Convert observers to C++
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41 #include "common/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static int use_coredump_filter = 1;
95
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99 static int dump_excluded_mappings = 0;
100
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125 enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
166 static struct gdbarch_data *linux_gdbarch_data_handle;
167
168 struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173 static void *
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177 }
178
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
181 {
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
184 }
185
186 /* Per-inferior data key. */
187 static const struct inferior_data *linux_inferior_data;
188
189 /* Linux-specific cached data. This is used by GDB for caching
190 purposes for each inferior. This helps reduce the overhead of
191 transfering data from a remote target to the local host. */
192 struct linux_info
193 {
194 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
195 if VSYSCALL_RANGE_P is positive. This is cached because getting
196 at this info requires an auxv lookup (which is itself cached),
197 and looking through the inferior's mappings (which change
198 throughout execution and therefore cannot be cached). */
199 struct mem_range vsyscall_range;
200
201 /* Zero if we haven't tried looking up the vsyscall's range before
202 yet. Positive if we tried looking it up, and found it. Negative
203 if we tried looking it up but failed. */
204 int vsyscall_range_p;
205 };
206
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210 static void
211 invalidate_linux_cache_inf (struct inferior *inf)
212 {
213 struct linux_info *info;
214
215 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
216 if (info != NULL)
217 {
218 xfree (info);
219 set_inferior_data (inf, linux_inferior_data, NULL);
220 }
221 }
222
223 /* Handles the cleanup of the linux cache for inferior INF. ARG is
224 ignored. Callback for the inferior_appeared and inferior_exit
225 events. */
226
227 static void
228 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
229 {
230 invalidate_linux_cache_inf (inf);
231 }
232
233 /* Fetch the linux cache info for INF. This function always returns a
234 valid INFO pointer. */
235
236 static struct linux_info *
237 get_linux_inferior_data (void)
238 {
239 struct linux_info *info;
240 struct inferior *inf = current_inferior ();
241
242 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
243 if (info == NULL)
244 {
245 info = XCNEW (struct linux_info);
246 set_inferior_data (inf, linux_inferior_data, info);
247 }
248
249 return info;
250 }
251
252 /* See linux-tdep.h. */
253
254 struct type *
255 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
256 linux_siginfo_extra_fields extra_fields)
257 {
258 struct linux_gdbarch_data *linux_gdbarch_data;
259 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
260 struct type *uid_type, *pid_type;
261 struct type *sigval_type, *clock_type;
262 struct type *siginfo_type, *sifields_type;
263 struct type *type;
264
265 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
266 if (linux_gdbarch_data->siginfo_type != NULL)
267 return linux_gdbarch_data->siginfo_type;
268
269 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
270 0, "int");
271 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
272 1, "unsigned int");
273 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
274 0, "long");
275 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
276 0, "short");
277 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
278
279 /* sival_t */
280 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
281 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
282 append_composite_type_field (sigval_type, "sival_int", int_type);
283 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
284
285 /* __pid_t */
286 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
287 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
288 TYPE_TARGET_TYPE (pid_type) = int_type;
289 TYPE_TARGET_STUB (pid_type) = 1;
290
291 /* __uid_t */
292 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
293 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
294 TYPE_TARGET_TYPE (uid_type) = uint_type;
295 TYPE_TARGET_STUB (uid_type) = 1;
296
297 /* __clock_t */
298 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
299 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
300 "__clock_t");
301 TYPE_TARGET_TYPE (clock_type) = long_type;
302 TYPE_TARGET_STUB (clock_type) = 1;
303
304 /* _sifields */
305 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
306
307 {
308 const int si_max_size = 128;
309 int si_pad_size;
310 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
311
312 /* _pad */
313 if (gdbarch_ptr_bit (gdbarch) == 64)
314 si_pad_size = (si_max_size / size_of_int) - 4;
315 else
316 si_pad_size = (si_max_size / size_of_int) - 3;
317 append_composite_type_field (sifields_type, "_pad",
318 init_vector_type (int_type, si_pad_size));
319 }
320
321 /* _kill */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (sifields_type, "_kill", type);
326
327 /* _timer */
328 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
329 append_composite_type_field (type, "si_tid", int_type);
330 append_composite_type_field (type, "si_overrun", int_type);
331 append_composite_type_field (type, "si_sigval", sigval_type);
332 append_composite_type_field (sifields_type, "_timer", type);
333
334 /* _rt */
335 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
336 append_composite_type_field (type, "si_pid", pid_type);
337 append_composite_type_field (type, "si_uid", uid_type);
338 append_composite_type_field (type, "si_sigval", sigval_type);
339 append_composite_type_field (sifields_type, "_rt", type);
340
341 /* _sigchld */
342 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
343 append_composite_type_field (type, "si_pid", pid_type);
344 append_composite_type_field (type, "si_uid", uid_type);
345 append_composite_type_field (type, "si_status", int_type);
346 append_composite_type_field (type, "si_utime", clock_type);
347 append_composite_type_field (type, "si_stime", clock_type);
348 append_composite_type_field (sifields_type, "_sigchld", type);
349
350 /* _sigfault */
351 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
352 append_composite_type_field (type, "si_addr", void_ptr_type);
353
354 /* Additional bound fields for _sigfault in case they were requested. */
355 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
356 {
357 struct type *sigfault_bnd_fields;
358
359 append_composite_type_field (type, "_addr_lsb", short_type);
360 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
361 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
362 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
363 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
364 }
365 append_composite_type_field (sifields_type, "_sigfault", type);
366
367 /* _sigpoll */
368 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
369 append_composite_type_field (type, "si_band", long_type);
370 append_composite_type_field (type, "si_fd", int_type);
371 append_composite_type_field (sifields_type, "_sigpoll", type);
372
373 /* struct siginfo */
374 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
375 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
376 append_composite_type_field (siginfo_type, "si_signo", int_type);
377 append_composite_type_field (siginfo_type, "si_errno", int_type);
378 append_composite_type_field (siginfo_type, "si_code", int_type);
379 append_composite_type_field_aligned (siginfo_type,
380 "_sifields", sifields_type,
381 TYPE_LENGTH (long_type));
382
383 linux_gdbarch_data->siginfo_type = siginfo_type;
384
385 return siginfo_type;
386 }
387
388 /* This function is suitable for architectures that don't
389 extend/override the standard siginfo structure. */
390
391 static struct type *
392 linux_get_siginfo_type (struct gdbarch *gdbarch)
393 {
394 return linux_get_siginfo_type_with_fields (gdbarch, 0);
395 }
396
397 /* Return true if the target is running on uClinux instead of normal
398 Linux kernel. */
399
400 int
401 linux_is_uclinux (void)
402 {
403 CORE_ADDR dummy;
404
405 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
406 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
407 }
408
409 static int
410 linux_has_shared_address_space (struct gdbarch *gdbarch)
411 {
412 return linux_is_uclinux ();
413 }
414
415 /* This is how we want PTIDs from core files to be printed. */
416
417 static const char *
418 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
419 {
420 static char buf[80];
421
422 if (ptid_get_lwp (ptid) != 0)
423 {
424 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
425 return buf;
426 }
427
428 return normal_pid_to_str (ptid);
429 }
430
431 /* Service function for corefiles and info proc. */
432
433 static void
434 read_mapping (const char *line,
435 ULONGEST *addr, ULONGEST *endaddr,
436 const char **permissions, size_t *permissions_len,
437 ULONGEST *offset,
438 const char **device, size_t *device_len,
439 ULONGEST *inode,
440 const char **filename)
441 {
442 const char *p = line;
443
444 *addr = strtoulst (p, &p, 16);
445 if (*p == '-')
446 p++;
447 *endaddr = strtoulst (p, &p, 16);
448
449 p = skip_spaces (p);
450 *permissions = p;
451 while (*p && !isspace (*p))
452 p++;
453 *permissions_len = p - *permissions;
454
455 *offset = strtoulst (p, &p, 16);
456
457 p = skip_spaces (p);
458 *device = p;
459 while (*p && !isspace (*p))
460 p++;
461 *device_len = p - *device;
462
463 *inode = strtoulst (p, &p, 10);
464
465 p = skip_spaces (p);
466 *filename = p;
467 }
468
469 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
470
471 This function was based on the documentation found on
472 <Documentation/filesystems/proc.txt>, on the Linux kernel.
473
474 Linux kernels before commit
475 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
476 field on smaps. */
477
478 static void
479 decode_vmflags (char *p, struct smaps_vmflags *v)
480 {
481 char *saveptr = NULL;
482 const char *s;
483
484 v->initialized_p = 1;
485 p = skip_to_space (p);
486 p = skip_spaces (p);
487
488 for (s = strtok_r (p, " ", &saveptr);
489 s != NULL;
490 s = strtok_r (NULL, " ", &saveptr))
491 {
492 if (strcmp (s, "io") == 0)
493 v->io_page = 1;
494 else if (strcmp (s, "ht") == 0)
495 v->uses_huge_tlb = 1;
496 else if (strcmp (s, "dd") == 0)
497 v->exclude_coredump = 1;
498 else if (strcmp (s, "sh") == 0)
499 v->shared_mapping = 1;
500 }
501 }
502
503 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
504 they're initialized lazily. */
505
506 struct mapping_regexes
507 {
508 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
509 string in the end). We know for sure, based on the Linux kernel
510 code, that memory mappings whose associated filename is
511 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
512 compiled_regex dev_zero
513 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
514 _("Could not compile regex to match /dev/zero filename")};
515
516 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
517 string in the end). These filenames refer to shared memory
518 (shmem), and memory mappings associated with them are
519 MAP_ANONYMOUS as well. */
520 compiled_regex shmem_file
521 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
522 _("Could not compile regex to match shmem filenames")};
523
524 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
525 0' code, which is responsible to decide if it is dealing with a
526 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
527 FILE_DELETED matches, it does not necessarily mean that we are
528 dealing with an anonymous shared mapping. However, there is no
529 easy way to detect this currently, so this is the best
530 approximation we have.
531
532 As a result, GDB will dump readonly pages of deleted executables
533 when using the default value of coredump_filter (0x33), while the
534 Linux kernel will not dump those pages. But we can live with
535 that. */
536 compiled_regex file_deleted
537 {" (deleted)$", REG_NOSUB,
538 _("Could not compile regex to match '<file> (deleted)'")};
539 };
540
541 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
542
543 FILENAME is the name of the file present in the first line of the
544 memory mapping, in the "/proc/PID/smaps" output. For example, if
545 the first line is:
546
547 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
548
549 Then FILENAME will be "/path/to/file". */
550
551 static int
552 mapping_is_anonymous_p (const char *filename)
553 {
554 static gdb::optional<mapping_regexes> regexes;
555 static int init_regex_p = 0;
556
557 if (!init_regex_p)
558 {
559 /* Let's be pessimistic and assume there will be an error while
560 compiling the regex'es. */
561 init_regex_p = -1;
562
563 regexes.emplace ();
564
565 /* If we reached this point, then everything succeeded. */
566 init_regex_p = 1;
567 }
568
569 if (init_regex_p == -1)
570 {
571 const char deleted[] = " (deleted)";
572 size_t del_len = sizeof (deleted) - 1;
573 size_t filename_len = strlen (filename);
574
575 /* There was an error while compiling the regex'es above. In
576 order to try to give some reliable information to the caller,
577 we just try to find the string " (deleted)" in the filename.
578 If we managed to find it, then we assume the mapping is
579 anonymous. */
580 return (filename_len >= del_len
581 && strcmp (filename + filename_len - del_len, deleted) == 0);
582 }
583
584 if (*filename == '\0'
585 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
586 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
587 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
588 return 1;
589
590 return 0;
591 }
592
593 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
594 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
595 greater than 0 if it should.
596
597 In a nutshell, this is the logic that we follow in order to decide
598 if a mapping should be dumped or not.
599
600 - If the mapping is associated to a file whose name ends with
601 " (deleted)", or if the file is "/dev/zero", or if it is
602 "/SYSV%08x" (shared memory), or if there is no file associated
603 with it, or if the AnonHugePages: or the Anonymous: fields in the
604 /proc/PID/smaps have contents, then GDB considers this mapping to
605 be anonymous. Otherwise, GDB considers this mapping to be a
606 file-backed mapping (because there will be a file associated with
607 it).
608
609 It is worth mentioning that, from all those checks described
610 above, the most fragile is the one to see if the file name ends
611 with " (deleted)". This does not necessarily mean that the
612 mapping is anonymous, because the deleted file associated with
613 the mapping may have been a hard link to another file, for
614 example. The Linux kernel checks to see if "i_nlink == 0", but
615 GDB cannot easily (and normally) do this check (iff running as
616 root, it could find the mapping in /proc/PID/map_files/ and
617 determine whether there still are other hard links to the
618 inode/file). Therefore, we made a compromise here, and we assume
619 that if the file name ends with " (deleted)", then the mapping is
620 indeed anonymous. FWIW, this is something the Linux kernel could
621 do better: expose this information in a more direct way.
622
623 - If we see the flag "sh" in the "VmFlags:" field (in
624 /proc/PID/smaps), then certainly the memory mapping is shared
625 (VM_SHARED). If we have access to the VmFlags, and we don't see
626 the "sh" there, then certainly the mapping is private. However,
627 Linux kernels before commit
628 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
629 "VmFlags:" field; in that case, we use another heuristic: if we
630 see 'p' in the permission flags, then we assume that the mapping
631 is private, even though the presence of the 's' flag there would
632 mean VM_MAYSHARE, which means the mapping could still be private.
633 This should work OK enough, however. */
634
635 static int
636 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
637 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
638 const char *filename)
639 {
640 /* Initially, we trust in what we received from our caller. This
641 value may not be very precise (i.e., it was probably gathered
642 from the permission line in the /proc/PID/smaps list, which
643 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
644 what we have until we take a look at the "VmFlags:" field
645 (assuming that the version of the Linux kernel being used
646 supports it, of course). */
647 int private_p = maybe_private_p;
648
649 /* We always dump vDSO and vsyscall mappings, because it's likely that
650 there'll be no file to read the contents from at core load time.
651 The kernel does the same. */
652 if (strcmp ("[vdso]", filename) == 0
653 || strcmp ("[vsyscall]", filename) == 0)
654 return 1;
655
656 if (v->initialized_p)
657 {
658 /* We never dump I/O mappings. */
659 if (v->io_page)
660 return 0;
661
662 /* Check if we should exclude this mapping. */
663 if (!dump_excluded_mappings && v->exclude_coredump)
664 return 0;
665
666 /* Update our notion of whether this mapping is shared or
667 private based on a trustworthy value. */
668 private_p = !v->shared_mapping;
669
670 /* HugeTLB checking. */
671 if (v->uses_huge_tlb)
672 {
673 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
674 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
675 return 1;
676
677 return 0;
678 }
679 }
680
681 if (private_p)
682 {
683 if (mapping_anon_p && mapping_file_p)
684 {
685 /* This is a special situation. It can happen when we see a
686 mapping that is file-backed, but that contains anonymous
687 pages. */
688 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
689 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
690 }
691 else if (mapping_anon_p)
692 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
693 else
694 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
695 }
696 else
697 {
698 if (mapping_anon_p && mapping_file_p)
699 {
700 /* This is a special situation. It can happen when we see a
701 mapping that is file-backed, but that contains anonymous
702 pages. */
703 return ((filterflags & COREFILTER_ANON_SHARED) != 0
704 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
705 }
706 else if (mapping_anon_p)
707 return (filterflags & COREFILTER_ANON_SHARED) != 0;
708 else
709 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
710 }
711 }
712
713 /* Implement the "info proc" command. */
714
715 static void
716 linux_info_proc (struct gdbarch *gdbarch, const char *args,
717 enum info_proc_what what)
718 {
719 /* A long is used for pid instead of an int to avoid a loss of precision
720 compiler warning from the output of strtoul. */
721 long pid;
722 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
723 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
724 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
725 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
726 int status_f = (what == IP_STATUS || what == IP_ALL);
727 int stat_f = (what == IP_STAT || what == IP_ALL);
728 char filename[100];
729 char *data;
730 int target_errno;
731
732 if (args && isdigit (args[0]))
733 {
734 char *tem;
735
736 pid = strtoul (args, &tem, 10);
737 args = tem;
738 }
739 else
740 {
741 if (!target_has_execution)
742 error (_("No current process: you must name one."));
743 if (current_inferior ()->fake_pid_p)
744 error (_("Can't determine the current process's PID: you must name one."));
745
746 pid = current_inferior ()->pid;
747 }
748
749 args = skip_spaces (args);
750 if (args && args[0])
751 error (_("Too many parameters: %s"), args);
752
753 printf_filtered (_("process %ld\n"), pid);
754 if (cmdline_f)
755 {
756 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
757 gdb::unique_xmalloc_ptr<char> cmdline
758 = target_fileio_read_stralloc (NULL, filename);
759 if (cmdline)
760 printf_filtered ("cmdline = '%s'\n", cmdline.get ());
761 else
762 warning (_("unable to open /proc file '%s'"), filename);
763 }
764 if (cwd_f)
765 {
766 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
767 gdb::optional<std::string> contents
768 = target_fileio_readlink (NULL, filename, &target_errno);
769 if (contents.has_value ())
770 printf_filtered ("cwd = '%s'\n", contents->c_str ());
771 else
772 warning (_("unable to read link '%s'"), filename);
773 }
774 if (exe_f)
775 {
776 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
777 gdb::optional<std::string> contents
778 = target_fileio_readlink (NULL, filename, &target_errno);
779 if (contents.has_value ())
780 printf_filtered ("exe = '%s'\n", contents->c_str ());
781 else
782 warning (_("unable to read link '%s'"), filename);
783 }
784 if (mappings_f)
785 {
786 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
787 gdb::unique_xmalloc_ptr<char> map
788 = target_fileio_read_stralloc (NULL, filename);
789 if (map != NULL)
790 {
791 char *line;
792
793 printf_filtered (_("Mapped address spaces:\n\n"));
794 if (gdbarch_addr_bit (gdbarch) == 32)
795 {
796 printf_filtered ("\t%10s %10s %10s %10s %s\n",
797 "Start Addr",
798 " End Addr",
799 " Size", " Offset", "objfile");
800 }
801 else
802 {
803 printf_filtered (" %18s %18s %10s %10s %s\n",
804 "Start Addr",
805 " End Addr",
806 " Size", " Offset", "objfile");
807 }
808
809 for (line = strtok (map.get (), "\n");
810 line;
811 line = strtok (NULL, "\n"))
812 {
813 ULONGEST addr, endaddr, offset, inode;
814 const char *permissions, *device, *filename;
815 size_t permissions_len, device_len;
816
817 read_mapping (line, &addr, &endaddr,
818 &permissions, &permissions_len,
819 &offset, &device, &device_len,
820 &inode, &filename);
821
822 if (gdbarch_addr_bit (gdbarch) == 32)
823 {
824 printf_filtered ("\t%10s %10s %10s %10s %s\n",
825 paddress (gdbarch, addr),
826 paddress (gdbarch, endaddr),
827 hex_string (endaddr - addr),
828 hex_string (offset),
829 *filename? filename : "");
830 }
831 else
832 {
833 printf_filtered (" %18s %18s %10s %10s %s\n",
834 paddress (gdbarch, addr),
835 paddress (gdbarch, endaddr),
836 hex_string (endaddr - addr),
837 hex_string (offset),
838 *filename? filename : "");
839 }
840 }
841 }
842 else
843 warning (_("unable to open /proc file '%s'"), filename);
844 }
845 if (status_f)
846 {
847 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
848 gdb::unique_xmalloc_ptr<char> status
849 = target_fileio_read_stralloc (NULL, filename);
850 if (status)
851 puts_filtered (status.get ());
852 else
853 warning (_("unable to open /proc file '%s'"), filename);
854 }
855 if (stat_f)
856 {
857 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
858 gdb::unique_xmalloc_ptr<char> statstr
859 = target_fileio_read_stralloc (NULL, filename);
860 if (statstr)
861 {
862 const char *p = statstr.get ();
863
864 printf_filtered (_("Process: %s\n"),
865 pulongest (strtoulst (p, &p, 10)));
866
867 p = skip_spaces (p);
868 if (*p == '(')
869 {
870 /* ps command also relies on no trailing fields
871 ever contain ')'. */
872 const char *ep = strrchr (p, ')');
873 if (ep != NULL)
874 {
875 printf_filtered ("Exec file: %.*s\n",
876 (int) (ep - p - 1), p + 1);
877 p = ep + 1;
878 }
879 }
880
881 p = skip_spaces (p);
882 if (*p)
883 printf_filtered (_("State: %c\n"), *p++);
884
885 if (*p)
886 printf_filtered (_("Parent process: %s\n"),
887 pulongest (strtoulst (p, &p, 10)));
888 if (*p)
889 printf_filtered (_("Process group: %s\n"),
890 pulongest (strtoulst (p, &p, 10)));
891 if (*p)
892 printf_filtered (_("Session id: %s\n"),
893 pulongest (strtoulst (p, &p, 10)));
894 if (*p)
895 printf_filtered (_("TTY: %s\n"),
896 pulongest (strtoulst (p, &p, 10)));
897 if (*p)
898 printf_filtered (_("TTY owner process group: %s\n"),
899 pulongest (strtoulst (p, &p, 10)));
900
901 if (*p)
902 printf_filtered (_("Flags: %s\n"),
903 hex_string (strtoulst (p, &p, 10)));
904 if (*p)
905 printf_filtered (_("Minor faults (no memory page): %s\n"),
906 pulongest (strtoulst (p, &p, 10)));
907 if (*p)
908 printf_filtered (_("Minor faults, children: %s\n"),
909 pulongest (strtoulst (p, &p, 10)));
910 if (*p)
911 printf_filtered (_("Major faults (memory page faults): %s\n"),
912 pulongest (strtoulst (p, &p, 10)));
913 if (*p)
914 printf_filtered (_("Major faults, children: %s\n"),
915 pulongest (strtoulst (p, &p, 10)));
916 if (*p)
917 printf_filtered (_("utime: %s\n"),
918 pulongest (strtoulst (p, &p, 10)));
919 if (*p)
920 printf_filtered (_("stime: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("utime, children: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("stime, children: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("jiffies remaining in current "
930 "time slice: %s\n"),
931 pulongest (strtoulst (p, &p, 10)));
932 if (*p)
933 printf_filtered (_("'nice' value: %s\n"),
934 pulongest (strtoulst (p, &p, 10)));
935 if (*p)
936 printf_filtered (_("jiffies until next timeout: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("start time (jiffies since "
943 "system boot): %s\n"),
944 pulongest (strtoulst (p, &p, 10)));
945 if (*p)
946 printf_filtered (_("Virtual memory size: %s\n"),
947 pulongest (strtoulst (p, &p, 10)));
948 if (*p)
949 printf_filtered (_("Resident set size: %s\n"),
950 pulongest (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("rlim: %s\n"),
953 pulongest (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Start of text: %s\n"),
956 hex_string (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("End of text: %s\n"),
959 hex_string (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("Start of stack: %s\n"),
962 hex_string (strtoulst (p, &p, 10)));
963 #if 0 /* Don't know how architecture-dependent the rest is...
964 Anyway the signal bitmap info is available from "status". */
965 if (*p)
966 printf_filtered (_("Kernel stack pointer: %s\n"),
967 hex_string (strtoulst (p, &p, 10)));
968 if (*p)
969 printf_filtered (_("Kernel instr pointer: %s\n"),
970 hex_string (strtoulst (p, &p, 10)));
971 if (*p)
972 printf_filtered (_("Pending signals bitmap: %s\n"),
973 hex_string (strtoulst (p, &p, 10)));
974 if (*p)
975 printf_filtered (_("Blocked signals bitmap: %s\n"),
976 hex_string (strtoulst (p, &p, 10)));
977 if (*p)
978 printf_filtered (_("Ignored signals bitmap: %s\n"),
979 hex_string (strtoulst (p, &p, 10)));
980 if (*p)
981 printf_filtered (_("Catched signals bitmap: %s\n"),
982 hex_string (strtoulst (p, &p, 10)));
983 if (*p)
984 printf_filtered (_("wchan (system call): %s\n"),
985 hex_string (strtoulst (p, &p, 10)));
986 #endif
987 }
988 else
989 warning (_("unable to open /proc file '%s'"), filename);
990 }
991 }
992
993 /* Implement "info proc mappings" for a corefile. */
994
995 static void
996 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
997 {
998 asection *section;
999 ULONGEST count, page_size;
1000 unsigned char *descdata, *filenames, *descend;
1001 size_t note_size;
1002 unsigned int addr_size_bits, addr_size;
1003 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1004 /* We assume this for reading 64-bit core files. */
1005 gdb_static_assert (sizeof (ULONGEST) >= 8);
1006
1007 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1008 if (section == NULL)
1009 {
1010 warning (_("unable to find mappings in core file"));
1011 return;
1012 }
1013
1014 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1015 addr_size = addr_size_bits / 8;
1016 note_size = bfd_get_section_size (section);
1017
1018 if (note_size < 2 * addr_size)
1019 error (_("malformed core note - too short for header"));
1020
1021 gdb::def_vector<unsigned char> contents (note_size);
1022 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1023 0, note_size))
1024 error (_("could not get core note contents"));
1025
1026 descdata = contents.data ();
1027 descend = descdata + note_size;
1028
1029 if (descdata[note_size - 1] != '\0')
1030 error (_("malformed note - does not end with \\0"));
1031
1032 count = bfd_get (addr_size_bits, core_bfd, descdata);
1033 descdata += addr_size;
1034
1035 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1036 descdata += addr_size;
1037
1038 if (note_size < 2 * addr_size + count * 3 * addr_size)
1039 error (_("malformed note - too short for supplied file count"));
1040
1041 printf_filtered (_("Mapped address spaces:\n\n"));
1042 if (gdbarch_addr_bit (gdbarch) == 32)
1043 {
1044 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1045 "Start Addr",
1046 " End Addr",
1047 " Size", " Offset", "objfile");
1048 }
1049 else
1050 {
1051 printf_filtered (" %18s %18s %10s %10s %s\n",
1052 "Start Addr",
1053 " End Addr",
1054 " Size", " Offset", "objfile");
1055 }
1056
1057 filenames = descdata + count * 3 * addr_size;
1058 while (--count > 0)
1059 {
1060 ULONGEST start, end, file_ofs;
1061
1062 if (filenames == descend)
1063 error (_("malformed note - filenames end too early"));
1064
1065 start = bfd_get (addr_size_bits, core_bfd, descdata);
1066 descdata += addr_size;
1067 end = bfd_get (addr_size_bits, core_bfd, descdata);
1068 descdata += addr_size;
1069 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1070 descdata += addr_size;
1071
1072 file_ofs *= page_size;
1073
1074 if (gdbarch_addr_bit (gdbarch) == 32)
1075 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1076 paddress (gdbarch, start),
1077 paddress (gdbarch, end),
1078 hex_string (end - start),
1079 hex_string (file_ofs),
1080 filenames);
1081 else
1082 printf_filtered (" %18s %18s %10s %10s %s\n",
1083 paddress (gdbarch, start),
1084 paddress (gdbarch, end),
1085 hex_string (end - start),
1086 hex_string (file_ofs),
1087 filenames);
1088
1089 filenames += 1 + strlen ((char *) filenames);
1090 }
1091 }
1092
1093 /* Implement "info proc" for a corefile. */
1094
1095 static void
1096 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1097 enum info_proc_what what)
1098 {
1099 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1100 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1101
1102 if (exe_f)
1103 {
1104 const char *exe;
1105
1106 exe = bfd_core_file_failing_command (core_bfd);
1107 if (exe != NULL)
1108 printf_filtered ("exe = '%s'\n", exe);
1109 else
1110 warning (_("unable to find command name in core file"));
1111 }
1112
1113 if (mappings_f)
1114 linux_core_info_proc_mappings (gdbarch, args);
1115
1116 if (!exe_f && !mappings_f)
1117 error (_("unable to handle request"));
1118 }
1119
1120 /* Read siginfo data from the core, if possible. Returns -1 on
1121 failure. Otherwise, returns the number of bytes read. READBUF,
1122 OFFSET, and LEN are all as specified by the to_xfer_partial
1123 interface. */
1124
1125 static LONGEST
1126 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1127 ULONGEST offset, ULONGEST len)
1128 {
1129 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1130 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1131 if (section == NULL)
1132 return -1;
1133
1134 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1135 return -1;
1136
1137 return len;
1138 }
1139
1140 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1141 ULONGEST offset, ULONGEST inode,
1142 int read, int write,
1143 int exec, int modified,
1144 const char *filename,
1145 void *data);
1146
1147 /* List memory regions in the inferior for a corefile. */
1148
1149 static int
1150 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1151 linux_find_memory_region_ftype *func,
1152 void *obfd)
1153 {
1154 char mapsfilename[100];
1155 char coredumpfilter_name[100];
1156 pid_t pid;
1157 /* Default dump behavior of coredump_filter (0x33), according to
1158 Documentation/filesystems/proc.txt from the Linux kernel
1159 tree. */
1160 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1161 | COREFILTER_ANON_SHARED
1162 | COREFILTER_ELF_HEADERS
1163 | COREFILTER_HUGETLB_PRIVATE);
1164
1165 /* We need to know the real target PID to access /proc. */
1166 if (current_inferior ()->fake_pid_p)
1167 return 1;
1168
1169 pid = current_inferior ()->pid;
1170
1171 if (use_coredump_filter)
1172 {
1173 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1174 "/proc/%d/coredump_filter", pid);
1175 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1176 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1177 if (coredumpfilterdata != NULL)
1178 {
1179 unsigned int flags;
1180
1181 sscanf (coredumpfilterdata.get (), "%x", &flags);
1182 filterflags = (enum filter_flag) flags;
1183 }
1184 }
1185
1186 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1187 gdb::unique_xmalloc_ptr<char> data
1188 = target_fileio_read_stralloc (NULL, mapsfilename);
1189 if (data == NULL)
1190 {
1191 /* Older Linux kernels did not support /proc/PID/smaps. */
1192 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1193 data = target_fileio_read_stralloc (NULL, mapsfilename);
1194 }
1195
1196 if (data != NULL)
1197 {
1198 char *line, *t;
1199
1200 line = strtok_r (data.get (), "\n", &t);
1201 while (line != NULL)
1202 {
1203 ULONGEST addr, endaddr, offset, inode;
1204 const char *permissions, *device, *filename;
1205 struct smaps_vmflags v;
1206 size_t permissions_len, device_len;
1207 int read, write, exec, priv;
1208 int has_anonymous = 0;
1209 int should_dump_p = 0;
1210 int mapping_anon_p;
1211 int mapping_file_p;
1212
1213 memset (&v, 0, sizeof (v));
1214 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1215 &offset, &device, &device_len, &inode, &filename);
1216 mapping_anon_p = mapping_is_anonymous_p (filename);
1217 /* If the mapping is not anonymous, then we can consider it
1218 to be file-backed. These two states (anonymous or
1219 file-backed) seem to be exclusive, but they can actually
1220 coexist. For example, if a file-backed mapping has
1221 "Anonymous:" pages (see more below), then the Linux
1222 kernel will dump this mapping when the user specified
1223 that she only wants anonymous mappings in the corefile
1224 (*even* when she explicitly disabled the dumping of
1225 file-backed mappings). */
1226 mapping_file_p = !mapping_anon_p;
1227
1228 /* Decode permissions. */
1229 read = (memchr (permissions, 'r', permissions_len) != 0);
1230 write = (memchr (permissions, 'w', permissions_len) != 0);
1231 exec = (memchr (permissions, 'x', permissions_len) != 0);
1232 /* 'private' here actually means VM_MAYSHARE, and not
1233 VM_SHARED. In order to know if a mapping is really
1234 private or not, we must check the flag "sh" in the
1235 VmFlags field. This is done by decode_vmflags. However,
1236 if we are using a Linux kernel released before the commit
1237 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1238 not have the VmFlags there. In this case, there is
1239 really no way to know if we are dealing with VM_SHARED,
1240 so we just assume that VM_MAYSHARE is enough. */
1241 priv = memchr (permissions, 'p', permissions_len) != 0;
1242
1243 /* Try to detect if region should be dumped by parsing smaps
1244 counters. */
1245 for (line = strtok_r (NULL, "\n", &t);
1246 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1247 line = strtok_r (NULL, "\n", &t))
1248 {
1249 char keyword[64 + 1];
1250
1251 if (sscanf (line, "%64s", keyword) != 1)
1252 {
1253 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1254 break;
1255 }
1256
1257 if (strcmp (keyword, "Anonymous:") == 0)
1258 {
1259 /* Older Linux kernels did not support the
1260 "Anonymous:" counter. Check it here. */
1261 has_anonymous = 1;
1262 }
1263 else if (strcmp (keyword, "VmFlags:") == 0)
1264 decode_vmflags (line, &v);
1265
1266 if (strcmp (keyword, "AnonHugePages:") == 0
1267 || strcmp (keyword, "Anonymous:") == 0)
1268 {
1269 unsigned long number;
1270
1271 if (sscanf (line, "%*s%lu", &number) != 1)
1272 {
1273 warning (_("Error parsing {s,}maps file '%s' number"),
1274 mapsfilename);
1275 break;
1276 }
1277 if (number > 0)
1278 {
1279 /* Even if we are dealing with a file-backed
1280 mapping, if it contains anonymous pages we
1281 consider it to be *also* an anonymous
1282 mapping, because this is what the Linux
1283 kernel does:
1284
1285 // Dump segments that have been written to.
1286 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1287 goto whole;
1288
1289 Note that if the mapping is already marked as
1290 file-backed (i.e., mapping_file_p is
1291 non-zero), then this is a special case, and
1292 this mapping will be dumped either when the
1293 user wants to dump file-backed *or* anonymous
1294 mappings. */
1295 mapping_anon_p = 1;
1296 }
1297 }
1298 }
1299
1300 if (has_anonymous)
1301 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1302 mapping_anon_p, mapping_file_p,
1303 filename);
1304 else
1305 {
1306 /* Older Linux kernels did not support the "Anonymous:" counter.
1307 If it is missing, we can't be sure - dump all the pages. */
1308 should_dump_p = 1;
1309 }
1310
1311 /* Invoke the callback function to create the corefile segment. */
1312 if (should_dump_p)
1313 func (addr, endaddr - addr, offset, inode,
1314 read, write, exec, 1, /* MODIFIED is true because we
1315 want to dump the mapping. */
1316 filename, obfd);
1317 }
1318
1319 return 0;
1320 }
1321
1322 return 1;
1323 }
1324
1325 /* A structure for passing information through
1326 linux_find_memory_regions_full. */
1327
1328 struct linux_find_memory_regions_data
1329 {
1330 /* The original callback. */
1331
1332 find_memory_region_ftype func;
1333
1334 /* The original datum. */
1335
1336 void *obfd;
1337 };
1338
1339 /* A callback for linux_find_memory_regions that converts between the
1340 "full"-style callback and find_memory_region_ftype. */
1341
1342 static int
1343 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1344 ULONGEST offset, ULONGEST inode,
1345 int read, int write, int exec, int modified,
1346 const char *filename, void *arg)
1347 {
1348 struct linux_find_memory_regions_data *data
1349 = (struct linux_find_memory_regions_data *) arg;
1350
1351 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1352 }
1353
1354 /* A variant of linux_find_memory_regions_full that is suitable as the
1355 gdbarch find_memory_regions method. */
1356
1357 static int
1358 linux_find_memory_regions (struct gdbarch *gdbarch,
1359 find_memory_region_ftype func, void *obfd)
1360 {
1361 struct linux_find_memory_regions_data data;
1362
1363 data.func = func;
1364 data.obfd = obfd;
1365
1366 return linux_find_memory_regions_full (gdbarch,
1367 linux_find_memory_regions_thunk,
1368 &data);
1369 }
1370
1371 /* Determine which signal stopped execution. */
1372
1373 static int
1374 find_signalled_thread (struct thread_info *info, void *data)
1375 {
1376 if (info->suspend.stop_signal != GDB_SIGNAL_0
1377 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1378 return 1;
1379
1380 return 0;
1381 }
1382
1383 /* Generate corefile notes for SPU contexts. */
1384
1385 static char *
1386 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1387 {
1388 static const char *spu_files[] =
1389 {
1390 "object-id",
1391 "mem",
1392 "regs",
1393 "fpcr",
1394 "lslr",
1395 "decr",
1396 "decr_status",
1397 "signal1",
1398 "signal1_type",
1399 "signal2",
1400 "signal2_type",
1401 "event_mask",
1402 "event_status",
1403 "mbox_info",
1404 "ibox_info",
1405 "wbox_info",
1406 "dma_info",
1407 "proxydma_info",
1408 };
1409
1410 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1411 gdb_byte *spu_ids;
1412 LONGEST i, j, size;
1413
1414 /* Determine list of SPU ids. */
1415 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1416 NULL, &spu_ids);
1417
1418 /* Generate corefile notes for each SPU file. */
1419 for (i = 0; i < size; i += 4)
1420 {
1421 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1422
1423 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1424 {
1425 char annex[32], note_name[32];
1426 gdb_byte *spu_data;
1427 LONGEST spu_len;
1428
1429 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1430 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1431 annex, &spu_data);
1432 if (spu_len > 0)
1433 {
1434 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1435 note_data = elfcore_write_note (obfd, note_data, note_size,
1436 note_name, NT_SPU,
1437 spu_data, spu_len);
1438 xfree (spu_data);
1439
1440 if (!note_data)
1441 {
1442 xfree (spu_ids);
1443 return NULL;
1444 }
1445 }
1446 }
1447 }
1448
1449 if (size > 0)
1450 xfree (spu_ids);
1451
1452 return note_data;
1453 }
1454
1455 /* This is used to pass information from
1456 linux_make_mappings_corefile_notes through
1457 linux_find_memory_regions_full. */
1458
1459 struct linux_make_mappings_data
1460 {
1461 /* Number of files mapped. */
1462 ULONGEST file_count;
1463
1464 /* The obstack for the main part of the data. */
1465 struct obstack *data_obstack;
1466
1467 /* The filename obstack. */
1468 struct obstack *filename_obstack;
1469
1470 /* The architecture's "long" type. */
1471 struct type *long_type;
1472 };
1473
1474 static linux_find_memory_region_ftype linux_make_mappings_callback;
1475
1476 /* A callback for linux_find_memory_regions_full that updates the
1477 mappings data for linux_make_mappings_corefile_notes. */
1478
1479 static int
1480 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1481 ULONGEST offset, ULONGEST inode,
1482 int read, int write, int exec, int modified,
1483 const char *filename, void *data)
1484 {
1485 struct linux_make_mappings_data *map_data
1486 = (struct linux_make_mappings_data *) data;
1487 gdb_byte buf[sizeof (ULONGEST)];
1488
1489 if (*filename == '\0' || inode == 0)
1490 return 0;
1491
1492 ++map_data->file_count;
1493
1494 pack_long (buf, map_data->long_type, vaddr);
1495 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1496 pack_long (buf, map_data->long_type, vaddr + size);
1497 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1498 pack_long (buf, map_data->long_type, offset);
1499 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1500
1501 obstack_grow_str0 (map_data->filename_obstack, filename);
1502
1503 return 0;
1504 }
1505
1506 /* Write the file mapping data to the core file, if possible. OBFD is
1507 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1508 is a pointer to the note size. Returns the new NOTE_DATA and
1509 updates NOTE_SIZE. */
1510
1511 static char *
1512 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1513 char *note_data, int *note_size)
1514 {
1515 struct linux_make_mappings_data mapping_data;
1516 struct type *long_type
1517 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1518 gdb_byte buf[sizeof (ULONGEST)];
1519
1520 auto_obstack data_obstack, filename_obstack;
1521
1522 mapping_data.file_count = 0;
1523 mapping_data.data_obstack = &data_obstack;
1524 mapping_data.filename_obstack = &filename_obstack;
1525 mapping_data.long_type = long_type;
1526
1527 /* Reserve space for the count. */
1528 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1529 /* We always write the page size as 1 since we have no good way to
1530 determine the correct value. */
1531 pack_long (buf, long_type, 1);
1532 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1533
1534 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1535 &mapping_data);
1536
1537 if (mapping_data.file_count != 0)
1538 {
1539 /* Write the count to the obstack. */
1540 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1541 long_type, mapping_data.file_count);
1542
1543 /* Copy the filenames to the data obstack. */
1544 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1545 obstack_object_size (&filename_obstack));
1546
1547 note_data = elfcore_write_note (obfd, note_data, note_size,
1548 "CORE", NT_FILE,
1549 obstack_base (&data_obstack),
1550 obstack_object_size (&data_obstack));
1551 }
1552
1553 return note_data;
1554 }
1555
1556 /* Structure for passing information from
1557 linux_collect_thread_registers via an iterator to
1558 linux_collect_regset_section_cb. */
1559
1560 struct linux_collect_regset_section_cb_data
1561 {
1562 struct gdbarch *gdbarch;
1563 const struct regcache *regcache;
1564 bfd *obfd;
1565 char *note_data;
1566 int *note_size;
1567 unsigned long lwp;
1568 enum gdb_signal stop_signal;
1569 int abort_iteration;
1570 };
1571
1572 /* Callback for iterate_over_regset_sections that records a single
1573 regset in the corefile note section. */
1574
1575 static void
1576 linux_collect_regset_section_cb (const char *sect_name, int size,
1577 const struct regset *regset,
1578 const char *human_name, void *cb_data)
1579 {
1580 char *buf;
1581 struct linux_collect_regset_section_cb_data *data
1582 = (struct linux_collect_regset_section_cb_data *) cb_data;
1583
1584 if (data->abort_iteration)
1585 return;
1586
1587 gdb_assert (regset && regset->collect_regset);
1588
1589 buf = (char *) xmalloc (size);
1590 regset->collect_regset (regset, data->regcache, -1, buf, size);
1591
1592 /* PRSTATUS still needs to be treated specially. */
1593 if (strcmp (sect_name, ".reg") == 0)
1594 data->note_data = (char *) elfcore_write_prstatus
1595 (data->obfd, data->note_data, data->note_size, data->lwp,
1596 gdb_signal_to_host (data->stop_signal), buf);
1597 else
1598 data->note_data = (char *) elfcore_write_register_note
1599 (data->obfd, data->note_data, data->note_size,
1600 sect_name, buf, size);
1601 xfree (buf);
1602
1603 if (data->note_data == NULL)
1604 data->abort_iteration = 1;
1605 }
1606
1607 /* Records the thread's register state for the corefile note
1608 section. */
1609
1610 static char *
1611 linux_collect_thread_registers (const struct regcache *regcache,
1612 ptid_t ptid, bfd *obfd,
1613 char *note_data, int *note_size,
1614 enum gdb_signal stop_signal)
1615 {
1616 struct gdbarch *gdbarch = regcache->arch ();
1617 struct linux_collect_regset_section_cb_data data;
1618
1619 data.gdbarch = gdbarch;
1620 data.regcache = regcache;
1621 data.obfd = obfd;
1622 data.note_data = note_data;
1623 data.note_size = note_size;
1624 data.stop_signal = stop_signal;
1625 data.abort_iteration = 0;
1626
1627 /* For remote targets the LWP may not be available, so use the TID. */
1628 data.lwp = ptid_get_lwp (ptid);
1629 if (!data.lwp)
1630 data.lwp = ptid_get_tid (ptid);
1631
1632 gdbarch_iterate_over_regset_sections (gdbarch,
1633 linux_collect_regset_section_cb,
1634 &data, regcache);
1635 return data.note_data;
1636 }
1637
1638 /* Fetch the siginfo data for the specified thread, if it exists. If
1639 there is no data, or we could not read it, return an empty
1640 buffer. */
1641
1642 static gdb::byte_vector
1643 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1644 {
1645 struct type *siginfo_type;
1646 LONGEST bytes_read;
1647
1648 if (!gdbarch_get_siginfo_type_p (gdbarch))
1649 return gdb::byte_vector ();
1650
1651 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1652 inferior_ptid = thread->ptid;
1653
1654 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1655
1656 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1657
1658 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1659 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1660 if (bytes_read != TYPE_LENGTH (siginfo_type))
1661 buf.clear ();
1662
1663 return buf;
1664 }
1665
1666 struct linux_corefile_thread_data
1667 {
1668 struct gdbarch *gdbarch;
1669 bfd *obfd;
1670 char *note_data;
1671 int *note_size;
1672 enum gdb_signal stop_signal;
1673 };
1674
1675 /* Records the thread's register state for the corefile note
1676 section. */
1677
1678 static void
1679 linux_corefile_thread (struct thread_info *info,
1680 struct linux_corefile_thread_data *args)
1681 {
1682 struct regcache *regcache;
1683
1684 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1685
1686 target_fetch_registers (regcache, -1);
1687 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1688
1689 args->note_data = linux_collect_thread_registers
1690 (regcache, info->ptid, args->obfd, args->note_data,
1691 args->note_size, args->stop_signal);
1692
1693 /* Don't return anything if we got no register information above,
1694 such a core file is useless. */
1695 if (args->note_data != NULL)
1696 if (!siginfo_data.empty ())
1697 args->note_data = elfcore_write_note (args->obfd,
1698 args->note_data,
1699 args->note_size,
1700 "CORE", NT_SIGINFO,
1701 siginfo_data.data (),
1702 siginfo_data.size ());
1703 }
1704
1705 /* Fill the PRPSINFO structure with information about the process being
1706 debugged. Returns 1 in case of success, 0 for failures. Please note that
1707 even if the structure cannot be entirely filled (e.g., GDB was unable to
1708 gather information about the process UID/GID), this function will still
1709 return 1 since some information was already recorded. It will only return
1710 0 iff nothing can be gathered. */
1711
1712 static int
1713 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1714 {
1715 /* The filename which we will use to obtain some info about the process.
1716 We will basically use this to store the `/proc/PID/FILENAME' file. */
1717 char filename[100];
1718 /* The basename of the executable. */
1719 const char *basename;
1720 char *infargs;
1721 /* Temporary buffer. */
1722 char *tmpstr;
1723 /* The valid states of a process, according to the Linux kernel. */
1724 const char valid_states[] = "RSDTZW";
1725 /* The program state. */
1726 const char *prog_state;
1727 /* The state of the process. */
1728 char pr_sname;
1729 /* The PID of the program which generated the corefile. */
1730 pid_t pid;
1731 /* Process flags. */
1732 unsigned int pr_flag;
1733 /* Process nice value. */
1734 long pr_nice;
1735 /* The number of fields read by `sscanf'. */
1736 int n_fields = 0;
1737
1738 gdb_assert (p != NULL);
1739
1740 /* Obtaining PID and filename. */
1741 pid = ptid_get_pid (inferior_ptid);
1742 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1743 /* The full name of the program which generated the corefile. */
1744 gdb::unique_xmalloc_ptr<char> fname
1745 = target_fileio_read_stralloc (NULL, filename);
1746
1747 if (fname == NULL || fname.get ()[0] == '\0')
1748 {
1749 /* No program name was read, so we won't be able to retrieve more
1750 information about the process. */
1751 return 0;
1752 }
1753
1754 memset (p, 0, sizeof (*p));
1755
1756 /* Defining the PID. */
1757 p->pr_pid = pid;
1758
1759 /* Copying the program name. Only the basename matters. */
1760 basename = lbasename (fname.get ());
1761 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1762 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1763
1764 infargs = get_inferior_args ();
1765
1766 /* The arguments of the program. */
1767 std::string psargs = fname.get ();
1768 if (infargs != NULL)
1769 psargs = psargs + " " + infargs;
1770
1771 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
1772 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1773
1774 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1775 /* The contents of `/proc/PID/stat'. */
1776 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1777 = target_fileio_read_stralloc (NULL, filename);
1778 char *proc_stat = proc_stat_contents.get ();
1779
1780 if (proc_stat == NULL || *proc_stat == '\0')
1781 {
1782 /* Despite being unable to read more information about the
1783 process, we return 1 here because at least we have its
1784 command line, PID and arguments. */
1785 return 1;
1786 }
1787
1788 /* Ok, we have the stats. It's time to do a little parsing of the
1789 contents of the buffer, so that we end up reading what we want.
1790
1791 The following parsing mechanism is strongly based on the
1792 information generated by the `fs/proc/array.c' file, present in
1793 the Linux kernel tree. More details about how the information is
1794 displayed can be obtained by seeing the manpage of proc(5),
1795 specifically under the entry of `/proc/[pid]/stat'. */
1796
1797 /* Getting rid of the PID, since we already have it. */
1798 while (isdigit (*proc_stat))
1799 ++proc_stat;
1800
1801 proc_stat = skip_spaces (proc_stat);
1802
1803 /* ps command also relies on no trailing fields ever contain ')'. */
1804 proc_stat = strrchr (proc_stat, ')');
1805 if (proc_stat == NULL)
1806 return 1;
1807 proc_stat++;
1808
1809 proc_stat = skip_spaces (proc_stat);
1810
1811 n_fields = sscanf (proc_stat,
1812 "%c" /* Process state. */
1813 "%d%d%d" /* Parent PID, group ID, session ID. */
1814 "%*d%*d" /* tty_nr, tpgid (not used). */
1815 "%u" /* Flags. */
1816 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1817 cmajflt (not used). */
1818 "%*s%*s%*s%*s" /* utime, stime, cutime,
1819 cstime (not used). */
1820 "%*s" /* Priority (not used). */
1821 "%ld", /* Nice. */
1822 &pr_sname,
1823 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1824 &pr_flag,
1825 &pr_nice);
1826
1827 if (n_fields != 6)
1828 {
1829 /* Again, we couldn't read the complementary information about
1830 the process state. However, we already have minimal
1831 information, so we just return 1 here. */
1832 return 1;
1833 }
1834
1835 /* Filling the structure fields. */
1836 prog_state = strchr (valid_states, pr_sname);
1837 if (prog_state != NULL)
1838 p->pr_state = prog_state - valid_states;
1839 else
1840 {
1841 /* Zero means "Running". */
1842 p->pr_state = 0;
1843 }
1844
1845 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1846 p->pr_zomb = p->pr_sname == 'Z';
1847 p->pr_nice = pr_nice;
1848 p->pr_flag = pr_flag;
1849
1850 /* Finally, obtaining the UID and GID. For that, we read and parse the
1851 contents of the `/proc/PID/status' file. */
1852 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1853 /* The contents of `/proc/PID/status'. */
1854 gdb::unique_xmalloc_ptr<char> proc_status_contents
1855 = target_fileio_read_stralloc (NULL, filename);
1856 char *proc_status = proc_status_contents.get ();
1857
1858 if (proc_status == NULL || *proc_status == '\0')
1859 {
1860 /* Returning 1 since we already have a bunch of information. */
1861 return 1;
1862 }
1863
1864 /* Extracting the UID. */
1865 tmpstr = strstr (proc_status, "Uid:");
1866 if (tmpstr != NULL)
1867 {
1868 /* Advancing the pointer to the beginning of the UID. */
1869 tmpstr += sizeof ("Uid:");
1870 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1871 ++tmpstr;
1872
1873 if (isdigit (*tmpstr))
1874 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1875 }
1876
1877 /* Extracting the GID. */
1878 tmpstr = strstr (proc_status, "Gid:");
1879 if (tmpstr != NULL)
1880 {
1881 /* Advancing the pointer to the beginning of the GID. */
1882 tmpstr += sizeof ("Gid:");
1883 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1884 ++tmpstr;
1885
1886 if (isdigit (*tmpstr))
1887 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1888 }
1889
1890 return 1;
1891 }
1892
1893 /* Build the note section for a corefile, and return it in a malloc
1894 buffer. */
1895
1896 static char *
1897 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1898 {
1899 struct linux_corefile_thread_data thread_args;
1900 struct elf_internal_linux_prpsinfo prpsinfo;
1901 char *note_data = NULL;
1902 gdb_byte *auxv;
1903 int auxv_len;
1904 struct thread_info *curr_thr, *signalled_thr, *thr;
1905
1906 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1907 return NULL;
1908
1909 if (linux_fill_prpsinfo (&prpsinfo))
1910 {
1911 if (gdbarch_ptr_bit (gdbarch) == 64)
1912 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1913 note_data, note_size,
1914 &prpsinfo);
1915 else
1916 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1917 note_data, note_size,
1918 &prpsinfo);
1919 }
1920
1921 /* Thread register information. */
1922 TRY
1923 {
1924 update_thread_list ();
1925 }
1926 CATCH (e, RETURN_MASK_ERROR)
1927 {
1928 exception_print (gdb_stderr, e);
1929 }
1930 END_CATCH
1931
1932 /* Like the kernel, prefer dumping the signalled thread first.
1933 "First thread" is what tools use to infer the signalled thread.
1934 In case there's more than one signalled thread, prefer the
1935 current thread, if it is signalled. */
1936 curr_thr = inferior_thread ();
1937 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1938 signalled_thr = curr_thr;
1939 else
1940 {
1941 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1942 if (signalled_thr == NULL)
1943 signalled_thr = curr_thr;
1944 }
1945
1946 thread_args.gdbarch = gdbarch;
1947 thread_args.obfd = obfd;
1948 thread_args.note_data = note_data;
1949 thread_args.note_size = note_size;
1950 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1951
1952 linux_corefile_thread (signalled_thr, &thread_args);
1953 ALL_NON_EXITED_THREADS (thr)
1954 {
1955 if (thr == signalled_thr)
1956 continue;
1957 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
1958 continue;
1959
1960 linux_corefile_thread (thr, &thread_args);
1961 }
1962
1963 note_data = thread_args.note_data;
1964 if (!note_data)
1965 return NULL;
1966
1967 /* Auxillary vector. */
1968 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
1969 NULL, &auxv);
1970 if (auxv_len > 0)
1971 {
1972 note_data = elfcore_write_note (obfd, note_data, note_size,
1973 "CORE", NT_AUXV, auxv, auxv_len);
1974 xfree (auxv);
1975
1976 if (!note_data)
1977 return NULL;
1978 }
1979
1980 /* SPU information. */
1981 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
1982 if (!note_data)
1983 return NULL;
1984
1985 /* File mappings. */
1986 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1987 note_data, note_size);
1988
1989 return note_data;
1990 }
1991
1992 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
1993 gdbarch.h. This function is not static because it is exported to
1994 other -tdep files. */
1995
1996 enum gdb_signal
1997 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1998 {
1999 switch (signal)
2000 {
2001 case 0:
2002 return GDB_SIGNAL_0;
2003
2004 case LINUX_SIGHUP:
2005 return GDB_SIGNAL_HUP;
2006
2007 case LINUX_SIGINT:
2008 return GDB_SIGNAL_INT;
2009
2010 case LINUX_SIGQUIT:
2011 return GDB_SIGNAL_QUIT;
2012
2013 case LINUX_SIGILL:
2014 return GDB_SIGNAL_ILL;
2015
2016 case LINUX_SIGTRAP:
2017 return GDB_SIGNAL_TRAP;
2018
2019 case LINUX_SIGABRT:
2020 return GDB_SIGNAL_ABRT;
2021
2022 case LINUX_SIGBUS:
2023 return GDB_SIGNAL_BUS;
2024
2025 case LINUX_SIGFPE:
2026 return GDB_SIGNAL_FPE;
2027
2028 case LINUX_SIGKILL:
2029 return GDB_SIGNAL_KILL;
2030
2031 case LINUX_SIGUSR1:
2032 return GDB_SIGNAL_USR1;
2033
2034 case LINUX_SIGSEGV:
2035 return GDB_SIGNAL_SEGV;
2036
2037 case LINUX_SIGUSR2:
2038 return GDB_SIGNAL_USR2;
2039
2040 case LINUX_SIGPIPE:
2041 return GDB_SIGNAL_PIPE;
2042
2043 case LINUX_SIGALRM:
2044 return GDB_SIGNAL_ALRM;
2045
2046 case LINUX_SIGTERM:
2047 return GDB_SIGNAL_TERM;
2048
2049 case LINUX_SIGCHLD:
2050 return GDB_SIGNAL_CHLD;
2051
2052 case LINUX_SIGCONT:
2053 return GDB_SIGNAL_CONT;
2054
2055 case LINUX_SIGSTOP:
2056 return GDB_SIGNAL_STOP;
2057
2058 case LINUX_SIGTSTP:
2059 return GDB_SIGNAL_TSTP;
2060
2061 case LINUX_SIGTTIN:
2062 return GDB_SIGNAL_TTIN;
2063
2064 case LINUX_SIGTTOU:
2065 return GDB_SIGNAL_TTOU;
2066
2067 case LINUX_SIGURG:
2068 return GDB_SIGNAL_URG;
2069
2070 case LINUX_SIGXCPU:
2071 return GDB_SIGNAL_XCPU;
2072
2073 case LINUX_SIGXFSZ:
2074 return GDB_SIGNAL_XFSZ;
2075
2076 case LINUX_SIGVTALRM:
2077 return GDB_SIGNAL_VTALRM;
2078
2079 case LINUX_SIGPROF:
2080 return GDB_SIGNAL_PROF;
2081
2082 case LINUX_SIGWINCH:
2083 return GDB_SIGNAL_WINCH;
2084
2085 /* No way to differentiate between SIGIO and SIGPOLL.
2086 Therefore, we just handle the first one. */
2087 case LINUX_SIGIO:
2088 return GDB_SIGNAL_IO;
2089
2090 case LINUX_SIGPWR:
2091 return GDB_SIGNAL_PWR;
2092
2093 case LINUX_SIGSYS:
2094 return GDB_SIGNAL_SYS;
2095
2096 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2097 therefore we have to handle them here. */
2098 case LINUX_SIGRTMIN:
2099 return GDB_SIGNAL_REALTIME_32;
2100
2101 case LINUX_SIGRTMAX:
2102 return GDB_SIGNAL_REALTIME_64;
2103 }
2104
2105 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2106 {
2107 int offset = signal - LINUX_SIGRTMIN + 1;
2108
2109 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2110 }
2111
2112 return GDB_SIGNAL_UNKNOWN;
2113 }
2114
2115 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2116 gdbarch.h. This function is not static because it is exported to
2117 other -tdep files. */
2118
2119 int
2120 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2121 enum gdb_signal signal)
2122 {
2123 switch (signal)
2124 {
2125 case GDB_SIGNAL_0:
2126 return 0;
2127
2128 case GDB_SIGNAL_HUP:
2129 return LINUX_SIGHUP;
2130
2131 case GDB_SIGNAL_INT:
2132 return LINUX_SIGINT;
2133
2134 case GDB_SIGNAL_QUIT:
2135 return LINUX_SIGQUIT;
2136
2137 case GDB_SIGNAL_ILL:
2138 return LINUX_SIGILL;
2139
2140 case GDB_SIGNAL_TRAP:
2141 return LINUX_SIGTRAP;
2142
2143 case GDB_SIGNAL_ABRT:
2144 return LINUX_SIGABRT;
2145
2146 case GDB_SIGNAL_FPE:
2147 return LINUX_SIGFPE;
2148
2149 case GDB_SIGNAL_KILL:
2150 return LINUX_SIGKILL;
2151
2152 case GDB_SIGNAL_BUS:
2153 return LINUX_SIGBUS;
2154
2155 case GDB_SIGNAL_SEGV:
2156 return LINUX_SIGSEGV;
2157
2158 case GDB_SIGNAL_SYS:
2159 return LINUX_SIGSYS;
2160
2161 case GDB_SIGNAL_PIPE:
2162 return LINUX_SIGPIPE;
2163
2164 case GDB_SIGNAL_ALRM:
2165 return LINUX_SIGALRM;
2166
2167 case GDB_SIGNAL_TERM:
2168 return LINUX_SIGTERM;
2169
2170 case GDB_SIGNAL_URG:
2171 return LINUX_SIGURG;
2172
2173 case GDB_SIGNAL_STOP:
2174 return LINUX_SIGSTOP;
2175
2176 case GDB_SIGNAL_TSTP:
2177 return LINUX_SIGTSTP;
2178
2179 case GDB_SIGNAL_CONT:
2180 return LINUX_SIGCONT;
2181
2182 case GDB_SIGNAL_CHLD:
2183 return LINUX_SIGCHLD;
2184
2185 case GDB_SIGNAL_TTIN:
2186 return LINUX_SIGTTIN;
2187
2188 case GDB_SIGNAL_TTOU:
2189 return LINUX_SIGTTOU;
2190
2191 case GDB_SIGNAL_IO:
2192 return LINUX_SIGIO;
2193
2194 case GDB_SIGNAL_XCPU:
2195 return LINUX_SIGXCPU;
2196
2197 case GDB_SIGNAL_XFSZ:
2198 return LINUX_SIGXFSZ;
2199
2200 case GDB_SIGNAL_VTALRM:
2201 return LINUX_SIGVTALRM;
2202
2203 case GDB_SIGNAL_PROF:
2204 return LINUX_SIGPROF;
2205
2206 case GDB_SIGNAL_WINCH:
2207 return LINUX_SIGWINCH;
2208
2209 case GDB_SIGNAL_USR1:
2210 return LINUX_SIGUSR1;
2211
2212 case GDB_SIGNAL_USR2:
2213 return LINUX_SIGUSR2;
2214
2215 case GDB_SIGNAL_PWR:
2216 return LINUX_SIGPWR;
2217
2218 case GDB_SIGNAL_POLL:
2219 return LINUX_SIGPOLL;
2220
2221 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2222 therefore we have to handle it here. */
2223 case GDB_SIGNAL_REALTIME_32:
2224 return LINUX_SIGRTMIN;
2225
2226 /* Same comment applies to _64. */
2227 case GDB_SIGNAL_REALTIME_64:
2228 return LINUX_SIGRTMAX;
2229 }
2230
2231 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2232 if (signal >= GDB_SIGNAL_REALTIME_33
2233 && signal <= GDB_SIGNAL_REALTIME_63)
2234 {
2235 int offset = signal - GDB_SIGNAL_REALTIME_33;
2236
2237 return LINUX_SIGRTMIN + 1 + offset;
2238 }
2239
2240 return -1;
2241 }
2242
2243 /* Helper for linux_vsyscall_range that does the real work of finding
2244 the vsyscall's address range. */
2245
2246 static int
2247 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2248 {
2249 char filename[100];
2250 long pid;
2251
2252 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2253 return 0;
2254
2255 /* It doesn't make sense to access the host's /proc when debugging a
2256 core file. Instead, look for the PT_LOAD segment that matches
2257 the vDSO. */
2258 if (!target_has_execution)
2259 {
2260 Elf_Internal_Phdr *phdrs;
2261 long phdrs_size;
2262 int num_phdrs, i;
2263
2264 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2265 if (phdrs_size == -1)
2266 return 0;
2267
2268 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
2269 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs);
2270 if (num_phdrs == -1)
2271 return 0;
2272
2273 for (i = 0; i < num_phdrs; i++)
2274 if (phdrs[i].p_type == PT_LOAD
2275 && phdrs[i].p_vaddr == range->start)
2276 {
2277 range->length = phdrs[i].p_memsz;
2278 return 1;
2279 }
2280
2281 return 0;
2282 }
2283
2284 /* We need to know the real target PID to access /proc. */
2285 if (current_inferior ()->fake_pid_p)
2286 return 0;
2287
2288 pid = current_inferior ()->pid;
2289
2290 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2291 reading /proc/PID/maps (2). The later identifies thread stacks
2292 in the output, which requires scanning every thread in the thread
2293 group to check whether a VMA is actually a thread's stack. With
2294 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2295 a few thousand threads, (1) takes a few miliseconds, while (2)
2296 takes several seconds. Also note that "smaps", what we read for
2297 determining core dump mappings, is even slower than "maps". */
2298 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2299 gdb::unique_xmalloc_ptr<char> data
2300 = target_fileio_read_stralloc (NULL, filename);
2301 if (data != NULL)
2302 {
2303 char *line;
2304 char *saveptr = NULL;
2305
2306 for (line = strtok_r (data.get (), "\n", &saveptr);
2307 line != NULL;
2308 line = strtok_r (NULL, "\n", &saveptr))
2309 {
2310 ULONGEST addr, endaddr;
2311 const char *p = line;
2312
2313 addr = strtoulst (p, &p, 16);
2314 if (addr == range->start)
2315 {
2316 if (*p == '-')
2317 p++;
2318 endaddr = strtoulst (p, &p, 16);
2319 range->length = endaddr - addr;
2320 return 1;
2321 }
2322 }
2323 }
2324 else
2325 warning (_("unable to open /proc file '%s'"), filename);
2326
2327 return 0;
2328 }
2329
2330 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2331 caching, and defers the real work to linux_vsyscall_range_raw. */
2332
2333 static int
2334 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2335 {
2336 struct linux_info *info = get_linux_inferior_data ();
2337
2338 if (info->vsyscall_range_p == 0)
2339 {
2340 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2341 info->vsyscall_range_p = 1;
2342 else
2343 info->vsyscall_range_p = -1;
2344 }
2345
2346 if (info->vsyscall_range_p < 0)
2347 return 0;
2348
2349 *range = info->vsyscall_range;
2350 return 1;
2351 }
2352
2353 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2354 definitions would be dependent on compilation host. */
2355 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2356 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2357
2358 /* See gdbarch.sh 'infcall_mmap'. */
2359
2360 static CORE_ADDR
2361 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2362 {
2363 struct objfile *objf;
2364 /* Do there still exist any Linux systems without "mmap64"?
2365 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2366 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2367 struct value *addr_val;
2368 struct gdbarch *gdbarch = get_objfile_arch (objf);
2369 CORE_ADDR retval;
2370 enum
2371 {
2372 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2373 };
2374 struct value *arg[ARG_LAST];
2375
2376 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2377 0);
2378 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2379 arg[ARG_LENGTH] = value_from_ulongest
2380 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2381 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2382 | GDB_MMAP_PROT_EXEC))
2383 == 0);
2384 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2385 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2386 GDB_MMAP_MAP_PRIVATE
2387 | GDB_MMAP_MAP_ANONYMOUS);
2388 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2389 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2390 0);
2391 addr_val = call_function_by_hand (mmap_val, NULL, ARG_LAST, arg);
2392 retval = value_as_address (addr_val);
2393 if (retval == (CORE_ADDR) -1)
2394 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2395 pulongest (size));
2396 return retval;
2397 }
2398
2399 /* See gdbarch.sh 'infcall_munmap'. */
2400
2401 static void
2402 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2403 {
2404 struct objfile *objf;
2405 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2406 struct value *retval_val;
2407 struct gdbarch *gdbarch = get_objfile_arch (objf);
2408 LONGEST retval;
2409 enum
2410 {
2411 ARG_ADDR, ARG_LENGTH, ARG_LAST
2412 };
2413 struct value *arg[ARG_LAST];
2414
2415 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2416 addr);
2417 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2418 arg[ARG_LENGTH] = value_from_ulongest
2419 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2420 retval_val = call_function_by_hand (munmap_val, NULL, ARG_LAST, arg);
2421 retval = value_as_long (retval_val);
2422 if (retval != 0)
2423 warning (_("Failed inferior munmap call at %s for %s bytes, "
2424 "errno is changed."),
2425 hex_string (addr), pulongest (size));
2426 }
2427
2428 /* See linux-tdep.h. */
2429
2430 CORE_ADDR
2431 linux_displaced_step_location (struct gdbarch *gdbarch)
2432 {
2433 CORE_ADDR addr;
2434 int bp_len;
2435
2436 /* Determine entry point from target auxiliary vector. This avoids
2437 the need for symbols. Also, when debugging a stand-alone SPU
2438 executable, entry_point_address () will point to an SPU
2439 local-store address and is thus not usable as displaced stepping
2440 location. The auxiliary vector gets us the PowerPC-side entry
2441 point address instead. */
2442 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
2443 throw_error (NOT_SUPPORTED_ERROR,
2444 _("Cannot find AT_ENTRY auxiliary vector entry."));
2445
2446 /* Make certain that the address points at real code, and not a
2447 function descriptor. */
2448 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2449 &current_target);
2450
2451 /* Inferior calls also use the entry point as a breakpoint location.
2452 We don't want displaced stepping to interfere with those
2453 breakpoints, so leave space. */
2454 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2455 addr += bp_len * 2;
2456
2457 return addr;
2458 }
2459
2460 /* Display whether the gcore command is using the
2461 /proc/PID/coredump_filter file. */
2462
2463 static void
2464 show_use_coredump_filter (struct ui_file *file, int from_tty,
2465 struct cmd_list_element *c, const char *value)
2466 {
2467 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2468 " corefiles is %s.\n"), value);
2469 }
2470
2471 /* Display whether the gcore command is dumping mappings marked with
2472 the VM_DONTDUMP flag. */
2473
2474 static void
2475 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2476 struct cmd_list_element *c, const char *value)
2477 {
2478 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2479 " flag is %s.\n"), value);
2480 }
2481
2482 /* To be called from the various GDB_OSABI_LINUX handlers for the
2483 various GNU/Linux architectures and machine types. */
2484
2485 void
2486 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2487 {
2488 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2489 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2490 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2491 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2492 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2493 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2494 set_gdbarch_has_shared_address_space (gdbarch,
2495 linux_has_shared_address_space);
2496 set_gdbarch_gdb_signal_from_target (gdbarch,
2497 linux_gdb_signal_from_target);
2498 set_gdbarch_gdb_signal_to_target (gdbarch,
2499 linux_gdb_signal_to_target);
2500 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2501 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2502 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2503 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2504 }
2505
2506 void
2507 _initialize_linux_tdep (void)
2508 {
2509 linux_gdbarch_data_handle =
2510 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2511
2512 /* Set a cache per-inferior. */
2513 linux_inferior_data
2514 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2515 /* Observers used to invalidate the cache when needed. */
2516 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2517 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
2518
2519 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2520 &use_coredump_filter, _("\
2521 Set whether gcore should consider /proc/PID/coredump_filter."),
2522 _("\
2523 Show whether gcore should consider /proc/PID/coredump_filter."),
2524 _("\
2525 Use this command to set whether gcore should consider the contents\n\
2526 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2527 about this file, refer to the manpage of core(5)."),
2528 NULL, show_use_coredump_filter,
2529 &setlist, &showlist);
2530
2531 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2532 &dump_excluded_mappings, _("\
2533 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2534 _("\
2535 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2536 _("\
2537 Use this command to set whether gcore should dump mappings marked with the\n\
2538 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2539 more information about this file, refer to the manpage of proc(5) and core(5)."),
2540 NULL, show_dump_excluded_mappings,
2541 &setlist, &showlist);
2542 }
This page took 0.080358 seconds and 5 git commands to generate.