Implement 'set dump-excluded-mappings' command
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observer.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41 #include "common/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static int use_coredump_filter = 1;
95
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99 static int dump_excluded_mappings = 0;
100
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125 enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
166 static struct gdbarch_data *linux_gdbarch_data_handle;
167
168 struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173 static void *
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177 }
178
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
181 {
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
184 }
185
186 /* Per-inferior data key. */
187 static const struct inferior_data *linux_inferior_data;
188
189 /* Linux-specific cached data. This is used by GDB for caching
190 purposes for each inferior. This helps reduce the overhead of
191 transfering data from a remote target to the local host. */
192 struct linux_info
193 {
194 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
195 if VSYSCALL_RANGE_P is positive. This is cached because getting
196 at this info requires an auxv lookup (which is itself cached),
197 and looking through the inferior's mappings (which change
198 throughout execution and therefore cannot be cached). */
199 struct mem_range vsyscall_range;
200
201 /* Zero if we haven't tried looking up the vsyscall's range before
202 yet. Positive if we tried looking it up, and found it. Negative
203 if we tried looking it up but failed. */
204 int vsyscall_range_p;
205 };
206
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210 static void
211 invalidate_linux_cache_inf (struct inferior *inf)
212 {
213 struct linux_info *info;
214
215 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
216 if (info != NULL)
217 {
218 xfree (info);
219 set_inferior_data (inf, linux_inferior_data, NULL);
220 }
221 }
222
223 /* Handles the cleanup of the linux cache for inferior INF. ARG is
224 ignored. Callback for the inferior_appeared and inferior_exit
225 events. */
226
227 static void
228 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
229 {
230 invalidate_linux_cache_inf (inf);
231 }
232
233 /* Fetch the linux cache info for INF. This function always returns a
234 valid INFO pointer. */
235
236 static struct linux_info *
237 get_linux_inferior_data (void)
238 {
239 struct linux_info *info;
240 struct inferior *inf = current_inferior ();
241
242 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
243 if (info == NULL)
244 {
245 info = XCNEW (struct linux_info);
246 set_inferior_data (inf, linux_inferior_data, info);
247 }
248
249 return info;
250 }
251
252 /* See linux-tdep.h. */
253
254 struct type *
255 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
256 linux_siginfo_extra_fields extra_fields)
257 {
258 struct linux_gdbarch_data *linux_gdbarch_data;
259 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
260 struct type *uid_type, *pid_type;
261 struct type *sigval_type, *clock_type;
262 struct type *siginfo_type, *sifields_type;
263 struct type *type;
264
265 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
266 if (linux_gdbarch_data->siginfo_type != NULL)
267 return linux_gdbarch_data->siginfo_type;
268
269 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
270 0, "int");
271 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
272 1, "unsigned int");
273 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
274 0, "long");
275 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
276 0, "short");
277 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
278
279 /* sival_t */
280 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
281 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
282 append_composite_type_field (sigval_type, "sival_int", int_type);
283 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
284
285 /* __pid_t */
286 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
287 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
288 TYPE_TARGET_TYPE (pid_type) = int_type;
289 TYPE_TARGET_STUB (pid_type) = 1;
290
291 /* __uid_t */
292 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
293 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
294 TYPE_TARGET_TYPE (uid_type) = uint_type;
295 TYPE_TARGET_STUB (uid_type) = 1;
296
297 /* __clock_t */
298 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
299 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
300 "__clock_t");
301 TYPE_TARGET_TYPE (clock_type) = long_type;
302 TYPE_TARGET_STUB (clock_type) = 1;
303
304 /* _sifields */
305 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
306
307 {
308 const int si_max_size = 128;
309 int si_pad_size;
310 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
311
312 /* _pad */
313 if (gdbarch_ptr_bit (gdbarch) == 64)
314 si_pad_size = (si_max_size / size_of_int) - 4;
315 else
316 si_pad_size = (si_max_size / size_of_int) - 3;
317 append_composite_type_field (sifields_type, "_pad",
318 init_vector_type (int_type, si_pad_size));
319 }
320
321 /* _kill */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (sifields_type, "_kill", type);
326
327 /* _timer */
328 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
329 append_composite_type_field (type, "si_tid", int_type);
330 append_composite_type_field (type, "si_overrun", int_type);
331 append_composite_type_field (type, "si_sigval", sigval_type);
332 append_composite_type_field (sifields_type, "_timer", type);
333
334 /* _rt */
335 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
336 append_composite_type_field (type, "si_pid", pid_type);
337 append_composite_type_field (type, "si_uid", uid_type);
338 append_composite_type_field (type, "si_sigval", sigval_type);
339 append_composite_type_field (sifields_type, "_rt", type);
340
341 /* _sigchld */
342 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
343 append_composite_type_field (type, "si_pid", pid_type);
344 append_composite_type_field (type, "si_uid", uid_type);
345 append_composite_type_field (type, "si_status", int_type);
346 append_composite_type_field (type, "si_utime", clock_type);
347 append_composite_type_field (type, "si_stime", clock_type);
348 append_composite_type_field (sifields_type, "_sigchld", type);
349
350 /* _sigfault */
351 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
352 append_composite_type_field (type, "si_addr", void_ptr_type);
353
354 /* Additional bound fields for _sigfault in case they were requested. */
355 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
356 {
357 struct type *sigfault_bnd_fields;
358
359 append_composite_type_field (type, "_addr_lsb", short_type);
360 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
361 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
362 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
363 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
364 }
365 append_composite_type_field (sifields_type, "_sigfault", type);
366
367 /* _sigpoll */
368 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
369 append_composite_type_field (type, "si_band", long_type);
370 append_composite_type_field (type, "si_fd", int_type);
371 append_composite_type_field (sifields_type, "_sigpoll", type);
372
373 /* struct siginfo */
374 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
375 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
376 append_composite_type_field (siginfo_type, "si_signo", int_type);
377 append_composite_type_field (siginfo_type, "si_errno", int_type);
378 append_composite_type_field (siginfo_type, "si_code", int_type);
379 append_composite_type_field_aligned (siginfo_type,
380 "_sifields", sifields_type,
381 TYPE_LENGTH (long_type));
382
383 linux_gdbarch_data->siginfo_type = siginfo_type;
384
385 return siginfo_type;
386 }
387
388 /* This function is suitable for architectures that don't
389 extend/override the standard siginfo structure. */
390
391 static struct type *
392 linux_get_siginfo_type (struct gdbarch *gdbarch)
393 {
394 return linux_get_siginfo_type_with_fields (gdbarch, 0);
395 }
396
397 /* Return true if the target is running on uClinux instead of normal
398 Linux kernel. */
399
400 int
401 linux_is_uclinux (void)
402 {
403 CORE_ADDR dummy;
404
405 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
406 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
407 }
408
409 static int
410 linux_has_shared_address_space (struct gdbarch *gdbarch)
411 {
412 return linux_is_uclinux ();
413 }
414
415 /* This is how we want PTIDs from core files to be printed. */
416
417 static const char *
418 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
419 {
420 static char buf[80];
421
422 if (ptid_get_lwp (ptid) != 0)
423 {
424 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
425 return buf;
426 }
427
428 return normal_pid_to_str (ptid);
429 }
430
431 /* Service function for corefiles and info proc. */
432
433 static void
434 read_mapping (const char *line,
435 ULONGEST *addr, ULONGEST *endaddr,
436 const char **permissions, size_t *permissions_len,
437 ULONGEST *offset,
438 const char **device, size_t *device_len,
439 ULONGEST *inode,
440 const char **filename)
441 {
442 const char *p = line;
443
444 *addr = strtoulst (p, &p, 16);
445 if (*p == '-')
446 p++;
447 *endaddr = strtoulst (p, &p, 16);
448
449 p = skip_spaces (p);
450 *permissions = p;
451 while (*p && !isspace (*p))
452 p++;
453 *permissions_len = p - *permissions;
454
455 *offset = strtoulst (p, &p, 16);
456
457 p = skip_spaces (p);
458 *device = p;
459 while (*p && !isspace (*p))
460 p++;
461 *device_len = p - *device;
462
463 *inode = strtoulst (p, &p, 10);
464
465 p = skip_spaces (p);
466 *filename = p;
467 }
468
469 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
470
471 This function was based on the documentation found on
472 <Documentation/filesystems/proc.txt>, on the Linux kernel.
473
474 Linux kernels before commit
475 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
476 field on smaps. */
477
478 static void
479 decode_vmflags (char *p, struct smaps_vmflags *v)
480 {
481 char *saveptr = NULL;
482 const char *s;
483
484 v->initialized_p = 1;
485 p = skip_to_space (p);
486 p = skip_spaces (p);
487
488 for (s = strtok_r (p, " ", &saveptr);
489 s != NULL;
490 s = strtok_r (NULL, " ", &saveptr))
491 {
492 if (strcmp (s, "io") == 0)
493 v->io_page = 1;
494 else if (strcmp (s, "ht") == 0)
495 v->uses_huge_tlb = 1;
496 else if (strcmp (s, "dd") == 0)
497 v->exclude_coredump = 1;
498 else if (strcmp (s, "sh") == 0)
499 v->shared_mapping = 1;
500 }
501 }
502
503 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
504 they're initialized lazily. */
505
506 struct mapping_regexes
507 {
508 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
509 string in the end). We know for sure, based on the Linux kernel
510 code, that memory mappings whose associated filename is
511 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
512 compiled_regex dev_zero
513 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
514 _("Could not compile regex to match /dev/zero filename")};
515
516 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
517 string in the end). These filenames refer to shared memory
518 (shmem), and memory mappings associated with them are
519 MAP_ANONYMOUS as well. */
520 compiled_regex shmem_file
521 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
522 _("Could not compile regex to match shmem filenames")};
523
524 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
525 0' code, which is responsible to decide if it is dealing with a
526 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
527 FILE_DELETED matches, it does not necessarily mean that we are
528 dealing with an anonymous shared mapping. However, there is no
529 easy way to detect this currently, so this is the best
530 approximation we have.
531
532 As a result, GDB will dump readonly pages of deleted executables
533 when using the default value of coredump_filter (0x33), while the
534 Linux kernel will not dump those pages. But we can live with
535 that. */
536 compiled_regex file_deleted
537 {" (deleted)$", REG_NOSUB,
538 _("Could not compile regex to match '<file> (deleted)'")};
539 };
540
541 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
542
543 FILENAME is the name of the file present in the first line of the
544 memory mapping, in the "/proc/PID/smaps" output. For example, if
545 the first line is:
546
547 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
548
549 Then FILENAME will be "/path/to/file". */
550
551 static int
552 mapping_is_anonymous_p (const char *filename)
553 {
554 static gdb::optional<mapping_regexes> regexes;
555 static int init_regex_p = 0;
556
557 if (!init_regex_p)
558 {
559 /* Let's be pessimistic and assume there will be an error while
560 compiling the regex'es. */
561 init_regex_p = -1;
562
563 regexes.emplace ();
564
565 /* If we reached this point, then everything succeeded. */
566 init_regex_p = 1;
567 }
568
569 if (init_regex_p == -1)
570 {
571 const char deleted[] = " (deleted)";
572 size_t del_len = sizeof (deleted) - 1;
573 size_t filename_len = strlen (filename);
574
575 /* There was an error while compiling the regex'es above. In
576 order to try to give some reliable information to the caller,
577 we just try to find the string " (deleted)" in the filename.
578 If we managed to find it, then we assume the mapping is
579 anonymous. */
580 return (filename_len >= del_len
581 && strcmp (filename + filename_len - del_len, deleted) == 0);
582 }
583
584 if (*filename == '\0'
585 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
586 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
587 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
588 return 1;
589
590 return 0;
591 }
592
593 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
594 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
595 greater than 0 if it should.
596
597 In a nutshell, this is the logic that we follow in order to decide
598 if a mapping should be dumped or not.
599
600 - If the mapping is associated to a file whose name ends with
601 " (deleted)", or if the file is "/dev/zero", or if it is
602 "/SYSV%08x" (shared memory), or if there is no file associated
603 with it, or if the AnonHugePages: or the Anonymous: fields in the
604 /proc/PID/smaps have contents, then GDB considers this mapping to
605 be anonymous. Otherwise, GDB considers this mapping to be a
606 file-backed mapping (because there will be a file associated with
607 it).
608
609 It is worth mentioning that, from all those checks described
610 above, the most fragile is the one to see if the file name ends
611 with " (deleted)". This does not necessarily mean that the
612 mapping is anonymous, because the deleted file associated with
613 the mapping may have been a hard link to another file, for
614 example. The Linux kernel checks to see if "i_nlink == 0", but
615 GDB cannot easily (and normally) do this check (iff running as
616 root, it could find the mapping in /proc/PID/map_files/ and
617 determine whether there still are other hard links to the
618 inode/file). Therefore, we made a compromise here, and we assume
619 that if the file name ends with " (deleted)", then the mapping is
620 indeed anonymous. FWIW, this is something the Linux kernel could
621 do better: expose this information in a more direct way.
622
623 - If we see the flag "sh" in the "VmFlags:" field (in
624 /proc/PID/smaps), then certainly the memory mapping is shared
625 (VM_SHARED). If we have access to the VmFlags, and we don't see
626 the "sh" there, then certainly the mapping is private. However,
627 Linux kernels before commit
628 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
629 "VmFlags:" field; in that case, we use another heuristic: if we
630 see 'p' in the permission flags, then we assume that the mapping
631 is private, even though the presence of the 's' flag there would
632 mean VM_MAYSHARE, which means the mapping could still be private.
633 This should work OK enough, however. */
634
635 static int
636 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
637 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
638 const char *filename)
639 {
640 /* Initially, we trust in what we received from our caller. This
641 value may not be very precise (i.e., it was probably gathered
642 from the permission line in the /proc/PID/smaps list, which
643 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
644 what we have until we take a look at the "VmFlags:" field
645 (assuming that the version of the Linux kernel being used
646 supports it, of course). */
647 int private_p = maybe_private_p;
648
649 /* We always dump vDSO and vsyscall mappings, because it's likely that
650 there'll be no file to read the contents from at core load time.
651 The kernel does the same. */
652 if (strcmp ("[vdso]", filename) == 0
653 || strcmp ("[vsyscall]", filename) == 0)
654 return 1;
655
656 if (v->initialized_p)
657 {
658 /* We never dump I/O mappings. */
659 if (v->io_page)
660 return 0;
661
662 /* Check if we should exclude this mapping. */
663 if (!dump_excluded_mappings && v->exclude_coredump)
664 return 0;
665
666 /* Update our notion of whether this mapping is shared or
667 private based on a trustworthy value. */
668 private_p = !v->shared_mapping;
669
670 /* HugeTLB checking. */
671 if (v->uses_huge_tlb)
672 {
673 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
674 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
675 return 1;
676
677 return 0;
678 }
679 }
680
681 if (private_p)
682 {
683 if (mapping_anon_p && mapping_file_p)
684 {
685 /* This is a special situation. It can happen when we see a
686 mapping that is file-backed, but that contains anonymous
687 pages. */
688 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
689 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
690 }
691 else if (mapping_anon_p)
692 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
693 else
694 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
695 }
696 else
697 {
698 if (mapping_anon_p && mapping_file_p)
699 {
700 /* This is a special situation. It can happen when we see a
701 mapping that is file-backed, but that contains anonymous
702 pages. */
703 return ((filterflags & COREFILTER_ANON_SHARED) != 0
704 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
705 }
706 else if (mapping_anon_p)
707 return (filterflags & COREFILTER_ANON_SHARED) != 0;
708 else
709 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
710 }
711 }
712
713 /* Implement the "info proc" command. */
714
715 static void
716 linux_info_proc (struct gdbarch *gdbarch, const char *args,
717 enum info_proc_what what)
718 {
719 /* A long is used for pid instead of an int to avoid a loss of precision
720 compiler warning from the output of strtoul. */
721 long pid;
722 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
723 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
724 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
725 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
726 int status_f = (what == IP_STATUS || what == IP_ALL);
727 int stat_f = (what == IP_STAT || what == IP_ALL);
728 char filename[100];
729 char *data;
730 int target_errno;
731
732 if (args && isdigit (args[0]))
733 {
734 char *tem;
735
736 pid = strtoul (args, &tem, 10);
737 args = tem;
738 }
739 else
740 {
741 if (!target_has_execution)
742 error (_("No current process: you must name one."));
743 if (current_inferior ()->fake_pid_p)
744 error (_("Can't determine the current process's PID: you must name one."));
745
746 pid = current_inferior ()->pid;
747 }
748
749 args = skip_spaces (args);
750 if (args && args[0])
751 error (_("Too many parameters: %s"), args);
752
753 printf_filtered (_("process %ld\n"), pid);
754 if (cmdline_f)
755 {
756 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
757 gdb::unique_xmalloc_ptr<char> cmdline
758 = target_fileio_read_stralloc (NULL, filename);
759 if (cmdline)
760 printf_filtered ("cmdline = '%s'\n", cmdline.get ());
761 else
762 warning (_("unable to open /proc file '%s'"), filename);
763 }
764 if (cwd_f)
765 {
766 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
767 data = target_fileio_readlink (NULL, filename, &target_errno);
768 if (data)
769 {
770 struct cleanup *cleanup = make_cleanup (xfree, data);
771 printf_filtered ("cwd = '%s'\n", data);
772 do_cleanups (cleanup);
773 }
774 else
775 warning (_("unable to read link '%s'"), filename);
776 }
777 if (exe_f)
778 {
779 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
780 data = target_fileio_readlink (NULL, filename, &target_errno);
781 if (data)
782 {
783 struct cleanup *cleanup = make_cleanup (xfree, data);
784 printf_filtered ("exe = '%s'\n", data);
785 do_cleanups (cleanup);
786 }
787 else
788 warning (_("unable to read link '%s'"), filename);
789 }
790 if (mappings_f)
791 {
792 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
793 gdb::unique_xmalloc_ptr<char> map
794 = target_fileio_read_stralloc (NULL, filename);
795 if (map != NULL)
796 {
797 char *line;
798
799 printf_filtered (_("Mapped address spaces:\n\n"));
800 if (gdbarch_addr_bit (gdbarch) == 32)
801 {
802 printf_filtered ("\t%10s %10s %10s %10s %s\n",
803 "Start Addr",
804 " End Addr",
805 " Size", " Offset", "objfile");
806 }
807 else
808 {
809 printf_filtered (" %18s %18s %10s %10s %s\n",
810 "Start Addr",
811 " End Addr",
812 " Size", " Offset", "objfile");
813 }
814
815 for (line = strtok (map.get (), "\n");
816 line;
817 line = strtok (NULL, "\n"))
818 {
819 ULONGEST addr, endaddr, offset, inode;
820 const char *permissions, *device, *filename;
821 size_t permissions_len, device_len;
822
823 read_mapping (line, &addr, &endaddr,
824 &permissions, &permissions_len,
825 &offset, &device, &device_len,
826 &inode, &filename);
827
828 if (gdbarch_addr_bit (gdbarch) == 32)
829 {
830 printf_filtered ("\t%10s %10s %10s %10s %s\n",
831 paddress (gdbarch, addr),
832 paddress (gdbarch, endaddr),
833 hex_string (endaddr - addr),
834 hex_string (offset),
835 *filename? filename : "");
836 }
837 else
838 {
839 printf_filtered (" %18s %18s %10s %10s %s\n",
840 paddress (gdbarch, addr),
841 paddress (gdbarch, endaddr),
842 hex_string (endaddr - addr),
843 hex_string (offset),
844 *filename? filename : "");
845 }
846 }
847 }
848 else
849 warning (_("unable to open /proc file '%s'"), filename);
850 }
851 if (status_f)
852 {
853 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
854 gdb::unique_xmalloc_ptr<char> status
855 = target_fileio_read_stralloc (NULL, filename);
856 if (status)
857 puts_filtered (status.get ());
858 else
859 warning (_("unable to open /proc file '%s'"), filename);
860 }
861 if (stat_f)
862 {
863 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
864 gdb::unique_xmalloc_ptr<char> statstr
865 = target_fileio_read_stralloc (NULL, filename);
866 if (statstr)
867 {
868 const char *p = statstr.get ();
869
870 printf_filtered (_("Process: %s\n"),
871 pulongest (strtoulst (p, &p, 10)));
872
873 p = skip_spaces (p);
874 if (*p == '(')
875 {
876 /* ps command also relies on no trailing fields
877 ever contain ')'. */
878 const char *ep = strrchr (p, ')');
879 if (ep != NULL)
880 {
881 printf_filtered ("Exec file: %.*s\n",
882 (int) (ep - p - 1), p + 1);
883 p = ep + 1;
884 }
885 }
886
887 p = skip_spaces (p);
888 if (*p)
889 printf_filtered (_("State: %c\n"), *p++);
890
891 if (*p)
892 printf_filtered (_("Parent process: %s\n"),
893 pulongest (strtoulst (p, &p, 10)));
894 if (*p)
895 printf_filtered (_("Process group: %s\n"),
896 pulongest (strtoulst (p, &p, 10)));
897 if (*p)
898 printf_filtered (_("Session id: %s\n"),
899 pulongest (strtoulst (p, &p, 10)));
900 if (*p)
901 printf_filtered (_("TTY: %s\n"),
902 pulongest (strtoulst (p, &p, 10)));
903 if (*p)
904 printf_filtered (_("TTY owner process group: %s\n"),
905 pulongest (strtoulst (p, &p, 10)));
906
907 if (*p)
908 printf_filtered (_("Flags: %s\n"),
909 hex_string (strtoulst (p, &p, 10)));
910 if (*p)
911 printf_filtered (_("Minor faults (no memory page): %s\n"),
912 pulongest (strtoulst (p, &p, 10)));
913 if (*p)
914 printf_filtered (_("Minor faults, children: %s\n"),
915 pulongest (strtoulst (p, &p, 10)));
916 if (*p)
917 printf_filtered (_("Major faults (memory page faults): %s\n"),
918 pulongest (strtoulst (p, &p, 10)));
919 if (*p)
920 printf_filtered (_("Major faults, children: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("utime: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("stime: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("utime, children: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("stime, children: %s\n"),
933 pulongest (strtoulst (p, &p, 10)));
934 if (*p)
935 printf_filtered (_("jiffies remaining in current "
936 "time slice: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("'nice' value: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("jiffies until next timeout: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947 if (*p)
948 printf_filtered (_("start time (jiffies since "
949 "system boot): %s\n"),
950 pulongest (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Virtual memory size: %s\n"),
953 pulongest (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Resident set size: %s\n"),
956 pulongest (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("rlim: %s\n"),
959 pulongest (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("Start of text: %s\n"),
962 hex_string (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("End of text: %s\n"),
965 hex_string (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("Start of stack: %s\n"),
968 hex_string (strtoulst (p, &p, 10)));
969 #if 0 /* Don't know how architecture-dependent the rest is...
970 Anyway the signal bitmap info is available from "status". */
971 if (*p)
972 printf_filtered (_("Kernel stack pointer: %s\n"),
973 hex_string (strtoulst (p, &p, 10)));
974 if (*p)
975 printf_filtered (_("Kernel instr pointer: %s\n"),
976 hex_string (strtoulst (p, &p, 10)));
977 if (*p)
978 printf_filtered (_("Pending signals bitmap: %s\n"),
979 hex_string (strtoulst (p, &p, 10)));
980 if (*p)
981 printf_filtered (_("Blocked signals bitmap: %s\n"),
982 hex_string (strtoulst (p, &p, 10)));
983 if (*p)
984 printf_filtered (_("Ignored signals bitmap: %s\n"),
985 hex_string (strtoulst (p, &p, 10)));
986 if (*p)
987 printf_filtered (_("Catched signals bitmap: %s\n"),
988 hex_string (strtoulst (p, &p, 10)));
989 if (*p)
990 printf_filtered (_("wchan (system call): %s\n"),
991 hex_string (strtoulst (p, &p, 10)));
992 #endif
993 }
994 else
995 warning (_("unable to open /proc file '%s'"), filename);
996 }
997 }
998
999 /* Implement "info proc mappings" for a corefile. */
1000
1001 static void
1002 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1003 {
1004 asection *section;
1005 ULONGEST count, page_size;
1006 unsigned char *descdata, *filenames, *descend;
1007 size_t note_size;
1008 unsigned int addr_size_bits, addr_size;
1009 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1010 /* We assume this for reading 64-bit core files. */
1011 gdb_static_assert (sizeof (ULONGEST) >= 8);
1012
1013 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1014 if (section == NULL)
1015 {
1016 warning (_("unable to find mappings in core file"));
1017 return;
1018 }
1019
1020 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1021 addr_size = addr_size_bits / 8;
1022 note_size = bfd_get_section_size (section);
1023
1024 if (note_size < 2 * addr_size)
1025 error (_("malformed core note - too short for header"));
1026
1027 gdb::def_vector<unsigned char> contents (note_size);
1028 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1029 0, note_size))
1030 error (_("could not get core note contents"));
1031
1032 descdata = contents.data ();
1033 descend = descdata + note_size;
1034
1035 if (descdata[note_size - 1] != '\0')
1036 error (_("malformed note - does not end with \\0"));
1037
1038 count = bfd_get (addr_size_bits, core_bfd, descdata);
1039 descdata += addr_size;
1040
1041 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1042 descdata += addr_size;
1043
1044 if (note_size < 2 * addr_size + count * 3 * addr_size)
1045 error (_("malformed note - too short for supplied file count"));
1046
1047 printf_filtered (_("Mapped address spaces:\n\n"));
1048 if (gdbarch_addr_bit (gdbarch) == 32)
1049 {
1050 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1051 "Start Addr",
1052 " End Addr",
1053 " Size", " Offset", "objfile");
1054 }
1055 else
1056 {
1057 printf_filtered (" %18s %18s %10s %10s %s\n",
1058 "Start Addr",
1059 " End Addr",
1060 " Size", " Offset", "objfile");
1061 }
1062
1063 filenames = descdata + count * 3 * addr_size;
1064 while (--count > 0)
1065 {
1066 ULONGEST start, end, file_ofs;
1067
1068 if (filenames == descend)
1069 error (_("malformed note - filenames end too early"));
1070
1071 start = bfd_get (addr_size_bits, core_bfd, descdata);
1072 descdata += addr_size;
1073 end = bfd_get (addr_size_bits, core_bfd, descdata);
1074 descdata += addr_size;
1075 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1076 descdata += addr_size;
1077
1078 file_ofs *= page_size;
1079
1080 if (gdbarch_addr_bit (gdbarch) == 32)
1081 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1082 paddress (gdbarch, start),
1083 paddress (gdbarch, end),
1084 hex_string (end - start),
1085 hex_string (file_ofs),
1086 filenames);
1087 else
1088 printf_filtered (" %18s %18s %10s %10s %s\n",
1089 paddress (gdbarch, start),
1090 paddress (gdbarch, end),
1091 hex_string (end - start),
1092 hex_string (file_ofs),
1093 filenames);
1094
1095 filenames += 1 + strlen ((char *) filenames);
1096 }
1097 }
1098
1099 /* Implement "info proc" for a corefile. */
1100
1101 static void
1102 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1103 enum info_proc_what what)
1104 {
1105 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1106 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1107
1108 if (exe_f)
1109 {
1110 const char *exe;
1111
1112 exe = bfd_core_file_failing_command (core_bfd);
1113 if (exe != NULL)
1114 printf_filtered ("exe = '%s'\n", exe);
1115 else
1116 warning (_("unable to find command name in core file"));
1117 }
1118
1119 if (mappings_f)
1120 linux_core_info_proc_mappings (gdbarch, args);
1121
1122 if (!exe_f && !mappings_f)
1123 error (_("unable to handle request"));
1124 }
1125
1126 /* Read siginfo data from the core, if possible. Returns -1 on
1127 failure. Otherwise, returns the number of bytes read. READBUF,
1128 OFFSET, and LEN are all as specified by the to_xfer_partial
1129 interface. */
1130
1131 static LONGEST
1132 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1133 ULONGEST offset, ULONGEST len)
1134 {
1135 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1136 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1137 if (section == NULL)
1138 return -1;
1139
1140 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1141 return -1;
1142
1143 return len;
1144 }
1145
1146 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1147 ULONGEST offset, ULONGEST inode,
1148 int read, int write,
1149 int exec, int modified,
1150 const char *filename,
1151 void *data);
1152
1153 /* List memory regions in the inferior for a corefile. */
1154
1155 static int
1156 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1157 linux_find_memory_region_ftype *func,
1158 void *obfd)
1159 {
1160 char mapsfilename[100];
1161 char coredumpfilter_name[100];
1162 pid_t pid;
1163 /* Default dump behavior of coredump_filter (0x33), according to
1164 Documentation/filesystems/proc.txt from the Linux kernel
1165 tree. */
1166 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1167 | COREFILTER_ANON_SHARED
1168 | COREFILTER_ELF_HEADERS
1169 | COREFILTER_HUGETLB_PRIVATE);
1170
1171 /* We need to know the real target PID to access /proc. */
1172 if (current_inferior ()->fake_pid_p)
1173 return 1;
1174
1175 pid = current_inferior ()->pid;
1176
1177 if (use_coredump_filter)
1178 {
1179 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1180 "/proc/%d/coredump_filter", pid);
1181 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1182 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1183 if (coredumpfilterdata != NULL)
1184 {
1185 unsigned int flags;
1186
1187 sscanf (coredumpfilterdata.get (), "%x", &flags);
1188 filterflags = (enum filter_flag) flags;
1189 }
1190 }
1191
1192 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1193 gdb::unique_xmalloc_ptr<char> data
1194 = target_fileio_read_stralloc (NULL, mapsfilename);
1195 if (data == NULL)
1196 {
1197 /* Older Linux kernels did not support /proc/PID/smaps. */
1198 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1199 data = target_fileio_read_stralloc (NULL, mapsfilename);
1200 }
1201
1202 if (data != NULL)
1203 {
1204 char *line, *t;
1205
1206 line = strtok_r (data.get (), "\n", &t);
1207 while (line != NULL)
1208 {
1209 ULONGEST addr, endaddr, offset, inode;
1210 const char *permissions, *device, *filename;
1211 struct smaps_vmflags v;
1212 size_t permissions_len, device_len;
1213 int read, write, exec, priv;
1214 int has_anonymous = 0;
1215 int should_dump_p = 0;
1216 int mapping_anon_p;
1217 int mapping_file_p;
1218
1219 memset (&v, 0, sizeof (v));
1220 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1221 &offset, &device, &device_len, &inode, &filename);
1222 mapping_anon_p = mapping_is_anonymous_p (filename);
1223 /* If the mapping is not anonymous, then we can consider it
1224 to be file-backed. These two states (anonymous or
1225 file-backed) seem to be exclusive, but they can actually
1226 coexist. For example, if a file-backed mapping has
1227 "Anonymous:" pages (see more below), then the Linux
1228 kernel will dump this mapping when the user specified
1229 that she only wants anonymous mappings in the corefile
1230 (*even* when she explicitly disabled the dumping of
1231 file-backed mappings). */
1232 mapping_file_p = !mapping_anon_p;
1233
1234 /* Decode permissions. */
1235 read = (memchr (permissions, 'r', permissions_len) != 0);
1236 write = (memchr (permissions, 'w', permissions_len) != 0);
1237 exec = (memchr (permissions, 'x', permissions_len) != 0);
1238 /* 'private' here actually means VM_MAYSHARE, and not
1239 VM_SHARED. In order to know if a mapping is really
1240 private or not, we must check the flag "sh" in the
1241 VmFlags field. This is done by decode_vmflags. However,
1242 if we are using a Linux kernel released before the commit
1243 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1244 not have the VmFlags there. In this case, there is
1245 really no way to know if we are dealing with VM_SHARED,
1246 so we just assume that VM_MAYSHARE is enough. */
1247 priv = memchr (permissions, 'p', permissions_len) != 0;
1248
1249 /* Try to detect if region should be dumped by parsing smaps
1250 counters. */
1251 for (line = strtok_r (NULL, "\n", &t);
1252 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1253 line = strtok_r (NULL, "\n", &t))
1254 {
1255 char keyword[64 + 1];
1256
1257 if (sscanf (line, "%64s", keyword) != 1)
1258 {
1259 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1260 break;
1261 }
1262
1263 if (strcmp (keyword, "Anonymous:") == 0)
1264 {
1265 /* Older Linux kernels did not support the
1266 "Anonymous:" counter. Check it here. */
1267 has_anonymous = 1;
1268 }
1269 else if (strcmp (keyword, "VmFlags:") == 0)
1270 decode_vmflags (line, &v);
1271
1272 if (strcmp (keyword, "AnonHugePages:") == 0
1273 || strcmp (keyword, "Anonymous:") == 0)
1274 {
1275 unsigned long number;
1276
1277 if (sscanf (line, "%*s%lu", &number) != 1)
1278 {
1279 warning (_("Error parsing {s,}maps file '%s' number"),
1280 mapsfilename);
1281 break;
1282 }
1283 if (number > 0)
1284 {
1285 /* Even if we are dealing with a file-backed
1286 mapping, if it contains anonymous pages we
1287 consider it to be *also* an anonymous
1288 mapping, because this is what the Linux
1289 kernel does:
1290
1291 // Dump segments that have been written to.
1292 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1293 goto whole;
1294
1295 Note that if the mapping is already marked as
1296 file-backed (i.e., mapping_file_p is
1297 non-zero), then this is a special case, and
1298 this mapping will be dumped either when the
1299 user wants to dump file-backed *or* anonymous
1300 mappings. */
1301 mapping_anon_p = 1;
1302 }
1303 }
1304 }
1305
1306 if (has_anonymous)
1307 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1308 mapping_anon_p, mapping_file_p,
1309 filename);
1310 else
1311 {
1312 /* Older Linux kernels did not support the "Anonymous:" counter.
1313 If it is missing, we can't be sure - dump all the pages. */
1314 should_dump_p = 1;
1315 }
1316
1317 /* Invoke the callback function to create the corefile segment. */
1318 if (should_dump_p)
1319 func (addr, endaddr - addr, offset, inode,
1320 read, write, exec, 1, /* MODIFIED is true because we
1321 want to dump the mapping. */
1322 filename, obfd);
1323 }
1324
1325 return 0;
1326 }
1327
1328 return 1;
1329 }
1330
1331 /* A structure for passing information through
1332 linux_find_memory_regions_full. */
1333
1334 struct linux_find_memory_regions_data
1335 {
1336 /* The original callback. */
1337
1338 find_memory_region_ftype func;
1339
1340 /* The original datum. */
1341
1342 void *obfd;
1343 };
1344
1345 /* A callback for linux_find_memory_regions that converts between the
1346 "full"-style callback and find_memory_region_ftype. */
1347
1348 static int
1349 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1350 ULONGEST offset, ULONGEST inode,
1351 int read, int write, int exec, int modified,
1352 const char *filename, void *arg)
1353 {
1354 struct linux_find_memory_regions_data *data
1355 = (struct linux_find_memory_regions_data *) arg;
1356
1357 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1358 }
1359
1360 /* A variant of linux_find_memory_regions_full that is suitable as the
1361 gdbarch find_memory_regions method. */
1362
1363 static int
1364 linux_find_memory_regions (struct gdbarch *gdbarch,
1365 find_memory_region_ftype func, void *obfd)
1366 {
1367 struct linux_find_memory_regions_data data;
1368
1369 data.func = func;
1370 data.obfd = obfd;
1371
1372 return linux_find_memory_regions_full (gdbarch,
1373 linux_find_memory_regions_thunk,
1374 &data);
1375 }
1376
1377 /* Determine which signal stopped execution. */
1378
1379 static int
1380 find_signalled_thread (struct thread_info *info, void *data)
1381 {
1382 if (info->suspend.stop_signal != GDB_SIGNAL_0
1383 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1384 return 1;
1385
1386 return 0;
1387 }
1388
1389 /* Generate corefile notes for SPU contexts. */
1390
1391 static char *
1392 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1393 {
1394 static const char *spu_files[] =
1395 {
1396 "object-id",
1397 "mem",
1398 "regs",
1399 "fpcr",
1400 "lslr",
1401 "decr",
1402 "decr_status",
1403 "signal1",
1404 "signal1_type",
1405 "signal2",
1406 "signal2_type",
1407 "event_mask",
1408 "event_status",
1409 "mbox_info",
1410 "ibox_info",
1411 "wbox_info",
1412 "dma_info",
1413 "proxydma_info",
1414 };
1415
1416 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1417 gdb_byte *spu_ids;
1418 LONGEST i, j, size;
1419
1420 /* Determine list of SPU ids. */
1421 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1422 NULL, &spu_ids);
1423
1424 /* Generate corefile notes for each SPU file. */
1425 for (i = 0; i < size; i += 4)
1426 {
1427 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1428
1429 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1430 {
1431 char annex[32], note_name[32];
1432 gdb_byte *spu_data;
1433 LONGEST spu_len;
1434
1435 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1436 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1437 annex, &spu_data);
1438 if (spu_len > 0)
1439 {
1440 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1441 note_data = elfcore_write_note (obfd, note_data, note_size,
1442 note_name, NT_SPU,
1443 spu_data, spu_len);
1444 xfree (spu_data);
1445
1446 if (!note_data)
1447 {
1448 xfree (spu_ids);
1449 return NULL;
1450 }
1451 }
1452 }
1453 }
1454
1455 if (size > 0)
1456 xfree (spu_ids);
1457
1458 return note_data;
1459 }
1460
1461 /* This is used to pass information from
1462 linux_make_mappings_corefile_notes through
1463 linux_find_memory_regions_full. */
1464
1465 struct linux_make_mappings_data
1466 {
1467 /* Number of files mapped. */
1468 ULONGEST file_count;
1469
1470 /* The obstack for the main part of the data. */
1471 struct obstack *data_obstack;
1472
1473 /* The filename obstack. */
1474 struct obstack *filename_obstack;
1475
1476 /* The architecture's "long" type. */
1477 struct type *long_type;
1478 };
1479
1480 static linux_find_memory_region_ftype linux_make_mappings_callback;
1481
1482 /* A callback for linux_find_memory_regions_full that updates the
1483 mappings data for linux_make_mappings_corefile_notes. */
1484
1485 static int
1486 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1487 ULONGEST offset, ULONGEST inode,
1488 int read, int write, int exec, int modified,
1489 const char *filename, void *data)
1490 {
1491 struct linux_make_mappings_data *map_data
1492 = (struct linux_make_mappings_data *) data;
1493 gdb_byte buf[sizeof (ULONGEST)];
1494
1495 if (*filename == '\0' || inode == 0)
1496 return 0;
1497
1498 ++map_data->file_count;
1499
1500 pack_long (buf, map_data->long_type, vaddr);
1501 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1502 pack_long (buf, map_data->long_type, vaddr + size);
1503 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1504 pack_long (buf, map_data->long_type, offset);
1505 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1506
1507 obstack_grow_str0 (map_data->filename_obstack, filename);
1508
1509 return 0;
1510 }
1511
1512 /* Write the file mapping data to the core file, if possible. OBFD is
1513 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1514 is a pointer to the note size. Returns the new NOTE_DATA and
1515 updates NOTE_SIZE. */
1516
1517 static char *
1518 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1519 char *note_data, int *note_size)
1520 {
1521 struct linux_make_mappings_data mapping_data;
1522 struct type *long_type
1523 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1524 gdb_byte buf[sizeof (ULONGEST)];
1525
1526 auto_obstack data_obstack, filename_obstack;
1527
1528 mapping_data.file_count = 0;
1529 mapping_data.data_obstack = &data_obstack;
1530 mapping_data.filename_obstack = &filename_obstack;
1531 mapping_data.long_type = long_type;
1532
1533 /* Reserve space for the count. */
1534 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1535 /* We always write the page size as 1 since we have no good way to
1536 determine the correct value. */
1537 pack_long (buf, long_type, 1);
1538 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1539
1540 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1541 &mapping_data);
1542
1543 if (mapping_data.file_count != 0)
1544 {
1545 /* Write the count to the obstack. */
1546 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1547 long_type, mapping_data.file_count);
1548
1549 /* Copy the filenames to the data obstack. */
1550 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1551 obstack_object_size (&filename_obstack));
1552
1553 note_data = elfcore_write_note (obfd, note_data, note_size,
1554 "CORE", NT_FILE,
1555 obstack_base (&data_obstack),
1556 obstack_object_size (&data_obstack));
1557 }
1558
1559 return note_data;
1560 }
1561
1562 /* Structure for passing information from
1563 linux_collect_thread_registers via an iterator to
1564 linux_collect_regset_section_cb. */
1565
1566 struct linux_collect_regset_section_cb_data
1567 {
1568 struct gdbarch *gdbarch;
1569 const struct regcache *regcache;
1570 bfd *obfd;
1571 char *note_data;
1572 int *note_size;
1573 unsigned long lwp;
1574 enum gdb_signal stop_signal;
1575 int abort_iteration;
1576 };
1577
1578 /* Callback for iterate_over_regset_sections that records a single
1579 regset in the corefile note section. */
1580
1581 static void
1582 linux_collect_regset_section_cb (const char *sect_name, int size,
1583 const struct regset *regset,
1584 const char *human_name, void *cb_data)
1585 {
1586 char *buf;
1587 struct linux_collect_regset_section_cb_data *data
1588 = (struct linux_collect_regset_section_cb_data *) cb_data;
1589
1590 if (data->abort_iteration)
1591 return;
1592
1593 gdb_assert (regset && regset->collect_regset);
1594
1595 buf = (char *) xmalloc (size);
1596 regset->collect_regset (regset, data->regcache, -1, buf, size);
1597
1598 /* PRSTATUS still needs to be treated specially. */
1599 if (strcmp (sect_name, ".reg") == 0)
1600 data->note_data = (char *) elfcore_write_prstatus
1601 (data->obfd, data->note_data, data->note_size, data->lwp,
1602 gdb_signal_to_host (data->stop_signal), buf);
1603 else
1604 data->note_data = (char *) elfcore_write_register_note
1605 (data->obfd, data->note_data, data->note_size,
1606 sect_name, buf, size);
1607 xfree (buf);
1608
1609 if (data->note_data == NULL)
1610 data->abort_iteration = 1;
1611 }
1612
1613 /* Records the thread's register state for the corefile note
1614 section. */
1615
1616 static char *
1617 linux_collect_thread_registers (const struct regcache *regcache,
1618 ptid_t ptid, bfd *obfd,
1619 char *note_data, int *note_size,
1620 enum gdb_signal stop_signal)
1621 {
1622 struct gdbarch *gdbarch = regcache->arch ();
1623 struct linux_collect_regset_section_cb_data data;
1624
1625 data.gdbarch = gdbarch;
1626 data.regcache = regcache;
1627 data.obfd = obfd;
1628 data.note_data = note_data;
1629 data.note_size = note_size;
1630 data.stop_signal = stop_signal;
1631 data.abort_iteration = 0;
1632
1633 /* For remote targets the LWP may not be available, so use the TID. */
1634 data.lwp = ptid_get_lwp (ptid);
1635 if (!data.lwp)
1636 data.lwp = ptid_get_tid (ptid);
1637
1638 gdbarch_iterate_over_regset_sections (gdbarch,
1639 linux_collect_regset_section_cb,
1640 &data, regcache);
1641 return data.note_data;
1642 }
1643
1644 /* Fetch the siginfo data for the specified thread, if it exists. If
1645 there is no data, or we could not read it, return an empty
1646 buffer. */
1647
1648 static gdb::byte_vector
1649 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1650 {
1651 struct type *siginfo_type;
1652 LONGEST bytes_read;
1653
1654 if (!gdbarch_get_siginfo_type_p (gdbarch))
1655 return gdb::byte_vector ();
1656
1657 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1658 inferior_ptid = thread->ptid;
1659
1660 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1661
1662 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1663
1664 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1665 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1666 if (bytes_read != TYPE_LENGTH (siginfo_type))
1667 buf.clear ();
1668
1669 return buf;
1670 }
1671
1672 struct linux_corefile_thread_data
1673 {
1674 struct gdbarch *gdbarch;
1675 bfd *obfd;
1676 char *note_data;
1677 int *note_size;
1678 enum gdb_signal stop_signal;
1679 };
1680
1681 /* Records the thread's register state for the corefile note
1682 section. */
1683
1684 static void
1685 linux_corefile_thread (struct thread_info *info,
1686 struct linux_corefile_thread_data *args)
1687 {
1688 struct regcache *regcache;
1689
1690 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1691
1692 target_fetch_registers (regcache, -1);
1693 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1694
1695 args->note_data = linux_collect_thread_registers
1696 (regcache, info->ptid, args->obfd, args->note_data,
1697 args->note_size, args->stop_signal);
1698
1699 /* Don't return anything if we got no register information above,
1700 such a core file is useless. */
1701 if (args->note_data != NULL)
1702 if (!siginfo_data.empty ())
1703 args->note_data = elfcore_write_note (args->obfd,
1704 args->note_data,
1705 args->note_size,
1706 "CORE", NT_SIGINFO,
1707 siginfo_data.data (),
1708 siginfo_data.size ());
1709 }
1710
1711 /* Fill the PRPSINFO structure with information about the process being
1712 debugged. Returns 1 in case of success, 0 for failures. Please note that
1713 even if the structure cannot be entirely filled (e.g., GDB was unable to
1714 gather information about the process UID/GID), this function will still
1715 return 1 since some information was already recorded. It will only return
1716 0 iff nothing can be gathered. */
1717
1718 static int
1719 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1720 {
1721 /* The filename which we will use to obtain some info about the process.
1722 We will basically use this to store the `/proc/PID/FILENAME' file. */
1723 char filename[100];
1724 /* The basename of the executable. */
1725 const char *basename;
1726 char *infargs;
1727 /* Temporary buffer. */
1728 char *tmpstr;
1729 /* The valid states of a process, according to the Linux kernel. */
1730 const char valid_states[] = "RSDTZW";
1731 /* The program state. */
1732 const char *prog_state;
1733 /* The state of the process. */
1734 char pr_sname;
1735 /* The PID of the program which generated the corefile. */
1736 pid_t pid;
1737 /* Process flags. */
1738 unsigned int pr_flag;
1739 /* Process nice value. */
1740 long pr_nice;
1741 /* The number of fields read by `sscanf'. */
1742 int n_fields = 0;
1743
1744 gdb_assert (p != NULL);
1745
1746 /* Obtaining PID and filename. */
1747 pid = ptid_get_pid (inferior_ptid);
1748 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1749 /* The full name of the program which generated the corefile. */
1750 gdb::unique_xmalloc_ptr<char> fname
1751 = target_fileio_read_stralloc (NULL, filename);
1752
1753 if (fname == NULL || fname.get ()[0] == '\0')
1754 {
1755 /* No program name was read, so we won't be able to retrieve more
1756 information about the process. */
1757 return 0;
1758 }
1759
1760 memset (p, 0, sizeof (*p));
1761
1762 /* Defining the PID. */
1763 p->pr_pid = pid;
1764
1765 /* Copying the program name. Only the basename matters. */
1766 basename = lbasename (fname.get ());
1767 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1768 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1769
1770 infargs = get_inferior_args ();
1771
1772 /* The arguments of the program. */
1773 std::string psargs = fname.get ();
1774 if (infargs != NULL)
1775 psargs = psargs + " " + infargs;
1776
1777 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
1778 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1779
1780 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1781 /* The contents of `/proc/PID/stat'. */
1782 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1783 = target_fileio_read_stralloc (NULL, filename);
1784 char *proc_stat = proc_stat_contents.get ();
1785
1786 if (proc_stat == NULL || *proc_stat == '\0')
1787 {
1788 /* Despite being unable to read more information about the
1789 process, we return 1 here because at least we have its
1790 command line, PID and arguments. */
1791 return 1;
1792 }
1793
1794 /* Ok, we have the stats. It's time to do a little parsing of the
1795 contents of the buffer, so that we end up reading what we want.
1796
1797 The following parsing mechanism is strongly based on the
1798 information generated by the `fs/proc/array.c' file, present in
1799 the Linux kernel tree. More details about how the information is
1800 displayed can be obtained by seeing the manpage of proc(5),
1801 specifically under the entry of `/proc/[pid]/stat'. */
1802
1803 /* Getting rid of the PID, since we already have it. */
1804 while (isdigit (*proc_stat))
1805 ++proc_stat;
1806
1807 proc_stat = skip_spaces (proc_stat);
1808
1809 /* ps command also relies on no trailing fields ever contain ')'. */
1810 proc_stat = strrchr (proc_stat, ')');
1811 if (proc_stat == NULL)
1812 return 1;
1813 proc_stat++;
1814
1815 proc_stat = skip_spaces (proc_stat);
1816
1817 n_fields = sscanf (proc_stat,
1818 "%c" /* Process state. */
1819 "%d%d%d" /* Parent PID, group ID, session ID. */
1820 "%*d%*d" /* tty_nr, tpgid (not used). */
1821 "%u" /* Flags. */
1822 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1823 cmajflt (not used). */
1824 "%*s%*s%*s%*s" /* utime, stime, cutime,
1825 cstime (not used). */
1826 "%*s" /* Priority (not used). */
1827 "%ld", /* Nice. */
1828 &pr_sname,
1829 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1830 &pr_flag,
1831 &pr_nice);
1832
1833 if (n_fields != 6)
1834 {
1835 /* Again, we couldn't read the complementary information about
1836 the process state. However, we already have minimal
1837 information, so we just return 1 here. */
1838 return 1;
1839 }
1840
1841 /* Filling the structure fields. */
1842 prog_state = strchr (valid_states, pr_sname);
1843 if (prog_state != NULL)
1844 p->pr_state = prog_state - valid_states;
1845 else
1846 {
1847 /* Zero means "Running". */
1848 p->pr_state = 0;
1849 }
1850
1851 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1852 p->pr_zomb = p->pr_sname == 'Z';
1853 p->pr_nice = pr_nice;
1854 p->pr_flag = pr_flag;
1855
1856 /* Finally, obtaining the UID and GID. For that, we read and parse the
1857 contents of the `/proc/PID/status' file. */
1858 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1859 /* The contents of `/proc/PID/status'. */
1860 gdb::unique_xmalloc_ptr<char> proc_status_contents
1861 = target_fileio_read_stralloc (NULL, filename);
1862 char *proc_status = proc_status_contents.get ();
1863
1864 if (proc_status == NULL || *proc_status == '\0')
1865 {
1866 /* Returning 1 since we already have a bunch of information. */
1867 return 1;
1868 }
1869
1870 /* Extracting the UID. */
1871 tmpstr = strstr (proc_status, "Uid:");
1872 if (tmpstr != NULL)
1873 {
1874 /* Advancing the pointer to the beginning of the UID. */
1875 tmpstr += sizeof ("Uid:");
1876 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1877 ++tmpstr;
1878
1879 if (isdigit (*tmpstr))
1880 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1881 }
1882
1883 /* Extracting the GID. */
1884 tmpstr = strstr (proc_status, "Gid:");
1885 if (tmpstr != NULL)
1886 {
1887 /* Advancing the pointer to the beginning of the GID. */
1888 tmpstr += sizeof ("Gid:");
1889 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1890 ++tmpstr;
1891
1892 if (isdigit (*tmpstr))
1893 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1894 }
1895
1896 return 1;
1897 }
1898
1899 /* Build the note section for a corefile, and return it in a malloc
1900 buffer. */
1901
1902 static char *
1903 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1904 {
1905 struct linux_corefile_thread_data thread_args;
1906 struct elf_internal_linux_prpsinfo prpsinfo;
1907 char *note_data = NULL;
1908 gdb_byte *auxv;
1909 int auxv_len;
1910 struct thread_info *curr_thr, *signalled_thr, *thr;
1911
1912 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1913 return NULL;
1914
1915 if (linux_fill_prpsinfo (&prpsinfo))
1916 {
1917 if (gdbarch_ptr_bit (gdbarch) == 64)
1918 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1919 note_data, note_size,
1920 &prpsinfo);
1921 else
1922 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1923 note_data, note_size,
1924 &prpsinfo);
1925 }
1926
1927 /* Thread register information. */
1928 TRY
1929 {
1930 update_thread_list ();
1931 }
1932 CATCH (e, RETURN_MASK_ERROR)
1933 {
1934 exception_print (gdb_stderr, e);
1935 }
1936 END_CATCH
1937
1938 /* Like the kernel, prefer dumping the signalled thread first.
1939 "First thread" is what tools use to infer the signalled thread.
1940 In case there's more than one signalled thread, prefer the
1941 current thread, if it is signalled. */
1942 curr_thr = inferior_thread ();
1943 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1944 signalled_thr = curr_thr;
1945 else
1946 {
1947 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1948 if (signalled_thr == NULL)
1949 signalled_thr = curr_thr;
1950 }
1951
1952 thread_args.gdbarch = gdbarch;
1953 thread_args.obfd = obfd;
1954 thread_args.note_data = note_data;
1955 thread_args.note_size = note_size;
1956 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1957
1958 linux_corefile_thread (signalled_thr, &thread_args);
1959 ALL_NON_EXITED_THREADS (thr)
1960 {
1961 if (thr == signalled_thr)
1962 continue;
1963 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
1964 continue;
1965
1966 linux_corefile_thread (thr, &thread_args);
1967 }
1968
1969 note_data = thread_args.note_data;
1970 if (!note_data)
1971 return NULL;
1972
1973 /* Auxillary vector. */
1974 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
1975 NULL, &auxv);
1976 if (auxv_len > 0)
1977 {
1978 note_data = elfcore_write_note (obfd, note_data, note_size,
1979 "CORE", NT_AUXV, auxv, auxv_len);
1980 xfree (auxv);
1981
1982 if (!note_data)
1983 return NULL;
1984 }
1985
1986 /* SPU information. */
1987 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
1988 if (!note_data)
1989 return NULL;
1990
1991 /* File mappings. */
1992 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1993 note_data, note_size);
1994
1995 return note_data;
1996 }
1997
1998 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
1999 gdbarch.h. This function is not static because it is exported to
2000 other -tdep files. */
2001
2002 enum gdb_signal
2003 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2004 {
2005 switch (signal)
2006 {
2007 case 0:
2008 return GDB_SIGNAL_0;
2009
2010 case LINUX_SIGHUP:
2011 return GDB_SIGNAL_HUP;
2012
2013 case LINUX_SIGINT:
2014 return GDB_SIGNAL_INT;
2015
2016 case LINUX_SIGQUIT:
2017 return GDB_SIGNAL_QUIT;
2018
2019 case LINUX_SIGILL:
2020 return GDB_SIGNAL_ILL;
2021
2022 case LINUX_SIGTRAP:
2023 return GDB_SIGNAL_TRAP;
2024
2025 case LINUX_SIGABRT:
2026 return GDB_SIGNAL_ABRT;
2027
2028 case LINUX_SIGBUS:
2029 return GDB_SIGNAL_BUS;
2030
2031 case LINUX_SIGFPE:
2032 return GDB_SIGNAL_FPE;
2033
2034 case LINUX_SIGKILL:
2035 return GDB_SIGNAL_KILL;
2036
2037 case LINUX_SIGUSR1:
2038 return GDB_SIGNAL_USR1;
2039
2040 case LINUX_SIGSEGV:
2041 return GDB_SIGNAL_SEGV;
2042
2043 case LINUX_SIGUSR2:
2044 return GDB_SIGNAL_USR2;
2045
2046 case LINUX_SIGPIPE:
2047 return GDB_SIGNAL_PIPE;
2048
2049 case LINUX_SIGALRM:
2050 return GDB_SIGNAL_ALRM;
2051
2052 case LINUX_SIGTERM:
2053 return GDB_SIGNAL_TERM;
2054
2055 case LINUX_SIGCHLD:
2056 return GDB_SIGNAL_CHLD;
2057
2058 case LINUX_SIGCONT:
2059 return GDB_SIGNAL_CONT;
2060
2061 case LINUX_SIGSTOP:
2062 return GDB_SIGNAL_STOP;
2063
2064 case LINUX_SIGTSTP:
2065 return GDB_SIGNAL_TSTP;
2066
2067 case LINUX_SIGTTIN:
2068 return GDB_SIGNAL_TTIN;
2069
2070 case LINUX_SIGTTOU:
2071 return GDB_SIGNAL_TTOU;
2072
2073 case LINUX_SIGURG:
2074 return GDB_SIGNAL_URG;
2075
2076 case LINUX_SIGXCPU:
2077 return GDB_SIGNAL_XCPU;
2078
2079 case LINUX_SIGXFSZ:
2080 return GDB_SIGNAL_XFSZ;
2081
2082 case LINUX_SIGVTALRM:
2083 return GDB_SIGNAL_VTALRM;
2084
2085 case LINUX_SIGPROF:
2086 return GDB_SIGNAL_PROF;
2087
2088 case LINUX_SIGWINCH:
2089 return GDB_SIGNAL_WINCH;
2090
2091 /* No way to differentiate between SIGIO and SIGPOLL.
2092 Therefore, we just handle the first one. */
2093 case LINUX_SIGIO:
2094 return GDB_SIGNAL_IO;
2095
2096 case LINUX_SIGPWR:
2097 return GDB_SIGNAL_PWR;
2098
2099 case LINUX_SIGSYS:
2100 return GDB_SIGNAL_SYS;
2101
2102 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2103 therefore we have to handle them here. */
2104 case LINUX_SIGRTMIN:
2105 return GDB_SIGNAL_REALTIME_32;
2106
2107 case LINUX_SIGRTMAX:
2108 return GDB_SIGNAL_REALTIME_64;
2109 }
2110
2111 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2112 {
2113 int offset = signal - LINUX_SIGRTMIN + 1;
2114
2115 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2116 }
2117
2118 return GDB_SIGNAL_UNKNOWN;
2119 }
2120
2121 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2122 gdbarch.h. This function is not static because it is exported to
2123 other -tdep files. */
2124
2125 int
2126 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2127 enum gdb_signal signal)
2128 {
2129 switch (signal)
2130 {
2131 case GDB_SIGNAL_0:
2132 return 0;
2133
2134 case GDB_SIGNAL_HUP:
2135 return LINUX_SIGHUP;
2136
2137 case GDB_SIGNAL_INT:
2138 return LINUX_SIGINT;
2139
2140 case GDB_SIGNAL_QUIT:
2141 return LINUX_SIGQUIT;
2142
2143 case GDB_SIGNAL_ILL:
2144 return LINUX_SIGILL;
2145
2146 case GDB_SIGNAL_TRAP:
2147 return LINUX_SIGTRAP;
2148
2149 case GDB_SIGNAL_ABRT:
2150 return LINUX_SIGABRT;
2151
2152 case GDB_SIGNAL_FPE:
2153 return LINUX_SIGFPE;
2154
2155 case GDB_SIGNAL_KILL:
2156 return LINUX_SIGKILL;
2157
2158 case GDB_SIGNAL_BUS:
2159 return LINUX_SIGBUS;
2160
2161 case GDB_SIGNAL_SEGV:
2162 return LINUX_SIGSEGV;
2163
2164 case GDB_SIGNAL_SYS:
2165 return LINUX_SIGSYS;
2166
2167 case GDB_SIGNAL_PIPE:
2168 return LINUX_SIGPIPE;
2169
2170 case GDB_SIGNAL_ALRM:
2171 return LINUX_SIGALRM;
2172
2173 case GDB_SIGNAL_TERM:
2174 return LINUX_SIGTERM;
2175
2176 case GDB_SIGNAL_URG:
2177 return LINUX_SIGURG;
2178
2179 case GDB_SIGNAL_STOP:
2180 return LINUX_SIGSTOP;
2181
2182 case GDB_SIGNAL_TSTP:
2183 return LINUX_SIGTSTP;
2184
2185 case GDB_SIGNAL_CONT:
2186 return LINUX_SIGCONT;
2187
2188 case GDB_SIGNAL_CHLD:
2189 return LINUX_SIGCHLD;
2190
2191 case GDB_SIGNAL_TTIN:
2192 return LINUX_SIGTTIN;
2193
2194 case GDB_SIGNAL_TTOU:
2195 return LINUX_SIGTTOU;
2196
2197 case GDB_SIGNAL_IO:
2198 return LINUX_SIGIO;
2199
2200 case GDB_SIGNAL_XCPU:
2201 return LINUX_SIGXCPU;
2202
2203 case GDB_SIGNAL_XFSZ:
2204 return LINUX_SIGXFSZ;
2205
2206 case GDB_SIGNAL_VTALRM:
2207 return LINUX_SIGVTALRM;
2208
2209 case GDB_SIGNAL_PROF:
2210 return LINUX_SIGPROF;
2211
2212 case GDB_SIGNAL_WINCH:
2213 return LINUX_SIGWINCH;
2214
2215 case GDB_SIGNAL_USR1:
2216 return LINUX_SIGUSR1;
2217
2218 case GDB_SIGNAL_USR2:
2219 return LINUX_SIGUSR2;
2220
2221 case GDB_SIGNAL_PWR:
2222 return LINUX_SIGPWR;
2223
2224 case GDB_SIGNAL_POLL:
2225 return LINUX_SIGPOLL;
2226
2227 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2228 therefore we have to handle it here. */
2229 case GDB_SIGNAL_REALTIME_32:
2230 return LINUX_SIGRTMIN;
2231
2232 /* Same comment applies to _64. */
2233 case GDB_SIGNAL_REALTIME_64:
2234 return LINUX_SIGRTMAX;
2235 }
2236
2237 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2238 if (signal >= GDB_SIGNAL_REALTIME_33
2239 && signal <= GDB_SIGNAL_REALTIME_63)
2240 {
2241 int offset = signal - GDB_SIGNAL_REALTIME_33;
2242
2243 return LINUX_SIGRTMIN + 1 + offset;
2244 }
2245
2246 return -1;
2247 }
2248
2249 /* Helper for linux_vsyscall_range that does the real work of finding
2250 the vsyscall's address range. */
2251
2252 static int
2253 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2254 {
2255 char filename[100];
2256 long pid;
2257
2258 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2259 return 0;
2260
2261 /* It doesn't make sense to access the host's /proc when debugging a
2262 core file. Instead, look for the PT_LOAD segment that matches
2263 the vDSO. */
2264 if (!target_has_execution)
2265 {
2266 Elf_Internal_Phdr *phdrs;
2267 long phdrs_size;
2268 int num_phdrs, i;
2269
2270 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2271 if (phdrs_size == -1)
2272 return 0;
2273
2274 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
2275 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs);
2276 if (num_phdrs == -1)
2277 return 0;
2278
2279 for (i = 0; i < num_phdrs; i++)
2280 if (phdrs[i].p_type == PT_LOAD
2281 && phdrs[i].p_vaddr == range->start)
2282 {
2283 range->length = phdrs[i].p_memsz;
2284 return 1;
2285 }
2286
2287 return 0;
2288 }
2289
2290 /* We need to know the real target PID to access /proc. */
2291 if (current_inferior ()->fake_pid_p)
2292 return 0;
2293
2294 pid = current_inferior ()->pid;
2295
2296 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2297 reading /proc/PID/maps (2). The later identifies thread stacks
2298 in the output, which requires scanning every thread in the thread
2299 group to check whether a VMA is actually a thread's stack. With
2300 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2301 a few thousand threads, (1) takes a few miliseconds, while (2)
2302 takes several seconds. Also note that "smaps", what we read for
2303 determining core dump mappings, is even slower than "maps". */
2304 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2305 gdb::unique_xmalloc_ptr<char> data
2306 = target_fileio_read_stralloc (NULL, filename);
2307 if (data != NULL)
2308 {
2309 char *line;
2310 char *saveptr = NULL;
2311
2312 for (line = strtok_r (data.get (), "\n", &saveptr);
2313 line != NULL;
2314 line = strtok_r (NULL, "\n", &saveptr))
2315 {
2316 ULONGEST addr, endaddr;
2317 const char *p = line;
2318
2319 addr = strtoulst (p, &p, 16);
2320 if (addr == range->start)
2321 {
2322 if (*p == '-')
2323 p++;
2324 endaddr = strtoulst (p, &p, 16);
2325 range->length = endaddr - addr;
2326 return 1;
2327 }
2328 }
2329 }
2330 else
2331 warning (_("unable to open /proc file '%s'"), filename);
2332
2333 return 0;
2334 }
2335
2336 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2337 caching, and defers the real work to linux_vsyscall_range_raw. */
2338
2339 static int
2340 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2341 {
2342 struct linux_info *info = get_linux_inferior_data ();
2343
2344 if (info->vsyscall_range_p == 0)
2345 {
2346 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2347 info->vsyscall_range_p = 1;
2348 else
2349 info->vsyscall_range_p = -1;
2350 }
2351
2352 if (info->vsyscall_range_p < 0)
2353 return 0;
2354
2355 *range = info->vsyscall_range;
2356 return 1;
2357 }
2358
2359 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2360 definitions would be dependent on compilation host. */
2361 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2362 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2363
2364 /* See gdbarch.sh 'infcall_mmap'. */
2365
2366 static CORE_ADDR
2367 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2368 {
2369 struct objfile *objf;
2370 /* Do there still exist any Linux systems without "mmap64"?
2371 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2372 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2373 struct value *addr_val;
2374 struct gdbarch *gdbarch = get_objfile_arch (objf);
2375 CORE_ADDR retval;
2376 enum
2377 {
2378 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2379 };
2380 struct value *arg[ARG_LAST];
2381
2382 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2383 0);
2384 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2385 arg[ARG_LENGTH] = value_from_ulongest
2386 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2387 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2388 | GDB_MMAP_PROT_EXEC))
2389 == 0);
2390 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2391 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2392 GDB_MMAP_MAP_PRIVATE
2393 | GDB_MMAP_MAP_ANONYMOUS);
2394 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2395 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2396 0);
2397 addr_val = call_function_by_hand (mmap_val, NULL, ARG_LAST, arg);
2398 retval = value_as_address (addr_val);
2399 if (retval == (CORE_ADDR) -1)
2400 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2401 pulongest (size));
2402 return retval;
2403 }
2404
2405 /* See gdbarch.sh 'infcall_munmap'. */
2406
2407 static void
2408 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2409 {
2410 struct objfile *objf;
2411 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2412 struct value *retval_val;
2413 struct gdbarch *gdbarch = get_objfile_arch (objf);
2414 LONGEST retval;
2415 enum
2416 {
2417 ARG_ADDR, ARG_LENGTH, ARG_LAST
2418 };
2419 struct value *arg[ARG_LAST];
2420
2421 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2422 addr);
2423 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2424 arg[ARG_LENGTH] = value_from_ulongest
2425 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2426 retval_val = call_function_by_hand (munmap_val, NULL, ARG_LAST, arg);
2427 retval = value_as_long (retval_val);
2428 if (retval != 0)
2429 warning (_("Failed inferior munmap call at %s for %s bytes, "
2430 "errno is changed."),
2431 hex_string (addr), pulongest (size));
2432 }
2433
2434 /* See linux-tdep.h. */
2435
2436 CORE_ADDR
2437 linux_displaced_step_location (struct gdbarch *gdbarch)
2438 {
2439 CORE_ADDR addr;
2440 int bp_len;
2441
2442 /* Determine entry point from target auxiliary vector. This avoids
2443 the need for symbols. Also, when debugging a stand-alone SPU
2444 executable, entry_point_address () will point to an SPU
2445 local-store address and is thus not usable as displaced stepping
2446 location. The auxiliary vector gets us the PowerPC-side entry
2447 point address instead. */
2448 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
2449 throw_error (NOT_SUPPORTED_ERROR,
2450 _("Cannot find AT_ENTRY auxiliary vector entry."));
2451
2452 /* Make certain that the address points at real code, and not a
2453 function descriptor. */
2454 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2455 &current_target);
2456
2457 /* Inferior calls also use the entry point as a breakpoint location.
2458 We don't want displaced stepping to interfere with those
2459 breakpoints, so leave space. */
2460 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2461 addr += bp_len * 2;
2462
2463 return addr;
2464 }
2465
2466 /* Display whether the gcore command is using the
2467 /proc/PID/coredump_filter file. */
2468
2469 static void
2470 show_use_coredump_filter (struct ui_file *file, int from_tty,
2471 struct cmd_list_element *c, const char *value)
2472 {
2473 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2474 " corefiles is %s.\n"), value);
2475 }
2476
2477 /* Display whether the gcore command is dumping mappings marked with
2478 the VM_DONTDUMP flag. */
2479
2480 static void
2481 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2482 struct cmd_list_element *c, const char *value)
2483 {
2484 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2485 " flag is %s.\n"), value);
2486 }
2487
2488 /* To be called from the various GDB_OSABI_LINUX handlers for the
2489 various GNU/Linux architectures and machine types. */
2490
2491 void
2492 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2493 {
2494 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2495 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2496 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2497 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2498 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2499 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2500 set_gdbarch_has_shared_address_space (gdbarch,
2501 linux_has_shared_address_space);
2502 set_gdbarch_gdb_signal_from_target (gdbarch,
2503 linux_gdb_signal_from_target);
2504 set_gdbarch_gdb_signal_to_target (gdbarch,
2505 linux_gdb_signal_to_target);
2506 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2507 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2508 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2509 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2510 }
2511
2512 void
2513 _initialize_linux_tdep (void)
2514 {
2515 linux_gdbarch_data_handle =
2516 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2517
2518 /* Set a cache per-inferior. */
2519 linux_inferior_data
2520 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2521 /* Observers used to invalidate the cache when needed. */
2522 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2523 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
2524
2525 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2526 &use_coredump_filter, _("\
2527 Set whether gcore should consider /proc/PID/coredump_filter."),
2528 _("\
2529 Show whether gcore should consider /proc/PID/coredump_filter."),
2530 _("\
2531 Use this command to set whether gcore should consider the contents\n\
2532 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2533 about this file, refer to the manpage of core(5)."),
2534 NULL, show_use_coredump_filter,
2535 &setlist, &showlist);
2536
2537 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2538 &dump_excluded_mappings, _("\
2539 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2540 _("\
2541 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2542 _("\
2543 Use this command to set whether gcore should dump mappings marked with the\n\
2544 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2545 more information about this file, refer to the manpage of proc(5) and core(5)."),
2546 NULL, show_dump_excluded_mappings,
2547 &setlist, &showlist);
2548 }
This page took 0.09926 seconds and 4 git commands to generate.