported with SIGCHLD. */
3428 if (debug_linux_nat)
3429 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3430 sigsuspend (&suspend_mask);
3431 }
3432
3433 gdb_assert (lp);
3434
3435 status = lp->status;
3436 lp->status = 0;
3437
3438 if (!target_is_non_stop_p ())
3439 {
3440 /* Now stop all other LWP's ... */
3441 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3442
3443 /* ... and wait until all of them have reported back that
3444 they're no longer running. */
3445 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3446 }
3447
3448 /* If we're not waiting for a specific LWP, choose an event LWP from
3449 among those that have had events. Giving equal priority to all
3450 LWPs that have had events helps prevent starvation. */
3451 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3452 select_event_lwp (ptid, &lp, &status);
3453
3454 gdb_assert (lp != NULL);
3455
3456 /* Now that we've selected our final event LWP, un-adjust its PC if
3457 it was a software breakpoint, and we can't reliably support the
3458 "stopped by software breakpoint" stop reason. */
3459 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3460 && !USE_SIGTRAP_SIGINFO)
3461 {
3462 struct regcache *regcache = get_thread_regcache (lp->ptid);
3463 struct gdbarch *gdbarch = regcache->arch ();
3464 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3465
3466 if (decr_pc != 0)
3467 {
3468 CORE_ADDR pc;
3469
3470 pc = regcache_read_pc (regcache);
3471 regcache_write_pc (regcache, pc + decr_pc);
3472 }
3473 }
3474
3475 /* We'll need this to determine whether to report a SIGSTOP as
3476 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3477 clears it. */
3478 last_resume_kind = lp->last_resume_kind;
3479
3480 if (!target_is_non_stop_p ())
3481 {
3482 /* In all-stop, from the core's perspective, all LWPs are now
3483 stopped until a new resume action is sent over. */
3484 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3485 }
3486 else
3487 {
3488 resume_clear_callback (lp, NULL);
3489 }
3490
3491 if (linux_nat_status_is_event (status))
3492 {
3493 if (debug_linux_nat)
3494 fprintf_unfiltered (gdb_stdlog,
3495 "LLW: trap ptid is %s.\n",
3496 target_pid_to_str (lp->ptid));
3497 }
3498
3499 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3500 {
3501 *ourstatus = lp->waitstatus;
3502 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3503 }
3504 else
3505 store_waitstatus (ourstatus, status);
3506
3507 if (debug_linux_nat)
3508 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3509
3510 restore_child_signals_mask (&prev_mask);
3511
3512 if (last_resume_kind == resume_stop
3513 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3514 && WSTOPSIG (status) == SIGSTOP)
3515 {
3516 /* A thread that has been requested to stop by GDB with
3517 target_stop, and it stopped cleanly, so report as SIG0. The
3518 use of SIGSTOP is an implementation detail. */
3519 ourstatus->value.sig = GDB_SIGNAL_0;
3520 }
3521
3522 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3523 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3524 lp->core = -1;
3525 else
3526 lp->core = linux_common_core_of_thread (lp->ptid);
3527
3528 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3529 return filter_exit_event (lp, ourstatus);
3530
3531 return lp->ptid;
3532 }
3533
3534 /* Resume LWPs that are currently stopped without any pending status
3535 to report, but are resumed from the core's perspective. */
3536
3537 static int
3538 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3539 {
3540 ptid_t *wait_ptid_p = (ptid_t *) data;
3541
3542 if (!lp->stopped)
3543 {
3544 if (debug_linux_nat)
3545 fprintf_unfiltered (gdb_stdlog,
3546 "RSRL: NOT resuming LWP %s, not stopped\n",
3547 target_pid_to_str (lp->ptid));
3548 }
3549 else if (!lp->resumed)
3550 {
3551 if (debug_linux_nat)
3552 fprintf_unfiltered (gdb_stdlog,
3553 "RSRL: NOT resuming LWP %s, not resumed\n",
3554 target_pid_to_str (lp->ptid));
3555 }
3556 else if (lwp_status_pending_p (lp))
3557 {
3558 if (debug_linux_nat)
3559 fprintf_unfiltered (gdb_stdlog,
3560 "RSRL: NOT resuming LWP %s, has pending status\n",
3561 target_pid_to_str (lp->ptid));
3562 }
3563 else
3564 {
3565 struct regcache *regcache = get_thread_regcache (lp->ptid);
3566 struct gdbarch *gdbarch = regcache->arch ();
3567
3568 TRY
3569 {
3570 CORE_ADDR pc = regcache_read_pc (regcache);
3571 int leave_stopped = 0;
3572
3573 /* Don't bother if there's a breakpoint at PC that we'd hit
3574 immediately, and we're not waiting for this LWP. */
3575 if (!ptid_match (lp->ptid, *wait_ptid_p))
3576 {
3577 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3578 leave_stopped = 1;
3579 }
3580
3581 if (!leave_stopped)
3582 {
3583 if (debug_linux_nat)
3584 fprintf_unfiltered (gdb_stdlog,
3585 "RSRL: resuming stopped-resumed LWP %s at "
3586 "%s: step=%d\n",
3587 target_pid_to_str (lp->ptid),
3588 paddress (gdbarch, pc),
3589 lp->step);
3590
3591 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3592 }
3593 }
3594 CATCH (ex, RETURN_MASK_ERROR)
3595 {
3596 if (!check_ptrace_stopped_lwp_gone (lp))
3597 throw_exception (ex);
3598 }
3599 END_CATCH
3600 }
3601
3602 return 0;
3603 }
3604
3605 static ptid_t
3606 linux_nat_wait (struct target_ops *ops,
3607 ptid_t ptid, struct target_waitstatus *ourstatus,
3608 int target_options)
3609 {
3610 ptid_t event_ptid;
3611
3612 if (debug_linux_nat)
3613 {
3614 char *options_string;
3615
3616 options_string = target_options_to_string (target_options);
3617 fprintf_unfiltered (gdb_stdlog,
3618 "linux_nat_wait: [%s], [%s]\n",
3619 target_pid_to_str (ptid),
3620 options_string);
3621 xfree (options_string);
3622 }
3623
3624 /* Flush the async file first. */
3625 if (target_is_async_p ())
3626 async_file_flush ();
3627
3628 /* Resume LWPs that are currently stopped without any pending status
3629 to report, but are resumed from the core's perspective. LWPs get
3630 in this state if we find them stopping at a time we're not
3631 interested in reporting the event (target_wait on a
3632 specific_process, for example, see linux_nat_wait_1), and
3633 meanwhile the event became uninteresting. Don't bother resuming
3634 LWPs we're not going to wait for if they'd stop immediately. */
3635 if (target_is_non_stop_p ())
3636 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3637
3638 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3639
3640 /* If we requested any event, and something came out, assume there
3641 may be more. If we requested a specific lwp or process, also
3642 assume there may be more. */
3643 if (target_is_async_p ()
3644 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3645 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3646 || !ptid_equal (ptid, minus_one_ptid)))
3647 async_file_mark ();
3648
3649 return event_ptid;
3650 }
3651
3652 /* Kill one LWP. */
3653
3654 static void
3655 kill_one_lwp (pid_t pid)
3656 {
3657 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3658
3659 errno = 0;
3660 kill_lwp (pid, SIGKILL);
3661 if (debug_linux_nat)
3662 {
3663 int save_errno = errno;
3664
3665 fprintf_unfiltered (gdb_stdlog,
3666 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3667 save_errno ? safe_strerror (save_errno) : "OK");
3668 }
3669
3670 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3671
3672 errno = 0;
3673 ptrace (PTRACE_KILL, pid, 0, 0);
3674 if (debug_linux_nat)
3675 {
3676 int save_errno = errno;
3677
3678 fprintf_unfiltered (gdb_stdlog,
3679 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3680 save_errno ? safe_strerror (save_errno) : "OK");
3681 }
3682 }
3683
3684 /* Wait for an LWP to die. */
3685
3686 static void
3687 kill_wait_one_lwp (pid_t pid)
3688 {
3689 pid_t res;
3690
3691 /* We must make sure that there are no pending events (delayed
3692 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3693 program doesn't interfere with any following debugging session. */
3694
3695 do
3696 {
3697 res = my_waitpid (pid, NULL, __WALL);
3698 if (res != (pid_t) -1)
3699 {
3700 if (debug_linux_nat)
3701 fprintf_unfiltered (gdb_stdlog,
3702 "KWC: wait %ld received unknown.\n",
3703 (long) pid);
3704 /* The Linux kernel sometimes fails to kill a thread
3705 completely after PTRACE_KILL; that goes from the stop
3706 point in do_fork out to the one in get_signal_to_deliver
3707 and waits again. So kill it again. */
3708 kill_one_lwp (pid);
3709 }
3710 }
3711 while (res == pid);
3712
3713 gdb_assert (res == -1 && errno == ECHILD);
3714 }
3715
3716 /* Callback for iterate_over_lwps. */
3717
3718 static int
3719 kill_callback (struct lwp_info *lp, void *data)
3720 {
3721 kill_one_lwp (ptid_get_lwp (lp->ptid));
3722 return 0;
3723 }
3724
3725 /* Callback for iterate_over_lwps. */
3726
3727 static int
3728 kill_wait_callback (struct lwp_info *lp, void *data)
3729 {
3730 kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3731 return 0;
3732 }
3733
3734 /* Kill the fork children of any threads of inferior INF that are
3735 stopped at a fork event. */
3736
3737 static void
3738 kill_unfollowed_fork_children (struct inferior *inf)
3739 {
3740 struct thread_info *thread;
3741
3742 ALL_NON_EXITED_THREADS (thread)
3743 if (thread->inf == inf)
3744 {
3745 struct target_waitstatus *ws = &thread->pending_follow;
3746
3747 if (ws->kind == TARGET_WAITKIND_FORKED
3748 || ws->kind == TARGET_WAITKIND_VFORKED)
3749 {
3750 ptid_t child_ptid = ws->value.related_pid;
3751 int child_pid = ptid_get_pid (child_ptid);
3752 int child_lwp = ptid_get_lwp (child_ptid);
3753
3754 kill_one_lwp (child_lwp);
3755 kill_wait_one_lwp (child_lwp);
3756
3757 /* Let the arch-specific native code know this process is
3758 gone. */
3759 linux_nat_forget_process (child_pid);
3760 }
3761 }
3762 }
3763
3764 static void
3765 linux_nat_kill (struct target_ops *ops)
3766 {
3767 /* If we're stopped while forking and we haven't followed yet,
3768 kill the other task. We need to do this first because the
3769 parent will be sleeping if this is a vfork. */
3770 kill_unfollowed_fork_children (current_inferior ());
3771
3772 if (forks_exist_p ())
3773 linux_fork_killall ();
3774 else
3775 {
3776 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3777
3778 /* Stop all threads before killing them, since ptrace requires
3779 that the thread is stopped to sucessfully PTRACE_KILL. */
3780 iterate_over_lwps (ptid, stop_callback, NULL);
3781 /* ... and wait until all of them have reported back that
3782 they're no longer running. */
3783 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3784
3785 /* Kill all LWP's ... */
3786 iterate_over_lwps (ptid, kill_callback, NULL);
3787
3788 /* ... and wait until we've flushed all events. */
3789 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3790 }
3791
3792 target_mourn_inferior (inferior_ptid);
3793 }
3794
3795 static void
3796 linux_nat_mourn_inferior (struct target_ops *ops)
3797 {
3798 int pid = ptid_get_pid (inferior_ptid);
3799
3800 purge_lwp_list (pid);
3801
3802 if (! forks_exist_p ())
3803 /* Normal case, no other forks available. */
3804 linux_ops->to_mourn_inferior (ops);
3805 else
3806 /* Multi-fork case. The current inferior_ptid has exited, but
3807 there are other viable forks to debug. Delete the exiting
3808 one and context-switch to the first available. */
3809 linux_fork_mourn_inferior ();
3810
3811 /* Let the arch-specific native code know this process is gone. */
3812 linux_nat_forget_process (pid);
3813 }
3814
3815 /* Convert a native/host siginfo object, into/from the siginfo in the
3816 layout of the inferiors' architecture. */
3817
3818 static void
3819 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3820 {
3821 int done = 0;
3822
3823 if (linux_nat_siginfo_fixup != NULL)
3824 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3825
3826 /* If there was no callback, or the callback didn't do anything,
3827 then just do a straight memcpy. */
3828 if (!done)
3829 {
3830 if (direction == 1)
3831 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3832 else
3833 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3834 }
3835 }
3836
3837 static enum target_xfer_status
3838 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3839 const char *annex, gdb_byte *readbuf,
3840 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3841 ULONGEST *xfered_len)
3842 {
3843 int pid;
3844 siginfo_t siginfo;
3845 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3846
3847 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3848 gdb_assert (readbuf || writebuf);
3849
3850 pid = ptid_get_lwp (inferior_ptid);
3851 if (pid == 0)
3852 pid = ptid_get_pid (inferior_ptid);
3853
3854 if (offset > sizeof (siginfo))
3855 return TARGET_XFER_E_IO;
3856
3857 errno = 0;
3858 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3859 if (errno != 0)
3860 return TARGET_XFER_E_IO;
3861
3862 /* When GDB is built as a 64-bit application, ptrace writes into
3863 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3864 inferior with a 64-bit GDB should look the same as debugging it
3865 with a 32-bit GDB, we need to convert it. GDB core always sees
3866 the converted layout, so any read/write will have to be done
3867 post-conversion. */
3868 siginfo_fixup (&siginfo, inf_siginfo, 0);
3869
3870 if (offset + len > sizeof (siginfo))
3871 len = sizeof (siginfo) - offset;
3872
3873 if (readbuf != NULL)
3874 memcpy (readbuf, inf_siginfo + offset, len);
3875 else
3876 {
3877 memcpy (inf_siginfo + offset, writebuf, len);
3878
3879 /* Convert back to ptrace layout before flushing it out. */
3880 siginfo_fixup (&siginfo, inf_siginfo, 1);
3881
3882 errno = 0;
3883 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3884 if (errno != 0)
3885 return TARGET_XFER_E_IO;
3886 }
3887
3888 *xfered_len = len;
3889 return TARGET_XFER_OK;
3890 }
3891
3892 static enum target_xfer_status
3893 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3894 const char *annex, gdb_byte *readbuf,
3895 const gdb_byte *writebuf,
3896 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3897 {
3898 enum target_xfer_status xfer;
3899
3900 if (object == TARGET_OBJECT_SIGNAL_INFO)
3901 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3902 offset, len, xfered_len);
3903
3904 /* The target is connected but no live inferior is selected. Pass
3905 this request down to a lower stratum (e.g., the executable
3906 file). */
3907 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3908 return TARGET_XFER_EOF;
3909
3910 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3911 offset, len, xfered_len);
3912
3913 return xfer;
3914 }
3915
3916 static int
3917 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3918 {
3919 /* As long as a PTID is in lwp list, consider it alive. */
3920 return find_lwp_pid (ptid) != NULL;
3921 }
3922
3923 /* Implement the to_update_thread_list target method for this
3924 target. */
3925
3926 static void
3927 linux_nat_update_thread_list (struct target_ops *ops)
3928 {
3929 struct lwp_info *lwp;
3930
3931 /* We add/delete threads from the list as clone/exit events are
3932 processed, so just try deleting exited threads still in the
3933 thread list. */
3934 delete_exited_threads ();
3935
3936 /* Update the processor core that each lwp/thread was last seen
3937 running on. */
3938 ALL_LWPS (lwp)
3939 {
3940 /* Avoid accessing /proc if the thread hasn't run since we last
3941 time we fetched the thread's core. Accessing /proc becomes
3942 noticeably expensive when we have thousands of LWPs. */
3943 if (lwp->core == -1)
3944 lwp->core = linux_common_core_of_thread (lwp->ptid);
3945 }
3946 }
3947
3948 static const char *
3949 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3950 {
3951 static char buf[64];
3952
3953 if (ptid_lwp_p (ptid)
3954 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3955 || num_lwps (ptid_get_pid (ptid)) > 1))
3956 {
3957 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3958 return buf;
3959 }
3960
3961 return normal_pid_to_str (ptid);
3962 }
3963
3964 static const char *
3965 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3966 {
3967 return linux_proc_tid_get_name (thr->ptid);
3968 }
3969
3970 /* Accepts an integer PID; Returns a string representing a file that
3971 can be opened to get the symbols for the child process. */
3972
3973 static char *
3974 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3975 {
3976 return linux_proc_pid_to_exec_file (pid);
3977 }
3978
3979 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3980 Because we can use a single read/write call, this can be much more
3981 efficient than banging away at PTRACE_PEEKTEXT. */
3982
3983 static enum target_xfer_status
3984 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3985 const char *annex, gdb_byte *readbuf,
3986 const gdb_byte *writebuf,
3987 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3988 {
3989 LONGEST ret;
3990 int fd;
3991 char filename[64];
3992
3993 if (object != TARGET_OBJECT_MEMORY)
3994 return TARGET_XFER_EOF;
3995
3996 /* Don't bother for one word. */
3997 if (len < 3 * sizeof (long))
3998 return TARGET_XFER_EOF;
3999
4000 /* We could keep this file open and cache it - possibly one per
4001 thread. That requires some juggling, but is even faster. */
4002 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
4003 ptid_get_lwp (inferior_ptid));
4004 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
4005 | O_LARGEFILE), 0);
4006 if (fd == -1)
4007 return TARGET_XFER_EOF;
4008
4009 /* Use pread64/pwrite64 if available, since they save a syscall and can
4010 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
4011 debugging a SPARC64 application). */
4012 #ifdef HAVE_PREAD64
4013 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
4014 : pwrite64 (fd, writebuf, len, offset));
4015 #else
4016 ret = lseek (fd, offset, SEEK_SET);
4017 if (ret != -1)
4018 ret = (readbuf ? read (fd, readbuf, len)
4019 : write (fd, writebuf, len));
4020 #endif
4021
4022 close (fd);
4023
4024 if (ret == -1 || ret == 0)
4025 return TARGET_XFER_EOF;
4026 else
4027 {
4028 *xfered_len = ret;
4029 return TARGET_XFER_OK;
4030 }
4031 }
4032
4033
4034 /* Enumerate spufs IDs for process PID. */
4035 static LONGEST
4036 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4037 {
4038 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4039 LONGEST pos = 0;
4040 LONGEST written = 0;
4041 char path[128];
4042 DIR *dir;
4043 struct dirent *entry;
4044
4045 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4046 dir = opendir (path);
4047 if (!dir)
4048 return -1;
4049
4050 rewinddir (dir);
4051 while ((entry = readdir (dir)) != NULL)
4052 {
4053 struct stat st;
4054 struct statfs stfs;
4055 int fd;
4056
4057 fd = atoi (entry->d_name);
4058 if (!fd)
4059 continue;
4060
4061 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4062 if (stat (path, &st) != 0)
4063 continue;
4064 if (!S_ISDIR (st.st_mode))
4065 continue;
4066
4067 if (statfs (path, &stfs) != 0)
4068 continue;
4069 if (stfs.f_type != SPUFS_MAGIC)
4070 continue;
4071
4072 if (pos >= offset && pos + 4 <= offset + len)
4073 {
4074 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4075 written += 4;
4076 }
4077 pos += 4;
4078 }
4079
4080 closedir (dir);
4081 return written;
4082 }
4083
4084 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4085 object type, using the /proc file system. */
4086
4087 static enum target_xfer_status
4088 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4089 const char *annex, gdb_byte *readbuf,
4090 const gdb_byte *writebuf,
4091 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4092 {
4093 char buf[128];
4094 int fd = 0;
4095 int ret = -1;
4096 int pid = ptid_get_lwp (inferior_ptid);
4097
4098 if (!annex)
4099 {
4100 if (!readbuf)
4101 return TARGET_XFER_E_IO;
4102 else
4103 {
4104 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4105
4106 if (l < 0)
4107 return TARGET_XFER_E_IO;
4108 else if (l == 0)
4109 return TARGET_XFER_EOF;
4110 else
4111 {
4112 *xfered_len = (ULONGEST) l;
4113 return TARGET_XFER_OK;
4114 }
4115 }
4116 }
4117
4118 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4119 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4120 if (fd <= 0)
4121 return TARGET_XFER_E_IO;
4122
4123 if (offset != 0
4124 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4125 {
4126 close (fd);
4127 return TARGET_XFER_EOF;
4128 }
4129
4130 if (writebuf)
4131 ret = write (fd, writebuf, (size_t) len);
4132 else if (readbuf)
4133 ret = read (fd, readbuf, (size_t) len);
4134
4135 close (fd);
4136
4137 if (ret < 0)
4138 return TARGET_XFER_E_IO;
4139 else if (ret == 0)
4140 return TARGET_XFER_EOF;
4141 else
4142 {
4143 *xfered_len = (ULONGEST) ret;
4144 return TARGET_XFER_OK;
4145 }
4146 }
4147
4148
4149 /* Parse LINE as a signal set and add its set bits to SIGS. */
4150
4151 static void
4152 add_line_to_sigset (const char *line, sigset_t *sigs)
4153 {
4154 int len = strlen (line) - 1;
4155 const char *p;
4156 int signum;
4157
4158 if (line[len] != '\n')
4159 error (_("Could not parse signal set: %s"), line);
4160
4161 p = line;
4162 signum = len * 4;
4163 while (len-- > 0)
4164 {
4165 int digit;
4166
4167 if (*p >= '0' && *p <= '9')
4168 digit = *p - '0';
4169 else if (*p >= 'a' && *p <= 'f')
4170 digit = *p - 'a' + 10;
4171 else
4172 error (_("Could not parse signal set: %s"), line);
4173
4174 signum -= 4;
4175
4176 if (digit & 1)
4177 sigaddset (sigs, signum + 1);
4178 if (digit & 2)
4179 sigaddset (sigs, signum + 2);
4180 if (digit & 4)
4181 sigaddset (sigs, signum + 3);
4182 if (digit & 8)
4183 sigaddset (sigs, signum + 4);
4184
4185 p++;
4186 }
4187 }
4188
4189 /* Find process PID's pending signals from /proc/pid/status and set
4190 SIGS to match. */
4191
4192 void
4193 linux_proc_pending_signals (int pid, sigset_t *pending,
4194 sigset_t *blocked, sigset_t *ignored)
4195 {
4196 char buffer[PATH_MAX], fname[PATH_MAX];
4197
4198 sigemptyset (pending);
4199 sigemptyset (blocked);
4200 sigemptyset (ignored);
4201 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4202 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4203 if (procfile == NULL)
4204 error (_("Could not open %s"), fname);
4205
4206 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4207 {
4208 /* Normal queued signals are on the SigPnd line in the status
4209 file. However, 2.6 kernels also have a "shared" pending
4210 queue for delivering signals to a thread group, so check for
4211 a ShdPnd line also.
4212
4213 Unfortunately some Red Hat kernels include the shared pending
4214 queue but not the ShdPnd status field. */
4215
4216 if (startswith (buffer, "SigPnd:\t"))
4217 add_line_to_sigset (buffer + 8, pending);
4218 else if (startswith (buffer, "ShdPnd:\t"))
4219 add_line_to_sigset (buffer + 8, pending);
4220 else if (startswith (buffer, "SigBlk:\t"))
4221 add_line_to_sigset (buffer + 8, blocked);
4222 else if (startswith (buffer, "SigIgn:\t"))
4223 add_line_to_sigset (buffer + 8, ignored);
4224 }
4225 }
4226
4227 static enum target_xfer_status
4228 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4229 const char *annex, gdb_byte *readbuf,
4230 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4231 ULONGEST *xfered_len)
4232 {
4233 gdb_assert (object == TARGET_OBJECT_OSDATA);
4234
4235 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4236 if (*xfered_len == 0)
4237 return TARGET_XFER_EOF;
4238 else
4239 return TARGET_XFER_OK;
4240 }
4241
4242 static enum target_xfer_status
4243 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4244 const char *annex, gdb_byte *readbuf,
4245 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4246 ULONGEST *xfered_len)
4247 {
4248 enum target_xfer_status xfer;
4249
4250 if (object == TARGET_OBJECT_AUXV)
4251 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4252 offset, len, xfered_len);
4253
4254 if (object == TARGET_OBJECT_OSDATA)
4255 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4256 offset, len, xfered_len);
4257
4258 if (object == TARGET_OBJECT_SPU)
4259 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4260 offset, len, xfered_len);
4261
4262 /* GDB calculates all the addresses in possibly larget width of the address.
4263 Address width needs to be masked before its final use - either by
4264 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4265
4266 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4267
4268 if (object == TARGET_OBJECT_MEMORY)
4269 {
4270 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4271
4272 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4273 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4274 }
4275
4276 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4277 offset, len, xfered_len);
4278 if (xfer != TARGET_XFER_EOF)
4279 return xfer;
4280
4281 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4282 offset, len, xfered_len);
4283 }
4284
4285 static void
4286 cleanup_target_stop (void *arg)
4287 {
4288 ptid_t *ptid = (ptid_t *) arg;
4289
4290 gdb_assert (arg != NULL);
4291
4292 /* Unpause all */
4293 target_continue_no_signal (*ptid);
4294 }
4295
4296 static VEC(static_tracepoint_marker_p) *
4297 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4298 const char *strid)
4299 {
4300 char s[IPA_CMD_BUF_SIZE];
4301 struct cleanup *old_chain;
4302 int pid = ptid_get_pid (inferior_ptid);
4303 VEC(static_tracepoint_marker_p) *markers = NULL;
4304 struct static_tracepoint_marker *marker = NULL;
4305 const char *p = s;
4306 ptid_t ptid = ptid_build (pid, 0, 0);
4307
4308 /* Pause all */
4309 target_stop (ptid);
4310
4311 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4312 s[sizeof ("qTfSTM")] = 0;
4313
4314 agent_run_command (pid, s, strlen (s) + 1);
4315
4316 old_chain = make_cleanup (free_current_marker, &marker);
4317 make_cleanup (cleanup_target_stop, &ptid);
4318
4319 while (*p++ == 'm')
4320 {
4321 if (marker == NULL)
4322 marker = XCNEW (struct static_tracepoint_marker);
4323
4324 do
4325 {
4326 parse_static_tracepoint_marker_definition (p, &p, marker);
4327
4328 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4329 {
4330 VEC_safe_push (static_tracepoint_marker_p,
4331 markers, marker);
4332 marker = NULL;
4333 }
4334 else
4335 {
4336 release_static_tracepoint_marker (marker);
4337 memset (marker, 0, sizeof (*marker));
4338 }
4339 }
4340 while (*p++ == ','); /* comma-separated list */
4341
4342 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4343 s[sizeof ("qTsSTM")] = 0;
4344 agent_run_command (pid, s, strlen (s) + 1);
4345 p = s;
4346 }
4347
4348 do_cleanups (old_chain);
4349
4350 return markers;
4351 }
4352
4353 /* Create a prototype generic GNU/Linux target. The client can override
4354 it with local methods. */
4355
4356 static void
4357 linux_target_install_ops (struct target_ops *t)
4358 {
4359 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4360 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4361 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4362 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4363 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4364 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4365 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4366 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4367 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4368 t->to_post_attach = linux_child_post_attach;
4369 t->to_follow_fork = linux_child_follow_fork;
4370
4371 super_xfer_partial = t->to_xfer_partial;
4372 t->to_xfer_partial = linux_xfer_partial;
4373
4374 t->to_static_tracepoint_markers_by_strid
4375 = linux_child_static_tracepoint_markers_by_strid;
4376 }
4377
4378 struct target_ops *
4379 linux_target (void)
4380 {
4381 struct target_ops *t;
4382
4383 t = inf_ptrace_target ();
4384 linux_target_install_ops (t);
4385
4386 return t;
4387 }
4388
4389 struct target_ops *
4390 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4391 {
4392 struct target_ops *t;
4393
4394 t = inf_ptrace_trad_target (register_u_offset);
4395 linux_target_install_ops (t);
4396
4397 return t;
4398 }
4399
4400 /* target_is_async_p implementation. */
4401
4402 static int
4403 linux_nat_is_async_p (struct target_ops *ops)
4404 {
4405 return linux_is_async_p ();
4406 }
4407
4408 /* target_can_async_p implementation. */
4409
4410 static int
4411 linux_nat_can_async_p (struct target_ops *ops)
4412 {
4413 /* We're always async, unless the user explicitly prevented it with the
4414 "maint set target-async" command. */
4415 return target_async_permitted;
4416 }
4417
4418 static int
4419 linux_nat_supports_non_stop (struct target_ops *self)
4420 {
4421 return 1;
4422 }
4423
4424 /* to_always_non_stop_p implementation. */
4425
4426 static int
4427 linux_nat_always_non_stop_p (struct target_ops *self)
4428 {
4429 return 1;
4430 }
4431
4432 /* True if we want to support multi-process. To be removed when GDB
4433 supports multi-exec. */
4434
4435 int linux_multi_process = 1;
4436
4437 static int
4438 linux_nat_supports_multi_process (struct target_ops *self)
4439 {
4440 return linux_multi_process;
4441 }
4442
4443 static int
4444 linux_nat_supports_disable_randomization (struct target_ops *self)
4445 {
4446 #ifdef HAVE_PERSONALITY
4447 return 1;
4448 #else
4449 return 0;
4450 #endif
4451 }
4452
4453 static int async_terminal_is_ours = 1;
4454
4455 /* target_terminal_inferior implementation.
4456
4457 This is a wrapper around child_terminal_inferior to add async support. */
4458
4459 static void
4460 linux_nat_terminal_inferior (struct target_ops *self)
4461 {
4462 child_terminal_inferior (self);
4463
4464 /* Calls to target_terminal_*() are meant to be idempotent. */
4465 if (!async_terminal_is_ours)
4466 return;
4467
4468 async_terminal_is_ours = 0;
4469 set_sigint_trap ();
4470 }
4471
4472 /* target_terminal::ours implementation.
4473
4474 This is a wrapper around child_terminal_ours to add async support (and
4475 implement the target_terminal::ours vs target_terminal::ours_for_output
4476 distinction). child_terminal_ours is currently no different than
4477 child_terminal_ours_for_output.
4478 We leave target_terminal::ours_for_output alone, leaving it to
4479 child_terminal_ours_for_output. */
4480
4481 static void
4482 linux_nat_terminal_ours (struct target_ops *self)
4483 {
4484 /* GDB should never give the terminal to the inferior if the
4485 inferior is running in the background (run&, continue&, etc.),
4486 but claiming it sure should. */
4487 child_terminal_ours (self);
4488
4489 if (async_terminal_is_ours)
4490 return;
4491
4492 clear_sigint_trap ();
4493 async_terminal_is_ours = 1;
4494 }
4495
4496 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4497 so we notice when any child changes state, and notify the
4498 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4499 above to wait for the arrival of a SIGCHLD. */
4500
4501 static void
4502 sigchld_handler (int signo)
4503 {
4504 int old_errno = errno;
4505
4506 if (debug_linux_nat)
4507 ui_file_write_async_safe (gdb_stdlog,
4508 "sigchld\n", sizeof ("sigchld\n") - 1);
4509
4510 if (signo == SIGCHLD
4511 && linux_nat_event_pipe[0] != -1)
4512 async_file_mark (); /* Let the event loop know that there are
4513 events to handle. */
4514
4515 errno = old_errno;
4516 }
4517
4518 /* Callback registered with the target events file descriptor. */
4519
4520 static void
4521 handle_target_event (int error, gdb_client_data client_data)
4522 {
4523 inferior_event_handler (INF_REG_EVENT, NULL);
4524 }
4525
4526 /* Create/destroy the target events pipe. Returns previous state. */
4527
4528 static int
4529 linux_async_pipe (int enable)
4530 {
4531 int previous = linux_is_async_p ();
4532
4533 if (previous != enable)
4534 {
4535 sigset_t prev_mask;
4536
4537 /* Block child signals while we create/destroy the pipe, as
4538 their handler writes to it. */
4539 block_child_signals (&prev_mask);
4540
4541 if (enable)
4542 {
4543 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4544 internal_error (__FILE__, __LINE__,
4545 "creating event pipe failed.");
4546
4547 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4548 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4549 }
4550 else
4551 {
4552 close (linux_nat_event_pipe[0]);
4553 close (linux_nat_event_pipe[1]);
4554 linux_nat_event_pipe[0] = -1;
4555 linux_nat_event_pipe[1] = -1;
4556 }
4557
4558 restore_child_signals_mask (&prev_mask);
4559 }
4560
4561 return previous;
4562 }
4563
4564 /* target_async implementation. */
4565
4566 static void
4567 linux_nat_async (struct target_ops *ops, int enable)
4568 {
4569 if (enable)
4570 {
4571 if (!linux_async_pipe (1))
4572 {
4573 add_file_handler (linux_nat_event_pipe[0],
4574 handle_target_event, NULL);
4575 /* There may be pending events to handle. Tell the event loop
4576 to poll them. */
4577 async_file_mark ();
4578 }
4579 }
4580 else
4581 {
4582 delete_file_handler (linux_nat_event_pipe[0]);
4583 linux_async_pipe (0);
4584 }
4585 return;
4586 }
4587
4588 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4589 event came out. */
4590
4591 static int
4592 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4593 {
4594 if (!lwp->stopped)
4595 {
4596 if (debug_linux_nat)
4597 fprintf_unfiltered (gdb_stdlog,
4598 "LNSL: running -> suspending %s\n",
4599 target_pid_to_str (lwp->ptid));
4600
4601
4602 if (lwp->last_resume_kind == resume_stop)
4603 {
4604 if (debug_linux_nat)
4605 fprintf_unfiltered (gdb_stdlog,
4606 "linux-nat: already stopping LWP %ld at "
4607 "GDB's request\n",
4608 ptid_get_lwp (lwp->ptid));
4609 return 0;
4610 }
4611
4612 stop_callback (lwp, NULL);
4613 lwp->last_resume_kind = resume_stop;
4614 }
4615 else
4616 {
4617 /* Already known to be stopped; do nothing. */
4618
4619 if (debug_linux_nat)
4620 {
4621 if (find_thread_ptid (lwp->ptid)->stop_requested)
4622 fprintf_unfiltered (gdb_stdlog,
4623 "LNSL: already stopped/stop_requested %s\n",
4624 target_pid_to_str (lwp->ptid));
4625 else
4626 fprintf_unfiltered (gdb_stdlog,
4627 "LNSL: already stopped/no "
4628 "stop_requested yet %s\n",
4629 target_pid_to_str (lwp->ptid));
4630 }
4631 }
4632 return 0;
4633 }
4634
4635 static void
4636 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4637 {
4638 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4639 }
4640
4641 static void
4642 linux_nat_close (struct target_ops *self)
4643 {
4644 /* Unregister from the event loop. */
4645 if (linux_nat_is_async_p (self))
4646 linux_nat_async (self, 0);
4647
4648 if (linux_ops->to_close)
4649 linux_ops->to_close (linux_ops);
4650
4651 super_close (self);
4652 }
4653
4654 /* When requests are passed down from the linux-nat layer to the
4655 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4656 used. The address space pointer is stored in the inferior object,
4657 but the common code that is passed such ptid can't tell whether
4658 lwpid is a "main" process id or not (it assumes so). We reverse
4659 look up the "main" process id from the lwp here. */
4660
4661 static struct address_space *
4662 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4663 {
4664 struct lwp_info *lwp;
4665 struct inferior *inf;
4666 int pid;
4667
4668 if (ptid_get_lwp (ptid) == 0)
4669 {
4670 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4671 tgid. */
4672 lwp = find_lwp_pid (ptid);
4673 pid = ptid_get_pid (lwp->ptid);
4674 }
4675 else
4676 {
4677 /* A (pid,lwpid,0) ptid. */
4678 pid = ptid_get_pid (ptid);
4679 }
4680
4681 inf = find_inferior_pid (pid);
4682 gdb_assert (inf != NULL);
4683 return inf->aspace;
4684 }
4685
4686 /* Return the cached value of the processor core for thread PTID. */
4687
4688 static int
4689 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4690 {
4691 struct lwp_info *info = find_lwp_pid (ptid);
4692
4693 if (info)
4694 return info->core;
4695 return -1;
4696 }
4697
4698 /* Implementation of to_filesystem_is_local. */
4699
4700 static int
4701 linux_nat_filesystem_is_local (struct target_ops *ops)
4702 {
4703 struct inferior *inf = current_inferior ();
4704
4705 if (inf->fake_pid_p || inf->pid == 0)
4706 return 1;
4707
4708 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4709 }
4710
4711 /* Convert the INF argument passed to a to_fileio_* method
4712 to a process ID suitable for passing to its corresponding
4713 linux_mntns_* function. If INF is non-NULL then the
4714 caller is requesting the filesystem seen by INF. If INF
4715 is NULL then the caller is requesting the filesystem seen
4716 by the GDB. We fall back to GDB's filesystem in the case
4717 that INF is non-NULL but its PID is unknown. */
4718
4719 static pid_t
4720 linux_nat_fileio_pid_of (struct inferior *inf)
4721 {
4722 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4723 return getpid ();
4724 else
4725 return inf->pid;
4726 }
4727
4728 /* Implementation of to_fileio_open. */
4729
4730 static int
4731 linux_nat_fileio_open (struct target_ops *self,
4732 struct inferior *inf, const char *filename,
4733 int flags, int mode, int warn_if_slow,
4734 int *target_errno)
4735 {
4736 int nat_flags;
4737 mode_t nat_mode;
4738 int fd;
4739
4740 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4741 || fileio_to_host_mode (mode, &nat_mode) == -1)
4742 {
4743 *target_errno = FILEIO_EINVAL;
4744 return -1;
4745 }
4746
4747 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4748 filename, nat_flags, nat_mode);
4749 if (fd == -1)
4750 *target_errno = host_to_fileio_error (errno);
4751
4752 return fd;
4753 }
4754
4755 /* Implementation of to_fileio_readlink. */
4756
4757 static char *
4758 linux_nat_fileio_readlink (struct target_ops *self,
4759 struct inferior *inf, const char *filename,
4760 int *target_errno)
4761 {
4762 char buf[PATH_MAX];
4763 int len;
4764 char *ret;
4765
4766 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4767 filename, buf, sizeof (buf));
4768 if (len < 0)
4769 {
4770 *target_errno = host_to_fileio_error (errno);
4771 return NULL;
4772 }
4773
4774 ret = (char *) xmalloc (len + 1);
4775 memcpy (ret, buf, len);
4776 ret[len] = '\0';
4777 return ret;
4778 }
4779
4780 /* Implementation of to_fileio_unlink. */
4781
4782 static int
4783 linux_nat_fileio_unlink (struct target_ops *self,
4784 struct inferior *inf, const char *filename,
4785 int *target_errno)
4786 {
4787 int ret;
4788
4789 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4790 filename);
4791 if (ret == -1)
4792 *target_errno = host_to_fileio_error (errno);
4793
4794 return ret;
4795 }
4796
4797 /* Implementation of the to_thread_events method. */
4798
4799 static void
4800 linux_nat_thread_events (struct target_ops *ops, int enable)
4801 {
4802 report_thread_events = enable;
4803 }
4804
4805 void
4806 linux_nat_add_target (struct target_ops *t)
4807 {
4808 /* Save the provided single-threaded target. We save this in a separate
4809 variable because another target we've inherited from (e.g. inf-ptrace)
4810 may have saved a pointer to T; we want to use it for the final
4811 process stratum target. */
4812 linux_ops_saved = *t;
4813 linux_ops = &linux_ops_saved;
4814
4815 /* Override some methods for multithreading. */
4816 t->to_create_inferior = linux_nat_create_inferior;
4817 t->to_attach = linux_nat_attach;
4818 t->to_detach = linux_nat_detach;
4819 t->to_resume = linux_nat_resume;
4820 t->to_wait = linux_nat_wait;
4821 t->to_pass_signals = linux_nat_pass_signals;
4822 t->to_xfer_partial = linux_nat_xfer_partial;
4823 t->to_kill = linux_nat_kill;
4824 t->to_mourn_inferior = linux_nat_mourn_inferior;
4825 t->to_thread_alive = linux_nat_thread_alive;
4826 t->to_update_thread_list = linux_nat_update_thread_list;
4827 t->to_pid_to_str = linux_nat_pid_to_str;
4828 t->to_thread_name = linux_nat_thread_name;
4829 t->to_has_thread_control = tc_schedlock;
4830 t->to_thread_address_space = linux_nat_thread_address_space;
4831 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4832 t->to_stopped_data_address = linux_nat_stopped_data_address;
4833 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4834 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4835 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4836 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4837 t->to_thread_events = linux_nat_thread_events;
4838
4839 t->to_can_async_p = linux_nat_can_async_p;
4840 t->to_is_async_p = linux_nat_is_async_p;
4841 t->to_supports_non_stop = linux_nat_supports_non_stop;
4842 t->to_always_non_stop_p = linux_nat_always_non_stop_p;
4843 t->to_async = linux_nat_async;
4844 t->to_terminal_inferior = linux_nat_terminal_inferior;
4845 t->to_terminal_ours = linux_nat_terminal_ours;
4846
4847 super_close = t->to_close;
4848 t->to_close = linux_nat_close;
4849
4850 t->to_stop = linux_nat_stop;
4851
4852 t->to_supports_multi_process = linux_nat_supports_multi_process;
4853
4854 t->to_supports_disable_randomization
4855 = linux_nat_supports_disable_randomization;
4856
4857 t->to_core_of_thread = linux_nat_core_of_thread;
4858
4859 t->to_filesystem_is_local = linux_nat_filesystem_is_local;
4860 t->to_fileio_open = linux_nat_fileio_open;
4861 t->to_fileio_readlink = linux_nat_fileio_readlink;
4862 t->to_fileio_unlink = linux_nat_fileio_unlink;
4863
4864 /* We don't change the stratum; this target will sit at
4865 process_stratum and thread_db will set at thread_stratum. This
4866 is a little strange, since this is a multi-threaded-capable
4867 target, but we want to be on the stack below thread_db, and we
4868 also want to be used for single-threaded processes. */
4869
4870 add_target (t);
4871 }
4872
4873 /* Register a method to call whenever a new thread is attached. */
4874 void
4875 linux_nat_set_new_thread (struct target_ops *t,
4876 void (*new_thread) (struct lwp_info *))
4877 {
4878 /* Save the pointer. We only support a single registered instance
4879 of the GNU/Linux native target, so we do not need to map this to
4880 T. */
4881 linux_nat_new_thread = new_thread;
4882 }
4883
4884 /* Register a method to call whenever a new thread is attached. */
4885 void
4886 linux_nat_set_delete_thread (struct target_ops *t,
4887 void (*delete_thread) (struct arch_lwp_info *))
4888 {
4889 /* Save the pointer. We only support a single registered instance
4890 of the GNU/Linux native target, so we do not need to map this to
4891 T. */
4892 linux_nat_delete_thread = delete_thread;
4893 }
4894
4895 /* See declaration in linux-nat.h. */
4896
4897 void
4898 linux_nat_set_new_fork (struct target_ops *t,
4899 linux_nat_new_fork_ftype *new_fork)
4900 {
4901 /* Save the pointer. */
4902 linux_nat_new_fork = new_fork;
4903 }
4904
4905 /* See declaration in linux-nat.h. */
4906
4907 void
4908 linux_nat_set_forget_process (struct target_ops *t,
4909 linux_nat_forget_process_ftype *fn)
4910 {
4911 /* Save the pointer. */
4912 linux_nat_forget_process_hook = fn;
4913 }
4914
4915 /* See declaration in linux-nat.h. */
4916
4917 void
4918 linux_nat_forget_process (pid_t pid)
4919 {
4920 if (linux_nat_forget_process_hook != NULL)
4921 linux_nat_forget_process_hook (pid);
4922 }
4923
4924 /* Register a method that converts a siginfo object between the layout
4925 that ptrace returns, and the layout in the architecture of the
4926 inferior. */
4927 void
4928 linux_nat_set_siginfo_fixup (struct target_ops *t,
4929 int (*siginfo_fixup) (siginfo_t *,
4930 gdb_byte *,
4931 int))
4932 {
4933 /* Save the pointer. */
4934 linux_nat_siginfo_fixup = siginfo_fixup;
4935 }
4936
4937 /* Register a method to call prior to resuming a thread. */
4938
4939 void
4940 linux_nat_set_prepare_to_resume (struct target_ops *t,
4941 void (*prepare_to_resume) (struct lwp_info *))
4942 {
4943 /* Save the pointer. */
4944 linux_nat_prepare_to_resume = prepare_to_resume;
4945 }
4946
4947 /* See linux-nat.h. */
4948
4949 int
4950 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4951 {
4952 int pid;
4953
4954 pid = ptid_get_lwp (ptid);
4955 if (pid == 0)
4956 pid = ptid_get_pid (ptid);
4957
4958 errno = 0;
4959 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4960 if (errno != 0)
4961 {
4962 memset (siginfo, 0, sizeof (*siginfo));
4963 return 0;
4964 }
4965 return 1;
4966 }
4967
4968 /* See nat/linux-nat.h. */
4969
4970 ptid_t
4971 current_lwp_ptid (void)
4972 {
4973 gdb_assert (ptid_lwp_p (inferior_ptid));
4974 return inferior_ptid;
4975 }
4976
4977 void
4978 _initialize_linux_nat (void)
4979 {
4980 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4981 &debug_linux_nat, _("\
4982 Set debugging of GNU/Linux lwp module."), _("\
4983 Show debugging of GNU/Linux lwp module."), _("\
4984 Enables printf debugging output."),
4985 NULL,
4986 show_debug_linux_nat,
4987 &setdebuglist, &showdebuglist);
4988
4989 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4990 &debug_linux_namespaces, _("\
4991 Set debugging of GNU/Linux namespaces module."), _("\
4992 Show debugging of GNU/Linux namespaces module."), _("\
4993 Enables printf debugging output."),
4994 NULL,
4995 NULL,
4996 &setdebuglist, &showdebuglist);
4997
4998 /* Save this mask as the default. */
4999 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5000
5001 /* Install a SIGCHLD handler. */
5002 sigchld_action.sa_handler = sigchld_handler;
5003 sigemptyset (&sigchld_action.sa_mask);
5004 sigchld_action.sa_flags = SA_RESTART;
5005
5006 /* Make it the default. */
5007 sigaction (SIGCHLD, &sigchld_action, NULL);
5008
5009 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5010 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5011 sigdelset (&suspend_mask, SIGCHLD);
5012
5013 sigemptyset (&blocked_mask);
5014
5015 lwp_lwpid_htab_create ();
5016 }
5017 \f
5018
5019 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5020 the GNU/Linux Threads library and therefore doesn't really belong
5021 here. */
5022
5023 /* Return the set of signals used by the threads library in *SET. */
5024
5025 void
5026 lin_thread_get_thread_signals (sigset_t *set)
5027 {
5028 sigemptyset (set);
5029
5030 /* NPTL reserves the first two RT signals, but does not provide any
5031 way for the debugger to query the signal numbers - fortunately
5032 they don't change. */
5033 sigaddset (set, __SIGRTMIN);
5034 sigaddset (set, __SIGRTMIN + 1);
5035 }
This page took 0.138292 seconds and 5 git commands to generate.