Eliminate make_cleanup_obstack_free, introduce auto_obstack
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observer.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41 #include "common/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static int use_coredump_filter = 1;
95
96 /* This enum represents the signals' numbers on a generic architecture
97 running the Linux kernel. The definition of "generic" comes from
98 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
99 tree, which is the "de facto" implementation of signal numbers to
100 be used by new architecture ports.
101
102 For those architectures which have differences between the generic
103 standard (e.g., Alpha), we define the different signals (and *only*
104 those) in the specific target-dependent file (e.g.,
105 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
106 tdep file for more information.
107
108 ARM deserves a special mention here. On the file
109 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
110 (and ARM-only) signal, which is SIGSWI, with the same number as
111 SIGRTMIN. This signal is used only for a very specific target,
112 called ArthurOS (from RISCOS). Therefore, we do not handle it on
113 the ARM-tdep file, and we can safely use the generic signal handler
114 here for ARM targets.
115
116 As stated above, this enum is derived from
117 <include/uapi/asm-generic/signal.h>, from the Linux kernel
118 tree. */
119
120 enum
121 {
122 LINUX_SIGHUP = 1,
123 LINUX_SIGINT = 2,
124 LINUX_SIGQUIT = 3,
125 LINUX_SIGILL = 4,
126 LINUX_SIGTRAP = 5,
127 LINUX_SIGABRT = 6,
128 LINUX_SIGIOT = 6,
129 LINUX_SIGBUS = 7,
130 LINUX_SIGFPE = 8,
131 LINUX_SIGKILL = 9,
132 LINUX_SIGUSR1 = 10,
133 LINUX_SIGSEGV = 11,
134 LINUX_SIGUSR2 = 12,
135 LINUX_SIGPIPE = 13,
136 LINUX_SIGALRM = 14,
137 LINUX_SIGTERM = 15,
138 LINUX_SIGSTKFLT = 16,
139 LINUX_SIGCHLD = 17,
140 LINUX_SIGCONT = 18,
141 LINUX_SIGSTOP = 19,
142 LINUX_SIGTSTP = 20,
143 LINUX_SIGTTIN = 21,
144 LINUX_SIGTTOU = 22,
145 LINUX_SIGURG = 23,
146 LINUX_SIGXCPU = 24,
147 LINUX_SIGXFSZ = 25,
148 LINUX_SIGVTALRM = 26,
149 LINUX_SIGPROF = 27,
150 LINUX_SIGWINCH = 28,
151 LINUX_SIGIO = 29,
152 LINUX_SIGPOLL = LINUX_SIGIO,
153 LINUX_SIGPWR = 30,
154 LINUX_SIGSYS = 31,
155 LINUX_SIGUNUSED = 31,
156
157 LINUX_SIGRTMIN = 32,
158 LINUX_SIGRTMAX = 64,
159 };
160
161 static struct gdbarch_data *linux_gdbarch_data_handle;
162
163 struct linux_gdbarch_data
164 {
165 struct type *siginfo_type;
166 };
167
168 static void *
169 init_linux_gdbarch_data (struct gdbarch *gdbarch)
170 {
171 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
172 }
173
174 static struct linux_gdbarch_data *
175 get_linux_gdbarch_data (struct gdbarch *gdbarch)
176 {
177 return ((struct linux_gdbarch_data *)
178 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
179 }
180
181 /* Per-inferior data key. */
182 static const struct inferior_data *linux_inferior_data;
183
184 /* Linux-specific cached data. This is used by GDB for caching
185 purposes for each inferior. This helps reduce the overhead of
186 transfering data from a remote target to the local host. */
187 struct linux_info
188 {
189 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
190 if VSYSCALL_RANGE_P is positive. This is cached because getting
191 at this info requires an auxv lookup (which is itself cached),
192 and looking through the inferior's mappings (which change
193 throughout execution and therefore cannot be cached). */
194 struct mem_range vsyscall_range;
195
196 /* Zero if we haven't tried looking up the vsyscall's range before
197 yet. Positive if we tried looking it up, and found it. Negative
198 if we tried looking it up but failed. */
199 int vsyscall_range_p;
200 };
201
202 /* Frees whatever allocated space there is to be freed and sets INF's
203 linux cache data pointer to NULL. */
204
205 static void
206 invalidate_linux_cache_inf (struct inferior *inf)
207 {
208 struct linux_info *info;
209
210 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
211 if (info != NULL)
212 {
213 xfree (info);
214 set_inferior_data (inf, linux_inferior_data, NULL);
215 }
216 }
217
218 /* Handles the cleanup of the linux cache for inferior INF. ARG is
219 ignored. Callback for the inferior_appeared and inferior_exit
220 events. */
221
222 static void
223 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
224 {
225 invalidate_linux_cache_inf (inf);
226 }
227
228 /* Fetch the linux cache info for INF. This function always returns a
229 valid INFO pointer. */
230
231 static struct linux_info *
232 get_linux_inferior_data (void)
233 {
234 struct linux_info *info;
235 struct inferior *inf = current_inferior ();
236
237 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
238 if (info == NULL)
239 {
240 info = XCNEW (struct linux_info);
241 set_inferior_data (inf, linux_inferior_data, info);
242 }
243
244 return info;
245 }
246
247 /* See linux-tdep.h. */
248
249 struct type *
250 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
251 linux_siginfo_extra_fields extra_fields)
252 {
253 struct linux_gdbarch_data *linux_gdbarch_data;
254 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
255 struct type *uid_type, *pid_type;
256 struct type *sigval_type, *clock_type;
257 struct type *siginfo_type, *sifields_type;
258 struct type *type;
259
260 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
261 if (linux_gdbarch_data->siginfo_type != NULL)
262 return linux_gdbarch_data->siginfo_type;
263
264 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
265 0, "int");
266 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
267 1, "unsigned int");
268 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
269 0, "long");
270 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
271 0, "short");
272 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
273
274 /* sival_t */
275 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
276 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
277 append_composite_type_field (sigval_type, "sival_int", int_type);
278 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
279
280 /* __pid_t */
281 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
282 TYPE_LENGTH (int_type), "__pid_t");
283 TYPE_TARGET_TYPE (pid_type) = int_type;
284 TYPE_TARGET_STUB (pid_type) = 1;
285
286 /* __uid_t */
287 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
288 TYPE_LENGTH (uint_type), "__uid_t");
289 TYPE_TARGET_TYPE (uid_type) = uint_type;
290 TYPE_TARGET_STUB (uid_type) = 1;
291
292 /* __clock_t */
293 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
294 TYPE_LENGTH (long_type), "__clock_t");
295 TYPE_TARGET_TYPE (clock_type) = long_type;
296 TYPE_TARGET_STUB (clock_type) = 1;
297
298 /* _sifields */
299 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
300
301 {
302 const int si_max_size = 128;
303 int si_pad_size;
304 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
305
306 /* _pad */
307 if (gdbarch_ptr_bit (gdbarch) == 64)
308 si_pad_size = (si_max_size / size_of_int) - 4;
309 else
310 si_pad_size = (si_max_size / size_of_int) - 3;
311 append_composite_type_field (sifields_type, "_pad",
312 init_vector_type (int_type, si_pad_size));
313 }
314
315 /* _kill */
316 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
317 append_composite_type_field (type, "si_pid", pid_type);
318 append_composite_type_field (type, "si_uid", uid_type);
319 append_composite_type_field (sifields_type, "_kill", type);
320
321 /* _timer */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_tid", int_type);
324 append_composite_type_field (type, "si_overrun", int_type);
325 append_composite_type_field (type, "si_sigval", sigval_type);
326 append_composite_type_field (sifields_type, "_timer", type);
327
328 /* _rt */
329 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
330 append_composite_type_field (type, "si_pid", pid_type);
331 append_composite_type_field (type, "si_uid", uid_type);
332 append_composite_type_field (type, "si_sigval", sigval_type);
333 append_composite_type_field (sifields_type, "_rt", type);
334
335 /* _sigchld */
336 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
337 append_composite_type_field (type, "si_pid", pid_type);
338 append_composite_type_field (type, "si_uid", uid_type);
339 append_composite_type_field (type, "si_status", int_type);
340 append_composite_type_field (type, "si_utime", clock_type);
341 append_composite_type_field (type, "si_stime", clock_type);
342 append_composite_type_field (sifields_type, "_sigchld", type);
343
344 /* _sigfault */
345 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
346 append_composite_type_field (type, "si_addr", void_ptr_type);
347
348 /* Additional bound fields for _sigfault in case they were requested. */
349 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
350 {
351 struct type *sigfault_bnd_fields;
352
353 append_composite_type_field (type, "_addr_lsb", short_type);
354 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
356 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
357 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
358 }
359 append_composite_type_field (sifields_type, "_sigfault", type);
360
361 /* _sigpoll */
362 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
363 append_composite_type_field (type, "si_band", long_type);
364 append_composite_type_field (type, "si_fd", int_type);
365 append_composite_type_field (sifields_type, "_sigpoll", type);
366
367 /* struct siginfo */
368 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
369 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
370 append_composite_type_field (siginfo_type, "si_signo", int_type);
371 append_composite_type_field (siginfo_type, "si_errno", int_type);
372 append_composite_type_field (siginfo_type, "si_code", int_type);
373 append_composite_type_field_aligned (siginfo_type,
374 "_sifields", sifields_type,
375 TYPE_LENGTH (long_type));
376
377 linux_gdbarch_data->siginfo_type = siginfo_type;
378
379 return siginfo_type;
380 }
381
382 /* This function is suitable for architectures that don't
383 extend/override the standard siginfo structure. */
384
385 static struct type *
386 linux_get_siginfo_type (struct gdbarch *gdbarch)
387 {
388 return linux_get_siginfo_type_with_fields (gdbarch, 0);
389 }
390
391 /* Return true if the target is running on uClinux instead of normal
392 Linux kernel. */
393
394 int
395 linux_is_uclinux (void)
396 {
397 CORE_ADDR dummy;
398
399 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
400 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
401 }
402
403 static int
404 linux_has_shared_address_space (struct gdbarch *gdbarch)
405 {
406 return linux_is_uclinux ();
407 }
408
409 /* This is how we want PTIDs from core files to be printed. */
410
411 static const char *
412 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
413 {
414 static char buf[80];
415
416 if (ptid_get_lwp (ptid) != 0)
417 {
418 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
419 return buf;
420 }
421
422 return normal_pid_to_str (ptid);
423 }
424
425 /* Service function for corefiles and info proc. */
426
427 static void
428 read_mapping (const char *line,
429 ULONGEST *addr, ULONGEST *endaddr,
430 const char **permissions, size_t *permissions_len,
431 ULONGEST *offset,
432 const char **device, size_t *device_len,
433 ULONGEST *inode,
434 const char **filename)
435 {
436 const char *p = line;
437
438 *addr = strtoulst (p, &p, 16);
439 if (*p == '-')
440 p++;
441 *endaddr = strtoulst (p, &p, 16);
442
443 p = skip_spaces_const (p);
444 *permissions = p;
445 while (*p && !isspace (*p))
446 p++;
447 *permissions_len = p - *permissions;
448
449 *offset = strtoulst (p, &p, 16);
450
451 p = skip_spaces_const (p);
452 *device = p;
453 while (*p && !isspace (*p))
454 p++;
455 *device_len = p - *device;
456
457 *inode = strtoulst (p, &p, 10);
458
459 p = skip_spaces_const (p);
460 *filename = p;
461 }
462
463 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
464
465 This function was based on the documentation found on
466 <Documentation/filesystems/proc.txt>, on the Linux kernel.
467
468 Linux kernels before commit
469 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
470 field on smaps. */
471
472 static void
473 decode_vmflags (char *p, struct smaps_vmflags *v)
474 {
475 char *saveptr = NULL;
476 const char *s;
477
478 v->initialized_p = 1;
479 p = skip_to_space (p);
480 p = skip_spaces (p);
481
482 for (s = strtok_r (p, " ", &saveptr);
483 s != NULL;
484 s = strtok_r (NULL, " ", &saveptr))
485 {
486 if (strcmp (s, "io") == 0)
487 v->io_page = 1;
488 else if (strcmp (s, "ht") == 0)
489 v->uses_huge_tlb = 1;
490 else if (strcmp (s, "dd") == 0)
491 v->exclude_coredump = 1;
492 else if (strcmp (s, "sh") == 0)
493 v->shared_mapping = 1;
494 }
495 }
496
497 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
498 they're initialized lazily. */
499
500 struct mapping_regexes
501 {
502 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
503 string in the end). We know for sure, based on the Linux kernel
504 code, that memory mappings whose associated filename is
505 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
506 compiled_regex dev_zero
507 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
508 _("Could not compile regex to match /dev/zero filename")};
509
510 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
511 string in the end). These filenames refer to shared memory
512 (shmem), and memory mappings associated with them are
513 MAP_ANONYMOUS as well. */
514 compiled_regex shmem_file
515 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
516 _("Could not compile regex to match shmem filenames")};
517
518 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
519 0' code, which is responsible to decide if it is dealing with a
520 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
521 FILE_DELETED matches, it does not necessarily mean that we are
522 dealing with an anonymous shared mapping. However, there is no
523 easy way to detect this currently, so this is the best
524 approximation we have.
525
526 As a result, GDB will dump readonly pages of deleted executables
527 when using the default value of coredump_filter (0x33), while the
528 Linux kernel will not dump those pages. But we can live with
529 that. */
530 compiled_regex file_deleted
531 {" (deleted)$", REG_NOSUB,
532 _("Could not compile regex to match '<file> (deleted)'")};
533 };
534
535 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
536
537 FILENAME is the name of the file present in the first line of the
538 memory mapping, in the "/proc/PID/smaps" output. For example, if
539 the first line is:
540
541 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
542
543 Then FILENAME will be "/path/to/file". */
544
545 static int
546 mapping_is_anonymous_p (const char *filename)
547 {
548 static gdb::optional<mapping_regexes> regexes;
549 static int init_regex_p = 0;
550
551 if (!init_regex_p)
552 {
553 /* Let's be pessimistic and assume there will be an error while
554 compiling the regex'es. */
555 init_regex_p = -1;
556
557 regexes.emplace ();
558
559 /* If we reached this point, then everything succeeded. */
560 init_regex_p = 1;
561 }
562
563 if (init_regex_p == -1)
564 {
565 const char deleted[] = " (deleted)";
566 size_t del_len = sizeof (deleted) - 1;
567 size_t filename_len = strlen (filename);
568
569 /* There was an error while compiling the regex'es above. In
570 order to try to give some reliable information to the caller,
571 we just try to find the string " (deleted)" in the filename.
572 If we managed to find it, then we assume the mapping is
573 anonymous. */
574 return (filename_len >= del_len
575 && strcmp (filename + filename_len - del_len, deleted) == 0);
576 }
577
578 if (*filename == '\0'
579 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
580 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
581 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
582 return 1;
583
584 return 0;
585 }
586
587 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
588 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
589 greater than 0 if it should.
590
591 In a nutshell, this is the logic that we follow in order to decide
592 if a mapping should be dumped or not.
593
594 - If the mapping is associated to a file whose name ends with
595 " (deleted)", or if the file is "/dev/zero", or if it is
596 "/SYSV%08x" (shared memory), or if there is no file associated
597 with it, or if the AnonHugePages: or the Anonymous: fields in the
598 /proc/PID/smaps have contents, then GDB considers this mapping to
599 be anonymous. Otherwise, GDB considers this mapping to be a
600 file-backed mapping (because there will be a file associated with
601 it).
602
603 It is worth mentioning that, from all those checks described
604 above, the most fragile is the one to see if the file name ends
605 with " (deleted)". This does not necessarily mean that the
606 mapping is anonymous, because the deleted file associated with
607 the mapping may have been a hard link to another file, for
608 example. The Linux kernel checks to see if "i_nlink == 0", but
609 GDB cannot easily (and normally) do this check (iff running as
610 root, it could find the mapping in /proc/PID/map_files/ and
611 determine whether there still are other hard links to the
612 inode/file). Therefore, we made a compromise here, and we assume
613 that if the file name ends with " (deleted)", then the mapping is
614 indeed anonymous. FWIW, this is something the Linux kernel could
615 do better: expose this information in a more direct way.
616
617 - If we see the flag "sh" in the "VmFlags:" field (in
618 /proc/PID/smaps), then certainly the memory mapping is shared
619 (VM_SHARED). If we have access to the VmFlags, and we don't see
620 the "sh" there, then certainly the mapping is private. However,
621 Linux kernels before commit
622 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
623 "VmFlags:" field; in that case, we use another heuristic: if we
624 see 'p' in the permission flags, then we assume that the mapping
625 is private, even though the presence of the 's' flag there would
626 mean VM_MAYSHARE, which means the mapping could still be private.
627 This should work OK enough, however. */
628
629 static int
630 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
631 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
632 const char *filename)
633 {
634 /* Initially, we trust in what we received from our caller. This
635 value may not be very precise (i.e., it was probably gathered
636 from the permission line in the /proc/PID/smaps list, which
637 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
638 what we have until we take a look at the "VmFlags:" field
639 (assuming that the version of the Linux kernel being used
640 supports it, of course). */
641 int private_p = maybe_private_p;
642
643 /* We always dump vDSO and vsyscall mappings, because it's likely that
644 there'll be no file to read the contents from at core load time.
645 The kernel does the same. */
646 if (strcmp ("[vdso]", filename) == 0
647 || strcmp ("[vsyscall]", filename) == 0)
648 return 1;
649
650 if (v->initialized_p)
651 {
652 /* We never dump I/O mappings. */
653 if (v->io_page)
654 return 0;
655
656 /* Check if we should exclude this mapping. */
657 if (v->exclude_coredump)
658 return 0;
659
660 /* Update our notion of whether this mapping is shared or
661 private based on a trustworthy value. */
662 private_p = !v->shared_mapping;
663
664 /* HugeTLB checking. */
665 if (v->uses_huge_tlb)
666 {
667 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
668 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
669 return 1;
670
671 return 0;
672 }
673 }
674
675 if (private_p)
676 {
677 if (mapping_anon_p && mapping_file_p)
678 {
679 /* This is a special situation. It can happen when we see a
680 mapping that is file-backed, but that contains anonymous
681 pages. */
682 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
683 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
684 }
685 else if (mapping_anon_p)
686 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
687 else
688 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
689 }
690 else
691 {
692 if (mapping_anon_p && mapping_file_p)
693 {
694 /* This is a special situation. It can happen when we see a
695 mapping that is file-backed, but that contains anonymous
696 pages. */
697 return ((filterflags & COREFILTER_ANON_SHARED) != 0
698 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
699 }
700 else if (mapping_anon_p)
701 return (filterflags & COREFILTER_ANON_SHARED) != 0;
702 else
703 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
704 }
705 }
706
707 /* Implement the "info proc" command. */
708
709 static void
710 linux_info_proc (struct gdbarch *gdbarch, const char *args,
711 enum info_proc_what what)
712 {
713 /* A long is used for pid instead of an int to avoid a loss of precision
714 compiler warning from the output of strtoul. */
715 long pid;
716 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
717 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
718 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
719 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
720 int status_f = (what == IP_STATUS || what == IP_ALL);
721 int stat_f = (what == IP_STAT || what == IP_ALL);
722 char filename[100];
723 char *data;
724 int target_errno;
725
726 if (args && isdigit (args[0]))
727 {
728 char *tem;
729
730 pid = strtoul (args, &tem, 10);
731 args = tem;
732 }
733 else
734 {
735 if (!target_has_execution)
736 error (_("No current process: you must name one."));
737 if (current_inferior ()->fake_pid_p)
738 error (_("Can't determine the current process's PID: you must name one."));
739
740 pid = current_inferior ()->pid;
741 }
742
743 args = skip_spaces_const (args);
744 if (args && args[0])
745 error (_("Too many parameters: %s"), args);
746
747 printf_filtered (_("process %ld\n"), pid);
748 if (cmdline_f)
749 {
750 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
751 data = target_fileio_read_stralloc (NULL, filename);
752 if (data)
753 {
754 struct cleanup *cleanup = make_cleanup (xfree, data);
755 printf_filtered ("cmdline = '%s'\n", data);
756 do_cleanups (cleanup);
757 }
758 else
759 warning (_("unable to open /proc file '%s'"), filename);
760 }
761 if (cwd_f)
762 {
763 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
764 data = target_fileio_readlink (NULL, filename, &target_errno);
765 if (data)
766 {
767 struct cleanup *cleanup = make_cleanup (xfree, data);
768 printf_filtered ("cwd = '%s'\n", data);
769 do_cleanups (cleanup);
770 }
771 else
772 warning (_("unable to read link '%s'"), filename);
773 }
774 if (exe_f)
775 {
776 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
777 data = target_fileio_readlink (NULL, filename, &target_errno);
778 if (data)
779 {
780 struct cleanup *cleanup = make_cleanup (xfree, data);
781 printf_filtered ("exe = '%s'\n", data);
782 do_cleanups (cleanup);
783 }
784 else
785 warning (_("unable to read link '%s'"), filename);
786 }
787 if (mappings_f)
788 {
789 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
790 data = target_fileio_read_stralloc (NULL, filename);
791 if (data)
792 {
793 struct cleanup *cleanup = make_cleanup (xfree, data);
794 char *line;
795
796 printf_filtered (_("Mapped address spaces:\n\n"));
797 if (gdbarch_addr_bit (gdbarch) == 32)
798 {
799 printf_filtered ("\t%10s %10s %10s %10s %s\n",
800 "Start Addr",
801 " End Addr",
802 " Size", " Offset", "objfile");
803 }
804 else
805 {
806 printf_filtered (" %18s %18s %10s %10s %s\n",
807 "Start Addr",
808 " End Addr",
809 " Size", " Offset", "objfile");
810 }
811
812 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n"))
813 {
814 ULONGEST addr, endaddr, offset, inode;
815 const char *permissions, *device, *filename;
816 size_t permissions_len, device_len;
817
818 read_mapping (line, &addr, &endaddr,
819 &permissions, &permissions_len,
820 &offset, &device, &device_len,
821 &inode, &filename);
822
823 if (gdbarch_addr_bit (gdbarch) == 32)
824 {
825 printf_filtered ("\t%10s %10s %10s %10s %s\n",
826 paddress (gdbarch, addr),
827 paddress (gdbarch, endaddr),
828 hex_string (endaddr - addr),
829 hex_string (offset),
830 *filename? filename : "");
831 }
832 else
833 {
834 printf_filtered (" %18s %18s %10s %10s %s\n",
835 paddress (gdbarch, addr),
836 paddress (gdbarch, endaddr),
837 hex_string (endaddr - addr),
838 hex_string (offset),
839 *filename? filename : "");
840 }
841 }
842
843 do_cleanups (cleanup);
844 }
845 else
846 warning (_("unable to open /proc file '%s'"), filename);
847 }
848 if (status_f)
849 {
850 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
851 data = target_fileio_read_stralloc (NULL, filename);
852 if (data)
853 {
854 struct cleanup *cleanup = make_cleanup (xfree, data);
855 puts_filtered (data);
856 do_cleanups (cleanup);
857 }
858 else
859 warning (_("unable to open /proc file '%s'"), filename);
860 }
861 if (stat_f)
862 {
863 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
864 data = target_fileio_read_stralloc (NULL, filename);
865 if (data)
866 {
867 struct cleanup *cleanup = make_cleanup (xfree, data);
868 const char *p = data;
869
870 printf_filtered (_("Process: %s\n"),
871 pulongest (strtoulst (p, &p, 10)));
872
873 p = skip_spaces_const (p);
874 if (*p == '(')
875 {
876 /* ps command also relies on no trailing fields
877 ever contain ')'. */
878 const char *ep = strrchr (p, ')');
879 if (ep != NULL)
880 {
881 printf_filtered ("Exec file: %.*s\n",
882 (int) (ep - p - 1), p + 1);
883 p = ep + 1;
884 }
885 }
886
887 p = skip_spaces_const (p);
888 if (*p)
889 printf_filtered (_("State: %c\n"), *p++);
890
891 if (*p)
892 printf_filtered (_("Parent process: %s\n"),
893 pulongest (strtoulst (p, &p, 10)));
894 if (*p)
895 printf_filtered (_("Process group: %s\n"),
896 pulongest (strtoulst (p, &p, 10)));
897 if (*p)
898 printf_filtered (_("Session id: %s\n"),
899 pulongest (strtoulst (p, &p, 10)));
900 if (*p)
901 printf_filtered (_("TTY: %s\n"),
902 pulongest (strtoulst (p, &p, 10)));
903 if (*p)
904 printf_filtered (_("TTY owner process group: %s\n"),
905 pulongest (strtoulst (p, &p, 10)));
906
907 if (*p)
908 printf_filtered (_("Flags: %s\n"),
909 hex_string (strtoulst (p, &p, 10)));
910 if (*p)
911 printf_filtered (_("Minor faults (no memory page): %s\n"),
912 pulongest (strtoulst (p, &p, 10)));
913 if (*p)
914 printf_filtered (_("Minor faults, children: %s\n"),
915 pulongest (strtoulst (p, &p, 10)));
916 if (*p)
917 printf_filtered (_("Major faults (memory page faults): %s\n"),
918 pulongest (strtoulst (p, &p, 10)));
919 if (*p)
920 printf_filtered (_("Major faults, children: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("utime: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("stime: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("utime, children: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("stime, children: %s\n"),
933 pulongest (strtoulst (p, &p, 10)));
934 if (*p)
935 printf_filtered (_("jiffies remaining in current "
936 "time slice: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("'nice' value: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("jiffies until next timeout: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947 if (*p)
948 printf_filtered (_("start time (jiffies since "
949 "system boot): %s\n"),
950 pulongest (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Virtual memory size: %s\n"),
953 pulongest (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Resident set size: %s\n"),
956 pulongest (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("rlim: %s\n"),
959 pulongest (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("Start of text: %s\n"),
962 hex_string (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("End of text: %s\n"),
965 hex_string (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("Start of stack: %s\n"),
968 hex_string (strtoulst (p, &p, 10)));
969 #if 0 /* Don't know how architecture-dependent the rest is...
970 Anyway the signal bitmap info is available from "status". */
971 if (*p)
972 printf_filtered (_("Kernel stack pointer: %s\n"),
973 hex_string (strtoulst (p, &p, 10)));
974 if (*p)
975 printf_filtered (_("Kernel instr pointer: %s\n"),
976 hex_string (strtoulst (p, &p, 10)));
977 if (*p)
978 printf_filtered (_("Pending signals bitmap: %s\n"),
979 hex_string (strtoulst (p, &p, 10)));
980 if (*p)
981 printf_filtered (_("Blocked signals bitmap: %s\n"),
982 hex_string (strtoulst (p, &p, 10)));
983 if (*p)
984 printf_filtered (_("Ignored signals bitmap: %s\n"),
985 hex_string (strtoulst (p, &p, 10)));
986 if (*p)
987 printf_filtered (_("Catched signals bitmap: %s\n"),
988 hex_string (strtoulst (p, &p, 10)));
989 if (*p)
990 printf_filtered (_("wchan (system call): %s\n"),
991 hex_string (strtoulst (p, &p, 10)));
992 #endif
993 do_cleanups (cleanup);
994 }
995 else
996 warning (_("unable to open /proc file '%s'"), filename);
997 }
998 }
999
1000 /* Implement "info proc mappings" for a corefile. */
1001
1002 static void
1003 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1004 {
1005 asection *section;
1006 ULONGEST count, page_size;
1007 unsigned char *descdata, *filenames, *descend, *contents;
1008 size_t note_size;
1009 unsigned int addr_size_bits, addr_size;
1010 struct cleanup *cleanup;
1011 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1012 /* We assume this for reading 64-bit core files. */
1013 gdb_static_assert (sizeof (ULONGEST) >= 8);
1014
1015 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1016 if (section == NULL)
1017 {
1018 warning (_("unable to find mappings in core file"));
1019 return;
1020 }
1021
1022 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1023 addr_size = addr_size_bits / 8;
1024 note_size = bfd_get_section_size (section);
1025
1026 if (note_size < 2 * addr_size)
1027 error (_("malformed core note - too short for header"));
1028
1029 contents = (unsigned char *) xmalloc (note_size);
1030 cleanup = make_cleanup (xfree, contents);
1031 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
1032 error (_("could not get core note contents"));
1033
1034 descdata = contents;
1035 descend = descdata + note_size;
1036
1037 if (descdata[note_size - 1] != '\0')
1038 error (_("malformed note - does not end with \\0"));
1039
1040 count = bfd_get (addr_size_bits, core_bfd, descdata);
1041 descdata += addr_size;
1042
1043 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1044 descdata += addr_size;
1045
1046 if (note_size < 2 * addr_size + count * 3 * addr_size)
1047 error (_("malformed note - too short for supplied file count"));
1048
1049 printf_filtered (_("Mapped address spaces:\n\n"));
1050 if (gdbarch_addr_bit (gdbarch) == 32)
1051 {
1052 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1053 "Start Addr",
1054 " End Addr",
1055 " Size", " Offset", "objfile");
1056 }
1057 else
1058 {
1059 printf_filtered (" %18s %18s %10s %10s %s\n",
1060 "Start Addr",
1061 " End Addr",
1062 " Size", " Offset", "objfile");
1063 }
1064
1065 filenames = descdata + count * 3 * addr_size;
1066 while (--count > 0)
1067 {
1068 ULONGEST start, end, file_ofs;
1069
1070 if (filenames == descend)
1071 error (_("malformed note - filenames end too early"));
1072
1073 start = bfd_get (addr_size_bits, core_bfd, descdata);
1074 descdata += addr_size;
1075 end = bfd_get (addr_size_bits, core_bfd, descdata);
1076 descdata += addr_size;
1077 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1078 descdata += addr_size;
1079
1080 file_ofs *= page_size;
1081
1082 if (gdbarch_addr_bit (gdbarch) == 32)
1083 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1084 paddress (gdbarch, start),
1085 paddress (gdbarch, end),
1086 hex_string (end - start),
1087 hex_string (file_ofs),
1088 filenames);
1089 else
1090 printf_filtered (" %18s %18s %10s %10s %s\n",
1091 paddress (gdbarch, start),
1092 paddress (gdbarch, end),
1093 hex_string (end - start),
1094 hex_string (file_ofs),
1095 filenames);
1096
1097 filenames += 1 + strlen ((char *) filenames);
1098 }
1099
1100 do_cleanups (cleanup);
1101 }
1102
1103 /* Implement "info proc" for a corefile. */
1104
1105 static void
1106 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1107 enum info_proc_what what)
1108 {
1109 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1110 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1111
1112 if (exe_f)
1113 {
1114 const char *exe;
1115
1116 exe = bfd_core_file_failing_command (core_bfd);
1117 if (exe != NULL)
1118 printf_filtered ("exe = '%s'\n", exe);
1119 else
1120 warning (_("unable to find command name in core file"));
1121 }
1122
1123 if (mappings_f)
1124 linux_core_info_proc_mappings (gdbarch, args);
1125
1126 if (!exe_f && !mappings_f)
1127 error (_("unable to handle request"));
1128 }
1129
1130 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1131 ULONGEST offset, ULONGEST inode,
1132 int read, int write,
1133 int exec, int modified,
1134 const char *filename,
1135 void *data);
1136
1137 /* List memory regions in the inferior for a corefile. */
1138
1139 static int
1140 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1141 linux_find_memory_region_ftype *func,
1142 void *obfd)
1143 {
1144 char mapsfilename[100];
1145 char coredumpfilter_name[100];
1146 char *data, *coredumpfilterdata;
1147 pid_t pid;
1148 /* Default dump behavior of coredump_filter (0x33), according to
1149 Documentation/filesystems/proc.txt from the Linux kernel
1150 tree. */
1151 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1152 | COREFILTER_ANON_SHARED
1153 | COREFILTER_ELF_HEADERS
1154 | COREFILTER_HUGETLB_PRIVATE);
1155
1156 /* We need to know the real target PID to access /proc. */
1157 if (current_inferior ()->fake_pid_p)
1158 return 1;
1159
1160 pid = current_inferior ()->pid;
1161
1162 if (use_coredump_filter)
1163 {
1164 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1165 "/proc/%d/coredump_filter", pid);
1166 coredumpfilterdata = target_fileio_read_stralloc (NULL,
1167 coredumpfilter_name);
1168 if (coredumpfilterdata != NULL)
1169 {
1170 unsigned int flags;
1171
1172 sscanf (coredumpfilterdata, "%x", &flags);
1173 filterflags = (enum filter_flag) flags;
1174 xfree (coredumpfilterdata);
1175 }
1176 }
1177
1178 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1179 data = target_fileio_read_stralloc (NULL, mapsfilename);
1180 if (data == NULL)
1181 {
1182 /* Older Linux kernels did not support /proc/PID/smaps. */
1183 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1184 data = target_fileio_read_stralloc (NULL, mapsfilename);
1185 }
1186
1187 if (data != NULL)
1188 {
1189 struct cleanup *cleanup = make_cleanup (xfree, data);
1190 char *line, *t;
1191
1192 line = strtok_r (data, "\n", &t);
1193 while (line != NULL)
1194 {
1195 ULONGEST addr, endaddr, offset, inode;
1196 const char *permissions, *device, *filename;
1197 struct smaps_vmflags v;
1198 size_t permissions_len, device_len;
1199 int read, write, exec, priv;
1200 int has_anonymous = 0;
1201 int should_dump_p = 0;
1202 int mapping_anon_p;
1203 int mapping_file_p;
1204
1205 memset (&v, 0, sizeof (v));
1206 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1207 &offset, &device, &device_len, &inode, &filename);
1208 mapping_anon_p = mapping_is_anonymous_p (filename);
1209 /* If the mapping is not anonymous, then we can consider it
1210 to be file-backed. These two states (anonymous or
1211 file-backed) seem to be exclusive, but they can actually
1212 coexist. For example, if a file-backed mapping has
1213 "Anonymous:" pages (see more below), then the Linux
1214 kernel will dump this mapping when the user specified
1215 that she only wants anonymous mappings in the corefile
1216 (*even* when she explicitly disabled the dumping of
1217 file-backed mappings). */
1218 mapping_file_p = !mapping_anon_p;
1219
1220 /* Decode permissions. */
1221 read = (memchr (permissions, 'r', permissions_len) != 0);
1222 write = (memchr (permissions, 'w', permissions_len) != 0);
1223 exec = (memchr (permissions, 'x', permissions_len) != 0);
1224 /* 'private' here actually means VM_MAYSHARE, and not
1225 VM_SHARED. In order to know if a mapping is really
1226 private or not, we must check the flag "sh" in the
1227 VmFlags field. This is done by decode_vmflags. However,
1228 if we are using a Linux kernel released before the commit
1229 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1230 not have the VmFlags there. In this case, there is
1231 really no way to know if we are dealing with VM_SHARED,
1232 so we just assume that VM_MAYSHARE is enough. */
1233 priv = memchr (permissions, 'p', permissions_len) != 0;
1234
1235 /* Try to detect if region should be dumped by parsing smaps
1236 counters. */
1237 for (line = strtok_r (NULL, "\n", &t);
1238 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1239 line = strtok_r (NULL, "\n", &t))
1240 {
1241 char keyword[64 + 1];
1242
1243 if (sscanf (line, "%64s", keyword) != 1)
1244 {
1245 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1246 break;
1247 }
1248
1249 if (strcmp (keyword, "Anonymous:") == 0)
1250 {
1251 /* Older Linux kernels did not support the
1252 "Anonymous:" counter. Check it here. */
1253 has_anonymous = 1;
1254 }
1255 else if (strcmp (keyword, "VmFlags:") == 0)
1256 decode_vmflags (line, &v);
1257
1258 if (strcmp (keyword, "AnonHugePages:") == 0
1259 || strcmp (keyword, "Anonymous:") == 0)
1260 {
1261 unsigned long number;
1262
1263 if (sscanf (line, "%*s%lu", &number) != 1)
1264 {
1265 warning (_("Error parsing {s,}maps file '%s' number"),
1266 mapsfilename);
1267 break;
1268 }
1269 if (number > 0)
1270 {
1271 /* Even if we are dealing with a file-backed
1272 mapping, if it contains anonymous pages we
1273 consider it to be *also* an anonymous
1274 mapping, because this is what the Linux
1275 kernel does:
1276
1277 // Dump segments that have been written to.
1278 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1279 goto whole;
1280
1281 Note that if the mapping is already marked as
1282 file-backed (i.e., mapping_file_p is
1283 non-zero), then this is a special case, and
1284 this mapping will be dumped either when the
1285 user wants to dump file-backed *or* anonymous
1286 mappings. */
1287 mapping_anon_p = 1;
1288 }
1289 }
1290 }
1291
1292 if (has_anonymous)
1293 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1294 mapping_anon_p, mapping_file_p,
1295 filename);
1296 else
1297 {
1298 /* Older Linux kernels did not support the "Anonymous:" counter.
1299 If it is missing, we can't be sure - dump all the pages. */
1300 should_dump_p = 1;
1301 }
1302
1303 /* Invoke the callback function to create the corefile segment. */
1304 if (should_dump_p)
1305 func (addr, endaddr - addr, offset, inode,
1306 read, write, exec, 1, /* MODIFIED is true because we
1307 want to dump the mapping. */
1308 filename, obfd);
1309 }
1310
1311 do_cleanups (cleanup);
1312 return 0;
1313 }
1314
1315 return 1;
1316 }
1317
1318 /* A structure for passing information through
1319 linux_find_memory_regions_full. */
1320
1321 struct linux_find_memory_regions_data
1322 {
1323 /* The original callback. */
1324
1325 find_memory_region_ftype func;
1326
1327 /* The original datum. */
1328
1329 void *obfd;
1330 };
1331
1332 /* A callback for linux_find_memory_regions that converts between the
1333 "full"-style callback and find_memory_region_ftype. */
1334
1335 static int
1336 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1337 ULONGEST offset, ULONGEST inode,
1338 int read, int write, int exec, int modified,
1339 const char *filename, void *arg)
1340 {
1341 struct linux_find_memory_regions_data *data
1342 = (struct linux_find_memory_regions_data *) arg;
1343
1344 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1345 }
1346
1347 /* A variant of linux_find_memory_regions_full that is suitable as the
1348 gdbarch find_memory_regions method. */
1349
1350 static int
1351 linux_find_memory_regions (struct gdbarch *gdbarch,
1352 find_memory_region_ftype func, void *obfd)
1353 {
1354 struct linux_find_memory_regions_data data;
1355
1356 data.func = func;
1357 data.obfd = obfd;
1358
1359 return linux_find_memory_regions_full (gdbarch,
1360 linux_find_memory_regions_thunk,
1361 &data);
1362 }
1363
1364 /* Determine which signal stopped execution. */
1365
1366 static int
1367 find_signalled_thread (struct thread_info *info, void *data)
1368 {
1369 if (info->suspend.stop_signal != GDB_SIGNAL_0
1370 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1371 return 1;
1372
1373 return 0;
1374 }
1375
1376 /* Generate corefile notes for SPU contexts. */
1377
1378 static char *
1379 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1380 {
1381 static const char *spu_files[] =
1382 {
1383 "object-id",
1384 "mem",
1385 "regs",
1386 "fpcr",
1387 "lslr",
1388 "decr",
1389 "decr_status",
1390 "signal1",
1391 "signal1_type",
1392 "signal2",
1393 "signal2_type",
1394 "event_mask",
1395 "event_status",
1396 "mbox_info",
1397 "ibox_info",
1398 "wbox_info",
1399 "dma_info",
1400 "proxydma_info",
1401 };
1402
1403 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1404 gdb_byte *spu_ids;
1405 LONGEST i, j, size;
1406
1407 /* Determine list of SPU ids. */
1408 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1409 NULL, &spu_ids);
1410
1411 /* Generate corefile notes for each SPU file. */
1412 for (i = 0; i < size; i += 4)
1413 {
1414 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1415
1416 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1417 {
1418 char annex[32], note_name[32];
1419 gdb_byte *spu_data;
1420 LONGEST spu_len;
1421
1422 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1423 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1424 annex, &spu_data);
1425 if (spu_len > 0)
1426 {
1427 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1428 note_data = elfcore_write_note (obfd, note_data, note_size,
1429 note_name, NT_SPU,
1430 spu_data, spu_len);
1431 xfree (spu_data);
1432
1433 if (!note_data)
1434 {
1435 xfree (spu_ids);
1436 return NULL;
1437 }
1438 }
1439 }
1440 }
1441
1442 if (size > 0)
1443 xfree (spu_ids);
1444
1445 return note_data;
1446 }
1447
1448 /* This is used to pass information from
1449 linux_make_mappings_corefile_notes through
1450 linux_find_memory_regions_full. */
1451
1452 struct linux_make_mappings_data
1453 {
1454 /* Number of files mapped. */
1455 ULONGEST file_count;
1456
1457 /* The obstack for the main part of the data. */
1458 struct obstack *data_obstack;
1459
1460 /* The filename obstack. */
1461 struct obstack *filename_obstack;
1462
1463 /* The architecture's "long" type. */
1464 struct type *long_type;
1465 };
1466
1467 static linux_find_memory_region_ftype linux_make_mappings_callback;
1468
1469 /* A callback for linux_find_memory_regions_full that updates the
1470 mappings data for linux_make_mappings_corefile_notes. */
1471
1472 static int
1473 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1474 ULONGEST offset, ULONGEST inode,
1475 int read, int write, int exec, int modified,
1476 const char *filename, void *data)
1477 {
1478 struct linux_make_mappings_data *map_data
1479 = (struct linux_make_mappings_data *) data;
1480 gdb_byte buf[sizeof (ULONGEST)];
1481
1482 if (*filename == '\0' || inode == 0)
1483 return 0;
1484
1485 ++map_data->file_count;
1486
1487 pack_long (buf, map_data->long_type, vaddr);
1488 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1489 pack_long (buf, map_data->long_type, vaddr + size);
1490 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1491 pack_long (buf, map_data->long_type, offset);
1492 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1493
1494 obstack_grow_str0 (map_data->filename_obstack, filename);
1495
1496 return 0;
1497 }
1498
1499 /* Write the file mapping data to the core file, if possible. OBFD is
1500 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1501 is a pointer to the note size. Returns the new NOTE_DATA and
1502 updates NOTE_SIZE. */
1503
1504 static char *
1505 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1506 char *note_data, int *note_size)
1507 {
1508 struct cleanup *cleanup;
1509 struct linux_make_mappings_data mapping_data;
1510 struct type *long_type
1511 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1512 gdb_byte buf[sizeof (ULONGEST)];
1513
1514 auto_obstack data_obstack, filename_obstack;
1515
1516 mapping_data.file_count = 0;
1517 mapping_data.data_obstack = &data_obstack;
1518 mapping_data.filename_obstack = &filename_obstack;
1519 mapping_data.long_type = long_type;
1520
1521 /* Reserve space for the count. */
1522 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1523 /* We always write the page size as 1 since we have no good way to
1524 determine the correct value. */
1525 pack_long (buf, long_type, 1);
1526 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1527
1528 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1529 &mapping_data);
1530
1531 if (mapping_data.file_count != 0)
1532 {
1533 /* Write the count to the obstack. */
1534 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1535 long_type, mapping_data.file_count);
1536
1537 /* Copy the filenames to the data obstack. */
1538 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1539 obstack_object_size (&filename_obstack));
1540
1541 note_data = elfcore_write_note (obfd, note_data, note_size,
1542 "CORE", NT_FILE,
1543 obstack_base (&data_obstack),
1544 obstack_object_size (&data_obstack));
1545 }
1546
1547 return note_data;
1548 }
1549
1550 /* Structure for passing information from
1551 linux_collect_thread_registers via an iterator to
1552 linux_collect_regset_section_cb. */
1553
1554 struct linux_collect_regset_section_cb_data
1555 {
1556 struct gdbarch *gdbarch;
1557 const struct regcache *regcache;
1558 bfd *obfd;
1559 char *note_data;
1560 int *note_size;
1561 unsigned long lwp;
1562 enum gdb_signal stop_signal;
1563 int abort_iteration;
1564 };
1565
1566 /* Callback for iterate_over_regset_sections that records a single
1567 regset in the corefile note section. */
1568
1569 static void
1570 linux_collect_regset_section_cb (const char *sect_name, int size,
1571 const struct regset *regset,
1572 const char *human_name, void *cb_data)
1573 {
1574 char *buf;
1575 struct linux_collect_regset_section_cb_data *data
1576 = (struct linux_collect_regset_section_cb_data *) cb_data;
1577
1578 if (data->abort_iteration)
1579 return;
1580
1581 gdb_assert (regset && regset->collect_regset);
1582
1583 buf = (char *) xmalloc (size);
1584 regset->collect_regset (regset, data->regcache, -1, buf, size);
1585
1586 /* PRSTATUS still needs to be treated specially. */
1587 if (strcmp (sect_name, ".reg") == 0)
1588 data->note_data = (char *) elfcore_write_prstatus
1589 (data->obfd, data->note_data, data->note_size, data->lwp,
1590 gdb_signal_to_host (data->stop_signal), buf);
1591 else
1592 data->note_data = (char *) elfcore_write_register_note
1593 (data->obfd, data->note_data, data->note_size,
1594 sect_name, buf, size);
1595 xfree (buf);
1596
1597 if (data->note_data == NULL)
1598 data->abort_iteration = 1;
1599 }
1600
1601 /* Records the thread's register state for the corefile note
1602 section. */
1603
1604 static char *
1605 linux_collect_thread_registers (const struct regcache *regcache,
1606 ptid_t ptid, bfd *obfd,
1607 char *note_data, int *note_size,
1608 enum gdb_signal stop_signal)
1609 {
1610 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1611 struct linux_collect_regset_section_cb_data data;
1612
1613 data.gdbarch = gdbarch;
1614 data.regcache = regcache;
1615 data.obfd = obfd;
1616 data.note_data = note_data;
1617 data.note_size = note_size;
1618 data.stop_signal = stop_signal;
1619 data.abort_iteration = 0;
1620
1621 /* For remote targets the LWP may not be available, so use the TID. */
1622 data.lwp = ptid_get_lwp (ptid);
1623 if (!data.lwp)
1624 data.lwp = ptid_get_tid (ptid);
1625
1626 gdbarch_iterate_over_regset_sections (gdbarch,
1627 linux_collect_regset_section_cb,
1628 &data, regcache);
1629 return data.note_data;
1630 }
1631
1632 /* Fetch the siginfo data for the current thread, if it exists. If
1633 there is no data, or we could not read it, return NULL. Otherwise,
1634 return a newly malloc'd buffer holding the data and fill in *SIZE
1635 with the size of the data. The caller is responsible for freeing
1636 the data. */
1637
1638 static gdb_byte *
1639 linux_get_siginfo_data (struct gdbarch *gdbarch, LONGEST *size)
1640 {
1641 struct type *siginfo_type;
1642 gdb_byte *buf;
1643 LONGEST bytes_read;
1644 struct cleanup *cleanups;
1645
1646 if (!gdbarch_get_siginfo_type_p (gdbarch))
1647 return NULL;
1648
1649 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1650
1651 buf = (gdb_byte *) xmalloc (TYPE_LENGTH (siginfo_type));
1652 cleanups = make_cleanup (xfree, buf);
1653
1654 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1655 buf, 0, TYPE_LENGTH (siginfo_type));
1656 if (bytes_read == TYPE_LENGTH (siginfo_type))
1657 {
1658 discard_cleanups (cleanups);
1659 *size = bytes_read;
1660 }
1661 else
1662 {
1663 do_cleanups (cleanups);
1664 buf = NULL;
1665 }
1666
1667 return buf;
1668 }
1669
1670 struct linux_corefile_thread_data
1671 {
1672 struct gdbarch *gdbarch;
1673 bfd *obfd;
1674 char *note_data;
1675 int *note_size;
1676 enum gdb_signal stop_signal;
1677 };
1678
1679 /* Records the thread's register state for the corefile note
1680 section. */
1681
1682 static void
1683 linux_corefile_thread (struct thread_info *info,
1684 struct linux_corefile_thread_data *args)
1685 {
1686 struct cleanup *old_chain;
1687 struct regcache *regcache;
1688 gdb_byte *siginfo_data;
1689 LONGEST siginfo_size = 0;
1690
1691 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1692
1693 old_chain = save_inferior_ptid ();
1694 inferior_ptid = info->ptid;
1695 target_fetch_registers (regcache, -1);
1696 siginfo_data = linux_get_siginfo_data (args->gdbarch, &siginfo_size);
1697 do_cleanups (old_chain);
1698
1699 old_chain = make_cleanup (xfree, siginfo_data);
1700
1701 args->note_data = linux_collect_thread_registers
1702 (regcache, info->ptid, args->obfd, args->note_data,
1703 args->note_size, args->stop_signal);
1704
1705 /* Don't return anything if we got no register information above,
1706 such a core file is useless. */
1707 if (args->note_data != NULL)
1708 if (siginfo_data != NULL)
1709 args->note_data = elfcore_write_note (args->obfd,
1710 args->note_data,
1711 args->note_size,
1712 "CORE", NT_SIGINFO,
1713 siginfo_data, siginfo_size);
1714
1715 do_cleanups (old_chain);
1716 }
1717
1718 /* Fill the PRPSINFO structure with information about the process being
1719 debugged. Returns 1 in case of success, 0 for failures. Please note that
1720 even if the structure cannot be entirely filled (e.g., GDB was unable to
1721 gather information about the process UID/GID), this function will still
1722 return 1 since some information was already recorded. It will only return
1723 0 iff nothing can be gathered. */
1724
1725 static int
1726 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1727 {
1728 /* The filename which we will use to obtain some info about the process.
1729 We will basically use this to store the `/proc/PID/FILENAME' file. */
1730 char filename[100];
1731 /* The full name of the program which generated the corefile. */
1732 char *fname;
1733 /* The basename of the executable. */
1734 const char *basename;
1735 /* The arguments of the program. */
1736 char *psargs;
1737 char *infargs;
1738 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */
1739 char *proc_stat, *proc_status;
1740 /* Temporary buffer. */
1741 char *tmpstr;
1742 /* The valid states of a process, according to the Linux kernel. */
1743 const char valid_states[] = "RSDTZW";
1744 /* The program state. */
1745 const char *prog_state;
1746 /* The state of the process. */
1747 char pr_sname;
1748 /* The PID of the program which generated the corefile. */
1749 pid_t pid;
1750 /* Process flags. */
1751 unsigned int pr_flag;
1752 /* Process nice value. */
1753 long pr_nice;
1754 /* The number of fields read by `sscanf'. */
1755 int n_fields = 0;
1756 /* Cleanups. */
1757 struct cleanup *c;
1758
1759 gdb_assert (p != NULL);
1760
1761 /* Obtaining PID and filename. */
1762 pid = ptid_get_pid (inferior_ptid);
1763 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1764 fname = target_fileio_read_stralloc (NULL, filename);
1765
1766 if (fname == NULL || *fname == '\0')
1767 {
1768 /* No program name was read, so we won't be able to retrieve more
1769 information about the process. */
1770 xfree (fname);
1771 return 0;
1772 }
1773
1774 c = make_cleanup (xfree, fname);
1775 memset (p, 0, sizeof (*p));
1776
1777 /* Defining the PID. */
1778 p->pr_pid = pid;
1779
1780 /* Copying the program name. Only the basename matters. */
1781 basename = lbasename (fname);
1782 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1783 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1784
1785 infargs = get_inferior_args ();
1786
1787 psargs = xstrdup (fname);
1788 if (infargs != NULL)
1789 psargs = reconcat (psargs, psargs, " ", infargs, (char *) NULL);
1790
1791 make_cleanup (xfree, psargs);
1792
1793 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs));
1794 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1795
1796 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1797 proc_stat = target_fileio_read_stralloc (NULL, filename);
1798 make_cleanup (xfree, proc_stat);
1799
1800 if (proc_stat == NULL || *proc_stat == '\0')
1801 {
1802 /* Despite being unable to read more information about the
1803 process, we return 1 here because at least we have its
1804 command line, PID and arguments. */
1805 do_cleanups (c);
1806 return 1;
1807 }
1808
1809 /* Ok, we have the stats. It's time to do a little parsing of the
1810 contents of the buffer, so that we end up reading what we want.
1811
1812 The following parsing mechanism is strongly based on the
1813 information generated by the `fs/proc/array.c' file, present in
1814 the Linux kernel tree. More details about how the information is
1815 displayed can be obtained by seeing the manpage of proc(5),
1816 specifically under the entry of `/proc/[pid]/stat'. */
1817
1818 /* Getting rid of the PID, since we already have it. */
1819 while (isdigit (*proc_stat))
1820 ++proc_stat;
1821
1822 proc_stat = skip_spaces (proc_stat);
1823
1824 /* ps command also relies on no trailing fields ever contain ')'. */
1825 proc_stat = strrchr (proc_stat, ')');
1826 if (proc_stat == NULL)
1827 {
1828 do_cleanups (c);
1829 return 1;
1830 }
1831 proc_stat++;
1832
1833 proc_stat = skip_spaces (proc_stat);
1834
1835 n_fields = sscanf (proc_stat,
1836 "%c" /* Process state. */
1837 "%d%d%d" /* Parent PID, group ID, session ID. */
1838 "%*d%*d" /* tty_nr, tpgid (not used). */
1839 "%u" /* Flags. */
1840 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1841 cmajflt (not used). */
1842 "%*s%*s%*s%*s" /* utime, stime, cutime,
1843 cstime (not used). */
1844 "%*s" /* Priority (not used). */
1845 "%ld", /* Nice. */
1846 &pr_sname,
1847 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1848 &pr_flag,
1849 &pr_nice);
1850
1851 if (n_fields != 6)
1852 {
1853 /* Again, we couldn't read the complementary information about
1854 the process state. However, we already have minimal
1855 information, so we just return 1 here. */
1856 do_cleanups (c);
1857 return 1;
1858 }
1859
1860 /* Filling the structure fields. */
1861 prog_state = strchr (valid_states, pr_sname);
1862 if (prog_state != NULL)
1863 p->pr_state = prog_state - valid_states;
1864 else
1865 {
1866 /* Zero means "Running". */
1867 p->pr_state = 0;
1868 }
1869
1870 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1871 p->pr_zomb = p->pr_sname == 'Z';
1872 p->pr_nice = pr_nice;
1873 p->pr_flag = pr_flag;
1874
1875 /* Finally, obtaining the UID and GID. For that, we read and parse the
1876 contents of the `/proc/PID/status' file. */
1877 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1878 proc_status = target_fileio_read_stralloc (NULL, filename);
1879 make_cleanup (xfree, proc_status);
1880
1881 if (proc_status == NULL || *proc_status == '\0')
1882 {
1883 /* Returning 1 since we already have a bunch of information. */
1884 do_cleanups (c);
1885 return 1;
1886 }
1887
1888 /* Extracting the UID. */
1889 tmpstr = strstr (proc_status, "Uid:");
1890 if (tmpstr != NULL)
1891 {
1892 /* Advancing the pointer to the beginning of the UID. */
1893 tmpstr += sizeof ("Uid:");
1894 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1895 ++tmpstr;
1896
1897 if (isdigit (*tmpstr))
1898 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1899 }
1900
1901 /* Extracting the GID. */
1902 tmpstr = strstr (proc_status, "Gid:");
1903 if (tmpstr != NULL)
1904 {
1905 /* Advancing the pointer to the beginning of the GID. */
1906 tmpstr += sizeof ("Gid:");
1907 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1908 ++tmpstr;
1909
1910 if (isdigit (*tmpstr))
1911 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1912 }
1913
1914 do_cleanups (c);
1915
1916 return 1;
1917 }
1918
1919 /* Build the note section for a corefile, and return it in a malloc
1920 buffer. */
1921
1922 static char *
1923 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1924 {
1925 struct linux_corefile_thread_data thread_args;
1926 struct elf_internal_linux_prpsinfo prpsinfo;
1927 char *note_data = NULL;
1928 gdb_byte *auxv;
1929 int auxv_len;
1930 struct thread_info *curr_thr, *signalled_thr, *thr;
1931
1932 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1933 return NULL;
1934
1935 if (linux_fill_prpsinfo (&prpsinfo))
1936 {
1937 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch))
1938 {
1939 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd,
1940 note_data, note_size,
1941 &prpsinfo);
1942 }
1943 else
1944 {
1945 if (gdbarch_ptr_bit (gdbarch) == 64)
1946 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1947 note_data, note_size,
1948 &prpsinfo);
1949 else
1950 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1951 note_data, note_size,
1952 &prpsinfo);
1953 }
1954 }
1955
1956 /* Thread register information. */
1957 TRY
1958 {
1959 update_thread_list ();
1960 }
1961 CATCH (e, RETURN_MASK_ERROR)
1962 {
1963 exception_print (gdb_stderr, e);
1964 }
1965 END_CATCH
1966
1967 /* Like the kernel, prefer dumping the signalled thread first.
1968 "First thread" is what tools use to infer the signalled thread.
1969 In case there's more than one signalled thread, prefer the
1970 current thread, if it is signalled. */
1971 curr_thr = inferior_thread ();
1972 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1973 signalled_thr = curr_thr;
1974 else
1975 {
1976 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1977 if (signalled_thr == NULL)
1978 signalled_thr = curr_thr;
1979 }
1980
1981 thread_args.gdbarch = gdbarch;
1982 thread_args.obfd = obfd;
1983 thread_args.note_data = note_data;
1984 thread_args.note_size = note_size;
1985 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1986
1987 linux_corefile_thread (signalled_thr, &thread_args);
1988 ALL_NON_EXITED_THREADS (thr)
1989 {
1990 if (thr == signalled_thr)
1991 continue;
1992 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
1993 continue;
1994
1995 linux_corefile_thread (thr, &thread_args);
1996 }
1997
1998 note_data = thread_args.note_data;
1999 if (!note_data)
2000 return NULL;
2001
2002 /* Auxillary vector. */
2003 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
2004 NULL, &auxv);
2005 if (auxv_len > 0)
2006 {
2007 note_data = elfcore_write_note (obfd, note_data, note_size,
2008 "CORE", NT_AUXV, auxv, auxv_len);
2009 xfree (auxv);
2010
2011 if (!note_data)
2012 return NULL;
2013 }
2014
2015 /* SPU information. */
2016 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2017 if (!note_data)
2018 return NULL;
2019
2020 /* File mappings. */
2021 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2022 note_data, note_size);
2023
2024 return note_data;
2025 }
2026
2027 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2028 gdbarch.h. This function is not static because it is exported to
2029 other -tdep files. */
2030
2031 enum gdb_signal
2032 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2033 {
2034 switch (signal)
2035 {
2036 case 0:
2037 return GDB_SIGNAL_0;
2038
2039 case LINUX_SIGHUP:
2040 return GDB_SIGNAL_HUP;
2041
2042 case LINUX_SIGINT:
2043 return GDB_SIGNAL_INT;
2044
2045 case LINUX_SIGQUIT:
2046 return GDB_SIGNAL_QUIT;
2047
2048 case LINUX_SIGILL:
2049 return GDB_SIGNAL_ILL;
2050
2051 case LINUX_SIGTRAP:
2052 return GDB_SIGNAL_TRAP;
2053
2054 case LINUX_SIGABRT:
2055 return GDB_SIGNAL_ABRT;
2056
2057 case LINUX_SIGBUS:
2058 return GDB_SIGNAL_BUS;
2059
2060 case LINUX_SIGFPE:
2061 return GDB_SIGNAL_FPE;
2062
2063 case LINUX_SIGKILL:
2064 return GDB_SIGNAL_KILL;
2065
2066 case LINUX_SIGUSR1:
2067 return GDB_SIGNAL_USR1;
2068
2069 case LINUX_SIGSEGV:
2070 return GDB_SIGNAL_SEGV;
2071
2072 case LINUX_SIGUSR2:
2073 return GDB_SIGNAL_USR2;
2074
2075 case LINUX_SIGPIPE:
2076 return GDB_SIGNAL_PIPE;
2077
2078 case LINUX_SIGALRM:
2079 return GDB_SIGNAL_ALRM;
2080
2081 case LINUX_SIGTERM:
2082 return GDB_SIGNAL_TERM;
2083
2084 case LINUX_SIGCHLD:
2085 return GDB_SIGNAL_CHLD;
2086
2087 case LINUX_SIGCONT:
2088 return GDB_SIGNAL_CONT;
2089
2090 case LINUX_SIGSTOP:
2091 return GDB_SIGNAL_STOP;
2092
2093 case LINUX_SIGTSTP:
2094 return GDB_SIGNAL_TSTP;
2095
2096 case LINUX_SIGTTIN:
2097 return GDB_SIGNAL_TTIN;
2098
2099 case LINUX_SIGTTOU:
2100 return GDB_SIGNAL_TTOU;
2101
2102 case LINUX_SIGURG:
2103 return GDB_SIGNAL_URG;
2104
2105 case LINUX_SIGXCPU:
2106 return GDB_SIGNAL_XCPU;
2107
2108 case LINUX_SIGXFSZ:
2109 return GDB_SIGNAL_XFSZ;
2110
2111 case LINUX_SIGVTALRM:
2112 return GDB_SIGNAL_VTALRM;
2113
2114 case LINUX_SIGPROF:
2115 return GDB_SIGNAL_PROF;
2116
2117 case LINUX_SIGWINCH:
2118 return GDB_SIGNAL_WINCH;
2119
2120 /* No way to differentiate between SIGIO and SIGPOLL.
2121 Therefore, we just handle the first one. */
2122 case LINUX_SIGIO:
2123 return GDB_SIGNAL_IO;
2124
2125 case LINUX_SIGPWR:
2126 return GDB_SIGNAL_PWR;
2127
2128 case LINUX_SIGSYS:
2129 return GDB_SIGNAL_SYS;
2130
2131 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2132 therefore we have to handle them here. */
2133 case LINUX_SIGRTMIN:
2134 return GDB_SIGNAL_REALTIME_32;
2135
2136 case LINUX_SIGRTMAX:
2137 return GDB_SIGNAL_REALTIME_64;
2138 }
2139
2140 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2141 {
2142 int offset = signal - LINUX_SIGRTMIN + 1;
2143
2144 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2145 }
2146
2147 return GDB_SIGNAL_UNKNOWN;
2148 }
2149
2150 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2151 gdbarch.h. This function is not static because it is exported to
2152 other -tdep files. */
2153
2154 int
2155 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2156 enum gdb_signal signal)
2157 {
2158 switch (signal)
2159 {
2160 case GDB_SIGNAL_0:
2161 return 0;
2162
2163 case GDB_SIGNAL_HUP:
2164 return LINUX_SIGHUP;
2165
2166 case GDB_SIGNAL_INT:
2167 return LINUX_SIGINT;
2168
2169 case GDB_SIGNAL_QUIT:
2170 return LINUX_SIGQUIT;
2171
2172 case GDB_SIGNAL_ILL:
2173 return LINUX_SIGILL;
2174
2175 case GDB_SIGNAL_TRAP:
2176 return LINUX_SIGTRAP;
2177
2178 case GDB_SIGNAL_ABRT:
2179 return LINUX_SIGABRT;
2180
2181 case GDB_SIGNAL_FPE:
2182 return LINUX_SIGFPE;
2183
2184 case GDB_SIGNAL_KILL:
2185 return LINUX_SIGKILL;
2186
2187 case GDB_SIGNAL_BUS:
2188 return LINUX_SIGBUS;
2189
2190 case GDB_SIGNAL_SEGV:
2191 return LINUX_SIGSEGV;
2192
2193 case GDB_SIGNAL_SYS:
2194 return LINUX_SIGSYS;
2195
2196 case GDB_SIGNAL_PIPE:
2197 return LINUX_SIGPIPE;
2198
2199 case GDB_SIGNAL_ALRM:
2200 return LINUX_SIGALRM;
2201
2202 case GDB_SIGNAL_TERM:
2203 return LINUX_SIGTERM;
2204
2205 case GDB_SIGNAL_URG:
2206 return LINUX_SIGURG;
2207
2208 case GDB_SIGNAL_STOP:
2209 return LINUX_SIGSTOP;
2210
2211 case GDB_SIGNAL_TSTP:
2212 return LINUX_SIGTSTP;
2213
2214 case GDB_SIGNAL_CONT:
2215 return LINUX_SIGCONT;
2216
2217 case GDB_SIGNAL_CHLD:
2218 return LINUX_SIGCHLD;
2219
2220 case GDB_SIGNAL_TTIN:
2221 return LINUX_SIGTTIN;
2222
2223 case GDB_SIGNAL_TTOU:
2224 return LINUX_SIGTTOU;
2225
2226 case GDB_SIGNAL_IO:
2227 return LINUX_SIGIO;
2228
2229 case GDB_SIGNAL_XCPU:
2230 return LINUX_SIGXCPU;
2231
2232 case GDB_SIGNAL_XFSZ:
2233 return LINUX_SIGXFSZ;
2234
2235 case GDB_SIGNAL_VTALRM:
2236 return LINUX_SIGVTALRM;
2237
2238 case GDB_SIGNAL_PROF:
2239 return LINUX_SIGPROF;
2240
2241 case GDB_SIGNAL_WINCH:
2242 return LINUX_SIGWINCH;
2243
2244 case GDB_SIGNAL_USR1:
2245 return LINUX_SIGUSR1;
2246
2247 case GDB_SIGNAL_USR2:
2248 return LINUX_SIGUSR2;
2249
2250 case GDB_SIGNAL_PWR:
2251 return LINUX_SIGPWR;
2252
2253 case GDB_SIGNAL_POLL:
2254 return LINUX_SIGPOLL;
2255
2256 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2257 therefore we have to handle it here. */
2258 case GDB_SIGNAL_REALTIME_32:
2259 return LINUX_SIGRTMIN;
2260
2261 /* Same comment applies to _64. */
2262 case GDB_SIGNAL_REALTIME_64:
2263 return LINUX_SIGRTMAX;
2264 }
2265
2266 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2267 if (signal >= GDB_SIGNAL_REALTIME_33
2268 && signal <= GDB_SIGNAL_REALTIME_63)
2269 {
2270 int offset = signal - GDB_SIGNAL_REALTIME_33;
2271
2272 return LINUX_SIGRTMIN + 1 + offset;
2273 }
2274
2275 return -1;
2276 }
2277
2278 /* Helper for linux_vsyscall_range that does the real work of finding
2279 the vsyscall's address range. */
2280
2281 static int
2282 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2283 {
2284 char filename[100];
2285 long pid;
2286 char *data;
2287
2288 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2289 return 0;
2290
2291 /* It doesn't make sense to access the host's /proc when debugging a
2292 core file. Instead, look for the PT_LOAD segment that matches
2293 the vDSO. */
2294 if (!target_has_execution)
2295 {
2296 Elf_Internal_Phdr *phdrs;
2297 long phdrs_size;
2298 int num_phdrs, i;
2299
2300 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2301 if (phdrs_size == -1)
2302 return 0;
2303
2304 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
2305 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs);
2306 if (num_phdrs == -1)
2307 return 0;
2308
2309 for (i = 0; i < num_phdrs; i++)
2310 if (phdrs[i].p_type == PT_LOAD
2311 && phdrs[i].p_vaddr == range->start)
2312 {
2313 range->length = phdrs[i].p_memsz;
2314 return 1;
2315 }
2316
2317 return 0;
2318 }
2319
2320 /* We need to know the real target PID to access /proc. */
2321 if (current_inferior ()->fake_pid_p)
2322 return 0;
2323
2324 pid = current_inferior ()->pid;
2325
2326 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2327 reading /proc/PID/maps (2). The later identifies thread stacks
2328 in the output, which requires scanning every thread in the thread
2329 group to check whether a VMA is actually a thread's stack. With
2330 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2331 a few thousand threads, (1) takes a few miliseconds, while (2)
2332 takes several seconds. Also note that "smaps", what we read for
2333 determining core dump mappings, is even slower than "maps". */
2334 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2335 data = target_fileio_read_stralloc (NULL, filename);
2336 if (data != NULL)
2337 {
2338 struct cleanup *cleanup = make_cleanup (xfree, data);
2339 char *line;
2340 char *saveptr = NULL;
2341
2342 for (line = strtok_r (data, "\n", &saveptr);
2343 line != NULL;
2344 line = strtok_r (NULL, "\n", &saveptr))
2345 {
2346 ULONGEST addr, endaddr;
2347 const char *p = line;
2348
2349 addr = strtoulst (p, &p, 16);
2350 if (addr == range->start)
2351 {
2352 if (*p == '-')
2353 p++;
2354 endaddr = strtoulst (p, &p, 16);
2355 range->length = endaddr - addr;
2356 do_cleanups (cleanup);
2357 return 1;
2358 }
2359 }
2360
2361 do_cleanups (cleanup);
2362 }
2363 else
2364 warning (_("unable to open /proc file '%s'"), filename);
2365
2366 return 0;
2367 }
2368
2369 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2370 caching, and defers the real work to linux_vsyscall_range_raw. */
2371
2372 static int
2373 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2374 {
2375 struct linux_info *info = get_linux_inferior_data ();
2376
2377 if (info->vsyscall_range_p == 0)
2378 {
2379 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2380 info->vsyscall_range_p = 1;
2381 else
2382 info->vsyscall_range_p = -1;
2383 }
2384
2385 if (info->vsyscall_range_p < 0)
2386 return 0;
2387
2388 *range = info->vsyscall_range;
2389 return 1;
2390 }
2391
2392 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2393 definitions would be dependent on compilation host. */
2394 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2395 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2396
2397 /* See gdbarch.sh 'infcall_mmap'. */
2398
2399 static CORE_ADDR
2400 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2401 {
2402 struct objfile *objf;
2403 /* Do there still exist any Linux systems without "mmap64"?
2404 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2405 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2406 struct value *addr_val;
2407 struct gdbarch *gdbarch = get_objfile_arch (objf);
2408 CORE_ADDR retval;
2409 enum
2410 {
2411 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2412 };
2413 struct value *arg[ARG_LAST];
2414
2415 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2416 0);
2417 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2418 arg[ARG_LENGTH] = value_from_ulongest
2419 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2420 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2421 | GDB_MMAP_PROT_EXEC))
2422 == 0);
2423 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2424 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2425 GDB_MMAP_MAP_PRIVATE
2426 | GDB_MMAP_MAP_ANONYMOUS);
2427 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2428 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2429 0);
2430 addr_val = call_function_by_hand (mmap_val, ARG_LAST, arg);
2431 retval = value_as_address (addr_val);
2432 if (retval == (CORE_ADDR) -1)
2433 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2434 pulongest (size));
2435 return retval;
2436 }
2437
2438 /* See gdbarch.sh 'infcall_munmap'. */
2439
2440 static void
2441 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2442 {
2443 struct objfile *objf;
2444 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2445 struct value *retval_val;
2446 struct gdbarch *gdbarch = get_objfile_arch (objf);
2447 LONGEST retval;
2448 enum
2449 {
2450 ARG_ADDR, ARG_LENGTH, ARG_LAST
2451 };
2452 struct value *arg[ARG_LAST];
2453
2454 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2455 addr);
2456 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2457 arg[ARG_LENGTH] = value_from_ulongest
2458 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2459 retval_val = call_function_by_hand (munmap_val, ARG_LAST, arg);
2460 retval = value_as_long (retval_val);
2461 if (retval != 0)
2462 warning (_("Failed inferior munmap call at %s for %s bytes, "
2463 "errno is changed."),
2464 hex_string (addr), pulongest (size));
2465 }
2466
2467 /* See linux-tdep.h. */
2468
2469 CORE_ADDR
2470 linux_displaced_step_location (struct gdbarch *gdbarch)
2471 {
2472 CORE_ADDR addr;
2473 int bp_len;
2474
2475 /* Determine entry point from target auxiliary vector. This avoids
2476 the need for symbols. Also, when debugging a stand-alone SPU
2477 executable, entry_point_address () will point to an SPU
2478 local-store address and is thus not usable as displaced stepping
2479 location. The auxiliary vector gets us the PowerPC-side entry
2480 point address instead. */
2481 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
2482 throw_error (NOT_SUPPORTED_ERROR,
2483 _("Cannot find AT_ENTRY auxiliary vector entry."));
2484
2485 /* Make certain that the address points at real code, and not a
2486 function descriptor. */
2487 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2488 &current_target);
2489
2490 /* Inferior calls also use the entry point as a breakpoint location.
2491 We don't want displaced stepping to interfere with those
2492 breakpoints, so leave space. */
2493 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2494 addr += bp_len * 2;
2495
2496 return addr;
2497 }
2498
2499 /* Display whether the gcore command is using the
2500 /proc/PID/coredump_filter file. */
2501
2502 static void
2503 show_use_coredump_filter (struct ui_file *file, int from_tty,
2504 struct cmd_list_element *c, const char *value)
2505 {
2506 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2507 " corefiles is %s.\n"), value);
2508 }
2509
2510 /* To be called from the various GDB_OSABI_LINUX handlers for the
2511 various GNU/Linux architectures and machine types. */
2512
2513 void
2514 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2515 {
2516 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2517 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2518 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2519 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2520 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2521 set_gdbarch_has_shared_address_space (gdbarch,
2522 linux_has_shared_address_space);
2523 set_gdbarch_gdb_signal_from_target (gdbarch,
2524 linux_gdb_signal_from_target);
2525 set_gdbarch_gdb_signal_to_target (gdbarch,
2526 linux_gdb_signal_to_target);
2527 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2528 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2529 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2530 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2531 }
2532
2533 /* Provide a prototype to silence -Wmissing-prototypes. */
2534 extern initialize_file_ftype _initialize_linux_tdep;
2535
2536 void
2537 _initialize_linux_tdep (void)
2538 {
2539 linux_gdbarch_data_handle =
2540 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2541
2542 /* Set a cache per-inferior. */
2543 linux_inferior_data
2544 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2545 /* Observers used to invalidate the cache when needed. */
2546 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2547 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
2548
2549 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2550 &use_coredump_filter, _("\
2551 Set whether gcore should consider /proc/PID/coredump_filter."),
2552 _("\
2553 Show whether gcore should consider /proc/PID/coredump_filter."),
2554 _("\
2555 Use this command to set whether gcore should consider the contents\n\
2556 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2557 about this file, refer to the manpage of core(5)."),
2558 NULL, show_use_coredump_filter,
2559 &setlist, &showlist);
2560 }
This page took 0.088903 seconds and 4 git commands to generate.