constify to_info_proc and friends
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35
36 #include <ctype.h>
37
38 /* This enum represents the signals' numbers on a generic architecture
39 running the Linux kernel. The definition of "generic" comes from
40 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
41 tree, which is the "de facto" implementation of signal numbers to
42 be used by new architecture ports.
43
44 For those architectures which have differences between the generic
45 standard (e.g., Alpha), we define the different signals (and *only*
46 those) in the specific target-dependent file (e.g.,
47 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
48 tdep file for more information.
49
50 ARM deserves a special mention here. On the file
51 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
52 (and ARM-only) signal, which is SIGSWI, with the same number as
53 SIGRTMIN. This signal is used only for a very specific target,
54 called ArthurOS (from RISCOS). Therefore, we do not handle it on
55 the ARM-tdep file, and we can safely use the generic signal handler
56 here for ARM targets.
57
58 As stated above, this enum is derived from
59 <include/uapi/asm-generic/signal.h>, from the Linux kernel
60 tree. */
61
62 enum
63 {
64 LINUX_SIGHUP = 1,
65 LINUX_SIGINT = 2,
66 LINUX_SIGQUIT = 3,
67 LINUX_SIGILL = 4,
68 LINUX_SIGTRAP = 5,
69 LINUX_SIGABRT = 6,
70 LINUX_SIGIOT = 6,
71 LINUX_SIGBUS = 7,
72 LINUX_SIGFPE = 8,
73 LINUX_SIGKILL = 9,
74 LINUX_SIGUSR1 = 10,
75 LINUX_SIGSEGV = 11,
76 LINUX_SIGUSR2 = 12,
77 LINUX_SIGPIPE = 13,
78 LINUX_SIGALRM = 14,
79 LINUX_SIGTERM = 15,
80 LINUX_SIGSTKFLT = 16,
81 LINUX_SIGCHLD = 17,
82 LINUX_SIGCONT = 18,
83 LINUX_SIGSTOP = 19,
84 LINUX_SIGTSTP = 20,
85 LINUX_SIGTTIN = 21,
86 LINUX_SIGTTOU = 22,
87 LINUX_SIGURG = 23,
88 LINUX_SIGXCPU = 24,
89 LINUX_SIGXFSZ = 25,
90 LINUX_SIGVTALRM = 26,
91 LINUX_SIGPROF = 27,
92 LINUX_SIGWINCH = 28,
93 LINUX_SIGIO = 29,
94 LINUX_SIGPOLL = LINUX_SIGIO,
95 LINUX_SIGPWR = 30,
96 LINUX_SIGSYS = 31,
97 LINUX_SIGUNUSED = 31,
98
99 LINUX_SIGRTMIN = 32,
100 LINUX_SIGRTMAX = 64,
101 };
102
103 static struct gdbarch_data *linux_gdbarch_data_handle;
104
105 struct linux_gdbarch_data
106 {
107 struct type *siginfo_type;
108 };
109
110 static void *
111 init_linux_gdbarch_data (struct gdbarch *gdbarch)
112 {
113 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
114 }
115
116 static struct linux_gdbarch_data *
117 get_linux_gdbarch_data (struct gdbarch *gdbarch)
118 {
119 return gdbarch_data (gdbarch, linux_gdbarch_data_handle);
120 }
121
122 /* This function is suitable for architectures that don't
123 extend/override the standard siginfo structure. */
124
125 struct type *
126 linux_get_siginfo_type (struct gdbarch *gdbarch)
127 {
128 struct linux_gdbarch_data *linux_gdbarch_data;
129 struct type *int_type, *uint_type, *long_type, *void_ptr_type;
130 struct type *uid_type, *pid_type;
131 struct type *sigval_type, *clock_type;
132 struct type *siginfo_type, *sifields_type;
133 struct type *type;
134
135 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
136 if (linux_gdbarch_data->siginfo_type != NULL)
137 return linux_gdbarch_data->siginfo_type;
138
139 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
140 0, "int");
141 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
142 1, "unsigned int");
143 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
144 0, "long");
145 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
146
147 /* sival_t */
148 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
149 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
150 append_composite_type_field (sigval_type, "sival_int", int_type);
151 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
152
153 /* __pid_t */
154 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
155 TYPE_LENGTH (int_type), "__pid_t");
156 TYPE_TARGET_TYPE (pid_type) = int_type;
157 TYPE_TARGET_STUB (pid_type) = 1;
158
159 /* __uid_t */
160 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
161 TYPE_LENGTH (uint_type), "__uid_t");
162 TYPE_TARGET_TYPE (uid_type) = uint_type;
163 TYPE_TARGET_STUB (uid_type) = 1;
164
165 /* __clock_t */
166 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
167 TYPE_LENGTH (long_type), "__clock_t");
168 TYPE_TARGET_TYPE (clock_type) = long_type;
169 TYPE_TARGET_STUB (clock_type) = 1;
170
171 /* _sifields */
172 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
173
174 {
175 const int si_max_size = 128;
176 int si_pad_size;
177 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
178
179 /* _pad */
180 if (gdbarch_ptr_bit (gdbarch) == 64)
181 si_pad_size = (si_max_size / size_of_int) - 4;
182 else
183 si_pad_size = (si_max_size / size_of_int) - 3;
184 append_composite_type_field (sifields_type, "_pad",
185 init_vector_type (int_type, si_pad_size));
186 }
187
188 /* _kill */
189 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
190 append_composite_type_field (type, "si_pid", pid_type);
191 append_composite_type_field (type, "si_uid", uid_type);
192 append_composite_type_field (sifields_type, "_kill", type);
193
194 /* _timer */
195 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
196 append_composite_type_field (type, "si_tid", int_type);
197 append_composite_type_field (type, "si_overrun", int_type);
198 append_composite_type_field (type, "si_sigval", sigval_type);
199 append_composite_type_field (sifields_type, "_timer", type);
200
201 /* _rt */
202 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
203 append_composite_type_field (type, "si_pid", pid_type);
204 append_composite_type_field (type, "si_uid", uid_type);
205 append_composite_type_field (type, "si_sigval", sigval_type);
206 append_composite_type_field (sifields_type, "_rt", type);
207
208 /* _sigchld */
209 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
210 append_composite_type_field (type, "si_pid", pid_type);
211 append_composite_type_field (type, "si_uid", uid_type);
212 append_composite_type_field (type, "si_status", int_type);
213 append_composite_type_field (type, "si_utime", clock_type);
214 append_composite_type_field (type, "si_stime", clock_type);
215 append_composite_type_field (sifields_type, "_sigchld", type);
216
217 /* _sigfault */
218 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
219 append_composite_type_field (type, "si_addr", void_ptr_type);
220 append_composite_type_field (sifields_type, "_sigfault", type);
221
222 /* _sigpoll */
223 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
224 append_composite_type_field (type, "si_band", long_type);
225 append_composite_type_field (type, "si_fd", int_type);
226 append_composite_type_field (sifields_type, "_sigpoll", type);
227
228 /* struct siginfo */
229 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
230 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
231 append_composite_type_field (siginfo_type, "si_signo", int_type);
232 append_composite_type_field (siginfo_type, "si_errno", int_type);
233 append_composite_type_field (siginfo_type, "si_code", int_type);
234 append_composite_type_field_aligned (siginfo_type,
235 "_sifields", sifields_type,
236 TYPE_LENGTH (long_type));
237
238 linux_gdbarch_data->siginfo_type = siginfo_type;
239
240 return siginfo_type;
241 }
242
243 /* Return true if the target is running on uClinux instead of normal
244 Linux kernel. */
245
246 int
247 linux_is_uclinux (void)
248 {
249 CORE_ADDR dummy;
250
251 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
252 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
253 }
254
255 static int
256 linux_has_shared_address_space (struct gdbarch *gdbarch)
257 {
258 return linux_is_uclinux ();
259 }
260
261 /* This is how we want PTIDs from core files to be printed. */
262
263 static char *
264 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
265 {
266 static char buf[80];
267
268 if (ptid_get_lwp (ptid) != 0)
269 {
270 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
271 return buf;
272 }
273
274 return normal_pid_to_str (ptid);
275 }
276
277 /* Service function for corefiles and info proc. */
278
279 static void
280 read_mapping (const char *line,
281 ULONGEST *addr, ULONGEST *endaddr,
282 const char **permissions, size_t *permissions_len,
283 ULONGEST *offset,
284 const char **device, size_t *device_len,
285 ULONGEST *inode,
286 const char **filename)
287 {
288 const char *p = line;
289
290 *addr = strtoulst (p, &p, 16);
291 if (*p == '-')
292 p++;
293 *endaddr = strtoulst (p, &p, 16);
294
295 p = skip_spaces_const (p);
296 *permissions = p;
297 while (*p && !isspace (*p))
298 p++;
299 *permissions_len = p - *permissions;
300
301 *offset = strtoulst (p, &p, 16);
302
303 p = skip_spaces_const (p);
304 *device = p;
305 while (*p && !isspace (*p))
306 p++;
307 *device_len = p - *device;
308
309 *inode = strtoulst (p, &p, 10);
310
311 p = skip_spaces_const (p);
312 *filename = p;
313 }
314
315 /* Implement the "info proc" command. */
316
317 static void
318 linux_info_proc (struct gdbarch *gdbarch, const char *args,
319 enum info_proc_what what)
320 {
321 /* A long is used for pid instead of an int to avoid a loss of precision
322 compiler warning from the output of strtoul. */
323 long pid;
324 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
325 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
326 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
327 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
328 int status_f = (what == IP_STATUS || what == IP_ALL);
329 int stat_f = (what == IP_STAT || what == IP_ALL);
330 char filename[100];
331 char *data;
332 int target_errno;
333
334 if (args && isdigit (args[0]))
335 {
336 char *tem;
337
338 pid = strtoul (args, &tem, 10);
339 args = tem;
340 }
341 else
342 {
343 if (!target_has_execution)
344 error (_("No current process: you must name one."));
345 if (current_inferior ()->fake_pid_p)
346 error (_("Can't determine the current process's PID: you must name one."));
347
348 pid = current_inferior ()->pid;
349 }
350
351 args = skip_spaces_const (args);
352 if (args && args[0])
353 error (_("Too many parameters: %s"), args);
354
355 printf_filtered (_("process %ld\n"), pid);
356 if (cmdline_f)
357 {
358 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
359 data = target_fileio_read_stralloc (filename);
360 if (data)
361 {
362 struct cleanup *cleanup = make_cleanup (xfree, data);
363 printf_filtered ("cmdline = '%s'\n", data);
364 do_cleanups (cleanup);
365 }
366 else
367 warning (_("unable to open /proc file '%s'"), filename);
368 }
369 if (cwd_f)
370 {
371 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
372 data = target_fileio_readlink (filename, &target_errno);
373 if (data)
374 {
375 struct cleanup *cleanup = make_cleanup (xfree, data);
376 printf_filtered ("cwd = '%s'\n", data);
377 do_cleanups (cleanup);
378 }
379 else
380 warning (_("unable to read link '%s'"), filename);
381 }
382 if (exe_f)
383 {
384 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
385 data = target_fileio_readlink (filename, &target_errno);
386 if (data)
387 {
388 struct cleanup *cleanup = make_cleanup (xfree, data);
389 printf_filtered ("exe = '%s'\n", data);
390 do_cleanups (cleanup);
391 }
392 else
393 warning (_("unable to read link '%s'"), filename);
394 }
395 if (mappings_f)
396 {
397 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
398 data = target_fileio_read_stralloc (filename);
399 if (data)
400 {
401 struct cleanup *cleanup = make_cleanup (xfree, data);
402 char *line;
403
404 printf_filtered (_("Mapped address spaces:\n\n"));
405 if (gdbarch_addr_bit (gdbarch) == 32)
406 {
407 printf_filtered ("\t%10s %10s %10s %10s %s\n",
408 "Start Addr",
409 " End Addr",
410 " Size", " Offset", "objfile");
411 }
412 else
413 {
414 printf_filtered (" %18s %18s %10s %10s %s\n",
415 "Start Addr",
416 " End Addr",
417 " Size", " Offset", "objfile");
418 }
419
420 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n"))
421 {
422 ULONGEST addr, endaddr, offset, inode;
423 const char *permissions, *device, *filename;
424 size_t permissions_len, device_len;
425
426 read_mapping (line, &addr, &endaddr,
427 &permissions, &permissions_len,
428 &offset, &device, &device_len,
429 &inode, &filename);
430
431 if (gdbarch_addr_bit (gdbarch) == 32)
432 {
433 printf_filtered ("\t%10s %10s %10s %10s %s\n",
434 paddress (gdbarch, addr),
435 paddress (gdbarch, endaddr),
436 hex_string (endaddr - addr),
437 hex_string (offset),
438 *filename? filename : "");
439 }
440 else
441 {
442 printf_filtered (" %18s %18s %10s %10s %s\n",
443 paddress (gdbarch, addr),
444 paddress (gdbarch, endaddr),
445 hex_string (endaddr - addr),
446 hex_string (offset),
447 *filename? filename : "");
448 }
449 }
450
451 do_cleanups (cleanup);
452 }
453 else
454 warning (_("unable to open /proc file '%s'"), filename);
455 }
456 if (status_f)
457 {
458 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
459 data = target_fileio_read_stralloc (filename);
460 if (data)
461 {
462 struct cleanup *cleanup = make_cleanup (xfree, data);
463 puts_filtered (data);
464 do_cleanups (cleanup);
465 }
466 else
467 warning (_("unable to open /proc file '%s'"), filename);
468 }
469 if (stat_f)
470 {
471 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
472 data = target_fileio_read_stralloc (filename);
473 if (data)
474 {
475 struct cleanup *cleanup = make_cleanup (xfree, data);
476 const char *p = data;
477
478 printf_filtered (_("Process: %s\n"),
479 pulongest (strtoulst (p, &p, 10)));
480
481 p = skip_spaces_const (p);
482 if (*p == '(')
483 {
484 /* ps command also relies on no trailing fields
485 ever contain ')'. */
486 const char *ep = strrchr (p, ')');
487 if (ep != NULL)
488 {
489 printf_filtered ("Exec file: %.*s\n",
490 (int) (ep - p - 1), p + 1);
491 p = ep + 1;
492 }
493 }
494
495 p = skip_spaces_const (p);
496 if (*p)
497 printf_filtered (_("State: %c\n"), *p++);
498
499 if (*p)
500 printf_filtered (_("Parent process: %s\n"),
501 pulongest (strtoulst (p, &p, 10)));
502 if (*p)
503 printf_filtered (_("Process group: %s\n"),
504 pulongest (strtoulst (p, &p, 10)));
505 if (*p)
506 printf_filtered (_("Session id: %s\n"),
507 pulongest (strtoulst (p, &p, 10)));
508 if (*p)
509 printf_filtered (_("TTY: %s\n"),
510 pulongest (strtoulst (p, &p, 10)));
511 if (*p)
512 printf_filtered (_("TTY owner process group: %s\n"),
513 pulongest (strtoulst (p, &p, 10)));
514
515 if (*p)
516 printf_filtered (_("Flags: %s\n"),
517 hex_string (strtoulst (p, &p, 10)));
518 if (*p)
519 printf_filtered (_("Minor faults (no memory page): %s\n"),
520 pulongest (strtoulst (p, &p, 10)));
521 if (*p)
522 printf_filtered (_("Minor faults, children: %s\n"),
523 pulongest (strtoulst (p, &p, 10)));
524 if (*p)
525 printf_filtered (_("Major faults (memory page faults): %s\n"),
526 pulongest (strtoulst (p, &p, 10)));
527 if (*p)
528 printf_filtered (_("Major faults, children: %s\n"),
529 pulongest (strtoulst (p, &p, 10)));
530 if (*p)
531 printf_filtered (_("utime: %s\n"),
532 pulongest (strtoulst (p, &p, 10)));
533 if (*p)
534 printf_filtered (_("stime: %s\n"),
535 pulongest (strtoulst (p, &p, 10)));
536 if (*p)
537 printf_filtered (_("utime, children: %s\n"),
538 pulongest (strtoulst (p, &p, 10)));
539 if (*p)
540 printf_filtered (_("stime, children: %s\n"),
541 pulongest (strtoulst (p, &p, 10)));
542 if (*p)
543 printf_filtered (_("jiffies remaining in current "
544 "time slice: %s\n"),
545 pulongest (strtoulst (p, &p, 10)));
546 if (*p)
547 printf_filtered (_("'nice' value: %s\n"),
548 pulongest (strtoulst (p, &p, 10)));
549 if (*p)
550 printf_filtered (_("jiffies until next timeout: %s\n"),
551 pulongest (strtoulst (p, &p, 10)));
552 if (*p)
553 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
554 pulongest (strtoulst (p, &p, 10)));
555 if (*p)
556 printf_filtered (_("start time (jiffies since "
557 "system boot): %s\n"),
558 pulongest (strtoulst (p, &p, 10)));
559 if (*p)
560 printf_filtered (_("Virtual memory size: %s\n"),
561 pulongest (strtoulst (p, &p, 10)));
562 if (*p)
563 printf_filtered (_("Resident set size: %s\n"),
564 pulongest (strtoulst (p, &p, 10)));
565 if (*p)
566 printf_filtered (_("rlim: %s\n"),
567 pulongest (strtoulst (p, &p, 10)));
568 if (*p)
569 printf_filtered (_("Start of text: %s\n"),
570 hex_string (strtoulst (p, &p, 10)));
571 if (*p)
572 printf_filtered (_("End of text: %s\n"),
573 hex_string (strtoulst (p, &p, 10)));
574 if (*p)
575 printf_filtered (_("Start of stack: %s\n"),
576 hex_string (strtoulst (p, &p, 10)));
577 #if 0 /* Don't know how architecture-dependent the rest is...
578 Anyway the signal bitmap info is available from "status". */
579 if (*p)
580 printf_filtered (_("Kernel stack pointer: %s\n"),
581 hex_string (strtoulst (p, &p, 10)));
582 if (*p)
583 printf_filtered (_("Kernel instr pointer: %s\n"),
584 hex_string (strtoulst (p, &p, 10)));
585 if (*p)
586 printf_filtered (_("Pending signals bitmap: %s\n"),
587 hex_string (strtoulst (p, &p, 10)));
588 if (*p)
589 printf_filtered (_("Blocked signals bitmap: %s\n"),
590 hex_string (strtoulst (p, &p, 10)));
591 if (*p)
592 printf_filtered (_("Ignored signals bitmap: %s\n"),
593 hex_string (strtoulst (p, &p, 10)));
594 if (*p)
595 printf_filtered (_("Catched signals bitmap: %s\n"),
596 hex_string (strtoulst (p, &p, 10)));
597 if (*p)
598 printf_filtered (_("wchan (system call): %s\n"),
599 hex_string (strtoulst (p, &p, 10)));
600 #endif
601 do_cleanups (cleanup);
602 }
603 else
604 warning (_("unable to open /proc file '%s'"), filename);
605 }
606 }
607
608 /* Implement "info proc mappings" for a corefile. */
609
610 static void
611 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
612 {
613 asection *section;
614 ULONGEST count, page_size;
615 unsigned char *descdata, *filenames, *descend, *contents;
616 size_t note_size;
617 unsigned int addr_size_bits, addr_size;
618 struct cleanup *cleanup;
619 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
620 /* We assume this for reading 64-bit core files. */
621 gdb_static_assert (sizeof (ULONGEST) >= 8);
622
623 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
624 if (section == NULL)
625 {
626 warning (_("unable to find mappings in core file"));
627 return;
628 }
629
630 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
631 addr_size = addr_size_bits / 8;
632 note_size = bfd_get_section_size (section);
633
634 if (note_size < 2 * addr_size)
635 error (_("malformed core note - too short for header"));
636
637 contents = xmalloc (note_size);
638 cleanup = make_cleanup (xfree, contents);
639 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
640 error (_("could not get core note contents"));
641
642 descdata = contents;
643 descend = descdata + note_size;
644
645 if (descdata[note_size - 1] != '\0')
646 error (_("malformed note - does not end with \\0"));
647
648 count = bfd_get (addr_size_bits, core_bfd, descdata);
649 descdata += addr_size;
650
651 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
652 descdata += addr_size;
653
654 if (note_size < 2 * addr_size + count * 3 * addr_size)
655 error (_("malformed note - too short for supplied file count"));
656
657 printf_filtered (_("Mapped address spaces:\n\n"));
658 if (gdbarch_addr_bit (gdbarch) == 32)
659 {
660 printf_filtered ("\t%10s %10s %10s %10s %s\n",
661 "Start Addr",
662 " End Addr",
663 " Size", " Offset", "objfile");
664 }
665 else
666 {
667 printf_filtered (" %18s %18s %10s %10s %s\n",
668 "Start Addr",
669 " End Addr",
670 " Size", " Offset", "objfile");
671 }
672
673 filenames = descdata + count * 3 * addr_size;
674 while (--count > 0)
675 {
676 ULONGEST start, end, file_ofs;
677
678 if (filenames == descend)
679 error (_("malformed note - filenames end too early"));
680
681 start = bfd_get (addr_size_bits, core_bfd, descdata);
682 descdata += addr_size;
683 end = bfd_get (addr_size_bits, core_bfd, descdata);
684 descdata += addr_size;
685 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
686 descdata += addr_size;
687
688 file_ofs *= page_size;
689
690 if (gdbarch_addr_bit (gdbarch) == 32)
691 printf_filtered ("\t%10s %10s %10s %10s %s\n",
692 paddress (gdbarch, start),
693 paddress (gdbarch, end),
694 hex_string (end - start),
695 hex_string (file_ofs),
696 filenames);
697 else
698 printf_filtered (" %18s %18s %10s %10s %s\n",
699 paddress (gdbarch, start),
700 paddress (gdbarch, end),
701 hex_string (end - start),
702 hex_string (file_ofs),
703 filenames);
704
705 filenames += 1 + strlen ((char *) filenames);
706 }
707
708 do_cleanups (cleanup);
709 }
710
711 /* Implement "info proc" for a corefile. */
712
713 static void
714 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
715 enum info_proc_what what)
716 {
717 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
718 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
719
720 if (exe_f)
721 {
722 const char *exe;
723
724 exe = bfd_core_file_failing_command (core_bfd);
725 if (exe != NULL)
726 printf_filtered ("exe = '%s'\n", exe);
727 else
728 warning (_("unable to find command name in core file"));
729 }
730
731 if (mappings_f)
732 linux_core_info_proc_mappings (gdbarch, args);
733
734 if (!exe_f && !mappings_f)
735 error (_("unable to handle request"));
736 }
737
738 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
739 ULONGEST offset, ULONGEST inode,
740 int read, int write,
741 int exec, int modified,
742 const char *filename,
743 void *data);
744
745 /* List memory regions in the inferior for a corefile. */
746
747 static int
748 linux_find_memory_regions_full (struct gdbarch *gdbarch,
749 linux_find_memory_region_ftype *func,
750 void *obfd)
751 {
752 char mapsfilename[100];
753 char *data;
754
755 /* We need to know the real target PID to access /proc. */
756 if (current_inferior ()->fake_pid_p)
757 return 1;
758
759 xsnprintf (mapsfilename, sizeof mapsfilename,
760 "/proc/%d/smaps", current_inferior ()->pid);
761 data = target_fileio_read_stralloc (mapsfilename);
762 if (data == NULL)
763 {
764 /* Older Linux kernels did not support /proc/PID/smaps. */
765 xsnprintf (mapsfilename, sizeof mapsfilename,
766 "/proc/%d/maps", current_inferior ()->pid);
767 data = target_fileio_read_stralloc (mapsfilename);
768 }
769 if (data)
770 {
771 struct cleanup *cleanup = make_cleanup (xfree, data);
772 char *line;
773
774 line = strtok (data, "\n");
775 while (line)
776 {
777 ULONGEST addr, endaddr, offset, inode;
778 const char *permissions, *device, *filename;
779 size_t permissions_len, device_len;
780 int read, write, exec;
781 int modified = 0, has_anonymous = 0;
782
783 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
784 &offset, &device, &device_len, &inode, &filename);
785
786 /* Decode permissions. */
787 read = (memchr (permissions, 'r', permissions_len) != 0);
788 write = (memchr (permissions, 'w', permissions_len) != 0);
789 exec = (memchr (permissions, 'x', permissions_len) != 0);
790
791 /* Try to detect if region was modified by parsing smaps counters. */
792 for (line = strtok (NULL, "\n");
793 line && line[0] >= 'A' && line[0] <= 'Z';
794 line = strtok (NULL, "\n"))
795 {
796 char keyword[64 + 1];
797
798 if (sscanf (line, "%64s", keyword) != 1)
799 {
800 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
801 break;
802 }
803 if (strcmp (keyword, "Anonymous:") == 0)
804 has_anonymous = 1;
805 if (strcmp (keyword, "Shared_Dirty:") == 0
806 || strcmp (keyword, "Private_Dirty:") == 0
807 || strcmp (keyword, "Swap:") == 0
808 || strcmp (keyword, "Anonymous:") == 0)
809 {
810 unsigned long number;
811
812 if (sscanf (line, "%*s%lu", &number) != 1)
813 {
814 warning (_("Error parsing {s,}maps file '%s' number"),
815 mapsfilename);
816 break;
817 }
818 if (number != 0)
819 modified = 1;
820 }
821 }
822
823 /* Older Linux kernels did not support the "Anonymous:" counter.
824 If it is missing, we can't be sure - dump all the pages. */
825 if (!has_anonymous)
826 modified = 1;
827
828 /* Invoke the callback function to create the corefile segment. */
829 func (addr, endaddr - addr, offset, inode,
830 read, write, exec, modified, filename, obfd);
831 }
832
833 do_cleanups (cleanup);
834 return 0;
835 }
836
837 return 1;
838 }
839
840 /* A structure for passing information through
841 linux_find_memory_regions_full. */
842
843 struct linux_find_memory_regions_data
844 {
845 /* The original callback. */
846
847 find_memory_region_ftype func;
848
849 /* The original datum. */
850
851 void *obfd;
852 };
853
854 /* A callback for linux_find_memory_regions that converts between the
855 "full"-style callback and find_memory_region_ftype. */
856
857 static int
858 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
859 ULONGEST offset, ULONGEST inode,
860 int read, int write, int exec, int modified,
861 const char *filename, void *arg)
862 {
863 struct linux_find_memory_regions_data *data = arg;
864
865 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
866 }
867
868 /* A variant of linux_find_memory_regions_full that is suitable as the
869 gdbarch find_memory_regions method. */
870
871 static int
872 linux_find_memory_regions (struct gdbarch *gdbarch,
873 find_memory_region_ftype func, void *obfd)
874 {
875 struct linux_find_memory_regions_data data;
876
877 data.func = func;
878 data.obfd = obfd;
879
880 return linux_find_memory_regions_full (gdbarch,
881 linux_find_memory_regions_thunk,
882 &data);
883 }
884
885 /* Determine which signal stopped execution. */
886
887 static int
888 find_signalled_thread (struct thread_info *info, void *data)
889 {
890 if (info->suspend.stop_signal != GDB_SIGNAL_0
891 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
892 return 1;
893
894 return 0;
895 }
896
897 static enum gdb_signal
898 find_stop_signal (void)
899 {
900 struct thread_info *info =
901 iterate_over_threads (find_signalled_thread, NULL);
902
903 if (info)
904 return info->suspend.stop_signal;
905 else
906 return GDB_SIGNAL_0;
907 }
908
909 /* Generate corefile notes for SPU contexts. */
910
911 static char *
912 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
913 {
914 static const char *spu_files[] =
915 {
916 "object-id",
917 "mem",
918 "regs",
919 "fpcr",
920 "lslr",
921 "decr",
922 "decr_status",
923 "signal1",
924 "signal1_type",
925 "signal2",
926 "signal2_type",
927 "event_mask",
928 "event_status",
929 "mbox_info",
930 "ibox_info",
931 "wbox_info",
932 "dma_info",
933 "proxydma_info",
934 };
935
936 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
937 gdb_byte *spu_ids;
938 LONGEST i, j, size;
939
940 /* Determine list of SPU ids. */
941 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
942 NULL, &spu_ids);
943
944 /* Generate corefile notes for each SPU file. */
945 for (i = 0; i < size; i += 4)
946 {
947 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
948
949 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
950 {
951 char annex[32], note_name[32];
952 gdb_byte *spu_data;
953 LONGEST spu_len;
954
955 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
956 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
957 annex, &spu_data);
958 if (spu_len > 0)
959 {
960 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
961 note_data = elfcore_write_note (obfd, note_data, note_size,
962 note_name, NT_SPU,
963 spu_data, spu_len);
964 xfree (spu_data);
965
966 if (!note_data)
967 {
968 xfree (spu_ids);
969 return NULL;
970 }
971 }
972 }
973 }
974
975 if (size > 0)
976 xfree (spu_ids);
977
978 return note_data;
979 }
980
981 /* This is used to pass information from
982 linux_make_mappings_corefile_notes through
983 linux_find_memory_regions_full. */
984
985 struct linux_make_mappings_data
986 {
987 /* Number of files mapped. */
988 ULONGEST file_count;
989
990 /* The obstack for the main part of the data. */
991 struct obstack *data_obstack;
992
993 /* The filename obstack. */
994 struct obstack *filename_obstack;
995
996 /* The architecture's "long" type. */
997 struct type *long_type;
998 };
999
1000 static linux_find_memory_region_ftype linux_make_mappings_callback;
1001
1002 /* A callback for linux_find_memory_regions_full that updates the
1003 mappings data for linux_make_mappings_corefile_notes. */
1004
1005 static int
1006 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1007 ULONGEST offset, ULONGEST inode,
1008 int read, int write, int exec, int modified,
1009 const char *filename, void *data)
1010 {
1011 struct linux_make_mappings_data *map_data = data;
1012 gdb_byte buf[sizeof (ULONGEST)];
1013
1014 if (*filename == '\0' || inode == 0)
1015 return 0;
1016
1017 ++map_data->file_count;
1018
1019 pack_long (buf, map_data->long_type, vaddr);
1020 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1021 pack_long (buf, map_data->long_type, vaddr + size);
1022 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1023 pack_long (buf, map_data->long_type, offset);
1024 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1025
1026 obstack_grow_str0 (map_data->filename_obstack, filename);
1027
1028 return 0;
1029 }
1030
1031 /* Write the file mapping data to the core file, if possible. OBFD is
1032 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1033 is a pointer to the note size. Returns the new NOTE_DATA and
1034 updates NOTE_SIZE. */
1035
1036 static char *
1037 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1038 char *note_data, int *note_size)
1039 {
1040 struct cleanup *cleanup;
1041 struct obstack data_obstack, filename_obstack;
1042 struct linux_make_mappings_data mapping_data;
1043 struct type *long_type
1044 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1045 gdb_byte buf[sizeof (ULONGEST)];
1046
1047 obstack_init (&data_obstack);
1048 cleanup = make_cleanup_obstack_free (&data_obstack);
1049 obstack_init (&filename_obstack);
1050 make_cleanup_obstack_free (&filename_obstack);
1051
1052 mapping_data.file_count = 0;
1053 mapping_data.data_obstack = &data_obstack;
1054 mapping_data.filename_obstack = &filename_obstack;
1055 mapping_data.long_type = long_type;
1056
1057 /* Reserve space for the count. */
1058 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1059 /* We always write the page size as 1 since we have no good way to
1060 determine the correct value. */
1061 pack_long (buf, long_type, 1);
1062 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1063
1064 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1065 &mapping_data);
1066
1067 if (mapping_data.file_count != 0)
1068 {
1069 /* Write the count to the obstack. */
1070 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1071 long_type, mapping_data.file_count);
1072
1073 /* Copy the filenames to the data obstack. */
1074 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1075 obstack_object_size (&filename_obstack));
1076
1077 note_data = elfcore_write_note (obfd, note_data, note_size,
1078 "CORE", NT_FILE,
1079 obstack_base (&data_obstack),
1080 obstack_object_size (&data_obstack));
1081 }
1082
1083 do_cleanups (cleanup);
1084 return note_data;
1085 }
1086
1087 /* Records the thread's register state for the corefile note
1088 section. */
1089
1090 static char *
1091 linux_collect_thread_registers (const struct regcache *regcache,
1092 ptid_t ptid, bfd *obfd,
1093 char *note_data, int *note_size,
1094 enum gdb_signal stop_signal)
1095 {
1096 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1097 struct core_regset_section *sect_list;
1098 unsigned long lwp;
1099
1100 sect_list = gdbarch_core_regset_sections (gdbarch);
1101 gdb_assert (sect_list);
1102
1103 /* For remote targets the LWP may not be available, so use the TID. */
1104 lwp = ptid_get_lwp (ptid);
1105 if (!lwp)
1106 lwp = ptid_get_tid (ptid);
1107
1108 while (sect_list->sect_name != NULL)
1109 {
1110 const struct regset *regset;
1111 char *buf;
1112
1113 regset = gdbarch_regset_from_core_section (gdbarch,
1114 sect_list->sect_name,
1115 sect_list->size);
1116 gdb_assert (regset && regset->collect_regset);
1117
1118 buf = xmalloc (sect_list->size);
1119 regset->collect_regset (regset, regcache, -1, buf, sect_list->size);
1120
1121 /* PRSTATUS still needs to be treated specially. */
1122 if (strcmp (sect_list->sect_name, ".reg") == 0)
1123 note_data = (char *) elfcore_write_prstatus
1124 (obfd, note_data, note_size, lwp,
1125 gdb_signal_to_host (stop_signal), buf);
1126 else
1127 note_data = (char *) elfcore_write_register_note
1128 (obfd, note_data, note_size,
1129 sect_list->sect_name, buf, sect_list->size);
1130 xfree (buf);
1131 sect_list++;
1132
1133 if (!note_data)
1134 return NULL;
1135 }
1136
1137 return note_data;
1138 }
1139
1140 /* Fetch the siginfo data for the current thread, if it exists. If
1141 there is no data, or we could not read it, return NULL. Otherwise,
1142 return a newly malloc'd buffer holding the data and fill in *SIZE
1143 with the size of the data. The caller is responsible for freeing
1144 the data. */
1145
1146 static gdb_byte *
1147 linux_get_siginfo_data (struct gdbarch *gdbarch, LONGEST *size)
1148 {
1149 struct type *siginfo_type;
1150 gdb_byte *buf;
1151 LONGEST bytes_read;
1152 struct cleanup *cleanups;
1153
1154 if (!gdbarch_get_siginfo_type_p (gdbarch))
1155 return NULL;
1156
1157 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1158
1159 buf = xmalloc (TYPE_LENGTH (siginfo_type));
1160 cleanups = make_cleanup (xfree, buf);
1161
1162 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1163 buf, 0, TYPE_LENGTH (siginfo_type));
1164 if (bytes_read == TYPE_LENGTH (siginfo_type))
1165 {
1166 discard_cleanups (cleanups);
1167 *size = bytes_read;
1168 }
1169 else
1170 {
1171 do_cleanups (cleanups);
1172 buf = NULL;
1173 }
1174
1175 return buf;
1176 }
1177
1178 struct linux_corefile_thread_data
1179 {
1180 struct gdbarch *gdbarch;
1181 int pid;
1182 bfd *obfd;
1183 char *note_data;
1184 int *note_size;
1185 enum gdb_signal stop_signal;
1186 linux_collect_thread_registers_ftype collect;
1187 };
1188
1189 /* Called by gdbthread.c once per thread. Records the thread's
1190 register state for the corefile note section. */
1191
1192 static int
1193 linux_corefile_thread_callback (struct thread_info *info, void *data)
1194 {
1195 struct linux_corefile_thread_data *args = data;
1196
1197 if (ptid_get_pid (info->ptid) == args->pid)
1198 {
1199 struct cleanup *old_chain;
1200 struct regcache *regcache;
1201 gdb_byte *siginfo_data;
1202 LONGEST siginfo_size = 0;
1203
1204 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1205
1206 old_chain = save_inferior_ptid ();
1207 inferior_ptid = info->ptid;
1208 target_fetch_registers (regcache, -1);
1209 siginfo_data = linux_get_siginfo_data (args->gdbarch, &siginfo_size);
1210 do_cleanups (old_chain);
1211
1212 old_chain = make_cleanup (xfree, siginfo_data);
1213
1214 args->note_data = args->collect (regcache, info->ptid, args->obfd,
1215 args->note_data, args->note_size,
1216 args->stop_signal);
1217
1218 /* Don't return anything if we got no register information above,
1219 such a core file is useless. */
1220 if (args->note_data != NULL)
1221 if (siginfo_data != NULL)
1222 args->note_data = elfcore_write_note (args->obfd,
1223 args->note_data,
1224 args->note_size,
1225 "CORE", NT_SIGINFO,
1226 siginfo_data, siginfo_size);
1227
1228 do_cleanups (old_chain);
1229 }
1230
1231 return !args->note_data;
1232 }
1233
1234 /* Fill the PRPSINFO structure with information about the process being
1235 debugged. Returns 1 in case of success, 0 for failures. Please note that
1236 even if the structure cannot be entirely filled (e.g., GDB was unable to
1237 gather information about the process UID/GID), this function will still
1238 return 1 since some information was already recorded. It will only return
1239 0 iff nothing can be gathered. */
1240
1241 static int
1242 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1243 {
1244 /* The filename which we will use to obtain some info about the process.
1245 We will basically use this to store the `/proc/PID/FILENAME' file. */
1246 char filename[100];
1247 /* The full name of the program which generated the corefile. */
1248 char *fname;
1249 /* The basename of the executable. */
1250 const char *basename;
1251 /* The arguments of the program. */
1252 char *psargs;
1253 char *infargs;
1254 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */
1255 char *proc_stat, *proc_status;
1256 /* Temporary buffer. */
1257 char *tmpstr;
1258 /* The valid states of a process, according to the Linux kernel. */
1259 const char valid_states[] = "RSDTZW";
1260 /* The program state. */
1261 const char *prog_state;
1262 /* The state of the process. */
1263 char pr_sname;
1264 /* The PID of the program which generated the corefile. */
1265 pid_t pid;
1266 /* Process flags. */
1267 unsigned int pr_flag;
1268 /* Process nice value. */
1269 long pr_nice;
1270 /* The number of fields read by `sscanf'. */
1271 int n_fields = 0;
1272 /* Cleanups. */
1273 struct cleanup *c;
1274 int i;
1275
1276 gdb_assert (p != NULL);
1277
1278 /* Obtaining PID and filename. */
1279 pid = ptid_get_pid (inferior_ptid);
1280 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1281 fname = target_fileio_read_stralloc (filename);
1282
1283 if (fname == NULL || *fname == '\0')
1284 {
1285 /* No program name was read, so we won't be able to retrieve more
1286 information about the process. */
1287 xfree (fname);
1288 return 0;
1289 }
1290
1291 c = make_cleanup (xfree, fname);
1292 memset (p, 0, sizeof (*p));
1293
1294 /* Defining the PID. */
1295 p->pr_pid = pid;
1296
1297 /* Copying the program name. Only the basename matters. */
1298 basename = lbasename (fname);
1299 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1300 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1301
1302 infargs = get_inferior_args ();
1303
1304 psargs = xstrdup (fname);
1305 if (infargs != NULL)
1306 psargs = reconcat (psargs, psargs, " ", infargs, NULL);
1307
1308 make_cleanup (xfree, psargs);
1309
1310 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs));
1311 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1312
1313 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1314 proc_stat = target_fileio_read_stralloc (filename);
1315 make_cleanup (xfree, proc_stat);
1316
1317 if (proc_stat == NULL || *proc_stat == '\0')
1318 {
1319 /* Despite being unable to read more information about the
1320 process, we return 1 here because at least we have its
1321 command line, PID and arguments. */
1322 do_cleanups (c);
1323 return 1;
1324 }
1325
1326 /* Ok, we have the stats. It's time to do a little parsing of the
1327 contents of the buffer, so that we end up reading what we want.
1328
1329 The following parsing mechanism is strongly based on the
1330 information generated by the `fs/proc/array.c' file, present in
1331 the Linux kernel tree. More details about how the information is
1332 displayed can be obtained by seeing the manpage of proc(5),
1333 specifically under the entry of `/proc/[pid]/stat'. */
1334
1335 /* Getting rid of the PID, since we already have it. */
1336 while (isdigit (*proc_stat))
1337 ++proc_stat;
1338
1339 proc_stat = skip_spaces (proc_stat);
1340
1341 /* ps command also relies on no trailing fields ever contain ')'. */
1342 proc_stat = strrchr (proc_stat, ')');
1343 if (proc_stat == NULL)
1344 {
1345 do_cleanups (c);
1346 return 1;
1347 }
1348 proc_stat++;
1349
1350 proc_stat = skip_spaces (proc_stat);
1351
1352 n_fields = sscanf (proc_stat,
1353 "%c" /* Process state. */
1354 "%d%d%d" /* Parent PID, group ID, session ID. */
1355 "%*d%*d" /* tty_nr, tpgid (not used). */
1356 "%u" /* Flags. */
1357 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1358 cmajflt (not used). */
1359 "%*s%*s%*s%*s" /* utime, stime, cutime,
1360 cstime (not used). */
1361 "%*s" /* Priority (not used). */
1362 "%ld", /* Nice. */
1363 &pr_sname,
1364 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1365 &pr_flag,
1366 &pr_nice);
1367
1368 if (n_fields != 6)
1369 {
1370 /* Again, we couldn't read the complementary information about
1371 the process state. However, we already have minimal
1372 information, so we just return 1 here. */
1373 do_cleanups (c);
1374 return 1;
1375 }
1376
1377 /* Filling the structure fields. */
1378 prog_state = strchr (valid_states, pr_sname);
1379 if (prog_state != NULL)
1380 p->pr_state = prog_state - valid_states;
1381 else
1382 {
1383 /* Zero means "Running". */
1384 p->pr_state = 0;
1385 }
1386
1387 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1388 p->pr_zomb = p->pr_sname == 'Z';
1389 p->pr_nice = pr_nice;
1390 p->pr_flag = pr_flag;
1391
1392 /* Finally, obtaining the UID and GID. For that, we read and parse the
1393 contents of the `/proc/PID/status' file. */
1394 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1395 proc_status = target_fileio_read_stralloc (filename);
1396 make_cleanup (xfree, proc_status);
1397
1398 if (proc_status == NULL || *proc_status == '\0')
1399 {
1400 /* Returning 1 since we already have a bunch of information. */
1401 do_cleanups (c);
1402 return 1;
1403 }
1404
1405 /* Extracting the UID. */
1406 tmpstr = strstr (proc_status, "Uid:");
1407 if (tmpstr != NULL)
1408 {
1409 /* Advancing the pointer to the beginning of the UID. */
1410 tmpstr += sizeof ("Uid:");
1411 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1412 ++tmpstr;
1413
1414 if (isdigit (*tmpstr))
1415 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1416 }
1417
1418 /* Extracting the GID. */
1419 tmpstr = strstr (proc_status, "Gid:");
1420 if (tmpstr != NULL)
1421 {
1422 /* Advancing the pointer to the beginning of the GID. */
1423 tmpstr += sizeof ("Gid:");
1424 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1425 ++tmpstr;
1426
1427 if (isdigit (*tmpstr))
1428 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1429 }
1430
1431 do_cleanups (c);
1432
1433 return 1;
1434 }
1435
1436 /* Fills the "to_make_corefile_note" target vector. Builds the note
1437 section for a corefile, and returns it in a malloc buffer. */
1438
1439 char *
1440 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size,
1441 linux_collect_thread_registers_ftype collect)
1442 {
1443 struct linux_corefile_thread_data thread_args;
1444 struct elf_internal_linux_prpsinfo prpsinfo;
1445 char *note_data = NULL;
1446 gdb_byte *auxv;
1447 int auxv_len;
1448
1449 if (linux_fill_prpsinfo (&prpsinfo))
1450 {
1451 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch))
1452 {
1453 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd,
1454 note_data, note_size,
1455 &prpsinfo);
1456 }
1457 else
1458 {
1459 if (gdbarch_ptr_bit (gdbarch) == 64)
1460 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1461 note_data, note_size,
1462 &prpsinfo);
1463 else
1464 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1465 note_data, note_size,
1466 &prpsinfo);
1467 }
1468 }
1469
1470 /* Thread register information. */
1471 thread_args.gdbarch = gdbarch;
1472 thread_args.pid = ptid_get_pid (inferior_ptid);
1473 thread_args.obfd = obfd;
1474 thread_args.note_data = note_data;
1475 thread_args.note_size = note_size;
1476 thread_args.stop_signal = find_stop_signal ();
1477 thread_args.collect = collect;
1478 iterate_over_threads (linux_corefile_thread_callback, &thread_args);
1479 note_data = thread_args.note_data;
1480 if (!note_data)
1481 return NULL;
1482
1483 /* Auxillary vector. */
1484 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
1485 NULL, &auxv);
1486 if (auxv_len > 0)
1487 {
1488 note_data = elfcore_write_note (obfd, note_data, note_size,
1489 "CORE", NT_AUXV, auxv, auxv_len);
1490 xfree (auxv);
1491
1492 if (!note_data)
1493 return NULL;
1494 }
1495
1496 /* SPU information. */
1497 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
1498 if (!note_data)
1499 return NULL;
1500
1501 /* File mappings. */
1502 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1503 note_data, note_size);
1504
1505 make_cleanup (xfree, note_data);
1506 return note_data;
1507 }
1508
1509 static char *
1510 linux_make_corefile_notes_1 (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1511 {
1512 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
1513 converted to gdbarch_core_regset_sections, we no longer need to fall back
1514 to the target method at this point. */
1515
1516 if (!gdbarch_core_regset_sections (gdbarch))
1517 return target_make_corefile_notes (obfd, note_size);
1518 else
1519 return linux_make_corefile_notes (gdbarch, obfd, note_size,
1520 linux_collect_thread_registers);
1521 }
1522
1523 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
1524 gdbarch.h. This function is not static because it is exported to
1525 other -tdep files. */
1526
1527 enum gdb_signal
1528 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1529 {
1530 switch (signal)
1531 {
1532 case 0:
1533 return GDB_SIGNAL_0;
1534
1535 case LINUX_SIGHUP:
1536 return GDB_SIGNAL_HUP;
1537
1538 case LINUX_SIGINT:
1539 return GDB_SIGNAL_INT;
1540
1541 case LINUX_SIGQUIT:
1542 return GDB_SIGNAL_QUIT;
1543
1544 case LINUX_SIGILL:
1545 return GDB_SIGNAL_ILL;
1546
1547 case LINUX_SIGTRAP:
1548 return GDB_SIGNAL_TRAP;
1549
1550 case LINUX_SIGABRT:
1551 return GDB_SIGNAL_ABRT;
1552
1553 case LINUX_SIGBUS:
1554 return GDB_SIGNAL_BUS;
1555
1556 case LINUX_SIGFPE:
1557 return GDB_SIGNAL_FPE;
1558
1559 case LINUX_SIGKILL:
1560 return GDB_SIGNAL_KILL;
1561
1562 case LINUX_SIGUSR1:
1563 return GDB_SIGNAL_USR1;
1564
1565 case LINUX_SIGSEGV:
1566 return GDB_SIGNAL_SEGV;
1567
1568 case LINUX_SIGUSR2:
1569 return GDB_SIGNAL_USR2;
1570
1571 case LINUX_SIGPIPE:
1572 return GDB_SIGNAL_PIPE;
1573
1574 case LINUX_SIGALRM:
1575 return GDB_SIGNAL_ALRM;
1576
1577 case LINUX_SIGTERM:
1578 return GDB_SIGNAL_TERM;
1579
1580 case LINUX_SIGCHLD:
1581 return GDB_SIGNAL_CHLD;
1582
1583 case LINUX_SIGCONT:
1584 return GDB_SIGNAL_CONT;
1585
1586 case LINUX_SIGSTOP:
1587 return GDB_SIGNAL_STOP;
1588
1589 case LINUX_SIGTSTP:
1590 return GDB_SIGNAL_TSTP;
1591
1592 case LINUX_SIGTTIN:
1593 return GDB_SIGNAL_TTIN;
1594
1595 case LINUX_SIGTTOU:
1596 return GDB_SIGNAL_TTOU;
1597
1598 case LINUX_SIGURG:
1599 return GDB_SIGNAL_URG;
1600
1601 case LINUX_SIGXCPU:
1602 return GDB_SIGNAL_XCPU;
1603
1604 case LINUX_SIGXFSZ:
1605 return GDB_SIGNAL_XFSZ;
1606
1607 case LINUX_SIGVTALRM:
1608 return GDB_SIGNAL_VTALRM;
1609
1610 case LINUX_SIGPROF:
1611 return GDB_SIGNAL_PROF;
1612
1613 case LINUX_SIGWINCH:
1614 return GDB_SIGNAL_WINCH;
1615
1616 /* No way to differentiate between SIGIO and SIGPOLL.
1617 Therefore, we just handle the first one. */
1618 case LINUX_SIGIO:
1619 return GDB_SIGNAL_IO;
1620
1621 case LINUX_SIGPWR:
1622 return GDB_SIGNAL_PWR;
1623
1624 case LINUX_SIGSYS:
1625 return GDB_SIGNAL_SYS;
1626
1627 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
1628 therefore we have to handle them here. */
1629 case LINUX_SIGRTMIN:
1630 return GDB_SIGNAL_REALTIME_32;
1631
1632 case LINUX_SIGRTMAX:
1633 return GDB_SIGNAL_REALTIME_64;
1634 }
1635
1636 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
1637 {
1638 int offset = signal - LINUX_SIGRTMIN + 1;
1639
1640 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
1641 }
1642
1643 return GDB_SIGNAL_UNKNOWN;
1644 }
1645
1646 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
1647 gdbarch.h. This function is not static because it is exported to
1648 other -tdep files. */
1649
1650 int
1651 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
1652 enum gdb_signal signal)
1653 {
1654 switch (signal)
1655 {
1656 case GDB_SIGNAL_0:
1657 return 0;
1658
1659 case GDB_SIGNAL_HUP:
1660 return LINUX_SIGHUP;
1661
1662 case GDB_SIGNAL_INT:
1663 return LINUX_SIGINT;
1664
1665 case GDB_SIGNAL_QUIT:
1666 return LINUX_SIGQUIT;
1667
1668 case GDB_SIGNAL_ILL:
1669 return LINUX_SIGILL;
1670
1671 case GDB_SIGNAL_TRAP:
1672 return LINUX_SIGTRAP;
1673
1674 case GDB_SIGNAL_ABRT:
1675 return LINUX_SIGABRT;
1676
1677 case GDB_SIGNAL_FPE:
1678 return LINUX_SIGFPE;
1679
1680 case GDB_SIGNAL_KILL:
1681 return LINUX_SIGKILL;
1682
1683 case GDB_SIGNAL_BUS:
1684 return LINUX_SIGBUS;
1685
1686 case GDB_SIGNAL_SEGV:
1687 return LINUX_SIGSEGV;
1688
1689 case GDB_SIGNAL_SYS:
1690 return LINUX_SIGSYS;
1691
1692 case GDB_SIGNAL_PIPE:
1693 return LINUX_SIGPIPE;
1694
1695 case GDB_SIGNAL_ALRM:
1696 return LINUX_SIGALRM;
1697
1698 case GDB_SIGNAL_TERM:
1699 return LINUX_SIGTERM;
1700
1701 case GDB_SIGNAL_URG:
1702 return LINUX_SIGURG;
1703
1704 case GDB_SIGNAL_STOP:
1705 return LINUX_SIGSTOP;
1706
1707 case GDB_SIGNAL_TSTP:
1708 return LINUX_SIGTSTP;
1709
1710 case GDB_SIGNAL_CONT:
1711 return LINUX_SIGCONT;
1712
1713 case GDB_SIGNAL_CHLD:
1714 return LINUX_SIGCHLD;
1715
1716 case GDB_SIGNAL_TTIN:
1717 return LINUX_SIGTTIN;
1718
1719 case GDB_SIGNAL_TTOU:
1720 return LINUX_SIGTTOU;
1721
1722 case GDB_SIGNAL_IO:
1723 return LINUX_SIGIO;
1724
1725 case GDB_SIGNAL_XCPU:
1726 return LINUX_SIGXCPU;
1727
1728 case GDB_SIGNAL_XFSZ:
1729 return LINUX_SIGXFSZ;
1730
1731 case GDB_SIGNAL_VTALRM:
1732 return LINUX_SIGVTALRM;
1733
1734 case GDB_SIGNAL_PROF:
1735 return LINUX_SIGPROF;
1736
1737 case GDB_SIGNAL_WINCH:
1738 return LINUX_SIGWINCH;
1739
1740 case GDB_SIGNAL_USR1:
1741 return LINUX_SIGUSR1;
1742
1743 case GDB_SIGNAL_USR2:
1744 return LINUX_SIGUSR2;
1745
1746 case GDB_SIGNAL_PWR:
1747 return LINUX_SIGPWR;
1748
1749 case GDB_SIGNAL_POLL:
1750 return LINUX_SIGPOLL;
1751
1752 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
1753 therefore we have to handle it here. */
1754 case GDB_SIGNAL_REALTIME_32:
1755 return LINUX_SIGRTMIN;
1756
1757 /* Same comment applies to _64. */
1758 case GDB_SIGNAL_REALTIME_64:
1759 return LINUX_SIGRTMAX;
1760 }
1761
1762 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
1763 if (signal >= GDB_SIGNAL_REALTIME_33
1764 && signal <= GDB_SIGNAL_REALTIME_63)
1765 {
1766 int offset = signal - GDB_SIGNAL_REALTIME_33;
1767
1768 return LINUX_SIGRTMIN + 1 + offset;
1769 }
1770
1771 return -1;
1772 }
1773
1774 /* To be called from the various GDB_OSABI_LINUX handlers for the
1775 various GNU/Linux architectures and machine types. */
1776
1777 void
1778 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1779 {
1780 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
1781 set_gdbarch_info_proc (gdbarch, linux_info_proc);
1782 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
1783 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
1784 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes_1);
1785 set_gdbarch_has_shared_address_space (gdbarch,
1786 linux_has_shared_address_space);
1787 set_gdbarch_gdb_signal_from_target (gdbarch,
1788 linux_gdb_signal_from_target);
1789 set_gdbarch_gdb_signal_to_target (gdbarch,
1790 linux_gdb_signal_to_target);
1791 }
1792
1793 /* Provide a prototype to silence -Wmissing-prototypes. */
1794 extern initialize_file_ftype _initialize_linux_tdep;
1795
1796 void
1797 _initialize_linux_tdep (void)
1798 {
1799 linux_gdbarch_data_handle =
1800 gdbarch_data_register_post_init (init_linux_gdbarch_data);
1801 }
This page took 0.121817 seconds and 5 git commands to generate.