2012-07-20 Jan Kratochvil <jan.kratochvil@redhat.com>
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdb_string.h"
24 #include "gdb_wait.h"
25 #include "gdb_assert.h"
26 #ifdef HAVE_TKILL_SYSCALL
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #endif
30 #include <sys/ptrace.h>
31 #include "linux-nat.h"
32 #include "linux-ptrace.h"
33 #include "linux-procfs.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/param.h> /* for MAXPATHLEN */
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include "gdbthread.h" /* for struct thread_info etc. */
49 #include "gdb_stat.h" /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include "gdb_dirent.h"
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62 #include "linux-tdep.h"
63 #include "symfile.h"
64 #include "agent.h"
65 #include "tracepoint.h"
66 #include "exceptions.h"
67 #include "linux-ptrace.h"
68 #include "buffer.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 #ifdef HAVE_PERSONALITY
75 # include <sys/personality.h>
76 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
77 # define ADDR_NO_RANDOMIZE 0x0040000
78 # endif
79 #endif /* HAVE_PERSONALITY */
80
81 /* This comment documents high-level logic of this file.
82
83 Waiting for events in sync mode
84 ===============================
85
86 When waiting for an event in a specific thread, we just use waitpid, passing
87 the specific pid, and not passing WNOHANG.
88
89 When waiting for an event in all threads, waitpid is not quite good. Prior to
90 version 2.4, Linux can either wait for event in main thread, or in secondary
91 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
92 miss an event. The solution is to use non-blocking waitpid, together with
93 sigsuspend. First, we use non-blocking waitpid to get an event in the main
94 process, if any. Second, we use non-blocking waitpid with the __WCLONED
95 flag to check for events in cloned processes. If nothing is found, we use
96 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
97 happened to a child process -- and SIGCHLD will be delivered both for events
98 in main debugged process and in cloned processes. As soon as we know there's
99 an event, we get back to calling nonblocking waitpid with and without
100 __WCLONED.
101
102 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
103 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
104 blocked, the signal becomes pending and sigsuspend immediately
105 notices it and returns.
106
107 Waiting for events in async mode
108 ================================
109
110 In async mode, GDB should always be ready to handle both user input
111 and target events, so neither blocking waitpid nor sigsuspend are
112 viable options. Instead, we should asynchronously notify the GDB main
113 event loop whenever there's an unprocessed event from the target. We
114 detect asynchronous target events by handling SIGCHLD signals. To
115 notify the event loop about target events, the self-pipe trick is used
116 --- a pipe is registered as waitable event source in the event loop,
117 the event loop select/poll's on the read end of this pipe (as well on
118 other event sources, e.g., stdin), and the SIGCHLD handler writes a
119 byte to this pipe. This is more portable than relying on
120 pselect/ppoll, since on kernels that lack those syscalls, libc
121 emulates them with select/poll+sigprocmask, and that is racy
122 (a.k.a. plain broken).
123
124 Obviously, if we fail to notify the event loop if there's a target
125 event, it's bad. OTOH, if we notify the event loop when there's no
126 event from the target, linux_nat_wait will detect that there's no real
127 event to report, and return event of type TARGET_WAITKIND_IGNORE.
128 This is mostly harmless, but it will waste time and is better avoided.
129
130 The main design point is that every time GDB is outside linux-nat.c,
131 we have a SIGCHLD handler installed that is called when something
132 happens to the target and notifies the GDB event loop. Whenever GDB
133 core decides to handle the event, and calls into linux-nat.c, we
134 process things as in sync mode, except that the we never block in
135 sigsuspend.
136
137 While processing an event, we may end up momentarily blocked in
138 waitpid calls. Those waitpid calls, while blocking, are guarantied to
139 return quickly. E.g., in all-stop mode, before reporting to the core
140 that an LWP hit a breakpoint, all LWPs are stopped by sending them
141 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
142 Note that this is different from blocking indefinitely waiting for the
143 next event --- here, we're already handling an event.
144
145 Use of signals
146 ==============
147
148 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
149 signal is not entirely significant; we just need for a signal to be delivered,
150 so that we can intercept it. SIGSTOP's advantage is that it can not be
151 blocked. A disadvantage is that it is not a real-time signal, so it can only
152 be queued once; we do not keep track of other sources of SIGSTOP.
153
154 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
155 use them, because they have special behavior when the signal is generated -
156 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
157 kills the entire thread group.
158
159 A delivered SIGSTOP would stop the entire thread group, not just the thread we
160 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
161 cancel it (by PTRACE_CONT without passing SIGSTOP).
162
163 We could use a real-time signal instead. This would solve those problems; we
164 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
165 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
166 generates it, and there are races with trying to find a signal that is not
167 blocked. */
168
169 #ifndef O_LARGEFILE
170 #define O_LARGEFILE 0
171 #endif
172
173 /* Unlike other extended result codes, WSTOPSIG (status) on
174 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
175 instead SIGTRAP with bit 7 set. */
176 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
177
178 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
179 the use of the multi-threaded target. */
180 static struct target_ops *linux_ops;
181 static struct target_ops linux_ops_saved;
182
183 /* The method to call, if any, when a new thread is attached. */
184 static void (*linux_nat_new_thread) (struct lwp_info *);
185
186 /* Hook to call prior to resuming a thread. */
187 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
188
189 /* The method to call, if any, when the siginfo object needs to be
190 converted between the layout returned by ptrace, and the layout in
191 the architecture of the inferior. */
192 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
193 gdb_byte *,
194 int);
195
196 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
197 Called by our to_xfer_partial. */
198 static LONGEST (*super_xfer_partial) (struct target_ops *,
199 enum target_object,
200 const char *, gdb_byte *,
201 const gdb_byte *,
202 ULONGEST, LONGEST);
203
204 static int debug_linux_nat;
205 static void
206 show_debug_linux_nat (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
210 value);
211 }
212
213 struct simple_pid_list
214 {
215 int pid;
216 int status;
217 struct simple_pid_list *next;
218 };
219 struct simple_pid_list *stopped_pids;
220
221 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
222 can not be used, 1 if it can. */
223
224 static int linux_supports_tracefork_flag = -1;
225
226 /* This variable is a tri-state flag: -1 for unknown, 0 if
227 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
228
229 static int linux_supports_tracesysgood_flag = -1;
230
231 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
232 PTRACE_O_TRACEVFORKDONE. */
233
234 static int linux_supports_tracevforkdone_flag = -1;
235
236 /* Stores the current used ptrace() options. */
237 static int current_ptrace_options = 0;
238
239 /* Async mode support. */
240
241 /* The read/write ends of the pipe registered as waitable file in the
242 event loop. */
243 static int linux_nat_event_pipe[2] = { -1, -1 };
244
245 /* Flush the event pipe. */
246
247 static void
248 async_file_flush (void)
249 {
250 int ret;
251 char buf;
252
253 do
254 {
255 ret = read (linux_nat_event_pipe[0], &buf, 1);
256 }
257 while (ret >= 0 || (ret == -1 && errno == EINTR));
258 }
259
260 /* Put something (anything, doesn't matter what, or how much) in event
261 pipe, so that the select/poll in the event-loop realizes we have
262 something to process. */
263
264 static void
265 async_file_mark (void)
266 {
267 int ret;
268
269 /* It doesn't really matter what the pipe contains, as long we end
270 up with something in it. Might as well flush the previous
271 left-overs. */
272 async_file_flush ();
273
274 do
275 {
276 ret = write (linux_nat_event_pipe[1], "+", 1);
277 }
278 while (ret == -1 && errno == EINTR);
279
280 /* Ignore EAGAIN. If the pipe is full, the event loop will already
281 be awakened anyway. */
282 }
283
284 static void linux_nat_async (void (*callback)
285 (enum inferior_event_type event_type,
286 void *context),
287 void *context);
288 static int kill_lwp (int lwpid, int signo);
289
290 static int stop_callback (struct lwp_info *lp, void *data);
291
292 static void block_child_signals (sigset_t *prev_mask);
293 static void restore_child_signals_mask (sigset_t *prev_mask);
294
295 struct lwp_info;
296 static struct lwp_info *add_lwp (ptid_t ptid);
297 static void purge_lwp_list (int pid);
298 static void delete_lwp (ptid_t ptid);
299 static struct lwp_info *find_lwp_pid (ptid_t ptid);
300
301 \f
302 /* Trivial list manipulation functions to keep track of a list of
303 new stopped processes. */
304 static void
305 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
306 {
307 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
308
309 new_pid->pid = pid;
310 new_pid->status = status;
311 new_pid->next = *listp;
312 *listp = new_pid;
313 }
314
315 static int
316 in_pid_list_p (struct simple_pid_list *list, int pid)
317 {
318 struct simple_pid_list *p;
319
320 for (p = list; p != NULL; p = p->next)
321 if (p->pid == pid)
322 return 1;
323 return 0;
324 }
325
326 static int
327 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
328 {
329 struct simple_pid_list **p;
330
331 for (p = listp; *p != NULL; p = &(*p)->next)
332 if ((*p)->pid == pid)
333 {
334 struct simple_pid_list *next = (*p)->next;
335
336 *statusp = (*p)->status;
337 xfree (*p);
338 *p = next;
339 return 1;
340 }
341 return 0;
342 }
343
344 \f
345 /* A helper function for linux_test_for_tracefork, called after fork (). */
346
347 static void
348 linux_tracefork_child (void)
349 {
350 ptrace (PTRACE_TRACEME, 0, 0, 0);
351 kill (getpid (), SIGSTOP);
352 fork ();
353 _exit (0);
354 }
355
356 /* Wrapper function for waitpid which handles EINTR. */
357
358 static int
359 my_waitpid (int pid, int *statusp, int flags)
360 {
361 int ret;
362
363 do
364 {
365 ret = waitpid (pid, statusp, flags);
366 }
367 while (ret == -1 && errno == EINTR);
368
369 return ret;
370 }
371
372 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
373
374 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
375 we know that the feature is not available. This may change the tracing
376 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
377
378 However, if it succeeds, we don't know for sure that the feature is
379 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
380 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
381 fork tracing, and let it fork. If the process exits, we assume that we
382 can't use TRACEFORK; if we get the fork notification, and we can extract
383 the new child's PID, then we assume that we can. */
384
385 static void
386 linux_test_for_tracefork (int original_pid)
387 {
388 int child_pid, ret, status;
389 long second_pid;
390 sigset_t prev_mask;
391
392 /* We don't want those ptrace calls to be interrupted. */
393 block_child_signals (&prev_mask);
394
395 linux_supports_tracefork_flag = 0;
396 linux_supports_tracevforkdone_flag = 0;
397
398 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
399 if (ret != 0)
400 {
401 restore_child_signals_mask (&prev_mask);
402 return;
403 }
404
405 child_pid = fork ();
406 if (child_pid == -1)
407 perror_with_name (("fork"));
408
409 if (child_pid == 0)
410 linux_tracefork_child ();
411
412 ret = my_waitpid (child_pid, &status, 0);
413 if (ret == -1)
414 perror_with_name (("waitpid"));
415 else if (ret != child_pid)
416 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
417 if (! WIFSTOPPED (status))
418 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
419 status);
420
421 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
422 if (ret != 0)
423 {
424 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
425 if (ret != 0)
426 {
427 warning (_("linux_test_for_tracefork: failed to kill child"));
428 restore_child_signals_mask (&prev_mask);
429 return;
430 }
431
432 ret = my_waitpid (child_pid, &status, 0);
433 if (ret != child_pid)
434 warning (_("linux_test_for_tracefork: failed "
435 "to wait for killed child"));
436 else if (!WIFSIGNALED (status))
437 warning (_("linux_test_for_tracefork: unexpected "
438 "wait status 0x%x from killed child"), status);
439
440 restore_child_signals_mask (&prev_mask);
441 return;
442 }
443
444 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
445 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
446 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
447 linux_supports_tracevforkdone_flag = (ret == 0);
448
449 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
450 if (ret != 0)
451 warning (_("linux_test_for_tracefork: failed to resume child"));
452
453 ret = my_waitpid (child_pid, &status, 0);
454
455 if (ret == child_pid && WIFSTOPPED (status)
456 && status >> 16 == PTRACE_EVENT_FORK)
457 {
458 second_pid = 0;
459 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
460 if (ret == 0 && second_pid != 0)
461 {
462 int second_status;
463
464 linux_supports_tracefork_flag = 1;
465 my_waitpid (second_pid, &second_status, 0);
466 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
467 if (ret != 0)
468 warning (_("linux_test_for_tracefork: "
469 "failed to kill second child"));
470 my_waitpid (second_pid, &status, 0);
471 }
472 }
473 else
474 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
475 "(%d, status 0x%x)"), ret, status);
476
477 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
478 if (ret != 0)
479 warning (_("linux_test_for_tracefork: failed to kill child"));
480 my_waitpid (child_pid, &status, 0);
481
482 restore_child_signals_mask (&prev_mask);
483 }
484
485 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
486
487 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
488 we know that the feature is not available. This may change the tracing
489 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
490
491 static void
492 linux_test_for_tracesysgood (int original_pid)
493 {
494 int ret;
495 sigset_t prev_mask;
496
497 /* We don't want those ptrace calls to be interrupted. */
498 block_child_signals (&prev_mask);
499
500 linux_supports_tracesysgood_flag = 0;
501
502 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
503 if (ret != 0)
504 goto out;
505
506 linux_supports_tracesysgood_flag = 1;
507 out:
508 restore_child_signals_mask (&prev_mask);
509 }
510
511 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
512 This function also sets linux_supports_tracesysgood_flag. */
513
514 static int
515 linux_supports_tracesysgood (int pid)
516 {
517 if (linux_supports_tracesysgood_flag == -1)
518 linux_test_for_tracesysgood (pid);
519 return linux_supports_tracesysgood_flag;
520 }
521
522 /* Return non-zero iff we have tracefork functionality available.
523 This function also sets linux_supports_tracefork_flag. */
524
525 static int
526 linux_supports_tracefork (int pid)
527 {
528 if (linux_supports_tracefork_flag == -1)
529 linux_test_for_tracefork (pid);
530 return linux_supports_tracefork_flag;
531 }
532
533 static int
534 linux_supports_tracevforkdone (int pid)
535 {
536 if (linux_supports_tracefork_flag == -1)
537 linux_test_for_tracefork (pid);
538 return linux_supports_tracevforkdone_flag;
539 }
540
541 static void
542 linux_enable_tracesysgood (ptid_t ptid)
543 {
544 int pid = ptid_get_lwp (ptid);
545
546 if (pid == 0)
547 pid = ptid_get_pid (ptid);
548
549 if (linux_supports_tracesysgood (pid) == 0)
550 return;
551
552 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
553
554 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
555 }
556
557 \f
558 void
559 linux_enable_event_reporting (ptid_t ptid)
560 {
561 int pid = ptid_get_lwp (ptid);
562
563 if (pid == 0)
564 pid = ptid_get_pid (ptid);
565
566 if (! linux_supports_tracefork (pid))
567 return;
568
569 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
570 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
571
572 if (linux_supports_tracevforkdone (pid))
573 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
574
575 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
576 read-only process state. */
577
578 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
579 }
580
581 static void
582 linux_child_post_attach (int pid)
583 {
584 linux_enable_event_reporting (pid_to_ptid (pid));
585 linux_enable_tracesysgood (pid_to_ptid (pid));
586 linux_ptrace_init_warnings ();
587 }
588
589 static void
590 linux_child_post_startup_inferior (ptid_t ptid)
591 {
592 linux_enable_event_reporting (ptid);
593 linux_enable_tracesysgood (ptid);
594 linux_ptrace_init_warnings ();
595 }
596
597 /* Return the number of known LWPs in the tgid given by PID. */
598
599 static int
600 num_lwps (int pid)
601 {
602 int count = 0;
603 struct lwp_info *lp;
604
605 for (lp = lwp_list; lp; lp = lp->next)
606 if (ptid_get_pid (lp->ptid) == pid)
607 count++;
608
609 return count;
610 }
611
612 /* Call delete_lwp with prototype compatible for make_cleanup. */
613
614 static void
615 delete_lwp_cleanup (void *lp_voidp)
616 {
617 struct lwp_info *lp = lp_voidp;
618
619 delete_lwp (lp->ptid);
620 }
621
622 static int
623 linux_child_follow_fork (struct target_ops *ops, int follow_child)
624 {
625 sigset_t prev_mask;
626 int has_vforked;
627 int parent_pid, child_pid;
628
629 block_child_signals (&prev_mask);
630
631 has_vforked = (inferior_thread ()->pending_follow.kind
632 == TARGET_WAITKIND_VFORKED);
633 parent_pid = ptid_get_lwp (inferior_ptid);
634 if (parent_pid == 0)
635 parent_pid = ptid_get_pid (inferior_ptid);
636 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
637
638 if (!detach_fork)
639 linux_enable_event_reporting (pid_to_ptid (child_pid));
640
641 if (has_vforked
642 && !non_stop /* Non-stop always resumes both branches. */
643 && (!target_is_async_p () || sync_execution)
644 && !(follow_child || detach_fork || sched_multi))
645 {
646 /* The parent stays blocked inside the vfork syscall until the
647 child execs or exits. If we don't let the child run, then
648 the parent stays blocked. If we're telling the parent to run
649 in the foreground, the user will not be able to ctrl-c to get
650 back the terminal, effectively hanging the debug session. */
651 fprintf_filtered (gdb_stderr, _("\
652 Can not resume the parent process over vfork in the foreground while\n\
653 holding the child stopped. Try \"set detach-on-fork\" or \
654 \"set schedule-multiple\".\n"));
655 /* FIXME output string > 80 columns. */
656 return 1;
657 }
658
659 if (! follow_child)
660 {
661 struct lwp_info *child_lp = NULL;
662
663 /* We're already attached to the parent, by default. */
664
665 /* Detach new forked process? */
666 if (detach_fork)
667 {
668 struct cleanup *old_chain;
669
670 /* Before detaching from the child, remove all breakpoints
671 from it. If we forked, then this has already been taken
672 care of by infrun.c. If we vforked however, any
673 breakpoint inserted in the parent is visible in the
674 child, even those added while stopped in a vfork
675 catchpoint. This will remove the breakpoints from the
676 parent also, but they'll be reinserted below. */
677 if (has_vforked)
678 {
679 /* keep breakpoints list in sync. */
680 remove_breakpoints_pid (GET_PID (inferior_ptid));
681 }
682
683 if (info_verbose || debug_linux_nat)
684 {
685 target_terminal_ours ();
686 fprintf_filtered (gdb_stdlog,
687 "Detaching after fork from "
688 "child process %d.\n",
689 child_pid);
690 }
691
692 old_chain = save_inferior_ptid ();
693 inferior_ptid = ptid_build (child_pid, child_pid, 0);
694
695 child_lp = add_lwp (inferior_ptid);
696 child_lp->stopped = 1;
697 child_lp->last_resume_kind = resume_stop;
698 make_cleanup (delete_lwp_cleanup, child_lp);
699
700 /* CHILD_LP has new PID, therefore linux_nat_new_thread is not called for it.
701 See i386_inferior_data_get for the Linux kernel specifics.
702 Ensure linux_nat_prepare_to_resume will reset the hardware debug
703 registers. It is done by the linux_nat_new_thread call, which is
704 being skipped in add_lwp above for the first lwp of a pid. */
705 gdb_assert (num_lwps (GET_PID (child_lp->ptid)) == 1);
706 if (linux_nat_new_thread != NULL)
707 linux_nat_new_thread (child_lp);
708
709 if (linux_nat_prepare_to_resume != NULL)
710 linux_nat_prepare_to_resume (child_lp);
711 ptrace (PTRACE_DETACH, child_pid, 0, 0);
712
713 do_cleanups (old_chain);
714 }
715 else
716 {
717 struct inferior *parent_inf, *child_inf;
718 struct cleanup *old_chain;
719
720 /* Add process to GDB's tables. */
721 child_inf = add_inferior (child_pid);
722
723 parent_inf = current_inferior ();
724 child_inf->attach_flag = parent_inf->attach_flag;
725 copy_terminal_info (child_inf, parent_inf);
726
727 old_chain = save_inferior_ptid ();
728 save_current_program_space ();
729
730 inferior_ptid = ptid_build (child_pid, child_pid, 0);
731 add_thread (inferior_ptid);
732 child_lp = add_lwp (inferior_ptid);
733 child_lp->stopped = 1;
734 child_lp->last_resume_kind = resume_stop;
735 child_inf->symfile_flags = SYMFILE_NO_READ;
736
737 /* If this is a vfork child, then the address-space is
738 shared with the parent. */
739 if (has_vforked)
740 {
741 child_inf->pspace = parent_inf->pspace;
742 child_inf->aspace = parent_inf->aspace;
743
744 /* The parent will be frozen until the child is done
745 with the shared region. Keep track of the
746 parent. */
747 child_inf->vfork_parent = parent_inf;
748 child_inf->pending_detach = 0;
749 parent_inf->vfork_child = child_inf;
750 parent_inf->pending_detach = 0;
751 }
752 else
753 {
754 child_inf->aspace = new_address_space ();
755 child_inf->pspace = add_program_space (child_inf->aspace);
756 child_inf->removable = 1;
757 set_current_program_space (child_inf->pspace);
758 clone_program_space (child_inf->pspace, parent_inf->pspace);
759
760 /* Let the shared library layer (solib-svr4) learn about
761 this new process, relocate the cloned exec, pull in
762 shared libraries, and install the solib event
763 breakpoint. If a "cloned-VM" event was propagated
764 better throughout the core, this wouldn't be
765 required. */
766 solib_create_inferior_hook (0);
767 }
768
769 /* Let the thread_db layer learn about this new process. */
770 check_for_thread_db ();
771
772 do_cleanups (old_chain);
773 }
774
775 if (has_vforked)
776 {
777 struct lwp_info *parent_lp;
778 struct inferior *parent_inf;
779
780 parent_inf = current_inferior ();
781
782 /* If we detached from the child, then we have to be careful
783 to not insert breakpoints in the parent until the child
784 is done with the shared memory region. However, if we're
785 staying attached to the child, then we can and should
786 insert breakpoints, so that we can debug it. A
787 subsequent child exec or exit is enough to know when does
788 the child stops using the parent's address space. */
789 parent_inf->waiting_for_vfork_done = detach_fork;
790 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
791
792 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
793 gdb_assert (linux_supports_tracefork_flag >= 0);
794
795 if (linux_supports_tracevforkdone (0))
796 {
797 if (debug_linux_nat)
798 fprintf_unfiltered (gdb_stdlog,
799 "LCFF: waiting for VFORK_DONE on %d\n",
800 parent_pid);
801 parent_lp->stopped = 1;
802
803 /* We'll handle the VFORK_DONE event like any other
804 event, in target_wait. */
805 }
806 else
807 {
808 /* We can't insert breakpoints until the child has
809 finished with the shared memory region. We need to
810 wait until that happens. Ideal would be to just
811 call:
812 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
813 - waitpid (parent_pid, &status, __WALL);
814 However, most architectures can't handle a syscall
815 being traced on the way out if it wasn't traced on
816 the way in.
817
818 We might also think to loop, continuing the child
819 until it exits or gets a SIGTRAP. One problem is
820 that the child might call ptrace with PTRACE_TRACEME.
821
822 There's no simple and reliable way to figure out when
823 the vforked child will be done with its copy of the
824 shared memory. We could step it out of the syscall,
825 two instructions, let it go, and then single-step the
826 parent once. When we have hardware single-step, this
827 would work; with software single-step it could still
828 be made to work but we'd have to be able to insert
829 single-step breakpoints in the child, and we'd have
830 to insert -just- the single-step breakpoint in the
831 parent. Very awkward.
832
833 In the end, the best we can do is to make sure it
834 runs for a little while. Hopefully it will be out of
835 range of any breakpoints we reinsert. Usually this
836 is only the single-step breakpoint at vfork's return
837 point. */
838
839 if (debug_linux_nat)
840 fprintf_unfiltered (gdb_stdlog,
841 "LCFF: no VFORK_DONE "
842 "support, sleeping a bit\n");
843
844 usleep (10000);
845
846 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
847 and leave it pending. The next linux_nat_resume call
848 will notice a pending event, and bypasses actually
849 resuming the inferior. */
850 parent_lp->status = 0;
851 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
852 parent_lp->stopped = 1;
853
854 /* If we're in async mode, need to tell the event loop
855 there's something here to process. */
856 if (target_can_async_p ())
857 async_file_mark ();
858 }
859 }
860 }
861 else
862 {
863 struct inferior *parent_inf, *child_inf;
864 struct lwp_info *child_lp;
865 struct program_space *parent_pspace;
866
867 if (info_verbose || debug_linux_nat)
868 {
869 target_terminal_ours ();
870 if (has_vforked)
871 fprintf_filtered (gdb_stdlog,
872 _("Attaching after process %d "
873 "vfork to child process %d.\n"),
874 parent_pid, child_pid);
875 else
876 fprintf_filtered (gdb_stdlog,
877 _("Attaching after process %d "
878 "fork to child process %d.\n"),
879 parent_pid, child_pid);
880 }
881
882 /* Add the new inferior first, so that the target_detach below
883 doesn't unpush the target. */
884
885 child_inf = add_inferior (child_pid);
886
887 parent_inf = current_inferior ();
888 child_inf->attach_flag = parent_inf->attach_flag;
889 copy_terminal_info (child_inf, parent_inf);
890
891 parent_pspace = parent_inf->pspace;
892
893 /* If we're vforking, we want to hold on to the parent until the
894 child exits or execs. At child exec or exit time we can
895 remove the old breakpoints from the parent and detach or
896 resume debugging it. Otherwise, detach the parent now; we'll
897 want to reuse it's program/address spaces, but we can't set
898 them to the child before removing breakpoints from the
899 parent, otherwise, the breakpoints module could decide to
900 remove breakpoints from the wrong process (since they'd be
901 assigned to the same address space). */
902
903 if (has_vforked)
904 {
905 gdb_assert (child_inf->vfork_parent == NULL);
906 gdb_assert (parent_inf->vfork_child == NULL);
907 child_inf->vfork_parent = parent_inf;
908 child_inf->pending_detach = 0;
909 parent_inf->vfork_child = child_inf;
910 parent_inf->pending_detach = detach_fork;
911 parent_inf->waiting_for_vfork_done = 0;
912 }
913 else if (detach_fork)
914 target_detach (NULL, 0);
915
916 /* Note that the detach above makes PARENT_INF dangling. */
917
918 /* Add the child thread to the appropriate lists, and switch to
919 this new thread, before cloning the program space, and
920 informing the solib layer about this new process. */
921
922 inferior_ptid = ptid_build (child_pid, child_pid, 0);
923 add_thread (inferior_ptid);
924 child_lp = add_lwp (inferior_ptid);
925 child_lp->stopped = 1;
926 child_lp->last_resume_kind = resume_stop;
927
928 /* If this is a vfork child, then the address-space is shared
929 with the parent. If we detached from the parent, then we can
930 reuse the parent's program/address spaces. */
931 if (has_vforked || detach_fork)
932 {
933 child_inf->pspace = parent_pspace;
934 child_inf->aspace = child_inf->pspace->aspace;
935 }
936 else
937 {
938 child_inf->aspace = new_address_space ();
939 child_inf->pspace = add_program_space (child_inf->aspace);
940 child_inf->removable = 1;
941 child_inf->symfile_flags = SYMFILE_NO_READ;
942 set_current_program_space (child_inf->pspace);
943 clone_program_space (child_inf->pspace, parent_pspace);
944
945 /* Let the shared library layer (solib-svr4) learn about
946 this new process, relocate the cloned exec, pull in
947 shared libraries, and install the solib event breakpoint.
948 If a "cloned-VM" event was propagated better throughout
949 the core, this wouldn't be required. */
950 solib_create_inferior_hook (0);
951 }
952
953 /* Let the thread_db layer learn about this new process. */
954 check_for_thread_db ();
955 }
956
957 restore_child_signals_mask (&prev_mask);
958 return 0;
959 }
960
961 \f
962 static int
963 linux_child_insert_fork_catchpoint (int pid)
964 {
965 return !linux_supports_tracefork (pid);
966 }
967
968 static int
969 linux_child_remove_fork_catchpoint (int pid)
970 {
971 return 0;
972 }
973
974 static int
975 linux_child_insert_vfork_catchpoint (int pid)
976 {
977 return !linux_supports_tracefork (pid);
978 }
979
980 static int
981 linux_child_remove_vfork_catchpoint (int pid)
982 {
983 return 0;
984 }
985
986 static int
987 linux_child_insert_exec_catchpoint (int pid)
988 {
989 return !linux_supports_tracefork (pid);
990 }
991
992 static int
993 linux_child_remove_exec_catchpoint (int pid)
994 {
995 return 0;
996 }
997
998 static int
999 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
1000 int table_size, int *table)
1001 {
1002 if (!linux_supports_tracesysgood (pid))
1003 return 1;
1004
1005 /* On GNU/Linux, we ignore the arguments. It means that we only
1006 enable the syscall catchpoints, but do not disable them.
1007
1008 Also, we do not use the `table' information because we do not
1009 filter system calls here. We let GDB do the logic for us. */
1010 return 0;
1011 }
1012
1013 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1014 are processes sharing the same VM space. A multi-threaded process
1015 is basically a group of such processes. However, such a grouping
1016 is almost entirely a user-space issue; the kernel doesn't enforce
1017 such a grouping at all (this might change in the future). In
1018 general, we'll rely on the threads library (i.e. the GNU/Linux
1019 Threads library) to provide such a grouping.
1020
1021 It is perfectly well possible to write a multi-threaded application
1022 without the assistance of a threads library, by using the clone
1023 system call directly. This module should be able to give some
1024 rudimentary support for debugging such applications if developers
1025 specify the CLONE_PTRACE flag in the clone system call, and are
1026 using the Linux kernel 2.4 or above.
1027
1028 Note that there are some peculiarities in GNU/Linux that affect
1029 this code:
1030
1031 - In general one should specify the __WCLONE flag to waitpid in
1032 order to make it report events for any of the cloned processes
1033 (and leave it out for the initial process). However, if a cloned
1034 process has exited the exit status is only reported if the
1035 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1036 we cannot use it since GDB must work on older systems too.
1037
1038 - When a traced, cloned process exits and is waited for by the
1039 debugger, the kernel reassigns it to the original parent and
1040 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1041 library doesn't notice this, which leads to the "zombie problem":
1042 When debugged a multi-threaded process that spawns a lot of
1043 threads will run out of processes, even if the threads exit,
1044 because the "zombies" stay around. */
1045
1046 /* List of known LWPs. */
1047 struct lwp_info *lwp_list;
1048 \f
1049
1050 /* Original signal mask. */
1051 static sigset_t normal_mask;
1052
1053 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1054 _initialize_linux_nat. */
1055 static sigset_t suspend_mask;
1056
1057 /* Signals to block to make that sigsuspend work. */
1058 static sigset_t blocked_mask;
1059
1060 /* SIGCHLD action. */
1061 struct sigaction sigchld_action;
1062
1063 /* Block child signals (SIGCHLD and linux threads signals), and store
1064 the previous mask in PREV_MASK. */
1065
1066 static void
1067 block_child_signals (sigset_t *prev_mask)
1068 {
1069 /* Make sure SIGCHLD is blocked. */
1070 if (!sigismember (&blocked_mask, SIGCHLD))
1071 sigaddset (&blocked_mask, SIGCHLD);
1072
1073 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1074 }
1075
1076 /* Restore child signals mask, previously returned by
1077 block_child_signals. */
1078
1079 static void
1080 restore_child_signals_mask (sigset_t *prev_mask)
1081 {
1082 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1083 }
1084
1085 /* Mask of signals to pass directly to the inferior. */
1086 static sigset_t pass_mask;
1087
1088 /* Update signals to pass to the inferior. */
1089 static void
1090 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1091 {
1092 int signo;
1093
1094 sigemptyset (&pass_mask);
1095
1096 for (signo = 1; signo < NSIG; signo++)
1097 {
1098 int target_signo = gdb_signal_from_host (signo);
1099 if (target_signo < numsigs && pass_signals[target_signo])
1100 sigaddset (&pass_mask, signo);
1101 }
1102 }
1103
1104 \f
1105
1106 /* Prototypes for local functions. */
1107 static int stop_wait_callback (struct lwp_info *lp, void *data);
1108 static int linux_thread_alive (ptid_t ptid);
1109 static char *linux_child_pid_to_exec_file (int pid);
1110
1111 \f
1112 /* Convert wait status STATUS to a string. Used for printing debug
1113 messages only. */
1114
1115 static char *
1116 status_to_str (int status)
1117 {
1118 static char buf[64];
1119
1120 if (WIFSTOPPED (status))
1121 {
1122 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1123 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1124 strsignal (SIGTRAP));
1125 else
1126 snprintf (buf, sizeof (buf), "%s (stopped)",
1127 strsignal (WSTOPSIG (status)));
1128 }
1129 else if (WIFSIGNALED (status))
1130 snprintf (buf, sizeof (buf), "%s (terminated)",
1131 strsignal (WTERMSIG (status)));
1132 else
1133 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1134
1135 return buf;
1136 }
1137
1138 /* Destroy and free LP. */
1139
1140 static void
1141 lwp_free (struct lwp_info *lp)
1142 {
1143 xfree (lp->arch_private);
1144 xfree (lp);
1145 }
1146
1147 /* Remove all LWPs belong to PID from the lwp list. */
1148
1149 static void
1150 purge_lwp_list (int pid)
1151 {
1152 struct lwp_info *lp, *lpprev, *lpnext;
1153
1154 lpprev = NULL;
1155
1156 for (lp = lwp_list; lp; lp = lpnext)
1157 {
1158 lpnext = lp->next;
1159
1160 if (ptid_get_pid (lp->ptid) == pid)
1161 {
1162 if (lp == lwp_list)
1163 lwp_list = lp->next;
1164 else
1165 lpprev->next = lp->next;
1166
1167 lwp_free (lp);
1168 }
1169 else
1170 lpprev = lp;
1171 }
1172 }
1173
1174 /* Add the LWP specified by PID to the list. Return a pointer to the
1175 structure describing the new LWP. The LWP should already be stopped
1176 (with an exception for the very first LWP). */
1177
1178 static struct lwp_info *
1179 add_lwp (ptid_t ptid)
1180 {
1181 struct lwp_info *lp;
1182
1183 gdb_assert (is_lwp (ptid));
1184
1185 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1186
1187 memset (lp, 0, sizeof (struct lwp_info));
1188
1189 lp->last_resume_kind = resume_continue;
1190 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1191
1192 lp->ptid = ptid;
1193 lp->core = -1;
1194
1195 lp->next = lwp_list;
1196 lwp_list = lp;
1197
1198 /* Let the arch specific bits know about this new thread. Current
1199 clients of this callback take the opportunity to install
1200 watchpoints in the new thread. Don't do this for the first
1201 thread though. If we're spawning a child ("run"), the thread
1202 executes the shell wrapper first, and we shouldn't touch it until
1203 it execs the program we want to debug. For "attach", it'd be
1204 okay to call the callback, but it's not necessary, because
1205 watchpoints can't yet have been inserted into the inferior. */
1206 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1207 linux_nat_new_thread (lp);
1208
1209 return lp;
1210 }
1211
1212 /* Remove the LWP specified by PID from the list. */
1213
1214 static void
1215 delete_lwp (ptid_t ptid)
1216 {
1217 struct lwp_info *lp, *lpprev;
1218
1219 lpprev = NULL;
1220
1221 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1222 if (ptid_equal (lp->ptid, ptid))
1223 break;
1224
1225 if (!lp)
1226 return;
1227
1228 if (lpprev)
1229 lpprev->next = lp->next;
1230 else
1231 lwp_list = lp->next;
1232
1233 lwp_free (lp);
1234 }
1235
1236 /* Return a pointer to the structure describing the LWP corresponding
1237 to PID. If no corresponding LWP could be found, return NULL. */
1238
1239 static struct lwp_info *
1240 find_lwp_pid (ptid_t ptid)
1241 {
1242 struct lwp_info *lp;
1243 int lwp;
1244
1245 if (is_lwp (ptid))
1246 lwp = GET_LWP (ptid);
1247 else
1248 lwp = GET_PID (ptid);
1249
1250 for (lp = lwp_list; lp; lp = lp->next)
1251 if (lwp == GET_LWP (lp->ptid))
1252 return lp;
1253
1254 return NULL;
1255 }
1256
1257 /* Call CALLBACK with its second argument set to DATA for every LWP in
1258 the list. If CALLBACK returns 1 for a particular LWP, return a
1259 pointer to the structure describing that LWP immediately.
1260 Otherwise return NULL. */
1261
1262 struct lwp_info *
1263 iterate_over_lwps (ptid_t filter,
1264 int (*callback) (struct lwp_info *, void *),
1265 void *data)
1266 {
1267 struct lwp_info *lp, *lpnext;
1268
1269 for (lp = lwp_list; lp; lp = lpnext)
1270 {
1271 lpnext = lp->next;
1272
1273 if (ptid_match (lp->ptid, filter))
1274 {
1275 if ((*callback) (lp, data))
1276 return lp;
1277 }
1278 }
1279
1280 return NULL;
1281 }
1282
1283 /* Iterate like iterate_over_lwps does except when forking-off a child call
1284 CALLBACK with CALLBACK_DATA specifically only for that new child PID. */
1285
1286 void
1287 linux_nat_iterate_watchpoint_lwps
1288 (linux_nat_iterate_watchpoint_lwps_ftype callback, void *callback_data)
1289 {
1290 int inferior_pid = ptid_get_pid (inferior_ptid);
1291 struct inferior *inf = current_inferior ();
1292
1293 if (inf->pid == inferior_pid)
1294 {
1295 /* Iterate all the threads of the current inferior. Without specifying
1296 INFERIOR_PID it would iterate all threads of all inferiors, which is
1297 inappropriate for watchpoints. */
1298
1299 iterate_over_lwps (pid_to_ptid (inferior_pid), callback, callback_data);
1300 }
1301 else
1302 {
1303 /* Detaching a new child PID temporarily present in INFERIOR_PID. */
1304
1305 struct lwp_info *child_lp;
1306 struct cleanup *old_chain;
1307 pid_t child_pid = GET_PID (inferior_ptid);
1308 ptid_t child_ptid = ptid_build (child_pid, child_pid, 0);
1309
1310 gdb_assert (!is_lwp (inferior_ptid));
1311 gdb_assert (find_lwp_pid (child_ptid) == NULL);
1312 child_lp = add_lwp (child_ptid);
1313 child_lp->stopped = 1;
1314 child_lp->last_resume_kind = resume_stop;
1315 old_chain = make_cleanup (delete_lwp_cleanup, child_lp);
1316
1317 callback (child_lp, callback_data);
1318
1319 do_cleanups (old_chain);
1320 }
1321 }
1322
1323 /* Update our internal state when changing from one checkpoint to
1324 another indicated by NEW_PTID. We can only switch single-threaded
1325 applications, so we only create one new LWP, and the previous list
1326 is discarded. */
1327
1328 void
1329 linux_nat_switch_fork (ptid_t new_ptid)
1330 {
1331 struct lwp_info *lp;
1332
1333 purge_lwp_list (GET_PID (inferior_ptid));
1334
1335 lp = add_lwp (new_ptid);
1336 lp->stopped = 1;
1337
1338 /* This changes the thread's ptid while preserving the gdb thread
1339 num. Also changes the inferior pid, while preserving the
1340 inferior num. */
1341 thread_change_ptid (inferior_ptid, new_ptid);
1342
1343 /* We've just told GDB core that the thread changed target id, but,
1344 in fact, it really is a different thread, with different register
1345 contents. */
1346 registers_changed ();
1347 }
1348
1349 /* Handle the exit of a single thread LP. */
1350
1351 static void
1352 exit_lwp (struct lwp_info *lp)
1353 {
1354 struct thread_info *th = find_thread_ptid (lp->ptid);
1355
1356 if (th)
1357 {
1358 if (print_thread_events)
1359 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1360
1361 delete_thread (lp->ptid);
1362 }
1363
1364 delete_lwp (lp->ptid);
1365 }
1366
1367 /* Wait for the LWP specified by LP, which we have just attached to.
1368 Returns a wait status for that LWP, to cache. */
1369
1370 static int
1371 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1372 int *signalled)
1373 {
1374 pid_t new_pid, pid = GET_LWP (ptid);
1375 int status;
1376
1377 if (linux_proc_pid_is_stopped (pid))
1378 {
1379 if (debug_linux_nat)
1380 fprintf_unfiltered (gdb_stdlog,
1381 "LNPAW: Attaching to a stopped process\n");
1382
1383 /* The process is definitely stopped. It is in a job control
1384 stop, unless the kernel predates the TASK_STOPPED /
1385 TASK_TRACED distinction, in which case it might be in a
1386 ptrace stop. Make sure it is in a ptrace stop; from there we
1387 can kill it, signal it, et cetera.
1388
1389 First make sure there is a pending SIGSTOP. Since we are
1390 already attached, the process can not transition from stopped
1391 to running without a PTRACE_CONT; so we know this signal will
1392 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1393 probably already in the queue (unless this kernel is old
1394 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1395 is not an RT signal, it can only be queued once. */
1396 kill_lwp (pid, SIGSTOP);
1397
1398 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1399 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1400 ptrace (PTRACE_CONT, pid, 0, 0);
1401 }
1402
1403 /* Make sure the initial process is stopped. The user-level threads
1404 layer might want to poke around in the inferior, and that won't
1405 work if things haven't stabilized yet. */
1406 new_pid = my_waitpid (pid, &status, 0);
1407 if (new_pid == -1 && errno == ECHILD)
1408 {
1409 if (first)
1410 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1411
1412 /* Try again with __WCLONE to check cloned processes. */
1413 new_pid = my_waitpid (pid, &status, __WCLONE);
1414 *cloned = 1;
1415 }
1416
1417 gdb_assert (pid == new_pid);
1418
1419 if (!WIFSTOPPED (status))
1420 {
1421 /* The pid we tried to attach has apparently just exited. */
1422 if (debug_linux_nat)
1423 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1424 pid, status_to_str (status));
1425 return status;
1426 }
1427
1428 if (WSTOPSIG (status) != SIGSTOP)
1429 {
1430 *signalled = 1;
1431 if (debug_linux_nat)
1432 fprintf_unfiltered (gdb_stdlog,
1433 "LNPAW: Received %s after attaching\n",
1434 status_to_str (status));
1435 }
1436
1437 return status;
1438 }
1439
1440 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1441 the new LWP could not be attached, or 1 if we're already auto
1442 attached to this thread, but haven't processed the
1443 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1444 its existance, without considering it an error. */
1445
1446 int
1447 lin_lwp_attach_lwp (ptid_t ptid)
1448 {
1449 struct lwp_info *lp;
1450 sigset_t prev_mask;
1451 int lwpid;
1452
1453 gdb_assert (is_lwp (ptid));
1454
1455 block_child_signals (&prev_mask);
1456
1457 lp = find_lwp_pid (ptid);
1458 lwpid = GET_LWP (ptid);
1459
1460 /* We assume that we're already attached to any LWP that has an id
1461 equal to the overall process id, and to any LWP that is already
1462 in our list of LWPs. If we're not seeing exit events from threads
1463 and we've had PID wraparound since we last tried to stop all threads,
1464 this assumption might be wrong; fortunately, this is very unlikely
1465 to happen. */
1466 if (lwpid != GET_PID (ptid) && lp == NULL)
1467 {
1468 int status, cloned = 0, signalled = 0;
1469
1470 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1471 {
1472 if (linux_supports_tracefork_flag)
1473 {
1474 /* If we haven't stopped all threads when we get here,
1475 we may have seen a thread listed in thread_db's list,
1476 but not processed the PTRACE_EVENT_CLONE yet. If
1477 that's the case, ignore this new thread, and let
1478 normal event handling discover it later. */
1479 if (in_pid_list_p (stopped_pids, lwpid))
1480 {
1481 /* We've already seen this thread stop, but we
1482 haven't seen the PTRACE_EVENT_CLONE extended
1483 event yet. */
1484 restore_child_signals_mask (&prev_mask);
1485 return 0;
1486 }
1487 else
1488 {
1489 int new_pid;
1490 int status;
1491
1492 /* See if we've got a stop for this new child
1493 pending. If so, we're already attached. */
1494 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1495 if (new_pid == -1 && errno == ECHILD)
1496 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1497 if (new_pid != -1)
1498 {
1499 if (WIFSTOPPED (status))
1500 add_to_pid_list (&stopped_pids, lwpid, status);
1501
1502 restore_child_signals_mask (&prev_mask);
1503 return 1;
1504 }
1505 }
1506 }
1507
1508 /* If we fail to attach to the thread, issue a warning,
1509 but continue. One way this can happen is if thread
1510 creation is interrupted; as of Linux kernel 2.6.19, a
1511 bug may place threads in the thread list and then fail
1512 to create them. */
1513 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1514 safe_strerror (errno));
1515 restore_child_signals_mask (&prev_mask);
1516 return -1;
1517 }
1518
1519 if (debug_linux_nat)
1520 fprintf_unfiltered (gdb_stdlog,
1521 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1522 target_pid_to_str (ptid));
1523
1524 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1525 if (!WIFSTOPPED (status))
1526 {
1527 restore_child_signals_mask (&prev_mask);
1528 return 1;
1529 }
1530
1531 lp = add_lwp (ptid);
1532 lp->stopped = 1;
1533 lp->cloned = cloned;
1534 lp->signalled = signalled;
1535 if (WSTOPSIG (status) != SIGSTOP)
1536 {
1537 lp->resumed = 1;
1538 lp->status = status;
1539 }
1540
1541 target_post_attach (GET_LWP (lp->ptid));
1542
1543 if (debug_linux_nat)
1544 {
1545 fprintf_unfiltered (gdb_stdlog,
1546 "LLAL: waitpid %s received %s\n",
1547 target_pid_to_str (ptid),
1548 status_to_str (status));
1549 }
1550 }
1551 else
1552 {
1553 /* We assume that the LWP representing the original process is
1554 already stopped. Mark it as stopped in the data structure
1555 that the GNU/linux ptrace layer uses to keep track of
1556 threads. Note that this won't have already been done since
1557 the main thread will have, we assume, been stopped by an
1558 attach from a different layer. */
1559 if (lp == NULL)
1560 lp = add_lwp (ptid);
1561 lp->stopped = 1;
1562 }
1563
1564 lp->last_resume_kind = resume_stop;
1565 restore_child_signals_mask (&prev_mask);
1566 return 0;
1567 }
1568
1569 static void
1570 linux_nat_create_inferior (struct target_ops *ops,
1571 char *exec_file, char *allargs, char **env,
1572 int from_tty)
1573 {
1574 #ifdef HAVE_PERSONALITY
1575 int personality_orig = 0, personality_set = 0;
1576 #endif /* HAVE_PERSONALITY */
1577
1578 /* The fork_child mechanism is synchronous and calls target_wait, so
1579 we have to mask the async mode. */
1580
1581 #ifdef HAVE_PERSONALITY
1582 if (disable_randomization)
1583 {
1584 errno = 0;
1585 personality_orig = personality (0xffffffff);
1586 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1587 {
1588 personality_set = 1;
1589 personality (personality_orig | ADDR_NO_RANDOMIZE);
1590 }
1591 if (errno != 0 || (personality_set
1592 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1593 warning (_("Error disabling address space randomization: %s"),
1594 safe_strerror (errno));
1595 }
1596 #endif /* HAVE_PERSONALITY */
1597
1598 /* Make sure we report all signals during startup. */
1599 linux_nat_pass_signals (0, NULL);
1600
1601 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1602
1603 #ifdef HAVE_PERSONALITY
1604 if (personality_set)
1605 {
1606 errno = 0;
1607 personality (personality_orig);
1608 if (errno != 0)
1609 warning (_("Error restoring address space randomization: %s"),
1610 safe_strerror (errno));
1611 }
1612 #endif /* HAVE_PERSONALITY */
1613 }
1614
1615 static void
1616 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1617 {
1618 struct lwp_info *lp;
1619 int status;
1620 ptid_t ptid;
1621 volatile struct gdb_exception ex;
1622
1623 /* Make sure we report all signals during attach. */
1624 linux_nat_pass_signals (0, NULL);
1625
1626 TRY_CATCH (ex, RETURN_MASK_ERROR)
1627 {
1628 linux_ops->to_attach (ops, args, from_tty);
1629 }
1630 if (ex.reason < 0)
1631 {
1632 pid_t pid = parse_pid_to_attach (args);
1633 struct buffer buffer;
1634 char *message, *buffer_s;
1635
1636 message = xstrdup (ex.message);
1637 make_cleanup (xfree, message);
1638
1639 buffer_init (&buffer);
1640 linux_ptrace_attach_warnings (pid, &buffer);
1641
1642 buffer_grow_str0 (&buffer, "");
1643 buffer_s = buffer_finish (&buffer);
1644 make_cleanup (xfree, buffer_s);
1645
1646 throw_error (ex.error, "%s%s", buffer_s, message);
1647 }
1648
1649 /* The ptrace base target adds the main thread with (pid,0,0)
1650 format. Decorate it with lwp info. */
1651 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1652 thread_change_ptid (inferior_ptid, ptid);
1653
1654 /* Add the initial process as the first LWP to the list. */
1655 lp = add_lwp (ptid);
1656
1657 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1658 &lp->signalled);
1659 if (!WIFSTOPPED (status))
1660 {
1661 if (WIFEXITED (status))
1662 {
1663 int exit_code = WEXITSTATUS (status);
1664
1665 target_terminal_ours ();
1666 target_mourn_inferior ();
1667 if (exit_code == 0)
1668 error (_("Unable to attach: program exited normally."));
1669 else
1670 error (_("Unable to attach: program exited with code %d."),
1671 exit_code);
1672 }
1673 else if (WIFSIGNALED (status))
1674 {
1675 enum gdb_signal signo;
1676
1677 target_terminal_ours ();
1678 target_mourn_inferior ();
1679
1680 signo = gdb_signal_from_host (WTERMSIG (status));
1681 error (_("Unable to attach: program terminated with signal "
1682 "%s, %s."),
1683 gdb_signal_to_name (signo),
1684 gdb_signal_to_string (signo));
1685 }
1686
1687 internal_error (__FILE__, __LINE__,
1688 _("unexpected status %d for PID %ld"),
1689 status, (long) GET_LWP (ptid));
1690 }
1691
1692 lp->stopped = 1;
1693
1694 /* Save the wait status to report later. */
1695 lp->resumed = 1;
1696 if (debug_linux_nat)
1697 fprintf_unfiltered (gdb_stdlog,
1698 "LNA: waitpid %ld, saving status %s\n",
1699 (long) GET_PID (lp->ptid), status_to_str (status));
1700
1701 lp->status = status;
1702
1703 if (target_can_async_p ())
1704 target_async (inferior_event_handler, 0);
1705 }
1706
1707 /* Get pending status of LP. */
1708 static int
1709 get_pending_status (struct lwp_info *lp, int *status)
1710 {
1711 enum gdb_signal signo = GDB_SIGNAL_0;
1712
1713 /* If we paused threads momentarily, we may have stored pending
1714 events in lp->status or lp->waitstatus (see stop_wait_callback),
1715 and GDB core hasn't seen any signal for those threads.
1716 Otherwise, the last signal reported to the core is found in the
1717 thread object's stop_signal.
1718
1719 There's a corner case that isn't handled here at present. Only
1720 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1721 stop_signal make sense as a real signal to pass to the inferior.
1722 Some catchpoint related events, like
1723 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1724 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1725 those traps are debug API (ptrace in our case) related and
1726 induced; the inferior wouldn't see them if it wasn't being
1727 traced. Hence, we should never pass them to the inferior, even
1728 when set to pass state. Since this corner case isn't handled by
1729 infrun.c when proceeding with a signal, for consistency, neither
1730 do we handle it here (or elsewhere in the file we check for
1731 signal pass state). Normally SIGTRAP isn't set to pass state, so
1732 this is really a corner case. */
1733
1734 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1735 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1736 else if (lp->status)
1737 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1738 else if (non_stop && !is_executing (lp->ptid))
1739 {
1740 struct thread_info *tp = find_thread_ptid (lp->ptid);
1741
1742 signo = tp->suspend.stop_signal;
1743 }
1744 else if (!non_stop)
1745 {
1746 struct target_waitstatus last;
1747 ptid_t last_ptid;
1748
1749 get_last_target_status (&last_ptid, &last);
1750
1751 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1752 {
1753 struct thread_info *tp = find_thread_ptid (lp->ptid);
1754
1755 signo = tp->suspend.stop_signal;
1756 }
1757 }
1758
1759 *status = 0;
1760
1761 if (signo == GDB_SIGNAL_0)
1762 {
1763 if (debug_linux_nat)
1764 fprintf_unfiltered (gdb_stdlog,
1765 "GPT: lwp %s has no pending signal\n",
1766 target_pid_to_str (lp->ptid));
1767 }
1768 else if (!signal_pass_state (signo))
1769 {
1770 if (debug_linux_nat)
1771 fprintf_unfiltered (gdb_stdlog,
1772 "GPT: lwp %s had signal %s, "
1773 "but it is in no pass state\n",
1774 target_pid_to_str (lp->ptid),
1775 gdb_signal_to_string (signo));
1776 }
1777 else
1778 {
1779 *status = W_STOPCODE (gdb_signal_to_host (signo));
1780
1781 if (debug_linux_nat)
1782 fprintf_unfiltered (gdb_stdlog,
1783 "GPT: lwp %s has pending signal %s\n",
1784 target_pid_to_str (lp->ptid),
1785 gdb_signal_to_string (signo));
1786 }
1787
1788 return 0;
1789 }
1790
1791 static int
1792 detach_callback (struct lwp_info *lp, void *data)
1793 {
1794 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1795
1796 if (debug_linux_nat && lp->status)
1797 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1798 strsignal (WSTOPSIG (lp->status)),
1799 target_pid_to_str (lp->ptid));
1800
1801 /* If there is a pending SIGSTOP, get rid of it. */
1802 if (lp->signalled)
1803 {
1804 if (debug_linux_nat)
1805 fprintf_unfiltered (gdb_stdlog,
1806 "DC: Sending SIGCONT to %s\n",
1807 target_pid_to_str (lp->ptid));
1808
1809 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1810 lp->signalled = 0;
1811 }
1812
1813 /* We don't actually detach from the LWP that has an id equal to the
1814 overall process id just yet. */
1815 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1816 {
1817 int status = 0;
1818
1819 /* Pass on any pending signal for this LWP. */
1820 get_pending_status (lp, &status);
1821
1822 if (linux_nat_prepare_to_resume != NULL)
1823 linux_nat_prepare_to_resume (lp);
1824 errno = 0;
1825 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1826 WSTOPSIG (status)) < 0)
1827 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1828 safe_strerror (errno));
1829
1830 if (debug_linux_nat)
1831 fprintf_unfiltered (gdb_stdlog,
1832 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1833 target_pid_to_str (lp->ptid),
1834 strsignal (WSTOPSIG (status)));
1835
1836 delete_lwp (lp->ptid);
1837 }
1838
1839 return 0;
1840 }
1841
1842 static void
1843 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1844 {
1845 int pid;
1846 int status;
1847 struct lwp_info *main_lwp;
1848
1849 pid = GET_PID (inferior_ptid);
1850
1851 /* Don't unregister from the event loop, as there may be other
1852 inferiors running. */
1853
1854 /* Stop all threads before detaching. ptrace requires that the
1855 thread is stopped to sucessfully detach. */
1856 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1857 /* ... and wait until all of them have reported back that
1858 they're no longer running. */
1859 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1860
1861 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1862
1863 /* Only the initial process should be left right now. */
1864 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1865
1866 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1867
1868 /* Pass on any pending signal for the last LWP. */
1869 if ((args == NULL || *args == '\0')
1870 && get_pending_status (main_lwp, &status) != -1
1871 && WIFSTOPPED (status))
1872 {
1873 /* Put the signal number in ARGS so that inf_ptrace_detach will
1874 pass it along with PTRACE_DETACH. */
1875 args = alloca (8);
1876 sprintf (args, "%d", (int) WSTOPSIG (status));
1877 if (debug_linux_nat)
1878 fprintf_unfiltered (gdb_stdlog,
1879 "LND: Sending signal %s to %s\n",
1880 args,
1881 target_pid_to_str (main_lwp->ptid));
1882 }
1883
1884 if (linux_nat_prepare_to_resume != NULL)
1885 linux_nat_prepare_to_resume (main_lwp);
1886 delete_lwp (main_lwp->ptid);
1887
1888 if (forks_exist_p ())
1889 {
1890 /* Multi-fork case. The current inferior_ptid is being detached
1891 from, but there are other viable forks to debug. Detach from
1892 the current fork, and context-switch to the first
1893 available. */
1894 linux_fork_detach (args, from_tty);
1895 }
1896 else
1897 linux_ops->to_detach (ops, args, from_tty);
1898 }
1899
1900 /* Resume LP. */
1901
1902 static void
1903 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1904 {
1905 if (lp->stopped)
1906 {
1907 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1908
1909 if (inf->vfork_child != NULL)
1910 {
1911 if (debug_linux_nat)
1912 fprintf_unfiltered (gdb_stdlog,
1913 "RC: Not resuming %s (vfork parent)\n",
1914 target_pid_to_str (lp->ptid));
1915 }
1916 else if (lp->status == 0
1917 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1918 {
1919 if (debug_linux_nat)
1920 fprintf_unfiltered (gdb_stdlog,
1921 "RC: Resuming sibling %s, %s, %s\n",
1922 target_pid_to_str (lp->ptid),
1923 (signo != GDB_SIGNAL_0
1924 ? strsignal (gdb_signal_to_host (signo))
1925 : "0"),
1926 step ? "step" : "resume");
1927
1928 if (linux_nat_prepare_to_resume != NULL)
1929 linux_nat_prepare_to_resume (lp);
1930 linux_ops->to_resume (linux_ops,
1931 pid_to_ptid (GET_LWP (lp->ptid)),
1932 step, signo);
1933 lp->stopped = 0;
1934 lp->step = step;
1935 lp->stopped_by_watchpoint = 0;
1936 }
1937 else
1938 {
1939 if (debug_linux_nat)
1940 fprintf_unfiltered (gdb_stdlog,
1941 "RC: Not resuming sibling %s (has pending)\n",
1942 target_pid_to_str (lp->ptid));
1943 }
1944 }
1945 else
1946 {
1947 if (debug_linux_nat)
1948 fprintf_unfiltered (gdb_stdlog,
1949 "RC: Not resuming sibling %s (not stopped)\n",
1950 target_pid_to_str (lp->ptid));
1951 }
1952 }
1953
1954 /* Resume LWP, with the last stop signal, if it is in pass state. */
1955
1956 static int
1957 linux_nat_resume_callback (struct lwp_info *lp, void *data)
1958 {
1959 enum gdb_signal signo = GDB_SIGNAL_0;
1960
1961 if (lp->stopped)
1962 {
1963 struct thread_info *thread;
1964
1965 thread = find_thread_ptid (lp->ptid);
1966 if (thread != NULL)
1967 {
1968 if (signal_pass_state (thread->suspend.stop_signal))
1969 signo = thread->suspend.stop_signal;
1970 thread->suspend.stop_signal = GDB_SIGNAL_0;
1971 }
1972 }
1973
1974 resume_lwp (lp, 0, signo);
1975 return 0;
1976 }
1977
1978 static int
1979 resume_clear_callback (struct lwp_info *lp, void *data)
1980 {
1981 lp->resumed = 0;
1982 lp->last_resume_kind = resume_stop;
1983 return 0;
1984 }
1985
1986 static int
1987 resume_set_callback (struct lwp_info *lp, void *data)
1988 {
1989 lp->resumed = 1;
1990 lp->last_resume_kind = resume_continue;
1991 return 0;
1992 }
1993
1994 static void
1995 linux_nat_resume (struct target_ops *ops,
1996 ptid_t ptid, int step, enum gdb_signal signo)
1997 {
1998 sigset_t prev_mask;
1999 struct lwp_info *lp;
2000 int resume_many;
2001
2002 if (debug_linux_nat)
2003 fprintf_unfiltered (gdb_stdlog,
2004 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
2005 step ? "step" : "resume",
2006 target_pid_to_str (ptid),
2007 (signo != GDB_SIGNAL_0
2008 ? strsignal (gdb_signal_to_host (signo)) : "0"),
2009 target_pid_to_str (inferior_ptid));
2010
2011 block_child_signals (&prev_mask);
2012
2013 /* A specific PTID means `step only this process id'. */
2014 resume_many = (ptid_equal (minus_one_ptid, ptid)
2015 || ptid_is_pid (ptid));
2016
2017 /* Mark the lwps we're resuming as resumed. */
2018 iterate_over_lwps (ptid, resume_set_callback, NULL);
2019
2020 /* See if it's the current inferior that should be handled
2021 specially. */
2022 if (resume_many)
2023 lp = find_lwp_pid (inferior_ptid);
2024 else
2025 lp = find_lwp_pid (ptid);
2026 gdb_assert (lp != NULL);
2027
2028 /* Remember if we're stepping. */
2029 lp->step = step;
2030 lp->last_resume_kind = step ? resume_step : resume_continue;
2031
2032 /* If we have a pending wait status for this thread, there is no
2033 point in resuming the process. But first make sure that
2034 linux_nat_wait won't preemptively handle the event - we
2035 should never take this short-circuit if we are going to
2036 leave LP running, since we have skipped resuming all the
2037 other threads. This bit of code needs to be synchronized
2038 with linux_nat_wait. */
2039
2040 if (lp->status && WIFSTOPPED (lp->status))
2041 {
2042 if (!lp->step
2043 && WSTOPSIG (lp->status)
2044 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
2045 {
2046 if (debug_linux_nat)
2047 fprintf_unfiltered (gdb_stdlog,
2048 "LLR: Not short circuiting for ignored "
2049 "status 0x%x\n", lp->status);
2050
2051 /* FIXME: What should we do if we are supposed to continue
2052 this thread with a signal? */
2053 gdb_assert (signo == GDB_SIGNAL_0);
2054 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
2055 lp->status = 0;
2056 }
2057 }
2058
2059 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2060 {
2061 /* FIXME: What should we do if we are supposed to continue
2062 this thread with a signal? */
2063 gdb_assert (signo == GDB_SIGNAL_0);
2064
2065 if (debug_linux_nat)
2066 fprintf_unfiltered (gdb_stdlog,
2067 "LLR: Short circuiting for status 0x%x\n",
2068 lp->status);
2069
2070 restore_child_signals_mask (&prev_mask);
2071 if (target_can_async_p ())
2072 {
2073 target_async (inferior_event_handler, 0);
2074 /* Tell the event loop we have something to process. */
2075 async_file_mark ();
2076 }
2077 return;
2078 }
2079
2080 /* Mark LWP as not stopped to prevent it from being continued by
2081 linux_nat_resume_callback. */
2082 lp->stopped = 0;
2083
2084 if (resume_many)
2085 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
2086
2087 /* Convert to something the lower layer understands. */
2088 ptid = pid_to_ptid (GET_LWP (lp->ptid));
2089
2090 if (linux_nat_prepare_to_resume != NULL)
2091 linux_nat_prepare_to_resume (lp);
2092 linux_ops->to_resume (linux_ops, ptid, step, signo);
2093 lp->stopped_by_watchpoint = 0;
2094
2095 if (debug_linux_nat)
2096 fprintf_unfiltered (gdb_stdlog,
2097 "LLR: %s %s, %s (resume event thread)\n",
2098 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2099 target_pid_to_str (ptid),
2100 (signo != GDB_SIGNAL_0
2101 ? strsignal (gdb_signal_to_host (signo)) : "0"));
2102
2103 restore_child_signals_mask (&prev_mask);
2104 if (target_can_async_p ())
2105 target_async (inferior_event_handler, 0);
2106 }
2107
2108 /* Send a signal to an LWP. */
2109
2110 static int
2111 kill_lwp (int lwpid, int signo)
2112 {
2113 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2114 fails, then we are not using nptl threads and we should be using kill. */
2115
2116 #ifdef HAVE_TKILL_SYSCALL
2117 {
2118 static int tkill_failed;
2119
2120 if (!tkill_failed)
2121 {
2122 int ret;
2123
2124 errno = 0;
2125 ret = syscall (__NR_tkill, lwpid, signo);
2126 if (errno != ENOSYS)
2127 return ret;
2128 tkill_failed = 1;
2129 }
2130 }
2131 #endif
2132
2133 return kill (lwpid, signo);
2134 }
2135
2136 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2137 event, check if the core is interested in it: if not, ignore the
2138 event, and keep waiting; otherwise, we need to toggle the LWP's
2139 syscall entry/exit status, since the ptrace event itself doesn't
2140 indicate it, and report the trap to higher layers. */
2141
2142 static int
2143 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2144 {
2145 struct target_waitstatus *ourstatus = &lp->waitstatus;
2146 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2147 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2148
2149 if (stopping)
2150 {
2151 /* If we're stopping threads, there's a SIGSTOP pending, which
2152 makes it so that the LWP reports an immediate syscall return,
2153 followed by the SIGSTOP. Skip seeing that "return" using
2154 PTRACE_CONT directly, and let stop_wait_callback collect the
2155 SIGSTOP. Later when the thread is resumed, a new syscall
2156 entry event. If we didn't do this (and returned 0), we'd
2157 leave a syscall entry pending, and our caller, by using
2158 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2159 itself. Later, when the user re-resumes this LWP, we'd see
2160 another syscall entry event and we'd mistake it for a return.
2161
2162 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2163 (leaving immediately with LWP->signalled set, without issuing
2164 a PTRACE_CONT), it would still be problematic to leave this
2165 syscall enter pending, as later when the thread is resumed,
2166 it would then see the same syscall exit mentioned above,
2167 followed by the delayed SIGSTOP, while the syscall didn't
2168 actually get to execute. It seems it would be even more
2169 confusing to the user. */
2170
2171 if (debug_linux_nat)
2172 fprintf_unfiltered (gdb_stdlog,
2173 "LHST: ignoring syscall %d "
2174 "for LWP %ld (stopping threads), "
2175 "resuming with PTRACE_CONT for SIGSTOP\n",
2176 syscall_number,
2177 GET_LWP (lp->ptid));
2178
2179 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2180 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2181 return 1;
2182 }
2183
2184 if (catch_syscall_enabled ())
2185 {
2186 /* Always update the entry/return state, even if this particular
2187 syscall isn't interesting to the core now. In async mode,
2188 the user could install a new catchpoint for this syscall
2189 between syscall enter/return, and we'll need to know to
2190 report a syscall return if that happens. */
2191 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2192 ? TARGET_WAITKIND_SYSCALL_RETURN
2193 : TARGET_WAITKIND_SYSCALL_ENTRY);
2194
2195 if (catching_syscall_number (syscall_number))
2196 {
2197 /* Alright, an event to report. */
2198 ourstatus->kind = lp->syscall_state;
2199 ourstatus->value.syscall_number = syscall_number;
2200
2201 if (debug_linux_nat)
2202 fprintf_unfiltered (gdb_stdlog,
2203 "LHST: stopping for %s of syscall %d"
2204 " for LWP %ld\n",
2205 lp->syscall_state
2206 == TARGET_WAITKIND_SYSCALL_ENTRY
2207 ? "entry" : "return",
2208 syscall_number,
2209 GET_LWP (lp->ptid));
2210 return 0;
2211 }
2212
2213 if (debug_linux_nat)
2214 fprintf_unfiltered (gdb_stdlog,
2215 "LHST: ignoring %s of syscall %d "
2216 "for LWP %ld\n",
2217 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2218 ? "entry" : "return",
2219 syscall_number,
2220 GET_LWP (lp->ptid));
2221 }
2222 else
2223 {
2224 /* If we had been syscall tracing, and hence used PT_SYSCALL
2225 before on this LWP, it could happen that the user removes all
2226 syscall catchpoints before we get to process this event.
2227 There are two noteworthy issues here:
2228
2229 - When stopped at a syscall entry event, resuming with
2230 PT_STEP still resumes executing the syscall and reports a
2231 syscall return.
2232
2233 - Only PT_SYSCALL catches syscall enters. If we last
2234 single-stepped this thread, then this event can't be a
2235 syscall enter. If we last single-stepped this thread, this
2236 has to be a syscall exit.
2237
2238 The points above mean that the next resume, be it PT_STEP or
2239 PT_CONTINUE, can not trigger a syscall trace event. */
2240 if (debug_linux_nat)
2241 fprintf_unfiltered (gdb_stdlog,
2242 "LHST: caught syscall event "
2243 "with no syscall catchpoints."
2244 " %d for LWP %ld, ignoring\n",
2245 syscall_number,
2246 GET_LWP (lp->ptid));
2247 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2248 }
2249
2250 /* The core isn't interested in this event. For efficiency, avoid
2251 stopping all threads only to have the core resume them all again.
2252 Since we're not stopping threads, if we're still syscall tracing
2253 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2254 subsequent syscall. Simply resume using the inf-ptrace layer,
2255 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2256
2257 /* Note that gdbarch_get_syscall_number may access registers, hence
2258 fill a regcache. */
2259 registers_changed ();
2260 if (linux_nat_prepare_to_resume != NULL)
2261 linux_nat_prepare_to_resume (lp);
2262 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2263 lp->step, GDB_SIGNAL_0);
2264 return 1;
2265 }
2266
2267 /* Handle a GNU/Linux extended wait response. If we see a clone
2268 event, we need to add the new LWP to our list (and not report the
2269 trap to higher layers). This function returns non-zero if the
2270 event should be ignored and we should wait again. If STOPPING is
2271 true, the new LWP remains stopped, otherwise it is continued. */
2272
2273 static int
2274 linux_handle_extended_wait (struct lwp_info *lp, int status,
2275 int stopping)
2276 {
2277 int pid = GET_LWP (lp->ptid);
2278 struct target_waitstatus *ourstatus = &lp->waitstatus;
2279 int event = status >> 16;
2280
2281 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2282 || event == PTRACE_EVENT_CLONE)
2283 {
2284 unsigned long new_pid;
2285 int ret;
2286
2287 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2288
2289 /* If we haven't already seen the new PID stop, wait for it now. */
2290 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2291 {
2292 /* The new child has a pending SIGSTOP. We can't affect it until it
2293 hits the SIGSTOP, but we're already attached. */
2294 ret = my_waitpid (new_pid, &status,
2295 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2296 if (ret == -1)
2297 perror_with_name (_("waiting for new child"));
2298 else if (ret != new_pid)
2299 internal_error (__FILE__, __LINE__,
2300 _("wait returned unexpected PID %d"), ret);
2301 else if (!WIFSTOPPED (status))
2302 internal_error (__FILE__, __LINE__,
2303 _("wait returned unexpected status 0x%x"), status);
2304 }
2305
2306 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2307
2308 if (event == PTRACE_EVENT_FORK
2309 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2310 {
2311 /* Handle checkpointing by linux-fork.c here as a special
2312 case. We don't want the follow-fork-mode or 'catch fork'
2313 to interfere with this. */
2314
2315 /* This won't actually modify the breakpoint list, but will
2316 physically remove the breakpoints from the child. */
2317 detach_breakpoints (new_pid);
2318
2319 /* Retain child fork in ptrace (stopped) state. */
2320 if (!find_fork_pid (new_pid))
2321 add_fork (new_pid);
2322
2323 /* Report as spurious, so that infrun doesn't want to follow
2324 this fork. We're actually doing an infcall in
2325 linux-fork.c. */
2326 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2327 linux_enable_event_reporting (pid_to_ptid (new_pid));
2328
2329 /* Report the stop to the core. */
2330 return 0;
2331 }
2332
2333 if (event == PTRACE_EVENT_FORK)
2334 ourstatus->kind = TARGET_WAITKIND_FORKED;
2335 else if (event == PTRACE_EVENT_VFORK)
2336 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2337 else
2338 {
2339 struct lwp_info *new_lp;
2340
2341 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2342
2343 if (debug_linux_nat)
2344 fprintf_unfiltered (gdb_stdlog,
2345 "LHEW: Got clone event "
2346 "from LWP %d, new child is LWP %ld\n",
2347 pid, new_pid);
2348
2349 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2350 new_lp->cloned = 1;
2351 new_lp->stopped = 1;
2352
2353 if (WSTOPSIG (status) != SIGSTOP)
2354 {
2355 /* This can happen if someone starts sending signals to
2356 the new thread before it gets a chance to run, which
2357 have a lower number than SIGSTOP (e.g. SIGUSR1).
2358 This is an unlikely case, and harder to handle for
2359 fork / vfork than for clone, so we do not try - but
2360 we handle it for clone events here. We'll send
2361 the other signal on to the thread below. */
2362
2363 new_lp->signalled = 1;
2364 }
2365 else
2366 {
2367 struct thread_info *tp;
2368
2369 /* When we stop for an event in some other thread, and
2370 pull the thread list just as this thread has cloned,
2371 we'll have seen the new thread in the thread_db list
2372 before handling the CLONE event (glibc's
2373 pthread_create adds the new thread to the thread list
2374 before clone'ing, and has the kernel fill in the
2375 thread's tid on the clone call with
2376 CLONE_PARENT_SETTID). If that happened, and the core
2377 had requested the new thread to stop, we'll have
2378 killed it with SIGSTOP. But since SIGSTOP is not an
2379 RT signal, it can only be queued once. We need to be
2380 careful to not resume the LWP if we wanted it to
2381 stop. In that case, we'll leave the SIGSTOP pending.
2382 It will later be reported as GDB_SIGNAL_0. */
2383 tp = find_thread_ptid (new_lp->ptid);
2384 if (tp != NULL && tp->stop_requested)
2385 new_lp->last_resume_kind = resume_stop;
2386 else
2387 status = 0;
2388 }
2389
2390 if (non_stop)
2391 {
2392 /* Add the new thread to GDB's lists as soon as possible
2393 so that:
2394
2395 1) the frontend doesn't have to wait for a stop to
2396 display them, and,
2397
2398 2) we tag it with the correct running state. */
2399
2400 /* If the thread_db layer is active, let it know about
2401 this new thread, and add it to GDB's list. */
2402 if (!thread_db_attach_lwp (new_lp->ptid))
2403 {
2404 /* We're not using thread_db. Add it to GDB's
2405 list. */
2406 target_post_attach (GET_LWP (new_lp->ptid));
2407 add_thread (new_lp->ptid);
2408 }
2409
2410 if (!stopping)
2411 {
2412 set_running (new_lp->ptid, 1);
2413 set_executing (new_lp->ptid, 1);
2414 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2415 resume_stop. */
2416 new_lp->last_resume_kind = resume_continue;
2417 }
2418 }
2419
2420 if (status != 0)
2421 {
2422 /* We created NEW_LP so it cannot yet contain STATUS. */
2423 gdb_assert (new_lp->status == 0);
2424
2425 /* Save the wait status to report later. */
2426 if (debug_linux_nat)
2427 fprintf_unfiltered (gdb_stdlog,
2428 "LHEW: waitpid of new LWP %ld, "
2429 "saving status %s\n",
2430 (long) GET_LWP (new_lp->ptid),
2431 status_to_str (status));
2432 new_lp->status = status;
2433 }
2434
2435 /* Note the need to use the low target ops to resume, to
2436 handle resuming with PT_SYSCALL if we have syscall
2437 catchpoints. */
2438 if (!stopping)
2439 {
2440 new_lp->resumed = 1;
2441
2442 if (status == 0)
2443 {
2444 gdb_assert (new_lp->last_resume_kind == resume_continue);
2445 if (debug_linux_nat)
2446 fprintf_unfiltered (gdb_stdlog,
2447 "LHEW: resuming new LWP %ld\n",
2448 GET_LWP (new_lp->ptid));
2449 if (linux_nat_prepare_to_resume != NULL)
2450 linux_nat_prepare_to_resume (new_lp);
2451 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2452 0, GDB_SIGNAL_0);
2453 new_lp->stopped = 0;
2454 }
2455 }
2456
2457 if (debug_linux_nat)
2458 fprintf_unfiltered (gdb_stdlog,
2459 "LHEW: resuming parent LWP %d\n", pid);
2460 if (linux_nat_prepare_to_resume != NULL)
2461 linux_nat_prepare_to_resume (lp);
2462 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2463 0, GDB_SIGNAL_0);
2464
2465 return 1;
2466 }
2467
2468 return 0;
2469 }
2470
2471 if (event == PTRACE_EVENT_EXEC)
2472 {
2473 if (debug_linux_nat)
2474 fprintf_unfiltered (gdb_stdlog,
2475 "LHEW: Got exec event from LWP %ld\n",
2476 GET_LWP (lp->ptid));
2477
2478 ourstatus->kind = TARGET_WAITKIND_EXECD;
2479 ourstatus->value.execd_pathname
2480 = xstrdup (linux_child_pid_to_exec_file (pid));
2481
2482 return 0;
2483 }
2484
2485 if (event == PTRACE_EVENT_VFORK_DONE)
2486 {
2487 if (current_inferior ()->waiting_for_vfork_done)
2488 {
2489 if (debug_linux_nat)
2490 fprintf_unfiltered (gdb_stdlog,
2491 "LHEW: Got expected PTRACE_EVENT_"
2492 "VFORK_DONE from LWP %ld: stopping\n",
2493 GET_LWP (lp->ptid));
2494
2495 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2496 return 0;
2497 }
2498
2499 if (debug_linux_nat)
2500 fprintf_unfiltered (gdb_stdlog,
2501 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2502 "from LWP %ld: resuming\n",
2503 GET_LWP (lp->ptid));
2504 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2505 return 1;
2506 }
2507
2508 internal_error (__FILE__, __LINE__,
2509 _("unknown ptrace event %d"), event);
2510 }
2511
2512 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2513 exited. */
2514
2515 static int
2516 wait_lwp (struct lwp_info *lp)
2517 {
2518 pid_t pid;
2519 int status = 0;
2520 int thread_dead = 0;
2521 sigset_t prev_mask;
2522
2523 gdb_assert (!lp->stopped);
2524 gdb_assert (lp->status == 0);
2525
2526 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2527 block_child_signals (&prev_mask);
2528
2529 for (;;)
2530 {
2531 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2532 was right and we should just call sigsuspend. */
2533
2534 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2535 if (pid == -1 && errno == ECHILD)
2536 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2537 if (pid == -1 && errno == ECHILD)
2538 {
2539 /* The thread has previously exited. We need to delete it
2540 now because, for some vendor 2.4 kernels with NPTL
2541 support backported, there won't be an exit event unless
2542 it is the main thread. 2.6 kernels will report an exit
2543 event for each thread that exits, as expected. */
2544 thread_dead = 1;
2545 if (debug_linux_nat)
2546 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2547 target_pid_to_str (lp->ptid));
2548 }
2549 if (pid != 0)
2550 break;
2551
2552 /* Bugs 10970, 12702.
2553 Thread group leader may have exited in which case we'll lock up in
2554 waitpid if there are other threads, even if they are all zombies too.
2555 Basically, we're not supposed to use waitpid this way.
2556 __WCLONE is not applicable for the leader so we can't use that.
2557 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2558 process; it gets ESRCH both for the zombie and for running processes.
2559
2560 As a workaround, check if we're waiting for the thread group leader and
2561 if it's a zombie, and avoid calling waitpid if it is.
2562
2563 This is racy, what if the tgl becomes a zombie right after we check?
2564 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2565 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2566
2567 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2568 && linux_proc_pid_is_zombie (GET_LWP (lp->ptid)))
2569 {
2570 thread_dead = 1;
2571 if (debug_linux_nat)
2572 fprintf_unfiltered (gdb_stdlog,
2573 "WL: Thread group leader %s vanished.\n",
2574 target_pid_to_str (lp->ptid));
2575 break;
2576 }
2577
2578 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2579 get invoked despite our caller had them intentionally blocked by
2580 block_child_signals. This is sensitive only to the loop of
2581 linux_nat_wait_1 and there if we get called my_waitpid gets called
2582 again before it gets to sigsuspend so we can safely let the handlers
2583 get executed here. */
2584
2585 sigsuspend (&suspend_mask);
2586 }
2587
2588 restore_child_signals_mask (&prev_mask);
2589
2590 if (!thread_dead)
2591 {
2592 gdb_assert (pid == GET_LWP (lp->ptid));
2593
2594 if (debug_linux_nat)
2595 {
2596 fprintf_unfiltered (gdb_stdlog,
2597 "WL: waitpid %s received %s\n",
2598 target_pid_to_str (lp->ptid),
2599 status_to_str (status));
2600 }
2601
2602 /* Check if the thread has exited. */
2603 if (WIFEXITED (status) || WIFSIGNALED (status))
2604 {
2605 thread_dead = 1;
2606 if (debug_linux_nat)
2607 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2608 target_pid_to_str (lp->ptid));
2609 }
2610 }
2611
2612 if (thread_dead)
2613 {
2614 exit_lwp (lp);
2615 return 0;
2616 }
2617
2618 gdb_assert (WIFSTOPPED (status));
2619
2620 /* Handle GNU/Linux's syscall SIGTRAPs. */
2621 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2622 {
2623 /* No longer need the sysgood bit. The ptrace event ends up
2624 recorded in lp->waitstatus if we care for it. We can carry
2625 on handling the event like a regular SIGTRAP from here
2626 on. */
2627 status = W_STOPCODE (SIGTRAP);
2628 if (linux_handle_syscall_trap (lp, 1))
2629 return wait_lwp (lp);
2630 }
2631
2632 /* Handle GNU/Linux's extended waitstatus for trace events. */
2633 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2634 {
2635 if (debug_linux_nat)
2636 fprintf_unfiltered (gdb_stdlog,
2637 "WL: Handling extended status 0x%06x\n",
2638 status);
2639 if (linux_handle_extended_wait (lp, status, 1))
2640 return wait_lwp (lp);
2641 }
2642
2643 return status;
2644 }
2645
2646 /* Send a SIGSTOP to LP. */
2647
2648 static int
2649 stop_callback (struct lwp_info *lp, void *data)
2650 {
2651 if (!lp->stopped && !lp->signalled)
2652 {
2653 int ret;
2654
2655 if (debug_linux_nat)
2656 {
2657 fprintf_unfiltered (gdb_stdlog,
2658 "SC: kill %s **<SIGSTOP>**\n",
2659 target_pid_to_str (lp->ptid));
2660 }
2661 errno = 0;
2662 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2663 if (debug_linux_nat)
2664 {
2665 fprintf_unfiltered (gdb_stdlog,
2666 "SC: lwp kill %d %s\n",
2667 ret,
2668 errno ? safe_strerror (errno) : "ERRNO-OK");
2669 }
2670
2671 lp->signalled = 1;
2672 gdb_assert (lp->status == 0);
2673 }
2674
2675 return 0;
2676 }
2677
2678 /* Request a stop on LWP. */
2679
2680 void
2681 linux_stop_lwp (struct lwp_info *lwp)
2682 {
2683 stop_callback (lwp, NULL);
2684 }
2685
2686 /* Return non-zero if LWP PID has a pending SIGINT. */
2687
2688 static int
2689 linux_nat_has_pending_sigint (int pid)
2690 {
2691 sigset_t pending, blocked, ignored;
2692
2693 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2694
2695 if (sigismember (&pending, SIGINT)
2696 && !sigismember (&ignored, SIGINT))
2697 return 1;
2698
2699 return 0;
2700 }
2701
2702 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2703
2704 static int
2705 set_ignore_sigint (struct lwp_info *lp, void *data)
2706 {
2707 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2708 flag to consume the next one. */
2709 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2710 && WSTOPSIG (lp->status) == SIGINT)
2711 lp->status = 0;
2712 else
2713 lp->ignore_sigint = 1;
2714
2715 return 0;
2716 }
2717
2718 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2719 This function is called after we know the LWP has stopped; if the LWP
2720 stopped before the expected SIGINT was delivered, then it will never have
2721 arrived. Also, if the signal was delivered to a shared queue and consumed
2722 by a different thread, it will never be delivered to this LWP. */
2723
2724 static void
2725 maybe_clear_ignore_sigint (struct lwp_info *lp)
2726 {
2727 if (!lp->ignore_sigint)
2728 return;
2729
2730 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2731 {
2732 if (debug_linux_nat)
2733 fprintf_unfiltered (gdb_stdlog,
2734 "MCIS: Clearing bogus flag for %s\n",
2735 target_pid_to_str (lp->ptid));
2736 lp->ignore_sigint = 0;
2737 }
2738 }
2739
2740 /* Fetch the possible triggered data watchpoint info and store it in
2741 LP.
2742
2743 On some archs, like x86, that use debug registers to set
2744 watchpoints, it's possible that the way to know which watched
2745 address trapped, is to check the register that is used to select
2746 which address to watch. Problem is, between setting the watchpoint
2747 and reading back which data address trapped, the user may change
2748 the set of watchpoints, and, as a consequence, GDB changes the
2749 debug registers in the inferior. To avoid reading back a stale
2750 stopped-data-address when that happens, we cache in LP the fact
2751 that a watchpoint trapped, and the corresponding data address, as
2752 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2753 registers meanwhile, we have the cached data we can rely on. */
2754
2755 static void
2756 save_sigtrap (struct lwp_info *lp)
2757 {
2758 struct cleanup *old_chain;
2759
2760 if (linux_ops->to_stopped_by_watchpoint == NULL)
2761 {
2762 lp->stopped_by_watchpoint = 0;
2763 return;
2764 }
2765
2766 old_chain = save_inferior_ptid ();
2767 inferior_ptid = lp->ptid;
2768
2769 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2770
2771 if (lp->stopped_by_watchpoint)
2772 {
2773 if (linux_ops->to_stopped_data_address != NULL)
2774 lp->stopped_data_address_p =
2775 linux_ops->to_stopped_data_address (&current_target,
2776 &lp->stopped_data_address);
2777 else
2778 lp->stopped_data_address_p = 0;
2779 }
2780
2781 do_cleanups (old_chain);
2782 }
2783
2784 /* See save_sigtrap. */
2785
2786 static int
2787 linux_nat_stopped_by_watchpoint (void)
2788 {
2789 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2790
2791 gdb_assert (lp != NULL);
2792
2793 return lp->stopped_by_watchpoint;
2794 }
2795
2796 static int
2797 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2798 {
2799 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2800
2801 gdb_assert (lp != NULL);
2802
2803 *addr_p = lp->stopped_data_address;
2804
2805 return lp->stopped_data_address_p;
2806 }
2807
2808 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2809
2810 static int
2811 sigtrap_is_event (int status)
2812 {
2813 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2814 }
2815
2816 /* SIGTRAP-like events recognizer. */
2817
2818 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2819
2820 /* Check for SIGTRAP-like events in LP. */
2821
2822 static int
2823 linux_nat_lp_status_is_event (struct lwp_info *lp)
2824 {
2825 /* We check for lp->waitstatus in addition to lp->status, because we can
2826 have pending process exits recorded in lp->status
2827 and W_EXITCODE(0,0) == 0. We should probably have an additional
2828 lp->status_p flag. */
2829
2830 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2831 && linux_nat_status_is_event (lp->status));
2832 }
2833
2834 /* Set alternative SIGTRAP-like events recognizer. If
2835 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2836 applied. */
2837
2838 void
2839 linux_nat_set_status_is_event (struct target_ops *t,
2840 int (*status_is_event) (int status))
2841 {
2842 linux_nat_status_is_event = status_is_event;
2843 }
2844
2845 /* Wait until LP is stopped. */
2846
2847 static int
2848 stop_wait_callback (struct lwp_info *lp, void *data)
2849 {
2850 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2851
2852 /* If this is a vfork parent, bail out, it is not going to report
2853 any SIGSTOP until the vfork is done with. */
2854 if (inf->vfork_child != NULL)
2855 return 0;
2856
2857 if (!lp->stopped)
2858 {
2859 int status;
2860
2861 status = wait_lwp (lp);
2862 if (status == 0)
2863 return 0;
2864
2865 if (lp->ignore_sigint && WIFSTOPPED (status)
2866 && WSTOPSIG (status) == SIGINT)
2867 {
2868 lp->ignore_sigint = 0;
2869
2870 errno = 0;
2871 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2872 if (debug_linux_nat)
2873 fprintf_unfiltered (gdb_stdlog,
2874 "PTRACE_CONT %s, 0, 0 (%s) "
2875 "(discarding SIGINT)\n",
2876 target_pid_to_str (lp->ptid),
2877 errno ? safe_strerror (errno) : "OK");
2878
2879 return stop_wait_callback (lp, NULL);
2880 }
2881
2882 maybe_clear_ignore_sigint (lp);
2883
2884 if (WSTOPSIG (status) != SIGSTOP)
2885 {
2886 /* The thread was stopped with a signal other than SIGSTOP. */
2887
2888 save_sigtrap (lp);
2889
2890 if (debug_linux_nat)
2891 fprintf_unfiltered (gdb_stdlog,
2892 "SWC: Pending event %s in %s\n",
2893 status_to_str ((int) status),
2894 target_pid_to_str (lp->ptid));
2895
2896 /* Save the sigtrap event. */
2897 lp->status = status;
2898 gdb_assert (!lp->stopped);
2899 gdb_assert (lp->signalled);
2900 lp->stopped = 1;
2901 }
2902 else
2903 {
2904 /* We caught the SIGSTOP that we intended to catch, so
2905 there's no SIGSTOP pending. */
2906
2907 if (debug_linux_nat)
2908 fprintf_unfiltered (gdb_stdlog,
2909 "SWC: Delayed SIGSTOP caught for %s.\n",
2910 target_pid_to_str (lp->ptid));
2911
2912 lp->stopped = 1;
2913
2914 /* Reset SIGNALLED only after the stop_wait_callback call
2915 above as it does gdb_assert on SIGNALLED. */
2916 lp->signalled = 0;
2917 }
2918 }
2919
2920 return 0;
2921 }
2922
2923 /* Return non-zero if LP has a wait status pending. */
2924
2925 static int
2926 status_callback (struct lwp_info *lp, void *data)
2927 {
2928 /* Only report a pending wait status if we pretend that this has
2929 indeed been resumed. */
2930 if (!lp->resumed)
2931 return 0;
2932
2933 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2934 {
2935 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2936 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2937 0', so a clean process exit can not be stored pending in
2938 lp->status, it is indistinguishable from
2939 no-pending-status. */
2940 return 1;
2941 }
2942
2943 if (lp->status != 0)
2944 return 1;
2945
2946 return 0;
2947 }
2948
2949 /* Return non-zero if LP isn't stopped. */
2950
2951 static int
2952 running_callback (struct lwp_info *lp, void *data)
2953 {
2954 return (!lp->stopped
2955 || ((lp->status != 0
2956 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2957 && lp->resumed));
2958 }
2959
2960 /* Count the LWP's that have had events. */
2961
2962 static int
2963 count_events_callback (struct lwp_info *lp, void *data)
2964 {
2965 int *count = data;
2966
2967 gdb_assert (count != NULL);
2968
2969 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2970 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2971 (*count)++;
2972
2973 return 0;
2974 }
2975
2976 /* Select the LWP (if any) that is currently being single-stepped. */
2977
2978 static int
2979 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2980 {
2981 if (lp->last_resume_kind == resume_step
2982 && lp->status != 0)
2983 return 1;
2984 else
2985 return 0;
2986 }
2987
2988 /* Select the Nth LWP that has had a SIGTRAP event. */
2989
2990 static int
2991 select_event_lwp_callback (struct lwp_info *lp, void *data)
2992 {
2993 int *selector = data;
2994
2995 gdb_assert (selector != NULL);
2996
2997 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2998 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2999 if ((*selector)-- == 0)
3000 return 1;
3001
3002 return 0;
3003 }
3004
3005 static int
3006 cancel_breakpoint (struct lwp_info *lp)
3007 {
3008 /* Arrange for a breakpoint to be hit again later. We don't keep
3009 the SIGTRAP status and don't forward the SIGTRAP signal to the
3010 LWP. We will handle the current event, eventually we will resume
3011 this LWP, and this breakpoint will trap again.
3012
3013 If we do not do this, then we run the risk that the user will
3014 delete or disable the breakpoint, but the LWP will have already
3015 tripped on it. */
3016
3017 struct regcache *regcache = get_thread_regcache (lp->ptid);
3018 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3019 CORE_ADDR pc;
3020
3021 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
3022 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3023 {
3024 if (debug_linux_nat)
3025 fprintf_unfiltered (gdb_stdlog,
3026 "CB: Push back breakpoint for %s\n",
3027 target_pid_to_str (lp->ptid));
3028
3029 /* Back up the PC if necessary. */
3030 if (gdbarch_decr_pc_after_break (gdbarch))
3031 regcache_write_pc (regcache, pc);
3032
3033 return 1;
3034 }
3035 return 0;
3036 }
3037
3038 static int
3039 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
3040 {
3041 struct lwp_info *event_lp = data;
3042
3043 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
3044 if (lp == event_lp)
3045 return 0;
3046
3047 /* If a LWP other than the LWP that we're reporting an event for has
3048 hit a GDB breakpoint (as opposed to some random trap signal),
3049 then just arrange for it to hit it again later. We don't keep
3050 the SIGTRAP status and don't forward the SIGTRAP signal to the
3051 LWP. We will handle the current event, eventually we will resume
3052 all LWPs, and this one will get its breakpoint trap again.
3053
3054 If we do not do this, then we run the risk that the user will
3055 delete or disable the breakpoint, but the LWP will have already
3056 tripped on it. */
3057
3058 if (linux_nat_lp_status_is_event (lp)
3059 && cancel_breakpoint (lp))
3060 /* Throw away the SIGTRAP. */
3061 lp->status = 0;
3062
3063 return 0;
3064 }
3065
3066 /* Select one LWP out of those that have events pending. */
3067
3068 static void
3069 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3070 {
3071 int num_events = 0;
3072 int random_selector;
3073 struct lwp_info *event_lp;
3074
3075 /* Record the wait status for the original LWP. */
3076 (*orig_lp)->status = *status;
3077
3078 /* Give preference to any LWP that is being single-stepped. */
3079 event_lp = iterate_over_lwps (filter,
3080 select_singlestep_lwp_callback, NULL);
3081 if (event_lp != NULL)
3082 {
3083 if (debug_linux_nat)
3084 fprintf_unfiltered (gdb_stdlog,
3085 "SEL: Select single-step %s\n",
3086 target_pid_to_str (event_lp->ptid));
3087 }
3088 else
3089 {
3090 /* No single-stepping LWP. Select one at random, out of those
3091 which have had SIGTRAP events. */
3092
3093 /* First see how many SIGTRAP events we have. */
3094 iterate_over_lwps (filter, count_events_callback, &num_events);
3095
3096 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3097 random_selector = (int)
3098 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3099
3100 if (debug_linux_nat && num_events > 1)
3101 fprintf_unfiltered (gdb_stdlog,
3102 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3103 num_events, random_selector);
3104
3105 event_lp = iterate_over_lwps (filter,
3106 select_event_lwp_callback,
3107 &random_selector);
3108 }
3109
3110 if (event_lp != NULL)
3111 {
3112 /* Switch the event LWP. */
3113 *orig_lp = event_lp;
3114 *status = event_lp->status;
3115 }
3116
3117 /* Flush the wait status for the event LWP. */
3118 (*orig_lp)->status = 0;
3119 }
3120
3121 /* Return non-zero if LP has been resumed. */
3122
3123 static int
3124 resumed_callback (struct lwp_info *lp, void *data)
3125 {
3126 return lp->resumed;
3127 }
3128
3129 /* Stop an active thread, verify it still exists, then resume it. If
3130 the thread ends up with a pending status, then it is not resumed,
3131 and *DATA (really a pointer to int), is set. */
3132
3133 static int
3134 stop_and_resume_callback (struct lwp_info *lp, void *data)
3135 {
3136 int *new_pending_p = data;
3137
3138 if (!lp->stopped)
3139 {
3140 ptid_t ptid = lp->ptid;
3141
3142 stop_callback (lp, NULL);
3143 stop_wait_callback (lp, NULL);
3144
3145 /* Resume if the lwp still exists, and the core wanted it
3146 running. */
3147 lp = find_lwp_pid (ptid);
3148 if (lp != NULL)
3149 {
3150 if (lp->last_resume_kind == resume_stop
3151 && lp->status == 0)
3152 {
3153 /* The core wanted the LWP to stop. Even if it stopped
3154 cleanly (with SIGSTOP), leave the event pending. */
3155 if (debug_linux_nat)
3156 fprintf_unfiltered (gdb_stdlog,
3157 "SARC: core wanted LWP %ld stopped "
3158 "(leaving SIGSTOP pending)\n",
3159 GET_LWP (lp->ptid));
3160 lp->status = W_STOPCODE (SIGSTOP);
3161 }
3162
3163 if (lp->status == 0)
3164 {
3165 if (debug_linux_nat)
3166 fprintf_unfiltered (gdb_stdlog,
3167 "SARC: re-resuming LWP %ld\n",
3168 GET_LWP (lp->ptid));
3169 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
3170 }
3171 else
3172 {
3173 if (debug_linux_nat)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "SARC: not re-resuming LWP %ld "
3176 "(has pending)\n",
3177 GET_LWP (lp->ptid));
3178 if (new_pending_p)
3179 *new_pending_p = 1;
3180 }
3181 }
3182 }
3183 return 0;
3184 }
3185
3186 /* Check if we should go on and pass this event to common code.
3187 Return the affected lwp if we are, or NULL otherwise. If we stop
3188 all lwps temporarily, we may end up with new pending events in some
3189 other lwp. In that case set *NEW_PENDING_P to true. */
3190
3191 static struct lwp_info *
3192 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
3193 {
3194 struct lwp_info *lp;
3195
3196 *new_pending_p = 0;
3197
3198 lp = find_lwp_pid (pid_to_ptid (lwpid));
3199
3200 /* Check for stop events reported by a process we didn't already
3201 know about - anything not already in our LWP list.
3202
3203 If we're expecting to receive stopped processes after
3204 fork, vfork, and clone events, then we'll just add the
3205 new one to our list and go back to waiting for the event
3206 to be reported - the stopped process might be returned
3207 from waitpid before or after the event is.
3208
3209 But note the case of a non-leader thread exec'ing after the
3210 leader having exited, and gone from our lists. The non-leader
3211 thread changes its tid to the tgid. */
3212
3213 if (WIFSTOPPED (status) && lp == NULL
3214 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
3215 {
3216 /* A multi-thread exec after we had seen the leader exiting. */
3217 if (debug_linux_nat)
3218 fprintf_unfiltered (gdb_stdlog,
3219 "LLW: Re-adding thread group leader LWP %d.\n",
3220 lwpid);
3221
3222 lp = add_lwp (BUILD_LWP (lwpid, lwpid));
3223 lp->stopped = 1;
3224 lp->resumed = 1;
3225 add_thread (lp->ptid);
3226 }
3227
3228 if (WIFSTOPPED (status) && !lp)
3229 {
3230 add_to_pid_list (&stopped_pids, lwpid, status);
3231 return NULL;
3232 }
3233
3234 /* Make sure we don't report an event for the exit of an LWP not in
3235 our list, i.e. not part of the current process. This can happen
3236 if we detach from a program we originally forked and then it
3237 exits. */
3238 if (!WIFSTOPPED (status) && !lp)
3239 return NULL;
3240
3241 /* Handle GNU/Linux's syscall SIGTRAPs. */
3242 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3243 {
3244 /* No longer need the sysgood bit. The ptrace event ends up
3245 recorded in lp->waitstatus if we care for it. We can carry
3246 on handling the event like a regular SIGTRAP from here
3247 on. */
3248 status = W_STOPCODE (SIGTRAP);
3249 if (linux_handle_syscall_trap (lp, 0))
3250 return NULL;
3251 }
3252
3253 /* Handle GNU/Linux's extended waitstatus for trace events. */
3254 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3255 {
3256 if (debug_linux_nat)
3257 fprintf_unfiltered (gdb_stdlog,
3258 "LLW: Handling extended status 0x%06x\n",
3259 status);
3260 if (linux_handle_extended_wait (lp, status, 0))
3261 return NULL;
3262 }
3263
3264 if (linux_nat_status_is_event (status))
3265 save_sigtrap (lp);
3266
3267 /* Check if the thread has exited. */
3268 if ((WIFEXITED (status) || WIFSIGNALED (status))
3269 && num_lwps (GET_PID (lp->ptid)) > 1)
3270 {
3271 /* If this is the main thread, we must stop all threads and verify
3272 if they are still alive. This is because in the nptl thread model
3273 on Linux 2.4, there is no signal issued for exiting LWPs
3274 other than the main thread. We only get the main thread exit
3275 signal once all child threads have already exited. If we
3276 stop all the threads and use the stop_wait_callback to check
3277 if they have exited we can determine whether this signal
3278 should be ignored or whether it means the end of the debugged
3279 application, regardless of which threading model is being
3280 used. */
3281 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3282 {
3283 lp->stopped = 1;
3284 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3285 stop_and_resume_callback, new_pending_p);
3286 }
3287
3288 if (debug_linux_nat)
3289 fprintf_unfiltered (gdb_stdlog,
3290 "LLW: %s exited.\n",
3291 target_pid_to_str (lp->ptid));
3292
3293 if (num_lwps (GET_PID (lp->ptid)) > 1)
3294 {
3295 /* If there is at least one more LWP, then the exit signal
3296 was not the end of the debugged application and should be
3297 ignored. */
3298 exit_lwp (lp);
3299 return NULL;
3300 }
3301 }
3302
3303 /* Check if the current LWP has previously exited. In the nptl
3304 thread model, LWPs other than the main thread do not issue
3305 signals when they exit so we must check whenever the thread has
3306 stopped. A similar check is made in stop_wait_callback(). */
3307 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3308 {
3309 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3310
3311 if (debug_linux_nat)
3312 fprintf_unfiltered (gdb_stdlog,
3313 "LLW: %s exited.\n",
3314 target_pid_to_str (lp->ptid));
3315
3316 exit_lwp (lp);
3317
3318 /* Make sure there is at least one thread running. */
3319 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3320
3321 /* Discard the event. */
3322 return NULL;
3323 }
3324
3325 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3326 an attempt to stop an LWP. */
3327 if (lp->signalled
3328 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3329 {
3330 if (debug_linux_nat)
3331 fprintf_unfiltered (gdb_stdlog,
3332 "LLW: Delayed SIGSTOP caught for %s.\n",
3333 target_pid_to_str (lp->ptid));
3334
3335 lp->signalled = 0;
3336
3337 if (lp->last_resume_kind != resume_stop)
3338 {
3339 /* This is a delayed SIGSTOP. */
3340
3341 registers_changed ();
3342
3343 if (linux_nat_prepare_to_resume != NULL)
3344 linux_nat_prepare_to_resume (lp);
3345 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3346 lp->step, GDB_SIGNAL_0);
3347 if (debug_linux_nat)
3348 fprintf_unfiltered (gdb_stdlog,
3349 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3350 lp->step ?
3351 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3352 target_pid_to_str (lp->ptid));
3353
3354 lp->stopped = 0;
3355 gdb_assert (lp->resumed);
3356
3357 /* Discard the event. */
3358 return NULL;
3359 }
3360 }
3361
3362 /* Make sure we don't report a SIGINT that we have already displayed
3363 for another thread. */
3364 if (lp->ignore_sigint
3365 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3366 {
3367 if (debug_linux_nat)
3368 fprintf_unfiltered (gdb_stdlog,
3369 "LLW: Delayed SIGINT caught for %s.\n",
3370 target_pid_to_str (lp->ptid));
3371
3372 /* This is a delayed SIGINT. */
3373 lp->ignore_sigint = 0;
3374
3375 registers_changed ();
3376 if (linux_nat_prepare_to_resume != NULL)
3377 linux_nat_prepare_to_resume (lp);
3378 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3379 lp->step, GDB_SIGNAL_0);
3380 if (debug_linux_nat)
3381 fprintf_unfiltered (gdb_stdlog,
3382 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3383 lp->step ?
3384 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3385 target_pid_to_str (lp->ptid));
3386
3387 lp->stopped = 0;
3388 gdb_assert (lp->resumed);
3389
3390 /* Discard the event. */
3391 return NULL;
3392 }
3393
3394 /* An interesting event. */
3395 gdb_assert (lp);
3396 lp->status = status;
3397 return lp;
3398 }
3399
3400 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3401 their exits until all other threads in the group have exited. */
3402
3403 static void
3404 check_zombie_leaders (void)
3405 {
3406 struct inferior *inf;
3407
3408 ALL_INFERIORS (inf)
3409 {
3410 struct lwp_info *leader_lp;
3411
3412 if (inf->pid == 0)
3413 continue;
3414
3415 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3416 if (leader_lp != NULL
3417 /* Check if there are other threads in the group, as we may
3418 have raced with the inferior simply exiting. */
3419 && num_lwps (inf->pid) > 1
3420 && linux_proc_pid_is_zombie (inf->pid))
3421 {
3422 if (debug_linux_nat)
3423 fprintf_unfiltered (gdb_stdlog,
3424 "CZL: Thread group leader %d zombie "
3425 "(it exited, or another thread execd).\n",
3426 inf->pid);
3427
3428 /* A leader zombie can mean one of two things:
3429
3430 - It exited, and there's an exit status pending
3431 available, or only the leader exited (not the whole
3432 program). In the latter case, we can't waitpid the
3433 leader's exit status until all other threads are gone.
3434
3435 - There are 3 or more threads in the group, and a thread
3436 other than the leader exec'd. On an exec, the Linux
3437 kernel destroys all other threads (except the execing
3438 one) in the thread group, and resets the execing thread's
3439 tid to the tgid. No exit notification is sent for the
3440 execing thread -- from the ptracer's perspective, it
3441 appears as though the execing thread just vanishes.
3442 Until we reap all other threads except the leader and the
3443 execing thread, the leader will be zombie, and the
3444 execing thread will be in `D (disc sleep)'. As soon as
3445 all other threads are reaped, the execing thread changes
3446 it's tid to the tgid, and the previous (zombie) leader
3447 vanishes, giving place to the "new" leader. We could try
3448 distinguishing the exit and exec cases, by waiting once
3449 more, and seeing if something comes out, but it doesn't
3450 sound useful. The previous leader _does_ go away, and
3451 we'll re-add the new one once we see the exec event
3452 (which is just the same as what would happen if the
3453 previous leader did exit voluntarily before some other
3454 thread execs). */
3455
3456 if (debug_linux_nat)
3457 fprintf_unfiltered (gdb_stdlog,
3458 "CZL: Thread group leader %d vanished.\n",
3459 inf->pid);
3460 exit_lwp (leader_lp);
3461 }
3462 }
3463 }
3464
3465 static ptid_t
3466 linux_nat_wait_1 (struct target_ops *ops,
3467 ptid_t ptid, struct target_waitstatus *ourstatus,
3468 int target_options)
3469 {
3470 static sigset_t prev_mask;
3471 enum resume_kind last_resume_kind;
3472 struct lwp_info *lp;
3473 int status;
3474
3475 if (debug_linux_nat)
3476 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3477
3478 /* The first time we get here after starting a new inferior, we may
3479 not have added it to the LWP list yet - this is the earliest
3480 moment at which we know its PID. */
3481 if (ptid_is_pid (inferior_ptid))
3482 {
3483 /* Upgrade the main thread's ptid. */
3484 thread_change_ptid (inferior_ptid,
3485 BUILD_LWP (GET_PID (inferior_ptid),
3486 GET_PID (inferior_ptid)));
3487
3488 lp = add_lwp (inferior_ptid);
3489 lp->resumed = 1;
3490 }
3491
3492 /* Make sure SIGCHLD is blocked. */
3493 block_child_signals (&prev_mask);
3494
3495 retry:
3496 lp = NULL;
3497 status = 0;
3498
3499 /* First check if there is a LWP with a wait status pending. */
3500 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3501 {
3502 /* Any LWP in the PTID group that's been resumed will do. */
3503 lp = iterate_over_lwps (ptid, status_callback, NULL);
3504 if (lp)
3505 {
3506 if (debug_linux_nat && lp->status)
3507 fprintf_unfiltered (gdb_stdlog,
3508 "LLW: Using pending wait status %s for %s.\n",
3509 status_to_str (lp->status),
3510 target_pid_to_str (lp->ptid));
3511 }
3512 }
3513 else if (is_lwp (ptid))
3514 {
3515 if (debug_linux_nat)
3516 fprintf_unfiltered (gdb_stdlog,
3517 "LLW: Waiting for specific LWP %s.\n",
3518 target_pid_to_str (ptid));
3519
3520 /* We have a specific LWP to check. */
3521 lp = find_lwp_pid (ptid);
3522 gdb_assert (lp);
3523
3524 if (debug_linux_nat && lp->status)
3525 fprintf_unfiltered (gdb_stdlog,
3526 "LLW: Using pending wait status %s for %s.\n",
3527 status_to_str (lp->status),
3528 target_pid_to_str (lp->ptid));
3529
3530 /* We check for lp->waitstatus in addition to lp->status,
3531 because we can have pending process exits recorded in
3532 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3533 an additional lp->status_p flag. */
3534 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3535 lp = NULL;
3536 }
3537
3538 if (!target_can_async_p ())
3539 {
3540 /* Causes SIGINT to be passed on to the attached process. */
3541 set_sigint_trap ();
3542 }
3543
3544 /* But if we don't find a pending event, we'll have to wait. */
3545
3546 while (lp == NULL)
3547 {
3548 pid_t lwpid;
3549
3550 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3551 quirks:
3552
3553 - If the thread group leader exits while other threads in the
3554 thread group still exist, waitpid(TGID, ...) hangs. That
3555 waitpid won't return an exit status until the other threads
3556 in the group are reapped.
3557
3558 - When a non-leader thread execs, that thread just vanishes
3559 without reporting an exit (so we'd hang if we waited for it
3560 explicitly in that case). The exec event is reported to
3561 the TGID pid. */
3562
3563 errno = 0;
3564 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3565 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3566 lwpid = my_waitpid (-1, &status, WNOHANG);
3567
3568 if (debug_linux_nat)
3569 fprintf_unfiltered (gdb_stdlog,
3570 "LNW: waitpid(-1, ...) returned %d, %s\n",
3571 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3572
3573 if (lwpid > 0)
3574 {
3575 /* If this is true, then we paused LWPs momentarily, and may
3576 now have pending events to handle. */
3577 int new_pending;
3578
3579 if (debug_linux_nat)
3580 {
3581 fprintf_unfiltered (gdb_stdlog,
3582 "LLW: waitpid %ld received %s\n",
3583 (long) lwpid, status_to_str (status));
3584 }
3585
3586 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3587
3588 /* STATUS is now no longer valid, use LP->STATUS instead. */
3589 status = 0;
3590
3591 if (lp && !ptid_match (lp->ptid, ptid))
3592 {
3593 gdb_assert (lp->resumed);
3594
3595 if (debug_linux_nat)
3596 fprintf (stderr,
3597 "LWP %ld got an event %06x, leaving pending.\n",
3598 ptid_get_lwp (lp->ptid), lp->status);
3599
3600 if (WIFSTOPPED (lp->status))
3601 {
3602 if (WSTOPSIG (lp->status) != SIGSTOP)
3603 {
3604 /* Cancel breakpoint hits. The breakpoint may
3605 be removed before we fetch events from this
3606 process to report to the core. It is best
3607 not to assume the moribund breakpoints
3608 heuristic always handles these cases --- it
3609 could be too many events go through to the
3610 core before this one is handled. All-stop
3611 always cancels breakpoint hits in all
3612 threads. */
3613 if (non_stop
3614 && linux_nat_lp_status_is_event (lp)
3615 && cancel_breakpoint (lp))
3616 {
3617 /* Throw away the SIGTRAP. */
3618 lp->status = 0;
3619
3620 if (debug_linux_nat)
3621 fprintf (stderr,
3622 "LLW: LWP %ld hit a breakpoint while"
3623 " waiting for another process;"
3624 " cancelled it\n",
3625 ptid_get_lwp (lp->ptid));
3626 }
3627 lp->stopped = 1;
3628 }
3629 else
3630 {
3631 lp->stopped = 1;
3632 lp->signalled = 0;
3633 }
3634 }
3635 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3636 {
3637 if (debug_linux_nat)
3638 fprintf (stderr,
3639 "Process %ld exited while stopping LWPs\n",
3640 ptid_get_lwp (lp->ptid));
3641
3642 /* This was the last lwp in the process. Since
3643 events are serialized to GDB core, and we can't
3644 report this one right now, but GDB core and the
3645 other target layers will want to be notified
3646 about the exit code/signal, leave the status
3647 pending for the next time we're able to report
3648 it. */
3649
3650 /* Prevent trying to stop this thread again. We'll
3651 never try to resume it because it has a pending
3652 status. */
3653 lp->stopped = 1;
3654
3655 /* Dead LWP's aren't expected to reported a pending
3656 sigstop. */
3657 lp->signalled = 0;
3658
3659 /* Store the pending event in the waitstatus as
3660 well, because W_EXITCODE(0,0) == 0. */
3661 store_waitstatus (&lp->waitstatus, lp->status);
3662 }
3663
3664 /* Keep looking. */
3665 lp = NULL;
3666 }
3667
3668 if (new_pending)
3669 {
3670 /* Some LWP now has a pending event. Go all the way
3671 back to check it. */
3672 goto retry;
3673 }
3674
3675 if (lp)
3676 {
3677 /* We got an event to report to the core. */
3678 break;
3679 }
3680
3681 /* Retry until nothing comes out of waitpid. A single
3682 SIGCHLD can indicate more than one child stopped. */
3683 continue;
3684 }
3685
3686 /* Check for zombie thread group leaders. Those can't be reaped
3687 until all other threads in the thread group are. */
3688 check_zombie_leaders ();
3689
3690 /* If there are no resumed children left, bail. We'd be stuck
3691 forever in the sigsuspend call below otherwise. */
3692 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3693 {
3694 if (debug_linux_nat)
3695 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3696
3697 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3698
3699 if (!target_can_async_p ())
3700 clear_sigint_trap ();
3701
3702 restore_child_signals_mask (&prev_mask);
3703 return minus_one_ptid;
3704 }
3705
3706 /* No interesting event to report to the core. */
3707
3708 if (target_options & TARGET_WNOHANG)
3709 {
3710 if (debug_linux_nat)
3711 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3712
3713 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3714 restore_child_signals_mask (&prev_mask);
3715 return minus_one_ptid;
3716 }
3717
3718 /* We shouldn't end up here unless we want to try again. */
3719 gdb_assert (lp == NULL);
3720
3721 /* Block until we get an event reported with SIGCHLD. */
3722 sigsuspend (&suspend_mask);
3723 }
3724
3725 if (!target_can_async_p ())
3726 clear_sigint_trap ();
3727
3728 gdb_assert (lp);
3729
3730 status = lp->status;
3731 lp->status = 0;
3732
3733 /* Don't report signals that GDB isn't interested in, such as
3734 signals that are neither printed nor stopped upon. Stopping all
3735 threads can be a bit time-consuming so if we want decent
3736 performance with heavily multi-threaded programs, especially when
3737 they're using a high frequency timer, we'd better avoid it if we
3738 can. */
3739
3740 if (WIFSTOPPED (status))
3741 {
3742 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3743
3744 /* When using hardware single-step, we need to report every signal.
3745 Otherwise, signals in pass_mask may be short-circuited. */
3746 if (!lp->step
3747 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3748 {
3749 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3750 here? It is not clear we should. GDB may not expect
3751 other threads to run. On the other hand, not resuming
3752 newly attached threads may cause an unwanted delay in
3753 getting them running. */
3754 registers_changed ();
3755 if (linux_nat_prepare_to_resume != NULL)
3756 linux_nat_prepare_to_resume (lp);
3757 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3758 lp->step, signo);
3759 if (debug_linux_nat)
3760 fprintf_unfiltered (gdb_stdlog,
3761 "LLW: %s %s, %s (preempt 'handle')\n",
3762 lp->step ?
3763 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3764 target_pid_to_str (lp->ptid),
3765 (signo != GDB_SIGNAL_0
3766 ? strsignal (gdb_signal_to_host (signo))
3767 : "0"));
3768 lp->stopped = 0;
3769 goto retry;
3770 }
3771
3772 if (!non_stop)
3773 {
3774 /* Only do the below in all-stop, as we currently use SIGINT
3775 to implement target_stop (see linux_nat_stop) in
3776 non-stop. */
3777 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3778 {
3779 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3780 forwarded to the entire process group, that is, all LWPs
3781 will receive it - unless they're using CLONE_THREAD to
3782 share signals. Since we only want to report it once, we
3783 mark it as ignored for all LWPs except this one. */
3784 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3785 set_ignore_sigint, NULL);
3786 lp->ignore_sigint = 0;
3787 }
3788 else
3789 maybe_clear_ignore_sigint (lp);
3790 }
3791 }
3792
3793 /* This LWP is stopped now. */
3794 lp->stopped = 1;
3795
3796 if (debug_linux_nat)
3797 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3798 status_to_str (status), target_pid_to_str (lp->ptid));
3799
3800 if (!non_stop)
3801 {
3802 /* Now stop all other LWP's ... */
3803 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3804
3805 /* ... and wait until all of them have reported back that
3806 they're no longer running. */
3807 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3808
3809 /* If we're not waiting for a specific LWP, choose an event LWP
3810 from among those that have had events. Giving equal priority
3811 to all LWPs that have had events helps prevent
3812 starvation. */
3813 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3814 select_event_lwp (ptid, &lp, &status);
3815
3816 /* Now that we've selected our final event LWP, cancel any
3817 breakpoints in other LWPs that have hit a GDB breakpoint.
3818 See the comment in cancel_breakpoints_callback to find out
3819 why. */
3820 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3821
3822 /* We'll need this to determine whether to report a SIGSTOP as
3823 TARGET_WAITKIND_0. Need to take a copy because
3824 resume_clear_callback clears it. */
3825 last_resume_kind = lp->last_resume_kind;
3826
3827 /* In all-stop, from the core's perspective, all LWPs are now
3828 stopped until a new resume action is sent over. */
3829 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3830 }
3831 else
3832 {
3833 /* See above. */
3834 last_resume_kind = lp->last_resume_kind;
3835 resume_clear_callback (lp, NULL);
3836 }
3837
3838 if (linux_nat_status_is_event (status))
3839 {
3840 if (debug_linux_nat)
3841 fprintf_unfiltered (gdb_stdlog,
3842 "LLW: trap ptid is %s.\n",
3843 target_pid_to_str (lp->ptid));
3844 }
3845
3846 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3847 {
3848 *ourstatus = lp->waitstatus;
3849 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3850 }
3851 else
3852 store_waitstatus (ourstatus, status);
3853
3854 if (debug_linux_nat)
3855 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3856
3857 restore_child_signals_mask (&prev_mask);
3858
3859 if (last_resume_kind == resume_stop
3860 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3861 && WSTOPSIG (status) == SIGSTOP)
3862 {
3863 /* A thread that has been requested to stop by GDB with
3864 target_stop, and it stopped cleanly, so report as SIG0. The
3865 use of SIGSTOP is an implementation detail. */
3866 ourstatus->value.sig = GDB_SIGNAL_0;
3867 }
3868
3869 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3870 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3871 lp->core = -1;
3872 else
3873 lp->core = linux_common_core_of_thread (lp->ptid);
3874
3875 return lp->ptid;
3876 }
3877
3878 /* Resume LWPs that are currently stopped without any pending status
3879 to report, but are resumed from the core's perspective. */
3880
3881 static int
3882 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3883 {
3884 ptid_t *wait_ptid_p = data;
3885
3886 if (lp->stopped
3887 && lp->resumed
3888 && lp->status == 0
3889 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3890 {
3891 struct regcache *regcache = get_thread_regcache (lp->ptid);
3892 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3893 CORE_ADDR pc = regcache_read_pc (regcache);
3894
3895 gdb_assert (is_executing (lp->ptid));
3896
3897 /* Don't bother if there's a breakpoint at PC that we'd hit
3898 immediately, and we're not waiting for this LWP. */
3899 if (!ptid_match (lp->ptid, *wait_ptid_p))
3900 {
3901 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3902 return 0;
3903 }
3904
3905 if (debug_linux_nat)
3906 fprintf_unfiltered (gdb_stdlog,
3907 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3908 target_pid_to_str (lp->ptid),
3909 paddress (gdbarch, pc),
3910 lp->step);
3911
3912 registers_changed ();
3913 if (linux_nat_prepare_to_resume != NULL)
3914 linux_nat_prepare_to_resume (lp);
3915 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3916 lp->step, GDB_SIGNAL_0);
3917 lp->stopped = 0;
3918 lp->stopped_by_watchpoint = 0;
3919 }
3920
3921 return 0;
3922 }
3923
3924 static ptid_t
3925 linux_nat_wait (struct target_ops *ops,
3926 ptid_t ptid, struct target_waitstatus *ourstatus,
3927 int target_options)
3928 {
3929 ptid_t event_ptid;
3930
3931 if (debug_linux_nat)
3932 fprintf_unfiltered (gdb_stdlog,
3933 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3934
3935 /* Flush the async file first. */
3936 if (target_can_async_p ())
3937 async_file_flush ();
3938
3939 /* Resume LWPs that are currently stopped without any pending status
3940 to report, but are resumed from the core's perspective. LWPs get
3941 in this state if we find them stopping at a time we're not
3942 interested in reporting the event (target_wait on a
3943 specific_process, for example, see linux_nat_wait_1), and
3944 meanwhile the event became uninteresting. Don't bother resuming
3945 LWPs we're not going to wait for if they'd stop immediately. */
3946 if (non_stop)
3947 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3948
3949 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3950
3951 /* If we requested any event, and something came out, assume there
3952 may be more. If we requested a specific lwp or process, also
3953 assume there may be more. */
3954 if (target_can_async_p ()
3955 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3956 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3957 || !ptid_equal (ptid, minus_one_ptid)))
3958 async_file_mark ();
3959
3960 /* Get ready for the next event. */
3961 if (target_can_async_p ())
3962 target_async (inferior_event_handler, 0);
3963
3964 return event_ptid;
3965 }
3966
3967 static int
3968 kill_callback (struct lwp_info *lp, void *data)
3969 {
3970 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3971
3972 errno = 0;
3973 kill (GET_LWP (lp->ptid), SIGKILL);
3974 if (debug_linux_nat)
3975 fprintf_unfiltered (gdb_stdlog,
3976 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3977 target_pid_to_str (lp->ptid),
3978 errno ? safe_strerror (errno) : "OK");
3979
3980 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3981
3982 errno = 0;
3983 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3984 if (debug_linux_nat)
3985 fprintf_unfiltered (gdb_stdlog,
3986 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3987 target_pid_to_str (lp->ptid),
3988 errno ? safe_strerror (errno) : "OK");
3989
3990 return 0;
3991 }
3992
3993 static int
3994 kill_wait_callback (struct lwp_info *lp, void *data)
3995 {
3996 pid_t pid;
3997
3998 /* We must make sure that there are no pending events (delayed
3999 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
4000 program doesn't interfere with any following debugging session. */
4001
4002 /* For cloned processes we must check both with __WCLONE and
4003 without, since the exit status of a cloned process isn't reported
4004 with __WCLONE. */
4005 if (lp->cloned)
4006 {
4007 do
4008 {
4009 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
4010 if (pid != (pid_t) -1)
4011 {
4012 if (debug_linux_nat)
4013 fprintf_unfiltered (gdb_stdlog,
4014 "KWC: wait %s received unknown.\n",
4015 target_pid_to_str (lp->ptid));
4016 /* The Linux kernel sometimes fails to kill a thread
4017 completely after PTRACE_KILL; that goes from the stop
4018 point in do_fork out to the one in
4019 get_signal_to_deliever and waits again. So kill it
4020 again. */
4021 kill_callback (lp, NULL);
4022 }
4023 }
4024 while (pid == GET_LWP (lp->ptid));
4025
4026 gdb_assert (pid == -1 && errno == ECHILD);
4027 }
4028
4029 do
4030 {
4031 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
4032 if (pid != (pid_t) -1)
4033 {
4034 if (debug_linux_nat)
4035 fprintf_unfiltered (gdb_stdlog,
4036 "KWC: wait %s received unk.\n",
4037 target_pid_to_str (lp->ptid));
4038 /* See the call to kill_callback above. */
4039 kill_callback (lp, NULL);
4040 }
4041 }
4042 while (pid == GET_LWP (lp->ptid));
4043
4044 gdb_assert (pid == -1 && errno == ECHILD);
4045 return 0;
4046 }
4047
4048 static void
4049 linux_nat_kill (struct target_ops *ops)
4050 {
4051 struct target_waitstatus last;
4052 ptid_t last_ptid;
4053 int status;
4054
4055 /* If we're stopped while forking and we haven't followed yet,
4056 kill the other task. We need to do this first because the
4057 parent will be sleeping if this is a vfork. */
4058
4059 get_last_target_status (&last_ptid, &last);
4060
4061 if (last.kind == TARGET_WAITKIND_FORKED
4062 || last.kind == TARGET_WAITKIND_VFORKED)
4063 {
4064 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
4065 wait (&status);
4066 }
4067
4068 if (forks_exist_p ())
4069 linux_fork_killall ();
4070 else
4071 {
4072 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4073
4074 /* Stop all threads before killing them, since ptrace requires
4075 that the thread is stopped to sucessfully PTRACE_KILL. */
4076 iterate_over_lwps (ptid, stop_callback, NULL);
4077 /* ... and wait until all of them have reported back that
4078 they're no longer running. */
4079 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4080
4081 /* Kill all LWP's ... */
4082 iterate_over_lwps (ptid, kill_callback, NULL);
4083
4084 /* ... and wait until we've flushed all events. */
4085 iterate_over_lwps (ptid, kill_wait_callback, NULL);
4086 }
4087
4088 target_mourn_inferior ();
4089 }
4090
4091 static void
4092 linux_nat_mourn_inferior (struct target_ops *ops)
4093 {
4094 purge_lwp_list (ptid_get_pid (inferior_ptid));
4095
4096 if (! forks_exist_p ())
4097 /* Normal case, no other forks available. */
4098 linux_ops->to_mourn_inferior (ops);
4099 else
4100 /* Multi-fork case. The current inferior_ptid has exited, but
4101 there are other viable forks to debug. Delete the exiting
4102 one and context-switch to the first available. */
4103 linux_fork_mourn_inferior ();
4104 }
4105
4106 /* Convert a native/host siginfo object, into/from the siginfo in the
4107 layout of the inferiors' architecture. */
4108
4109 static void
4110 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
4111 {
4112 int done = 0;
4113
4114 if (linux_nat_siginfo_fixup != NULL)
4115 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4116
4117 /* If there was no callback, or the callback didn't do anything,
4118 then just do a straight memcpy. */
4119 if (!done)
4120 {
4121 if (direction == 1)
4122 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
4123 else
4124 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
4125 }
4126 }
4127
4128 static LONGEST
4129 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4130 const char *annex, gdb_byte *readbuf,
4131 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4132 {
4133 int pid;
4134 siginfo_t siginfo;
4135 gdb_byte inf_siginfo[sizeof (siginfo_t)];
4136
4137 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4138 gdb_assert (readbuf || writebuf);
4139
4140 pid = GET_LWP (inferior_ptid);
4141 if (pid == 0)
4142 pid = GET_PID (inferior_ptid);
4143
4144 if (offset > sizeof (siginfo))
4145 return -1;
4146
4147 errno = 0;
4148 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4149 if (errno != 0)
4150 return -1;
4151
4152 /* When GDB is built as a 64-bit application, ptrace writes into
4153 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4154 inferior with a 64-bit GDB should look the same as debugging it
4155 with a 32-bit GDB, we need to convert it. GDB core always sees
4156 the converted layout, so any read/write will have to be done
4157 post-conversion. */
4158 siginfo_fixup (&siginfo, inf_siginfo, 0);
4159
4160 if (offset + len > sizeof (siginfo))
4161 len = sizeof (siginfo) - offset;
4162
4163 if (readbuf != NULL)
4164 memcpy (readbuf, inf_siginfo + offset, len);
4165 else
4166 {
4167 memcpy (inf_siginfo + offset, writebuf, len);
4168
4169 /* Convert back to ptrace layout before flushing it out. */
4170 siginfo_fixup (&siginfo, inf_siginfo, 1);
4171
4172 errno = 0;
4173 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4174 if (errno != 0)
4175 return -1;
4176 }
4177
4178 return len;
4179 }
4180
4181 static LONGEST
4182 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4183 const char *annex, gdb_byte *readbuf,
4184 const gdb_byte *writebuf,
4185 ULONGEST offset, LONGEST len)
4186 {
4187 struct cleanup *old_chain;
4188 LONGEST xfer;
4189
4190 if (object == TARGET_OBJECT_SIGNAL_INFO)
4191 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4192 offset, len);
4193
4194 /* The target is connected but no live inferior is selected. Pass
4195 this request down to a lower stratum (e.g., the executable
4196 file). */
4197 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4198 return 0;
4199
4200 old_chain = save_inferior_ptid ();
4201
4202 if (is_lwp (inferior_ptid))
4203 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4204
4205 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4206 offset, len);
4207
4208 do_cleanups (old_chain);
4209 return xfer;
4210 }
4211
4212 static int
4213 linux_thread_alive (ptid_t ptid)
4214 {
4215 int err, tmp_errno;
4216
4217 gdb_assert (is_lwp (ptid));
4218
4219 /* Send signal 0 instead of anything ptrace, because ptracing a
4220 running thread errors out claiming that the thread doesn't
4221 exist. */
4222 err = kill_lwp (GET_LWP (ptid), 0);
4223 tmp_errno = errno;
4224 if (debug_linux_nat)
4225 fprintf_unfiltered (gdb_stdlog,
4226 "LLTA: KILL(SIG0) %s (%s)\n",
4227 target_pid_to_str (ptid),
4228 err ? safe_strerror (tmp_errno) : "OK");
4229
4230 if (err != 0)
4231 return 0;
4232
4233 return 1;
4234 }
4235
4236 static int
4237 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4238 {
4239 return linux_thread_alive (ptid);
4240 }
4241
4242 static char *
4243 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4244 {
4245 static char buf[64];
4246
4247 if (is_lwp (ptid)
4248 && (GET_PID (ptid) != GET_LWP (ptid)
4249 || num_lwps (GET_PID (ptid)) > 1))
4250 {
4251 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4252 return buf;
4253 }
4254
4255 return normal_pid_to_str (ptid);
4256 }
4257
4258 static char *
4259 linux_nat_thread_name (struct thread_info *thr)
4260 {
4261 int pid = ptid_get_pid (thr->ptid);
4262 long lwp = ptid_get_lwp (thr->ptid);
4263 #define FORMAT "/proc/%d/task/%ld/comm"
4264 char buf[sizeof (FORMAT) + 30];
4265 FILE *comm_file;
4266 char *result = NULL;
4267
4268 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4269 comm_file = fopen (buf, "r");
4270 if (comm_file)
4271 {
4272 /* Not exported by the kernel, so we define it here. */
4273 #define COMM_LEN 16
4274 static char line[COMM_LEN + 1];
4275
4276 if (fgets (line, sizeof (line), comm_file))
4277 {
4278 char *nl = strchr (line, '\n');
4279
4280 if (nl)
4281 *nl = '\0';
4282 if (*line != '\0')
4283 result = line;
4284 }
4285
4286 fclose (comm_file);
4287 }
4288
4289 #undef COMM_LEN
4290 #undef FORMAT
4291
4292 return result;
4293 }
4294
4295 /* Accepts an integer PID; Returns a string representing a file that
4296 can be opened to get the symbols for the child process. */
4297
4298 static char *
4299 linux_child_pid_to_exec_file (int pid)
4300 {
4301 char *name1, *name2;
4302
4303 name1 = xmalloc (MAXPATHLEN);
4304 name2 = xmalloc (MAXPATHLEN);
4305 make_cleanup (xfree, name1);
4306 make_cleanup (xfree, name2);
4307 memset (name2, 0, MAXPATHLEN);
4308
4309 sprintf (name1, "/proc/%d/exe", pid);
4310 if (readlink (name1, name2, MAXPATHLEN) > 0)
4311 return name2;
4312 else
4313 return name1;
4314 }
4315
4316 /* Records the thread's register state for the corefile note
4317 section. */
4318
4319 static char *
4320 linux_nat_collect_thread_registers (const struct regcache *regcache,
4321 ptid_t ptid, bfd *obfd,
4322 char *note_data, int *note_size,
4323 enum gdb_signal stop_signal)
4324 {
4325 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4326 const struct regset *regset;
4327 int core_regset_p;
4328 gdb_gregset_t gregs;
4329 gdb_fpregset_t fpregs;
4330
4331 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4332
4333 if (core_regset_p
4334 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4335 sizeof (gregs)))
4336 != NULL && regset->collect_regset != NULL)
4337 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4338 else
4339 fill_gregset (regcache, &gregs, -1);
4340
4341 note_data = (char *) elfcore_write_prstatus
4342 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4343 gdb_signal_to_host (stop_signal), &gregs);
4344
4345 if (core_regset_p
4346 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4347 sizeof (fpregs)))
4348 != NULL && regset->collect_regset != NULL)
4349 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4350 else
4351 fill_fpregset (regcache, &fpregs, -1);
4352
4353 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4354 &fpregs, sizeof (fpregs));
4355
4356 return note_data;
4357 }
4358
4359 /* Fills the "to_make_corefile_note" target vector. Builds the note
4360 section for a corefile, and returns it in a malloc buffer. */
4361
4362 static char *
4363 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4364 {
4365 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4366 converted to gdbarch_core_regset_sections, this function can go away. */
4367 return linux_make_corefile_notes (target_gdbarch, obfd, note_size,
4368 linux_nat_collect_thread_registers);
4369 }
4370
4371 /* Implement the to_xfer_partial interface for memory reads using the /proc
4372 filesystem. Because we can use a single read() call for /proc, this
4373 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4374 but it doesn't support writes. */
4375
4376 static LONGEST
4377 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4378 const char *annex, gdb_byte *readbuf,
4379 const gdb_byte *writebuf,
4380 ULONGEST offset, LONGEST len)
4381 {
4382 LONGEST ret;
4383 int fd;
4384 char filename[64];
4385
4386 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4387 return 0;
4388
4389 /* Don't bother for one word. */
4390 if (len < 3 * sizeof (long))
4391 return 0;
4392
4393 /* We could keep this file open and cache it - possibly one per
4394 thread. That requires some juggling, but is even faster. */
4395 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4396 fd = open (filename, O_RDONLY | O_LARGEFILE);
4397 if (fd == -1)
4398 return 0;
4399
4400 /* If pread64 is available, use it. It's faster if the kernel
4401 supports it (only one syscall), and it's 64-bit safe even on
4402 32-bit platforms (for instance, SPARC debugging a SPARC64
4403 application). */
4404 #ifdef HAVE_PREAD64
4405 if (pread64 (fd, readbuf, len, offset) != len)
4406 #else
4407 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4408 #endif
4409 ret = 0;
4410 else
4411 ret = len;
4412
4413 close (fd);
4414 return ret;
4415 }
4416
4417
4418 /* Enumerate spufs IDs for process PID. */
4419 static LONGEST
4420 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4421 {
4422 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4423 LONGEST pos = 0;
4424 LONGEST written = 0;
4425 char path[128];
4426 DIR *dir;
4427 struct dirent *entry;
4428
4429 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4430 dir = opendir (path);
4431 if (!dir)
4432 return -1;
4433
4434 rewinddir (dir);
4435 while ((entry = readdir (dir)) != NULL)
4436 {
4437 struct stat st;
4438 struct statfs stfs;
4439 int fd;
4440
4441 fd = atoi (entry->d_name);
4442 if (!fd)
4443 continue;
4444
4445 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4446 if (stat (path, &st) != 0)
4447 continue;
4448 if (!S_ISDIR (st.st_mode))
4449 continue;
4450
4451 if (statfs (path, &stfs) != 0)
4452 continue;
4453 if (stfs.f_type != SPUFS_MAGIC)
4454 continue;
4455
4456 if (pos >= offset && pos + 4 <= offset + len)
4457 {
4458 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4459 written += 4;
4460 }
4461 pos += 4;
4462 }
4463
4464 closedir (dir);
4465 return written;
4466 }
4467
4468 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4469 object type, using the /proc file system. */
4470 static LONGEST
4471 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4472 const char *annex, gdb_byte *readbuf,
4473 const gdb_byte *writebuf,
4474 ULONGEST offset, LONGEST len)
4475 {
4476 char buf[128];
4477 int fd = 0;
4478 int ret = -1;
4479 int pid = PIDGET (inferior_ptid);
4480
4481 if (!annex)
4482 {
4483 if (!readbuf)
4484 return -1;
4485 else
4486 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4487 }
4488
4489 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4490 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4491 if (fd <= 0)
4492 return -1;
4493
4494 if (offset != 0
4495 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4496 {
4497 close (fd);
4498 return 0;
4499 }
4500
4501 if (writebuf)
4502 ret = write (fd, writebuf, (size_t) len);
4503 else if (readbuf)
4504 ret = read (fd, readbuf, (size_t) len);
4505
4506 close (fd);
4507 return ret;
4508 }
4509
4510
4511 /* Parse LINE as a signal set and add its set bits to SIGS. */
4512
4513 static void
4514 add_line_to_sigset (const char *line, sigset_t *sigs)
4515 {
4516 int len = strlen (line) - 1;
4517 const char *p;
4518 int signum;
4519
4520 if (line[len] != '\n')
4521 error (_("Could not parse signal set: %s"), line);
4522
4523 p = line;
4524 signum = len * 4;
4525 while (len-- > 0)
4526 {
4527 int digit;
4528
4529 if (*p >= '0' && *p <= '9')
4530 digit = *p - '0';
4531 else if (*p >= 'a' && *p <= 'f')
4532 digit = *p - 'a' + 10;
4533 else
4534 error (_("Could not parse signal set: %s"), line);
4535
4536 signum -= 4;
4537
4538 if (digit & 1)
4539 sigaddset (sigs, signum + 1);
4540 if (digit & 2)
4541 sigaddset (sigs, signum + 2);
4542 if (digit & 4)
4543 sigaddset (sigs, signum + 3);
4544 if (digit & 8)
4545 sigaddset (sigs, signum + 4);
4546
4547 p++;
4548 }
4549 }
4550
4551 /* Find process PID's pending signals from /proc/pid/status and set
4552 SIGS to match. */
4553
4554 void
4555 linux_proc_pending_signals (int pid, sigset_t *pending,
4556 sigset_t *blocked, sigset_t *ignored)
4557 {
4558 FILE *procfile;
4559 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4560 struct cleanup *cleanup;
4561
4562 sigemptyset (pending);
4563 sigemptyset (blocked);
4564 sigemptyset (ignored);
4565 sprintf (fname, "/proc/%d/status", pid);
4566 procfile = fopen (fname, "r");
4567 if (procfile == NULL)
4568 error (_("Could not open %s"), fname);
4569 cleanup = make_cleanup_fclose (procfile);
4570
4571 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4572 {
4573 /* Normal queued signals are on the SigPnd line in the status
4574 file. However, 2.6 kernels also have a "shared" pending
4575 queue for delivering signals to a thread group, so check for
4576 a ShdPnd line also.
4577
4578 Unfortunately some Red Hat kernels include the shared pending
4579 queue but not the ShdPnd status field. */
4580
4581 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4582 add_line_to_sigset (buffer + 8, pending);
4583 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4584 add_line_to_sigset (buffer + 8, pending);
4585 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4586 add_line_to_sigset (buffer + 8, blocked);
4587 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4588 add_line_to_sigset (buffer + 8, ignored);
4589 }
4590
4591 do_cleanups (cleanup);
4592 }
4593
4594 static LONGEST
4595 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4596 const char *annex, gdb_byte *readbuf,
4597 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4598 {
4599 gdb_assert (object == TARGET_OBJECT_OSDATA);
4600
4601 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4602 }
4603
4604 static LONGEST
4605 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4606 const char *annex, gdb_byte *readbuf,
4607 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4608 {
4609 LONGEST xfer;
4610
4611 if (object == TARGET_OBJECT_AUXV)
4612 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4613 offset, len);
4614
4615 if (object == TARGET_OBJECT_OSDATA)
4616 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4617 offset, len);
4618
4619 if (object == TARGET_OBJECT_SPU)
4620 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4621 offset, len);
4622
4623 /* GDB calculates all the addresses in possibly larget width of the address.
4624 Address width needs to be masked before its final use - either by
4625 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4626
4627 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4628
4629 if (object == TARGET_OBJECT_MEMORY)
4630 {
4631 int addr_bit = gdbarch_addr_bit (target_gdbarch);
4632
4633 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4634 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4635 }
4636
4637 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4638 offset, len);
4639 if (xfer != 0)
4640 return xfer;
4641
4642 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4643 offset, len);
4644 }
4645
4646 static void
4647 cleanup_target_stop (void *arg)
4648 {
4649 ptid_t *ptid = (ptid_t *) arg;
4650
4651 gdb_assert (arg != NULL);
4652
4653 /* Unpause all */
4654 target_resume (*ptid, 0, GDB_SIGNAL_0);
4655 }
4656
4657 static VEC(static_tracepoint_marker_p) *
4658 linux_child_static_tracepoint_markers_by_strid (const char *strid)
4659 {
4660 char s[IPA_CMD_BUF_SIZE];
4661 struct cleanup *old_chain;
4662 int pid = ptid_get_pid (inferior_ptid);
4663 VEC(static_tracepoint_marker_p) *markers = NULL;
4664 struct static_tracepoint_marker *marker = NULL;
4665 char *p = s;
4666 ptid_t ptid = ptid_build (pid, 0, 0);
4667
4668 /* Pause all */
4669 target_stop (ptid);
4670
4671 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4672 s[sizeof ("qTfSTM")] = 0;
4673
4674 agent_run_command (pid, s, strlen (s) + 1);
4675
4676 old_chain = make_cleanup (free_current_marker, &marker);
4677 make_cleanup (cleanup_target_stop, &ptid);
4678
4679 while (*p++ == 'm')
4680 {
4681 if (marker == NULL)
4682 marker = XCNEW (struct static_tracepoint_marker);
4683
4684 do
4685 {
4686 parse_static_tracepoint_marker_definition (p, &p, marker);
4687
4688 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4689 {
4690 VEC_safe_push (static_tracepoint_marker_p,
4691 markers, marker);
4692 marker = NULL;
4693 }
4694 else
4695 {
4696 release_static_tracepoint_marker (marker);
4697 memset (marker, 0, sizeof (*marker));
4698 }
4699 }
4700 while (*p++ == ','); /* comma-separated list */
4701
4702 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4703 s[sizeof ("qTsSTM")] = 0;
4704 agent_run_command (pid, s, strlen (s) + 1);
4705 p = s;
4706 }
4707
4708 do_cleanups (old_chain);
4709
4710 return markers;
4711 }
4712
4713 /* Create a prototype generic GNU/Linux target. The client can override
4714 it with local methods. */
4715
4716 static void
4717 linux_target_install_ops (struct target_ops *t)
4718 {
4719 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4720 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4721 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4722 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4723 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4724 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4725 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4726 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4727 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4728 t->to_post_attach = linux_child_post_attach;
4729 t->to_follow_fork = linux_child_follow_fork;
4730 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4731
4732 super_xfer_partial = t->to_xfer_partial;
4733 t->to_xfer_partial = linux_xfer_partial;
4734
4735 t->to_static_tracepoint_markers_by_strid
4736 = linux_child_static_tracepoint_markers_by_strid;
4737 }
4738
4739 struct target_ops *
4740 linux_target (void)
4741 {
4742 struct target_ops *t;
4743
4744 t = inf_ptrace_target ();
4745 linux_target_install_ops (t);
4746
4747 return t;
4748 }
4749
4750 struct target_ops *
4751 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4752 {
4753 struct target_ops *t;
4754
4755 t = inf_ptrace_trad_target (register_u_offset);
4756 linux_target_install_ops (t);
4757
4758 return t;
4759 }
4760
4761 /* target_is_async_p implementation. */
4762
4763 static int
4764 linux_nat_is_async_p (void)
4765 {
4766 /* NOTE: palves 2008-03-21: We're only async when the user requests
4767 it explicitly with the "set target-async" command.
4768 Someday, linux will always be async. */
4769 return target_async_permitted;
4770 }
4771
4772 /* target_can_async_p implementation. */
4773
4774 static int
4775 linux_nat_can_async_p (void)
4776 {
4777 /* NOTE: palves 2008-03-21: We're only async when the user requests
4778 it explicitly with the "set target-async" command.
4779 Someday, linux will always be async. */
4780 return target_async_permitted;
4781 }
4782
4783 static int
4784 linux_nat_supports_non_stop (void)
4785 {
4786 return 1;
4787 }
4788
4789 /* True if we want to support multi-process. To be removed when GDB
4790 supports multi-exec. */
4791
4792 int linux_multi_process = 1;
4793
4794 static int
4795 linux_nat_supports_multi_process (void)
4796 {
4797 return linux_multi_process;
4798 }
4799
4800 static int
4801 linux_nat_supports_disable_randomization (void)
4802 {
4803 #ifdef HAVE_PERSONALITY
4804 return 1;
4805 #else
4806 return 0;
4807 #endif
4808 }
4809
4810 static int async_terminal_is_ours = 1;
4811
4812 /* target_terminal_inferior implementation. */
4813
4814 static void
4815 linux_nat_terminal_inferior (void)
4816 {
4817 if (!target_is_async_p ())
4818 {
4819 /* Async mode is disabled. */
4820 terminal_inferior ();
4821 return;
4822 }
4823
4824 terminal_inferior ();
4825
4826 /* Calls to target_terminal_*() are meant to be idempotent. */
4827 if (!async_terminal_is_ours)
4828 return;
4829
4830 delete_file_handler (input_fd);
4831 async_terminal_is_ours = 0;
4832 set_sigint_trap ();
4833 }
4834
4835 /* target_terminal_ours implementation. */
4836
4837 static void
4838 linux_nat_terminal_ours (void)
4839 {
4840 if (!target_is_async_p ())
4841 {
4842 /* Async mode is disabled. */
4843 terminal_ours ();
4844 return;
4845 }
4846
4847 /* GDB should never give the terminal to the inferior if the
4848 inferior is running in the background (run&, continue&, etc.),
4849 but claiming it sure should. */
4850 terminal_ours ();
4851
4852 if (async_terminal_is_ours)
4853 return;
4854
4855 clear_sigint_trap ();
4856 add_file_handler (input_fd, stdin_event_handler, 0);
4857 async_terminal_is_ours = 1;
4858 }
4859
4860 static void (*async_client_callback) (enum inferior_event_type event_type,
4861 void *context);
4862 static void *async_client_context;
4863
4864 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4865 so we notice when any child changes state, and notify the
4866 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4867 above to wait for the arrival of a SIGCHLD. */
4868
4869 static void
4870 sigchld_handler (int signo)
4871 {
4872 int old_errno = errno;
4873
4874 if (debug_linux_nat)
4875 ui_file_write_async_safe (gdb_stdlog,
4876 "sigchld\n", sizeof ("sigchld\n") - 1);
4877
4878 if (signo == SIGCHLD
4879 && linux_nat_event_pipe[0] != -1)
4880 async_file_mark (); /* Let the event loop know that there are
4881 events to handle. */
4882
4883 errno = old_errno;
4884 }
4885
4886 /* Callback registered with the target events file descriptor. */
4887
4888 static void
4889 handle_target_event (int error, gdb_client_data client_data)
4890 {
4891 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4892 }
4893
4894 /* Create/destroy the target events pipe. Returns previous state. */
4895
4896 static int
4897 linux_async_pipe (int enable)
4898 {
4899 int previous = (linux_nat_event_pipe[0] != -1);
4900
4901 if (previous != enable)
4902 {
4903 sigset_t prev_mask;
4904
4905 block_child_signals (&prev_mask);
4906
4907 if (enable)
4908 {
4909 if (pipe (linux_nat_event_pipe) == -1)
4910 internal_error (__FILE__, __LINE__,
4911 "creating event pipe failed.");
4912
4913 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4914 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4915 }
4916 else
4917 {
4918 close (linux_nat_event_pipe[0]);
4919 close (linux_nat_event_pipe[1]);
4920 linux_nat_event_pipe[0] = -1;
4921 linux_nat_event_pipe[1] = -1;
4922 }
4923
4924 restore_child_signals_mask (&prev_mask);
4925 }
4926
4927 return previous;
4928 }
4929
4930 /* target_async implementation. */
4931
4932 static void
4933 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4934 void *context), void *context)
4935 {
4936 if (callback != NULL)
4937 {
4938 async_client_callback = callback;
4939 async_client_context = context;
4940 if (!linux_async_pipe (1))
4941 {
4942 add_file_handler (linux_nat_event_pipe[0],
4943 handle_target_event, NULL);
4944 /* There may be pending events to handle. Tell the event loop
4945 to poll them. */
4946 async_file_mark ();
4947 }
4948 }
4949 else
4950 {
4951 async_client_callback = callback;
4952 async_client_context = context;
4953 delete_file_handler (linux_nat_event_pipe[0]);
4954 linux_async_pipe (0);
4955 }
4956 return;
4957 }
4958
4959 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4960 event came out. */
4961
4962 static int
4963 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4964 {
4965 if (!lwp->stopped)
4966 {
4967 ptid_t ptid = lwp->ptid;
4968
4969 if (debug_linux_nat)
4970 fprintf_unfiltered (gdb_stdlog,
4971 "LNSL: running -> suspending %s\n",
4972 target_pid_to_str (lwp->ptid));
4973
4974
4975 if (lwp->last_resume_kind == resume_stop)
4976 {
4977 if (debug_linux_nat)
4978 fprintf_unfiltered (gdb_stdlog,
4979 "linux-nat: already stopping LWP %ld at "
4980 "GDB's request\n",
4981 ptid_get_lwp (lwp->ptid));
4982 return 0;
4983 }
4984
4985 stop_callback (lwp, NULL);
4986 lwp->last_resume_kind = resume_stop;
4987 }
4988 else
4989 {
4990 /* Already known to be stopped; do nothing. */
4991
4992 if (debug_linux_nat)
4993 {
4994 if (find_thread_ptid (lwp->ptid)->stop_requested)
4995 fprintf_unfiltered (gdb_stdlog,
4996 "LNSL: already stopped/stop_requested %s\n",
4997 target_pid_to_str (lwp->ptid));
4998 else
4999 fprintf_unfiltered (gdb_stdlog,
5000 "LNSL: already stopped/no "
5001 "stop_requested yet %s\n",
5002 target_pid_to_str (lwp->ptid));
5003 }
5004 }
5005 return 0;
5006 }
5007
5008 static void
5009 linux_nat_stop (ptid_t ptid)
5010 {
5011 if (non_stop)
5012 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5013 else
5014 linux_ops->to_stop (ptid);
5015 }
5016
5017 static void
5018 linux_nat_close (int quitting)
5019 {
5020 /* Unregister from the event loop. */
5021 if (linux_nat_is_async_p ())
5022 linux_nat_async (NULL, 0);
5023
5024 if (linux_ops->to_close)
5025 linux_ops->to_close (quitting);
5026 }
5027
5028 /* When requests are passed down from the linux-nat layer to the
5029 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5030 used. The address space pointer is stored in the inferior object,
5031 but the common code that is passed such ptid can't tell whether
5032 lwpid is a "main" process id or not (it assumes so). We reverse
5033 look up the "main" process id from the lwp here. */
5034
5035 static struct address_space *
5036 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5037 {
5038 struct lwp_info *lwp;
5039 struct inferior *inf;
5040 int pid;
5041
5042 pid = GET_LWP (ptid);
5043 if (GET_LWP (ptid) == 0)
5044 {
5045 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5046 tgid. */
5047 lwp = find_lwp_pid (ptid);
5048 pid = GET_PID (lwp->ptid);
5049 }
5050 else
5051 {
5052 /* A (pid,lwpid,0) ptid. */
5053 pid = GET_PID (ptid);
5054 }
5055
5056 inf = find_inferior_pid (pid);
5057 gdb_assert (inf != NULL);
5058 return inf->aspace;
5059 }
5060
5061 /* Return the cached value of the processor core for thread PTID. */
5062
5063 static int
5064 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5065 {
5066 struct lwp_info *info = find_lwp_pid (ptid);
5067
5068 if (info)
5069 return info->core;
5070 return -1;
5071 }
5072
5073 void
5074 linux_nat_add_target (struct target_ops *t)
5075 {
5076 /* Save the provided single-threaded target. We save this in a separate
5077 variable because another target we've inherited from (e.g. inf-ptrace)
5078 may have saved a pointer to T; we want to use it for the final
5079 process stratum target. */
5080 linux_ops_saved = *t;
5081 linux_ops = &linux_ops_saved;
5082
5083 /* Override some methods for multithreading. */
5084 t->to_create_inferior = linux_nat_create_inferior;
5085 t->to_attach = linux_nat_attach;
5086 t->to_detach = linux_nat_detach;
5087 t->to_resume = linux_nat_resume;
5088 t->to_wait = linux_nat_wait;
5089 t->to_pass_signals = linux_nat_pass_signals;
5090 t->to_xfer_partial = linux_nat_xfer_partial;
5091 t->to_kill = linux_nat_kill;
5092 t->to_mourn_inferior = linux_nat_mourn_inferior;
5093 t->to_thread_alive = linux_nat_thread_alive;
5094 t->to_pid_to_str = linux_nat_pid_to_str;
5095 t->to_thread_name = linux_nat_thread_name;
5096 t->to_has_thread_control = tc_schedlock;
5097 t->to_thread_address_space = linux_nat_thread_address_space;
5098 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5099 t->to_stopped_data_address = linux_nat_stopped_data_address;
5100
5101 t->to_can_async_p = linux_nat_can_async_p;
5102 t->to_is_async_p = linux_nat_is_async_p;
5103 t->to_supports_non_stop = linux_nat_supports_non_stop;
5104 t->to_async = linux_nat_async;
5105 t->to_terminal_inferior = linux_nat_terminal_inferior;
5106 t->to_terminal_ours = linux_nat_terminal_ours;
5107 t->to_close = linux_nat_close;
5108
5109 /* Methods for non-stop support. */
5110 t->to_stop = linux_nat_stop;
5111
5112 t->to_supports_multi_process = linux_nat_supports_multi_process;
5113
5114 t->to_supports_disable_randomization
5115 = linux_nat_supports_disable_randomization;
5116
5117 t->to_core_of_thread = linux_nat_core_of_thread;
5118
5119 /* We don't change the stratum; this target will sit at
5120 process_stratum and thread_db will set at thread_stratum. This
5121 is a little strange, since this is a multi-threaded-capable
5122 target, but we want to be on the stack below thread_db, and we
5123 also want to be used for single-threaded processes. */
5124
5125 add_target (t);
5126 }
5127
5128 /* Register a method to call whenever a new thread is attached. */
5129 void
5130 linux_nat_set_new_thread (struct target_ops *t,
5131 void (*new_thread) (struct lwp_info *))
5132 {
5133 /* Save the pointer. We only support a single registered instance
5134 of the GNU/Linux native target, so we do not need to map this to
5135 T. */
5136 linux_nat_new_thread = new_thread;
5137 }
5138
5139 /* Register a method that converts a siginfo object between the layout
5140 that ptrace returns, and the layout in the architecture of the
5141 inferior. */
5142 void
5143 linux_nat_set_siginfo_fixup (struct target_ops *t,
5144 int (*siginfo_fixup) (siginfo_t *,
5145 gdb_byte *,
5146 int))
5147 {
5148 /* Save the pointer. */
5149 linux_nat_siginfo_fixup = siginfo_fixup;
5150 }
5151
5152 /* Register a method to call prior to resuming a thread. */
5153
5154 void
5155 linux_nat_set_prepare_to_resume (struct target_ops *t,
5156 void (*prepare_to_resume) (struct lwp_info *))
5157 {
5158 /* Save the pointer. */
5159 linux_nat_prepare_to_resume = prepare_to_resume;
5160 }
5161
5162 /* See linux-nat.h. */
5163
5164 int
5165 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
5166 {
5167 int pid;
5168
5169 pid = GET_LWP (ptid);
5170 if (pid == 0)
5171 pid = GET_PID (ptid);
5172
5173 errno = 0;
5174 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
5175 if (errno != 0)
5176 {
5177 memset (siginfo, 0, sizeof (*siginfo));
5178 return 0;
5179 }
5180 return 1;
5181 }
5182
5183 /* Provide a prototype to silence -Wmissing-prototypes. */
5184 extern initialize_file_ftype _initialize_linux_nat;
5185
5186 void
5187 _initialize_linux_nat (void)
5188 {
5189 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5190 &debug_linux_nat, _("\
5191 Set debugging of GNU/Linux lwp module."), _("\
5192 Show debugging of GNU/Linux lwp module."), _("\
5193 Enables printf debugging output."),
5194 NULL,
5195 show_debug_linux_nat,
5196 &setdebuglist, &showdebuglist);
5197
5198 /* Save this mask as the default. */
5199 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5200
5201 /* Install a SIGCHLD handler. */
5202 sigchld_action.sa_handler = sigchld_handler;
5203 sigemptyset (&sigchld_action.sa_mask);
5204 sigchld_action.sa_flags = SA_RESTART;
5205
5206 /* Make it the default. */
5207 sigaction (SIGCHLD, &sigchld_action, NULL);
5208
5209 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5210 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5211 sigdelset (&suspend_mask, SIGCHLD);
5212
5213 sigemptyset (&blocked_mask);
5214 }
5215 \f
5216
5217 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5218 the GNU/Linux Threads library and therefore doesn't really belong
5219 here. */
5220
5221 /* Read variable NAME in the target and return its value if found.
5222 Otherwise return zero. It is assumed that the type of the variable
5223 is `int'. */
5224
5225 static int
5226 get_signo (const char *name)
5227 {
5228 struct minimal_symbol *ms;
5229 int signo;
5230
5231 ms = lookup_minimal_symbol (name, NULL, NULL);
5232 if (ms == NULL)
5233 return 0;
5234
5235 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5236 sizeof (signo)) != 0)
5237 return 0;
5238
5239 return signo;
5240 }
5241
5242 /* Return the set of signals used by the threads library in *SET. */
5243
5244 void
5245 lin_thread_get_thread_signals (sigset_t *set)
5246 {
5247 struct sigaction action;
5248 int restart, cancel;
5249
5250 sigemptyset (&blocked_mask);
5251 sigemptyset (set);
5252
5253 restart = get_signo ("__pthread_sig_restart");
5254 cancel = get_signo ("__pthread_sig_cancel");
5255
5256 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5257 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5258 not provide any way for the debugger to query the signal numbers -
5259 fortunately they don't change! */
5260
5261 if (restart == 0)
5262 restart = __SIGRTMIN;
5263
5264 if (cancel == 0)
5265 cancel = __SIGRTMIN + 1;
5266
5267 sigaddset (set, restart);
5268 sigaddset (set, cancel);
5269
5270 /* The GNU/Linux Threads library makes terminating threads send a
5271 special "cancel" signal instead of SIGCHLD. Make sure we catch
5272 those (to prevent them from terminating GDB itself, which is
5273 likely to be their default action) and treat them the same way as
5274 SIGCHLD. */
5275
5276 action.sa_handler = sigchld_handler;
5277 sigemptyset (&action.sa_mask);
5278 action.sa_flags = SA_RESTART;
5279 sigaction (cancel, &action, NULL);
5280
5281 /* We block the "cancel" signal throughout this code ... */
5282 sigaddset (&blocked_mask, cancel);
5283 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5284
5285 /* ... except during a sigsuspend. */
5286 sigdelset (&suspend_mask, cancel);
5287 }
This page took 0.193296 seconds and 5 git commands to generate.