Type-safe wrapper for enum flags
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observer.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41
42 #include <ctype.h>
43
44 /* This enum represents the values that the user can choose when
45 informing the Linux kernel about which memory mappings will be
46 dumped in a corefile. They are described in the file
47 Documentation/filesystems/proc.txt, inside the Linux kernel
48 tree. */
49
50 enum filter_flag
51 {
52 COREFILTER_ANON_PRIVATE = 1 << 0,
53 COREFILTER_ANON_SHARED = 1 << 1,
54 COREFILTER_MAPPED_PRIVATE = 1 << 2,
55 COREFILTER_MAPPED_SHARED = 1 << 3,
56 COREFILTER_ELF_HEADERS = 1 << 4,
57 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
58 COREFILTER_HUGETLB_SHARED = 1 << 6,
59 };
60 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
61
62 /* This struct is used to map flags found in the "VmFlags:" field (in
63 the /proc/<PID>/smaps file). */
64
65 struct smaps_vmflags
66 {
67 /* Zero if this structure has not been initialized yet. It
68 probably means that the Linux kernel being used does not emit
69 the "VmFlags:" field on "/proc/PID/smaps". */
70
71 unsigned int initialized_p : 1;
72
73 /* Memory mapped I/O area (VM_IO, "io"). */
74
75 unsigned int io_page : 1;
76
77 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
78
79 unsigned int uses_huge_tlb : 1;
80
81 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
82
83 unsigned int exclude_coredump : 1;
84
85 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
86
87 unsigned int shared_mapping : 1;
88 };
89
90 /* Whether to take the /proc/PID/coredump_filter into account when
91 generating a corefile. */
92
93 static int use_coredump_filter = 1;
94
95 /* This enum represents the signals' numbers on a generic architecture
96 running the Linux kernel. The definition of "generic" comes from
97 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
98 tree, which is the "de facto" implementation of signal numbers to
99 be used by new architecture ports.
100
101 For those architectures which have differences between the generic
102 standard (e.g., Alpha), we define the different signals (and *only*
103 those) in the specific target-dependent file (e.g.,
104 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
105 tdep file for more information.
106
107 ARM deserves a special mention here. On the file
108 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
109 (and ARM-only) signal, which is SIGSWI, with the same number as
110 SIGRTMIN. This signal is used only for a very specific target,
111 called ArthurOS (from RISCOS). Therefore, we do not handle it on
112 the ARM-tdep file, and we can safely use the generic signal handler
113 here for ARM targets.
114
115 As stated above, this enum is derived from
116 <include/uapi/asm-generic/signal.h>, from the Linux kernel
117 tree. */
118
119 enum
120 {
121 LINUX_SIGHUP = 1,
122 LINUX_SIGINT = 2,
123 LINUX_SIGQUIT = 3,
124 LINUX_SIGILL = 4,
125 LINUX_SIGTRAP = 5,
126 LINUX_SIGABRT = 6,
127 LINUX_SIGIOT = 6,
128 LINUX_SIGBUS = 7,
129 LINUX_SIGFPE = 8,
130 LINUX_SIGKILL = 9,
131 LINUX_SIGUSR1 = 10,
132 LINUX_SIGSEGV = 11,
133 LINUX_SIGUSR2 = 12,
134 LINUX_SIGPIPE = 13,
135 LINUX_SIGALRM = 14,
136 LINUX_SIGTERM = 15,
137 LINUX_SIGSTKFLT = 16,
138 LINUX_SIGCHLD = 17,
139 LINUX_SIGCONT = 18,
140 LINUX_SIGSTOP = 19,
141 LINUX_SIGTSTP = 20,
142 LINUX_SIGTTIN = 21,
143 LINUX_SIGTTOU = 22,
144 LINUX_SIGURG = 23,
145 LINUX_SIGXCPU = 24,
146 LINUX_SIGXFSZ = 25,
147 LINUX_SIGVTALRM = 26,
148 LINUX_SIGPROF = 27,
149 LINUX_SIGWINCH = 28,
150 LINUX_SIGIO = 29,
151 LINUX_SIGPOLL = LINUX_SIGIO,
152 LINUX_SIGPWR = 30,
153 LINUX_SIGSYS = 31,
154 LINUX_SIGUNUSED = 31,
155
156 LINUX_SIGRTMIN = 32,
157 LINUX_SIGRTMAX = 64,
158 };
159
160 static struct gdbarch_data *linux_gdbarch_data_handle;
161
162 struct linux_gdbarch_data
163 {
164 struct type *siginfo_type;
165 };
166
167 static void *
168 init_linux_gdbarch_data (struct gdbarch *gdbarch)
169 {
170 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
171 }
172
173 static struct linux_gdbarch_data *
174 get_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return ((struct linux_gdbarch_data *)
177 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
178 }
179
180 /* Per-inferior data key. */
181 static const struct inferior_data *linux_inferior_data;
182
183 /* Linux-specific cached data. This is used by GDB for caching
184 purposes for each inferior. This helps reduce the overhead of
185 transfering data from a remote target to the local host. */
186 struct linux_info
187 {
188 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
189 if VSYSCALL_RANGE_P is positive. This is cached because getting
190 at this info requires an auxv lookup (which is itself cached),
191 and looking through the inferior's mappings (which change
192 throughout execution and therefore cannot be cached). */
193 struct mem_range vsyscall_range;
194
195 /* Zero if we haven't tried looking up the vsyscall's range before
196 yet. Positive if we tried looking it up, and found it. Negative
197 if we tried looking it up but failed. */
198 int vsyscall_range_p;
199 };
200
201 /* Frees whatever allocated space there is to be freed and sets INF's
202 linux cache data pointer to NULL. */
203
204 static void
205 invalidate_linux_cache_inf (struct inferior *inf)
206 {
207 struct linux_info *info;
208
209 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
210 if (info != NULL)
211 {
212 xfree (info);
213 set_inferior_data (inf, linux_inferior_data, NULL);
214 }
215 }
216
217 /* Handles the cleanup of the linux cache for inferior INF. ARG is
218 ignored. Callback for the inferior_appeared and inferior_exit
219 events. */
220
221 static void
222 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
223 {
224 invalidate_linux_cache_inf (inf);
225 }
226
227 /* Fetch the linux cache info for INF. This function always returns a
228 valid INFO pointer. */
229
230 static struct linux_info *
231 get_linux_inferior_data (void)
232 {
233 struct linux_info *info;
234 struct inferior *inf = current_inferior ();
235
236 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
237 if (info == NULL)
238 {
239 info = XCNEW (struct linux_info);
240 set_inferior_data (inf, linux_inferior_data, info);
241 }
242
243 return info;
244 }
245
246 /* This function is suitable for architectures that don't
247 extend/override the standard siginfo structure. */
248
249 static struct type *
250 linux_get_siginfo_type (struct gdbarch *gdbarch)
251 {
252 struct linux_gdbarch_data *linux_gdbarch_data;
253 struct type *int_type, *uint_type, *long_type, *void_ptr_type;
254 struct type *uid_type, *pid_type;
255 struct type *sigval_type, *clock_type;
256 struct type *siginfo_type, *sifields_type;
257 struct type *type;
258
259 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
260 if (linux_gdbarch_data->siginfo_type != NULL)
261 return linux_gdbarch_data->siginfo_type;
262
263 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
264 0, "int");
265 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
266 1, "unsigned int");
267 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
268 0, "long");
269 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
270
271 /* sival_t */
272 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
273 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
274 append_composite_type_field (sigval_type, "sival_int", int_type);
275 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
276
277 /* __pid_t */
278 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
279 TYPE_LENGTH (int_type), "__pid_t");
280 TYPE_TARGET_TYPE (pid_type) = int_type;
281 TYPE_TARGET_STUB (pid_type) = 1;
282
283 /* __uid_t */
284 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
285 TYPE_LENGTH (uint_type), "__uid_t");
286 TYPE_TARGET_TYPE (uid_type) = uint_type;
287 TYPE_TARGET_STUB (uid_type) = 1;
288
289 /* __clock_t */
290 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
291 TYPE_LENGTH (long_type), "__clock_t");
292 TYPE_TARGET_TYPE (clock_type) = long_type;
293 TYPE_TARGET_STUB (clock_type) = 1;
294
295 /* _sifields */
296 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
297
298 {
299 const int si_max_size = 128;
300 int si_pad_size;
301 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
302
303 /* _pad */
304 if (gdbarch_ptr_bit (gdbarch) == 64)
305 si_pad_size = (si_max_size / size_of_int) - 4;
306 else
307 si_pad_size = (si_max_size / size_of_int) - 3;
308 append_composite_type_field (sifields_type, "_pad",
309 init_vector_type (int_type, si_pad_size));
310 }
311
312 /* _kill */
313 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
314 append_composite_type_field (type, "si_pid", pid_type);
315 append_composite_type_field (type, "si_uid", uid_type);
316 append_composite_type_field (sifields_type, "_kill", type);
317
318 /* _timer */
319 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
320 append_composite_type_field (type, "si_tid", int_type);
321 append_composite_type_field (type, "si_overrun", int_type);
322 append_composite_type_field (type, "si_sigval", sigval_type);
323 append_composite_type_field (sifields_type, "_timer", type);
324
325 /* _rt */
326 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
327 append_composite_type_field (type, "si_pid", pid_type);
328 append_composite_type_field (type, "si_uid", uid_type);
329 append_composite_type_field (type, "si_sigval", sigval_type);
330 append_composite_type_field (sifields_type, "_rt", type);
331
332 /* _sigchld */
333 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
334 append_composite_type_field (type, "si_pid", pid_type);
335 append_composite_type_field (type, "si_uid", uid_type);
336 append_composite_type_field (type, "si_status", int_type);
337 append_composite_type_field (type, "si_utime", clock_type);
338 append_composite_type_field (type, "si_stime", clock_type);
339 append_composite_type_field (sifields_type, "_sigchld", type);
340
341 /* _sigfault */
342 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
343 append_composite_type_field (type, "si_addr", void_ptr_type);
344 append_composite_type_field (sifields_type, "_sigfault", type);
345
346 /* _sigpoll */
347 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
348 append_composite_type_field (type, "si_band", long_type);
349 append_composite_type_field (type, "si_fd", int_type);
350 append_composite_type_field (sifields_type, "_sigpoll", type);
351
352 /* struct siginfo */
353 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
354 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
355 append_composite_type_field (siginfo_type, "si_signo", int_type);
356 append_composite_type_field (siginfo_type, "si_errno", int_type);
357 append_composite_type_field (siginfo_type, "si_code", int_type);
358 append_composite_type_field_aligned (siginfo_type,
359 "_sifields", sifields_type,
360 TYPE_LENGTH (long_type));
361
362 linux_gdbarch_data->siginfo_type = siginfo_type;
363
364 return siginfo_type;
365 }
366
367 /* Return true if the target is running on uClinux instead of normal
368 Linux kernel. */
369
370 int
371 linux_is_uclinux (void)
372 {
373 CORE_ADDR dummy;
374
375 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
376 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
377 }
378
379 static int
380 linux_has_shared_address_space (struct gdbarch *gdbarch)
381 {
382 return linux_is_uclinux ();
383 }
384
385 /* This is how we want PTIDs from core files to be printed. */
386
387 static char *
388 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
389 {
390 static char buf[80];
391
392 if (ptid_get_lwp (ptid) != 0)
393 {
394 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
395 return buf;
396 }
397
398 return normal_pid_to_str (ptid);
399 }
400
401 /* Service function for corefiles and info proc. */
402
403 static void
404 read_mapping (const char *line,
405 ULONGEST *addr, ULONGEST *endaddr,
406 const char **permissions, size_t *permissions_len,
407 ULONGEST *offset,
408 const char **device, size_t *device_len,
409 ULONGEST *inode,
410 const char **filename)
411 {
412 const char *p = line;
413
414 *addr = strtoulst (p, &p, 16);
415 if (*p == '-')
416 p++;
417 *endaddr = strtoulst (p, &p, 16);
418
419 p = skip_spaces_const (p);
420 *permissions = p;
421 while (*p && !isspace (*p))
422 p++;
423 *permissions_len = p - *permissions;
424
425 *offset = strtoulst (p, &p, 16);
426
427 p = skip_spaces_const (p);
428 *device = p;
429 while (*p && !isspace (*p))
430 p++;
431 *device_len = p - *device;
432
433 *inode = strtoulst (p, &p, 10);
434
435 p = skip_spaces_const (p);
436 *filename = p;
437 }
438
439 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
440
441 This function was based on the documentation found on
442 <Documentation/filesystems/proc.txt>, on the Linux kernel.
443
444 Linux kernels before commit
445 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
446 field on smaps. */
447
448 static void
449 decode_vmflags (char *p, struct smaps_vmflags *v)
450 {
451 char *saveptr = NULL;
452 const char *s;
453
454 v->initialized_p = 1;
455 p = skip_to_space (p);
456 p = skip_spaces (p);
457
458 for (s = strtok_r (p, " ", &saveptr);
459 s != NULL;
460 s = strtok_r (NULL, " ", &saveptr))
461 {
462 if (strcmp (s, "io") == 0)
463 v->io_page = 1;
464 else if (strcmp (s, "ht") == 0)
465 v->uses_huge_tlb = 1;
466 else if (strcmp (s, "dd") == 0)
467 v->exclude_coredump = 1;
468 else if (strcmp (s, "sh") == 0)
469 v->shared_mapping = 1;
470 }
471 }
472
473 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
474
475 FILENAME is the name of the file present in the first line of the
476 memory mapping, in the "/proc/PID/smaps" output. For example, if
477 the first line is:
478
479 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
480
481 Then FILENAME will be "/path/to/file". */
482
483 static int
484 mapping_is_anonymous_p (const char *filename)
485 {
486 static regex_t dev_zero_regex, shmem_file_regex, file_deleted_regex;
487 static int init_regex_p = 0;
488
489 if (!init_regex_p)
490 {
491 struct cleanup *c = make_cleanup (null_cleanup, NULL);
492
493 /* Let's be pessimistic and assume there will be an error while
494 compiling the regex'es. */
495 init_regex_p = -1;
496
497 /* DEV_ZERO_REGEX matches "/dev/zero" filenames (with or
498 without the "(deleted)" string in the end). We know for
499 sure, based on the Linux kernel code, that memory mappings
500 whose associated filename is "/dev/zero" are guaranteed to be
501 MAP_ANONYMOUS. */
502 compile_rx_or_error (&dev_zero_regex, "^/dev/zero\\( (deleted)\\)\\?$",
503 _("Could not compile regex to match /dev/zero "
504 "filename"));
505 /* SHMEM_FILE_REGEX matches "/SYSV%08x" filenames (with or
506 without the "(deleted)" string in the end). These filenames
507 refer to shared memory (shmem), and memory mappings
508 associated with them are MAP_ANONYMOUS as well. */
509 compile_rx_or_error (&shmem_file_regex,
510 "^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$",
511 _("Could not compile regex to match shmem "
512 "filenames"));
513 /* FILE_DELETED_REGEX is a heuristic we use to try to mimic the
514 Linux kernel's 'n_link == 0' code, which is responsible to
515 decide if it is dealing with a 'MAP_SHARED | MAP_ANONYMOUS'
516 mapping. In other words, if FILE_DELETED_REGEX matches, it
517 does not necessarily mean that we are dealing with an
518 anonymous shared mapping. However, there is no easy way to
519 detect this currently, so this is the best approximation we
520 have.
521
522 As a result, GDB will dump readonly pages of deleted
523 executables when using the default value of coredump_filter
524 (0x33), while the Linux kernel will not dump those pages.
525 But we can live with that. */
526 compile_rx_or_error (&file_deleted_regex, " (deleted)$",
527 _("Could not compile regex to match "
528 "'<file> (deleted)'"));
529 /* We will never release these regexes, so just discard the
530 cleanups. */
531 discard_cleanups (c);
532
533 /* If we reached this point, then everything succeeded. */
534 init_regex_p = 1;
535 }
536
537 if (init_regex_p == -1)
538 {
539 const char deleted[] = " (deleted)";
540 size_t del_len = sizeof (deleted) - 1;
541 size_t filename_len = strlen (filename);
542
543 /* There was an error while compiling the regex'es above. In
544 order to try to give some reliable information to the caller,
545 we just try to find the string " (deleted)" in the filename.
546 If we managed to find it, then we assume the mapping is
547 anonymous. */
548 return (filename_len >= del_len
549 && strcmp (filename + filename_len - del_len, deleted) == 0);
550 }
551
552 if (*filename == '\0'
553 || regexec (&dev_zero_regex, filename, 0, NULL, 0) == 0
554 || regexec (&shmem_file_regex, filename, 0, NULL, 0) == 0
555 || regexec (&file_deleted_regex, filename, 0, NULL, 0) == 0)
556 return 1;
557
558 return 0;
559 }
560
561 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
562 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
563 greater than 0 if it should.
564
565 In a nutshell, this is the logic that we follow in order to decide
566 if a mapping should be dumped or not.
567
568 - If the mapping is associated to a file whose name ends with
569 " (deleted)", or if the file is "/dev/zero", or if it is
570 "/SYSV%08x" (shared memory), or if there is no file associated
571 with it, or if the AnonHugePages: or the Anonymous: fields in the
572 /proc/PID/smaps have contents, then GDB considers this mapping to
573 be anonymous. Otherwise, GDB considers this mapping to be a
574 file-backed mapping (because there will be a file associated with
575 it).
576
577 It is worth mentioning that, from all those checks described
578 above, the most fragile is the one to see if the file name ends
579 with " (deleted)". This does not necessarily mean that the
580 mapping is anonymous, because the deleted file associated with
581 the mapping may have been a hard link to another file, for
582 example. The Linux kernel checks to see if "i_nlink == 0", but
583 GDB cannot easily (and normally) do this check (iff running as
584 root, it could find the mapping in /proc/PID/map_files/ and
585 determine whether there still are other hard links to the
586 inode/file). Therefore, we made a compromise here, and we assume
587 that if the file name ends with " (deleted)", then the mapping is
588 indeed anonymous. FWIW, this is something the Linux kernel could
589 do better: expose this information in a more direct way.
590
591 - If we see the flag "sh" in the "VmFlags:" field (in
592 /proc/PID/smaps), then certainly the memory mapping is shared
593 (VM_SHARED). If we have access to the VmFlags, and we don't see
594 the "sh" there, then certainly the mapping is private. However,
595 Linux kernels before commit
596 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
597 "VmFlags:" field; in that case, we use another heuristic: if we
598 see 'p' in the permission flags, then we assume that the mapping
599 is private, even though the presence of the 's' flag there would
600 mean VM_MAYSHARE, which means the mapping could still be private.
601 This should work OK enough, however. */
602
603 static int
604 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
605 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
606 const char *filename)
607 {
608 /* Initially, we trust in what we received from our caller. This
609 value may not be very precise (i.e., it was probably gathered
610 from the permission line in the /proc/PID/smaps list, which
611 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
612 what we have until we take a look at the "VmFlags:" field
613 (assuming that the version of the Linux kernel being used
614 supports it, of course). */
615 int private_p = maybe_private_p;
616
617 /* We always dump vDSO and vsyscall mappings, because it's likely that
618 there'll be no file to read the contents from at core load time.
619 The kernel does the same. */
620 if (strcmp ("[vdso]", filename) == 0
621 || strcmp ("[vsyscall]", filename) == 0)
622 return 1;
623
624 if (v->initialized_p)
625 {
626 /* We never dump I/O mappings. */
627 if (v->io_page)
628 return 0;
629
630 /* Check if we should exclude this mapping. */
631 if (v->exclude_coredump)
632 return 0;
633
634 /* Update our notion of whether this mapping is shared or
635 private based on a trustworthy value. */
636 private_p = !v->shared_mapping;
637
638 /* HugeTLB checking. */
639 if (v->uses_huge_tlb)
640 {
641 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
642 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
643 return 1;
644
645 return 0;
646 }
647 }
648
649 if (private_p)
650 {
651 if (mapping_anon_p && mapping_file_p)
652 {
653 /* This is a special situation. It can happen when we see a
654 mapping that is file-backed, but that contains anonymous
655 pages. */
656 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
657 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
658 }
659 else if (mapping_anon_p)
660 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
661 else
662 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
663 }
664 else
665 {
666 if (mapping_anon_p && mapping_file_p)
667 {
668 /* This is a special situation. It can happen when we see a
669 mapping that is file-backed, but that contains anonymous
670 pages. */
671 return ((filterflags & COREFILTER_ANON_SHARED) != 0
672 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
673 }
674 else if (mapping_anon_p)
675 return (filterflags & COREFILTER_ANON_SHARED) != 0;
676 else
677 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
678 }
679 }
680
681 /* Implement the "info proc" command. */
682
683 static void
684 linux_info_proc (struct gdbarch *gdbarch, const char *args,
685 enum info_proc_what what)
686 {
687 /* A long is used for pid instead of an int to avoid a loss of precision
688 compiler warning from the output of strtoul. */
689 long pid;
690 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
691 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
692 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
693 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
694 int status_f = (what == IP_STATUS || what == IP_ALL);
695 int stat_f = (what == IP_STAT || what == IP_ALL);
696 char filename[100];
697 char *data;
698 int target_errno;
699
700 if (args && isdigit (args[0]))
701 {
702 char *tem;
703
704 pid = strtoul (args, &tem, 10);
705 args = tem;
706 }
707 else
708 {
709 if (!target_has_execution)
710 error (_("No current process: you must name one."));
711 if (current_inferior ()->fake_pid_p)
712 error (_("Can't determine the current process's PID: you must name one."));
713
714 pid = current_inferior ()->pid;
715 }
716
717 args = skip_spaces_const (args);
718 if (args && args[0])
719 error (_("Too many parameters: %s"), args);
720
721 printf_filtered (_("process %ld\n"), pid);
722 if (cmdline_f)
723 {
724 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
725 data = target_fileio_read_stralloc (NULL, filename);
726 if (data)
727 {
728 struct cleanup *cleanup = make_cleanup (xfree, data);
729 printf_filtered ("cmdline = '%s'\n", data);
730 do_cleanups (cleanup);
731 }
732 else
733 warning (_("unable to open /proc file '%s'"), filename);
734 }
735 if (cwd_f)
736 {
737 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
738 data = target_fileio_readlink (NULL, filename, &target_errno);
739 if (data)
740 {
741 struct cleanup *cleanup = make_cleanup (xfree, data);
742 printf_filtered ("cwd = '%s'\n", data);
743 do_cleanups (cleanup);
744 }
745 else
746 warning (_("unable to read link '%s'"), filename);
747 }
748 if (exe_f)
749 {
750 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
751 data = target_fileio_readlink (NULL, filename, &target_errno);
752 if (data)
753 {
754 struct cleanup *cleanup = make_cleanup (xfree, data);
755 printf_filtered ("exe = '%s'\n", data);
756 do_cleanups (cleanup);
757 }
758 else
759 warning (_("unable to read link '%s'"), filename);
760 }
761 if (mappings_f)
762 {
763 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
764 data = target_fileio_read_stralloc (NULL, filename);
765 if (data)
766 {
767 struct cleanup *cleanup = make_cleanup (xfree, data);
768 char *line;
769
770 printf_filtered (_("Mapped address spaces:\n\n"));
771 if (gdbarch_addr_bit (gdbarch) == 32)
772 {
773 printf_filtered ("\t%10s %10s %10s %10s %s\n",
774 "Start Addr",
775 " End Addr",
776 " Size", " Offset", "objfile");
777 }
778 else
779 {
780 printf_filtered (" %18s %18s %10s %10s %s\n",
781 "Start Addr",
782 " End Addr",
783 " Size", " Offset", "objfile");
784 }
785
786 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n"))
787 {
788 ULONGEST addr, endaddr, offset, inode;
789 const char *permissions, *device, *filename;
790 size_t permissions_len, device_len;
791
792 read_mapping (line, &addr, &endaddr,
793 &permissions, &permissions_len,
794 &offset, &device, &device_len,
795 &inode, &filename);
796
797 if (gdbarch_addr_bit (gdbarch) == 32)
798 {
799 printf_filtered ("\t%10s %10s %10s %10s %s\n",
800 paddress (gdbarch, addr),
801 paddress (gdbarch, endaddr),
802 hex_string (endaddr - addr),
803 hex_string (offset),
804 *filename? filename : "");
805 }
806 else
807 {
808 printf_filtered (" %18s %18s %10s %10s %s\n",
809 paddress (gdbarch, addr),
810 paddress (gdbarch, endaddr),
811 hex_string (endaddr - addr),
812 hex_string (offset),
813 *filename? filename : "");
814 }
815 }
816
817 do_cleanups (cleanup);
818 }
819 else
820 warning (_("unable to open /proc file '%s'"), filename);
821 }
822 if (status_f)
823 {
824 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
825 data = target_fileio_read_stralloc (NULL, filename);
826 if (data)
827 {
828 struct cleanup *cleanup = make_cleanup (xfree, data);
829 puts_filtered (data);
830 do_cleanups (cleanup);
831 }
832 else
833 warning (_("unable to open /proc file '%s'"), filename);
834 }
835 if (stat_f)
836 {
837 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
838 data = target_fileio_read_stralloc (NULL, filename);
839 if (data)
840 {
841 struct cleanup *cleanup = make_cleanup (xfree, data);
842 const char *p = data;
843
844 printf_filtered (_("Process: %s\n"),
845 pulongest (strtoulst (p, &p, 10)));
846
847 p = skip_spaces_const (p);
848 if (*p == '(')
849 {
850 /* ps command also relies on no trailing fields
851 ever contain ')'. */
852 const char *ep = strrchr (p, ')');
853 if (ep != NULL)
854 {
855 printf_filtered ("Exec file: %.*s\n",
856 (int) (ep - p - 1), p + 1);
857 p = ep + 1;
858 }
859 }
860
861 p = skip_spaces_const (p);
862 if (*p)
863 printf_filtered (_("State: %c\n"), *p++);
864
865 if (*p)
866 printf_filtered (_("Parent process: %s\n"),
867 pulongest (strtoulst (p, &p, 10)));
868 if (*p)
869 printf_filtered (_("Process group: %s\n"),
870 pulongest (strtoulst (p, &p, 10)));
871 if (*p)
872 printf_filtered (_("Session id: %s\n"),
873 pulongest (strtoulst (p, &p, 10)));
874 if (*p)
875 printf_filtered (_("TTY: %s\n"),
876 pulongest (strtoulst (p, &p, 10)));
877 if (*p)
878 printf_filtered (_("TTY owner process group: %s\n"),
879 pulongest (strtoulst (p, &p, 10)));
880
881 if (*p)
882 printf_filtered (_("Flags: %s\n"),
883 hex_string (strtoulst (p, &p, 10)));
884 if (*p)
885 printf_filtered (_("Minor faults (no memory page): %s\n"),
886 pulongest (strtoulst (p, &p, 10)));
887 if (*p)
888 printf_filtered (_("Minor faults, children: %s\n"),
889 pulongest (strtoulst (p, &p, 10)));
890 if (*p)
891 printf_filtered (_("Major faults (memory page faults): %s\n"),
892 pulongest (strtoulst (p, &p, 10)));
893 if (*p)
894 printf_filtered (_("Major faults, children: %s\n"),
895 pulongest (strtoulst (p, &p, 10)));
896 if (*p)
897 printf_filtered (_("utime: %s\n"),
898 pulongest (strtoulst (p, &p, 10)));
899 if (*p)
900 printf_filtered (_("stime: %s\n"),
901 pulongest (strtoulst (p, &p, 10)));
902 if (*p)
903 printf_filtered (_("utime, children: %s\n"),
904 pulongest (strtoulst (p, &p, 10)));
905 if (*p)
906 printf_filtered (_("stime, children: %s\n"),
907 pulongest (strtoulst (p, &p, 10)));
908 if (*p)
909 printf_filtered (_("jiffies remaining in current "
910 "time slice: %s\n"),
911 pulongest (strtoulst (p, &p, 10)));
912 if (*p)
913 printf_filtered (_("'nice' value: %s\n"),
914 pulongest (strtoulst (p, &p, 10)));
915 if (*p)
916 printf_filtered (_("jiffies until next timeout: %s\n"),
917 pulongest (strtoulst (p, &p, 10)));
918 if (*p)
919 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
920 pulongest (strtoulst (p, &p, 10)));
921 if (*p)
922 printf_filtered (_("start time (jiffies since "
923 "system boot): %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("Virtual memory size: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("Resident set size: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("rlim: %s\n"),
933 pulongest (strtoulst (p, &p, 10)));
934 if (*p)
935 printf_filtered (_("Start of text: %s\n"),
936 hex_string (strtoulst (p, &p, 10)));
937 if (*p)
938 printf_filtered (_("End of text: %s\n"),
939 hex_string (strtoulst (p, &p, 10)));
940 if (*p)
941 printf_filtered (_("Start of stack: %s\n"),
942 hex_string (strtoulst (p, &p, 10)));
943 #if 0 /* Don't know how architecture-dependent the rest is...
944 Anyway the signal bitmap info is available from "status". */
945 if (*p)
946 printf_filtered (_("Kernel stack pointer: %s\n"),
947 hex_string (strtoulst (p, &p, 10)));
948 if (*p)
949 printf_filtered (_("Kernel instr pointer: %s\n"),
950 hex_string (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Pending signals bitmap: %s\n"),
953 hex_string (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Blocked signals bitmap: %s\n"),
956 hex_string (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("Ignored signals bitmap: %s\n"),
959 hex_string (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("Catched signals bitmap: %s\n"),
962 hex_string (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("wchan (system call): %s\n"),
965 hex_string (strtoulst (p, &p, 10)));
966 #endif
967 do_cleanups (cleanup);
968 }
969 else
970 warning (_("unable to open /proc file '%s'"), filename);
971 }
972 }
973
974 /* Implement "info proc mappings" for a corefile. */
975
976 static void
977 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
978 {
979 asection *section;
980 ULONGEST count, page_size;
981 unsigned char *descdata, *filenames, *descend, *contents;
982 size_t note_size;
983 unsigned int addr_size_bits, addr_size;
984 struct cleanup *cleanup;
985 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
986 /* We assume this for reading 64-bit core files. */
987 gdb_static_assert (sizeof (ULONGEST) >= 8);
988
989 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
990 if (section == NULL)
991 {
992 warning (_("unable to find mappings in core file"));
993 return;
994 }
995
996 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
997 addr_size = addr_size_bits / 8;
998 note_size = bfd_get_section_size (section);
999
1000 if (note_size < 2 * addr_size)
1001 error (_("malformed core note - too short for header"));
1002
1003 contents = (unsigned char *) xmalloc (note_size);
1004 cleanup = make_cleanup (xfree, contents);
1005 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
1006 error (_("could not get core note contents"));
1007
1008 descdata = contents;
1009 descend = descdata + note_size;
1010
1011 if (descdata[note_size - 1] != '\0')
1012 error (_("malformed note - does not end with \\0"));
1013
1014 count = bfd_get (addr_size_bits, core_bfd, descdata);
1015 descdata += addr_size;
1016
1017 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1018 descdata += addr_size;
1019
1020 if (note_size < 2 * addr_size + count * 3 * addr_size)
1021 error (_("malformed note - too short for supplied file count"));
1022
1023 printf_filtered (_("Mapped address spaces:\n\n"));
1024 if (gdbarch_addr_bit (gdbarch) == 32)
1025 {
1026 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1027 "Start Addr",
1028 " End Addr",
1029 " Size", " Offset", "objfile");
1030 }
1031 else
1032 {
1033 printf_filtered (" %18s %18s %10s %10s %s\n",
1034 "Start Addr",
1035 " End Addr",
1036 " Size", " Offset", "objfile");
1037 }
1038
1039 filenames = descdata + count * 3 * addr_size;
1040 while (--count > 0)
1041 {
1042 ULONGEST start, end, file_ofs;
1043
1044 if (filenames == descend)
1045 error (_("malformed note - filenames end too early"));
1046
1047 start = bfd_get (addr_size_bits, core_bfd, descdata);
1048 descdata += addr_size;
1049 end = bfd_get (addr_size_bits, core_bfd, descdata);
1050 descdata += addr_size;
1051 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1052 descdata += addr_size;
1053
1054 file_ofs *= page_size;
1055
1056 if (gdbarch_addr_bit (gdbarch) == 32)
1057 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1058 paddress (gdbarch, start),
1059 paddress (gdbarch, end),
1060 hex_string (end - start),
1061 hex_string (file_ofs),
1062 filenames);
1063 else
1064 printf_filtered (" %18s %18s %10s %10s %s\n",
1065 paddress (gdbarch, start),
1066 paddress (gdbarch, end),
1067 hex_string (end - start),
1068 hex_string (file_ofs),
1069 filenames);
1070
1071 filenames += 1 + strlen ((char *) filenames);
1072 }
1073
1074 do_cleanups (cleanup);
1075 }
1076
1077 /* Implement "info proc" for a corefile. */
1078
1079 static void
1080 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1081 enum info_proc_what what)
1082 {
1083 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1084 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1085
1086 if (exe_f)
1087 {
1088 const char *exe;
1089
1090 exe = bfd_core_file_failing_command (core_bfd);
1091 if (exe != NULL)
1092 printf_filtered ("exe = '%s'\n", exe);
1093 else
1094 warning (_("unable to find command name in core file"));
1095 }
1096
1097 if (mappings_f)
1098 linux_core_info_proc_mappings (gdbarch, args);
1099
1100 if (!exe_f && !mappings_f)
1101 error (_("unable to handle request"));
1102 }
1103
1104 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1105 ULONGEST offset, ULONGEST inode,
1106 int read, int write,
1107 int exec, int modified,
1108 const char *filename,
1109 void *data);
1110
1111 /* List memory regions in the inferior for a corefile. */
1112
1113 static int
1114 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1115 linux_find_memory_region_ftype *func,
1116 void *obfd)
1117 {
1118 char mapsfilename[100];
1119 char coredumpfilter_name[100];
1120 char *data, *coredumpfilterdata;
1121 pid_t pid;
1122 /* Default dump behavior of coredump_filter (0x33), according to
1123 Documentation/filesystems/proc.txt from the Linux kernel
1124 tree. */
1125 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1126 | COREFILTER_ANON_SHARED
1127 | COREFILTER_ELF_HEADERS
1128 | COREFILTER_HUGETLB_PRIVATE);
1129
1130 /* We need to know the real target PID to access /proc. */
1131 if (current_inferior ()->fake_pid_p)
1132 return 1;
1133
1134 pid = current_inferior ()->pid;
1135
1136 if (use_coredump_filter)
1137 {
1138 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1139 "/proc/%d/coredump_filter", pid);
1140 coredumpfilterdata = target_fileio_read_stralloc (NULL,
1141 coredumpfilter_name);
1142 if (coredumpfilterdata != NULL)
1143 {
1144 unsigned int flags;
1145
1146 sscanf (coredumpfilterdata, "%x", &flags);
1147 filterflags = (enum filter_flag) flags;
1148 xfree (coredumpfilterdata);
1149 }
1150 }
1151
1152 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1153 data = target_fileio_read_stralloc (NULL, mapsfilename);
1154 if (data == NULL)
1155 {
1156 /* Older Linux kernels did not support /proc/PID/smaps. */
1157 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1158 data = target_fileio_read_stralloc (NULL, mapsfilename);
1159 }
1160
1161 if (data != NULL)
1162 {
1163 struct cleanup *cleanup = make_cleanup (xfree, data);
1164 char *line, *t;
1165
1166 line = strtok_r (data, "\n", &t);
1167 while (line != NULL)
1168 {
1169 ULONGEST addr, endaddr, offset, inode;
1170 const char *permissions, *device, *filename;
1171 struct smaps_vmflags v;
1172 size_t permissions_len, device_len;
1173 int read, write, exec, priv;
1174 int has_anonymous = 0;
1175 int should_dump_p = 0;
1176 int mapping_anon_p;
1177 int mapping_file_p;
1178
1179 memset (&v, 0, sizeof (v));
1180 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1181 &offset, &device, &device_len, &inode, &filename);
1182 mapping_anon_p = mapping_is_anonymous_p (filename);
1183 /* If the mapping is not anonymous, then we can consider it
1184 to be file-backed. These two states (anonymous or
1185 file-backed) seem to be exclusive, but they can actually
1186 coexist. For example, if a file-backed mapping has
1187 "Anonymous:" pages (see more below), then the Linux
1188 kernel will dump this mapping when the user specified
1189 that she only wants anonymous mappings in the corefile
1190 (*even* when she explicitly disabled the dumping of
1191 file-backed mappings). */
1192 mapping_file_p = !mapping_anon_p;
1193
1194 /* Decode permissions. */
1195 read = (memchr (permissions, 'r', permissions_len) != 0);
1196 write = (memchr (permissions, 'w', permissions_len) != 0);
1197 exec = (memchr (permissions, 'x', permissions_len) != 0);
1198 /* 'private' here actually means VM_MAYSHARE, and not
1199 VM_SHARED. In order to know if a mapping is really
1200 private or not, we must check the flag "sh" in the
1201 VmFlags field. This is done by decode_vmflags. However,
1202 if we are using a Linux kernel released before the commit
1203 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1204 not have the VmFlags there. In this case, there is
1205 really no way to know if we are dealing with VM_SHARED,
1206 so we just assume that VM_MAYSHARE is enough. */
1207 priv = memchr (permissions, 'p', permissions_len) != 0;
1208
1209 /* Try to detect if region should be dumped by parsing smaps
1210 counters. */
1211 for (line = strtok_r (NULL, "\n", &t);
1212 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1213 line = strtok_r (NULL, "\n", &t))
1214 {
1215 char keyword[64 + 1];
1216
1217 if (sscanf (line, "%64s", keyword) != 1)
1218 {
1219 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1220 break;
1221 }
1222
1223 if (strcmp (keyword, "Anonymous:") == 0)
1224 {
1225 /* Older Linux kernels did not support the
1226 "Anonymous:" counter. Check it here. */
1227 has_anonymous = 1;
1228 }
1229 else if (strcmp (keyword, "VmFlags:") == 0)
1230 decode_vmflags (line, &v);
1231
1232 if (strcmp (keyword, "AnonHugePages:") == 0
1233 || strcmp (keyword, "Anonymous:") == 0)
1234 {
1235 unsigned long number;
1236
1237 if (sscanf (line, "%*s%lu", &number) != 1)
1238 {
1239 warning (_("Error parsing {s,}maps file '%s' number"),
1240 mapsfilename);
1241 break;
1242 }
1243 if (number > 0)
1244 {
1245 /* Even if we are dealing with a file-backed
1246 mapping, if it contains anonymous pages we
1247 consider it to be *also* an anonymous
1248 mapping, because this is what the Linux
1249 kernel does:
1250
1251 // Dump segments that have been written to.
1252 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1253 goto whole;
1254
1255 Note that if the mapping is already marked as
1256 file-backed (i.e., mapping_file_p is
1257 non-zero), then this is a special case, and
1258 this mapping will be dumped either when the
1259 user wants to dump file-backed *or* anonymous
1260 mappings. */
1261 mapping_anon_p = 1;
1262 }
1263 }
1264 }
1265
1266 if (has_anonymous)
1267 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1268 mapping_anon_p, mapping_file_p,
1269 filename);
1270 else
1271 {
1272 /* Older Linux kernels did not support the "Anonymous:" counter.
1273 If it is missing, we can't be sure - dump all the pages. */
1274 should_dump_p = 1;
1275 }
1276
1277 /* Invoke the callback function to create the corefile segment. */
1278 if (should_dump_p)
1279 func (addr, endaddr - addr, offset, inode,
1280 read, write, exec, 1, /* MODIFIED is true because we
1281 want to dump the mapping. */
1282 filename, obfd);
1283 }
1284
1285 do_cleanups (cleanup);
1286 return 0;
1287 }
1288
1289 return 1;
1290 }
1291
1292 /* A structure for passing information through
1293 linux_find_memory_regions_full. */
1294
1295 struct linux_find_memory_regions_data
1296 {
1297 /* The original callback. */
1298
1299 find_memory_region_ftype func;
1300
1301 /* The original datum. */
1302
1303 void *obfd;
1304 };
1305
1306 /* A callback for linux_find_memory_regions that converts between the
1307 "full"-style callback and find_memory_region_ftype. */
1308
1309 static int
1310 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1311 ULONGEST offset, ULONGEST inode,
1312 int read, int write, int exec, int modified,
1313 const char *filename, void *arg)
1314 {
1315 struct linux_find_memory_regions_data *data
1316 = (struct linux_find_memory_regions_data *) arg;
1317
1318 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1319 }
1320
1321 /* A variant of linux_find_memory_regions_full that is suitable as the
1322 gdbarch find_memory_regions method. */
1323
1324 static int
1325 linux_find_memory_regions (struct gdbarch *gdbarch,
1326 find_memory_region_ftype func, void *obfd)
1327 {
1328 struct linux_find_memory_regions_data data;
1329
1330 data.func = func;
1331 data.obfd = obfd;
1332
1333 return linux_find_memory_regions_full (gdbarch,
1334 linux_find_memory_regions_thunk,
1335 &data);
1336 }
1337
1338 /* Determine which signal stopped execution. */
1339
1340 static int
1341 find_signalled_thread (struct thread_info *info, void *data)
1342 {
1343 if (info->suspend.stop_signal != GDB_SIGNAL_0
1344 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1345 return 1;
1346
1347 return 0;
1348 }
1349
1350 static enum gdb_signal
1351 find_stop_signal (void)
1352 {
1353 struct thread_info *info =
1354 iterate_over_threads (find_signalled_thread, NULL);
1355
1356 if (info)
1357 return info->suspend.stop_signal;
1358 else
1359 return GDB_SIGNAL_0;
1360 }
1361
1362 /* Generate corefile notes for SPU contexts. */
1363
1364 static char *
1365 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1366 {
1367 static const char *spu_files[] =
1368 {
1369 "object-id",
1370 "mem",
1371 "regs",
1372 "fpcr",
1373 "lslr",
1374 "decr",
1375 "decr_status",
1376 "signal1",
1377 "signal1_type",
1378 "signal2",
1379 "signal2_type",
1380 "event_mask",
1381 "event_status",
1382 "mbox_info",
1383 "ibox_info",
1384 "wbox_info",
1385 "dma_info",
1386 "proxydma_info",
1387 };
1388
1389 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1390 gdb_byte *spu_ids;
1391 LONGEST i, j, size;
1392
1393 /* Determine list of SPU ids. */
1394 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1395 NULL, &spu_ids);
1396
1397 /* Generate corefile notes for each SPU file. */
1398 for (i = 0; i < size; i += 4)
1399 {
1400 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1401
1402 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1403 {
1404 char annex[32], note_name[32];
1405 gdb_byte *spu_data;
1406 LONGEST spu_len;
1407
1408 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1409 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1410 annex, &spu_data);
1411 if (spu_len > 0)
1412 {
1413 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1414 note_data = elfcore_write_note (obfd, note_data, note_size,
1415 note_name, NT_SPU,
1416 spu_data, spu_len);
1417 xfree (spu_data);
1418
1419 if (!note_data)
1420 {
1421 xfree (spu_ids);
1422 return NULL;
1423 }
1424 }
1425 }
1426 }
1427
1428 if (size > 0)
1429 xfree (spu_ids);
1430
1431 return note_data;
1432 }
1433
1434 /* This is used to pass information from
1435 linux_make_mappings_corefile_notes through
1436 linux_find_memory_regions_full. */
1437
1438 struct linux_make_mappings_data
1439 {
1440 /* Number of files mapped. */
1441 ULONGEST file_count;
1442
1443 /* The obstack for the main part of the data. */
1444 struct obstack *data_obstack;
1445
1446 /* The filename obstack. */
1447 struct obstack *filename_obstack;
1448
1449 /* The architecture's "long" type. */
1450 struct type *long_type;
1451 };
1452
1453 static linux_find_memory_region_ftype linux_make_mappings_callback;
1454
1455 /* A callback for linux_find_memory_regions_full that updates the
1456 mappings data for linux_make_mappings_corefile_notes. */
1457
1458 static int
1459 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1460 ULONGEST offset, ULONGEST inode,
1461 int read, int write, int exec, int modified,
1462 const char *filename, void *data)
1463 {
1464 struct linux_make_mappings_data *map_data
1465 = (struct linux_make_mappings_data *) data;
1466 gdb_byte buf[sizeof (ULONGEST)];
1467
1468 if (*filename == '\0' || inode == 0)
1469 return 0;
1470
1471 ++map_data->file_count;
1472
1473 pack_long (buf, map_data->long_type, vaddr);
1474 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1475 pack_long (buf, map_data->long_type, vaddr + size);
1476 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1477 pack_long (buf, map_data->long_type, offset);
1478 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1479
1480 obstack_grow_str0 (map_data->filename_obstack, filename);
1481
1482 return 0;
1483 }
1484
1485 /* Write the file mapping data to the core file, if possible. OBFD is
1486 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1487 is a pointer to the note size. Returns the new NOTE_DATA and
1488 updates NOTE_SIZE. */
1489
1490 static char *
1491 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1492 char *note_data, int *note_size)
1493 {
1494 struct cleanup *cleanup;
1495 struct obstack data_obstack, filename_obstack;
1496 struct linux_make_mappings_data mapping_data;
1497 struct type *long_type
1498 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1499 gdb_byte buf[sizeof (ULONGEST)];
1500
1501 obstack_init (&data_obstack);
1502 cleanup = make_cleanup_obstack_free (&data_obstack);
1503 obstack_init (&filename_obstack);
1504 make_cleanup_obstack_free (&filename_obstack);
1505
1506 mapping_data.file_count = 0;
1507 mapping_data.data_obstack = &data_obstack;
1508 mapping_data.filename_obstack = &filename_obstack;
1509 mapping_data.long_type = long_type;
1510
1511 /* Reserve space for the count. */
1512 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1513 /* We always write the page size as 1 since we have no good way to
1514 determine the correct value. */
1515 pack_long (buf, long_type, 1);
1516 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1517
1518 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1519 &mapping_data);
1520
1521 if (mapping_data.file_count != 0)
1522 {
1523 /* Write the count to the obstack. */
1524 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1525 long_type, mapping_data.file_count);
1526
1527 /* Copy the filenames to the data obstack. */
1528 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1529 obstack_object_size (&filename_obstack));
1530
1531 note_data = elfcore_write_note (obfd, note_data, note_size,
1532 "CORE", NT_FILE,
1533 obstack_base (&data_obstack),
1534 obstack_object_size (&data_obstack));
1535 }
1536
1537 do_cleanups (cleanup);
1538 return note_data;
1539 }
1540
1541 /* Structure for passing information from
1542 linux_collect_thread_registers via an iterator to
1543 linux_collect_regset_section_cb. */
1544
1545 struct linux_collect_regset_section_cb_data
1546 {
1547 struct gdbarch *gdbarch;
1548 const struct regcache *regcache;
1549 bfd *obfd;
1550 char *note_data;
1551 int *note_size;
1552 unsigned long lwp;
1553 enum gdb_signal stop_signal;
1554 int abort_iteration;
1555 };
1556
1557 /* Callback for iterate_over_regset_sections that records a single
1558 regset in the corefile note section. */
1559
1560 static void
1561 linux_collect_regset_section_cb (const char *sect_name, int size,
1562 const struct regset *regset,
1563 const char *human_name, void *cb_data)
1564 {
1565 char *buf;
1566 struct linux_collect_regset_section_cb_data *data
1567 = (struct linux_collect_regset_section_cb_data *) cb_data;
1568
1569 if (data->abort_iteration)
1570 return;
1571
1572 gdb_assert (regset && regset->collect_regset);
1573
1574 buf = (char *) xmalloc (size);
1575 regset->collect_regset (regset, data->regcache, -1, buf, size);
1576
1577 /* PRSTATUS still needs to be treated specially. */
1578 if (strcmp (sect_name, ".reg") == 0)
1579 data->note_data = (char *) elfcore_write_prstatus
1580 (data->obfd, data->note_data, data->note_size, data->lwp,
1581 gdb_signal_to_host (data->stop_signal), buf);
1582 else
1583 data->note_data = (char *) elfcore_write_register_note
1584 (data->obfd, data->note_data, data->note_size,
1585 sect_name, buf, size);
1586 xfree (buf);
1587
1588 if (data->note_data == NULL)
1589 data->abort_iteration = 1;
1590 }
1591
1592 /* Records the thread's register state for the corefile note
1593 section. */
1594
1595 static char *
1596 linux_collect_thread_registers (const struct regcache *regcache,
1597 ptid_t ptid, bfd *obfd,
1598 char *note_data, int *note_size,
1599 enum gdb_signal stop_signal)
1600 {
1601 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1602 struct linux_collect_regset_section_cb_data data;
1603
1604 data.gdbarch = gdbarch;
1605 data.regcache = regcache;
1606 data.obfd = obfd;
1607 data.note_data = note_data;
1608 data.note_size = note_size;
1609 data.stop_signal = stop_signal;
1610 data.abort_iteration = 0;
1611
1612 /* For remote targets the LWP may not be available, so use the TID. */
1613 data.lwp = ptid_get_lwp (ptid);
1614 if (!data.lwp)
1615 data.lwp = ptid_get_tid (ptid);
1616
1617 gdbarch_iterate_over_regset_sections (gdbarch,
1618 linux_collect_regset_section_cb,
1619 &data, regcache);
1620 return data.note_data;
1621 }
1622
1623 /* Fetch the siginfo data for the current thread, if it exists. If
1624 there is no data, or we could not read it, return NULL. Otherwise,
1625 return a newly malloc'd buffer holding the data and fill in *SIZE
1626 with the size of the data. The caller is responsible for freeing
1627 the data. */
1628
1629 static gdb_byte *
1630 linux_get_siginfo_data (struct gdbarch *gdbarch, LONGEST *size)
1631 {
1632 struct type *siginfo_type;
1633 gdb_byte *buf;
1634 LONGEST bytes_read;
1635 struct cleanup *cleanups;
1636
1637 if (!gdbarch_get_siginfo_type_p (gdbarch))
1638 return NULL;
1639
1640 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1641
1642 buf = (gdb_byte *) xmalloc (TYPE_LENGTH (siginfo_type));
1643 cleanups = make_cleanup (xfree, buf);
1644
1645 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1646 buf, 0, TYPE_LENGTH (siginfo_type));
1647 if (bytes_read == TYPE_LENGTH (siginfo_type))
1648 {
1649 discard_cleanups (cleanups);
1650 *size = bytes_read;
1651 }
1652 else
1653 {
1654 do_cleanups (cleanups);
1655 buf = NULL;
1656 }
1657
1658 return buf;
1659 }
1660
1661 struct linux_corefile_thread_data
1662 {
1663 struct gdbarch *gdbarch;
1664 int pid;
1665 bfd *obfd;
1666 char *note_data;
1667 int *note_size;
1668 enum gdb_signal stop_signal;
1669 };
1670
1671 /* Called by gdbthread.c once per thread. Records the thread's
1672 register state for the corefile note section. */
1673
1674 static int
1675 linux_corefile_thread_callback (struct thread_info *info, void *data)
1676 {
1677 struct linux_corefile_thread_data *args
1678 = (struct linux_corefile_thread_data *) data;
1679
1680 /* It can be current thread
1681 which cannot be removed by update_thread_list. */
1682 if (info->state == THREAD_EXITED)
1683 return 0;
1684
1685 if (ptid_get_pid (info->ptid) == args->pid)
1686 {
1687 struct cleanup *old_chain;
1688 struct regcache *regcache;
1689 gdb_byte *siginfo_data;
1690 LONGEST siginfo_size = 0;
1691
1692 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1693
1694 old_chain = save_inferior_ptid ();
1695 inferior_ptid = info->ptid;
1696 target_fetch_registers (regcache, -1);
1697 siginfo_data = linux_get_siginfo_data (args->gdbarch, &siginfo_size);
1698 do_cleanups (old_chain);
1699
1700 old_chain = make_cleanup (xfree, siginfo_data);
1701
1702 args->note_data = linux_collect_thread_registers
1703 (regcache, info->ptid, args->obfd, args->note_data,
1704 args->note_size, args->stop_signal);
1705
1706 /* Don't return anything if we got no register information above,
1707 such a core file is useless. */
1708 if (args->note_data != NULL)
1709 if (siginfo_data != NULL)
1710 args->note_data = elfcore_write_note (args->obfd,
1711 args->note_data,
1712 args->note_size,
1713 "CORE", NT_SIGINFO,
1714 siginfo_data, siginfo_size);
1715
1716 do_cleanups (old_chain);
1717 }
1718
1719 return !args->note_data;
1720 }
1721
1722 /* Fill the PRPSINFO structure with information about the process being
1723 debugged. Returns 1 in case of success, 0 for failures. Please note that
1724 even if the structure cannot be entirely filled (e.g., GDB was unable to
1725 gather information about the process UID/GID), this function will still
1726 return 1 since some information was already recorded. It will only return
1727 0 iff nothing can be gathered. */
1728
1729 static int
1730 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1731 {
1732 /* The filename which we will use to obtain some info about the process.
1733 We will basically use this to store the `/proc/PID/FILENAME' file. */
1734 char filename[100];
1735 /* The full name of the program which generated the corefile. */
1736 char *fname;
1737 /* The basename of the executable. */
1738 const char *basename;
1739 /* The arguments of the program. */
1740 char *psargs;
1741 char *infargs;
1742 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */
1743 char *proc_stat, *proc_status;
1744 /* Temporary buffer. */
1745 char *tmpstr;
1746 /* The valid states of a process, according to the Linux kernel. */
1747 const char valid_states[] = "RSDTZW";
1748 /* The program state. */
1749 const char *prog_state;
1750 /* The state of the process. */
1751 char pr_sname;
1752 /* The PID of the program which generated the corefile. */
1753 pid_t pid;
1754 /* Process flags. */
1755 unsigned int pr_flag;
1756 /* Process nice value. */
1757 long pr_nice;
1758 /* The number of fields read by `sscanf'. */
1759 int n_fields = 0;
1760 /* Cleanups. */
1761 struct cleanup *c;
1762 int i;
1763
1764 gdb_assert (p != NULL);
1765
1766 /* Obtaining PID and filename. */
1767 pid = ptid_get_pid (inferior_ptid);
1768 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1769 fname = target_fileio_read_stralloc (NULL, filename);
1770
1771 if (fname == NULL || *fname == '\0')
1772 {
1773 /* No program name was read, so we won't be able to retrieve more
1774 information about the process. */
1775 xfree (fname);
1776 return 0;
1777 }
1778
1779 c = make_cleanup (xfree, fname);
1780 memset (p, 0, sizeof (*p));
1781
1782 /* Defining the PID. */
1783 p->pr_pid = pid;
1784
1785 /* Copying the program name. Only the basename matters. */
1786 basename = lbasename (fname);
1787 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1788 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1789
1790 infargs = get_inferior_args ();
1791
1792 psargs = xstrdup (fname);
1793 if (infargs != NULL)
1794 psargs = reconcat (psargs, psargs, " ", infargs, NULL);
1795
1796 make_cleanup (xfree, psargs);
1797
1798 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs));
1799 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1800
1801 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1802 proc_stat = target_fileio_read_stralloc (NULL, filename);
1803 make_cleanup (xfree, proc_stat);
1804
1805 if (proc_stat == NULL || *proc_stat == '\0')
1806 {
1807 /* Despite being unable to read more information about the
1808 process, we return 1 here because at least we have its
1809 command line, PID and arguments. */
1810 do_cleanups (c);
1811 return 1;
1812 }
1813
1814 /* Ok, we have the stats. It's time to do a little parsing of the
1815 contents of the buffer, so that we end up reading what we want.
1816
1817 The following parsing mechanism is strongly based on the
1818 information generated by the `fs/proc/array.c' file, present in
1819 the Linux kernel tree. More details about how the information is
1820 displayed can be obtained by seeing the manpage of proc(5),
1821 specifically under the entry of `/proc/[pid]/stat'. */
1822
1823 /* Getting rid of the PID, since we already have it. */
1824 while (isdigit (*proc_stat))
1825 ++proc_stat;
1826
1827 proc_stat = skip_spaces (proc_stat);
1828
1829 /* ps command also relies on no trailing fields ever contain ')'. */
1830 proc_stat = strrchr (proc_stat, ')');
1831 if (proc_stat == NULL)
1832 {
1833 do_cleanups (c);
1834 return 1;
1835 }
1836 proc_stat++;
1837
1838 proc_stat = skip_spaces (proc_stat);
1839
1840 n_fields = sscanf (proc_stat,
1841 "%c" /* Process state. */
1842 "%d%d%d" /* Parent PID, group ID, session ID. */
1843 "%*d%*d" /* tty_nr, tpgid (not used). */
1844 "%u" /* Flags. */
1845 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1846 cmajflt (not used). */
1847 "%*s%*s%*s%*s" /* utime, stime, cutime,
1848 cstime (not used). */
1849 "%*s" /* Priority (not used). */
1850 "%ld", /* Nice. */
1851 &pr_sname,
1852 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1853 &pr_flag,
1854 &pr_nice);
1855
1856 if (n_fields != 6)
1857 {
1858 /* Again, we couldn't read the complementary information about
1859 the process state. However, we already have minimal
1860 information, so we just return 1 here. */
1861 do_cleanups (c);
1862 return 1;
1863 }
1864
1865 /* Filling the structure fields. */
1866 prog_state = strchr (valid_states, pr_sname);
1867 if (prog_state != NULL)
1868 p->pr_state = prog_state - valid_states;
1869 else
1870 {
1871 /* Zero means "Running". */
1872 p->pr_state = 0;
1873 }
1874
1875 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1876 p->pr_zomb = p->pr_sname == 'Z';
1877 p->pr_nice = pr_nice;
1878 p->pr_flag = pr_flag;
1879
1880 /* Finally, obtaining the UID and GID. For that, we read and parse the
1881 contents of the `/proc/PID/status' file. */
1882 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1883 proc_status = target_fileio_read_stralloc (NULL, filename);
1884 make_cleanup (xfree, proc_status);
1885
1886 if (proc_status == NULL || *proc_status == '\0')
1887 {
1888 /* Returning 1 since we already have a bunch of information. */
1889 do_cleanups (c);
1890 return 1;
1891 }
1892
1893 /* Extracting the UID. */
1894 tmpstr = strstr (proc_status, "Uid:");
1895 if (tmpstr != NULL)
1896 {
1897 /* Advancing the pointer to the beginning of the UID. */
1898 tmpstr += sizeof ("Uid:");
1899 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1900 ++tmpstr;
1901
1902 if (isdigit (*tmpstr))
1903 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1904 }
1905
1906 /* Extracting the GID. */
1907 tmpstr = strstr (proc_status, "Gid:");
1908 if (tmpstr != NULL)
1909 {
1910 /* Advancing the pointer to the beginning of the GID. */
1911 tmpstr += sizeof ("Gid:");
1912 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1913 ++tmpstr;
1914
1915 if (isdigit (*tmpstr))
1916 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1917 }
1918
1919 do_cleanups (c);
1920
1921 return 1;
1922 }
1923
1924 /* Build the note section for a corefile, and return it in a malloc
1925 buffer. */
1926
1927 static char *
1928 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1929 {
1930 struct linux_corefile_thread_data thread_args;
1931 struct elf_internal_linux_prpsinfo prpsinfo;
1932 char *note_data = NULL;
1933 gdb_byte *auxv;
1934 int auxv_len;
1935
1936 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1937 return NULL;
1938
1939 if (linux_fill_prpsinfo (&prpsinfo))
1940 {
1941 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch))
1942 {
1943 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd,
1944 note_data, note_size,
1945 &prpsinfo);
1946 }
1947 else
1948 {
1949 if (gdbarch_ptr_bit (gdbarch) == 64)
1950 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1951 note_data, note_size,
1952 &prpsinfo);
1953 else
1954 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1955 note_data, note_size,
1956 &prpsinfo);
1957 }
1958 }
1959
1960 /* Thread register information. */
1961 TRY
1962 {
1963 update_thread_list ();
1964 }
1965 CATCH (e, RETURN_MASK_ERROR)
1966 {
1967 exception_print (gdb_stderr, e);
1968 }
1969 END_CATCH
1970
1971 thread_args.gdbarch = gdbarch;
1972 thread_args.pid = ptid_get_pid (inferior_ptid);
1973 thread_args.obfd = obfd;
1974 thread_args.note_data = note_data;
1975 thread_args.note_size = note_size;
1976 thread_args.stop_signal = find_stop_signal ();
1977 iterate_over_threads (linux_corefile_thread_callback, &thread_args);
1978 note_data = thread_args.note_data;
1979 if (!note_data)
1980 return NULL;
1981
1982 /* Auxillary vector. */
1983 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
1984 NULL, &auxv);
1985 if (auxv_len > 0)
1986 {
1987 note_data = elfcore_write_note (obfd, note_data, note_size,
1988 "CORE", NT_AUXV, auxv, auxv_len);
1989 xfree (auxv);
1990
1991 if (!note_data)
1992 return NULL;
1993 }
1994
1995 /* SPU information. */
1996 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
1997 if (!note_data)
1998 return NULL;
1999
2000 /* File mappings. */
2001 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2002 note_data, note_size);
2003
2004 return note_data;
2005 }
2006
2007 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2008 gdbarch.h. This function is not static because it is exported to
2009 other -tdep files. */
2010
2011 enum gdb_signal
2012 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2013 {
2014 switch (signal)
2015 {
2016 case 0:
2017 return GDB_SIGNAL_0;
2018
2019 case LINUX_SIGHUP:
2020 return GDB_SIGNAL_HUP;
2021
2022 case LINUX_SIGINT:
2023 return GDB_SIGNAL_INT;
2024
2025 case LINUX_SIGQUIT:
2026 return GDB_SIGNAL_QUIT;
2027
2028 case LINUX_SIGILL:
2029 return GDB_SIGNAL_ILL;
2030
2031 case LINUX_SIGTRAP:
2032 return GDB_SIGNAL_TRAP;
2033
2034 case LINUX_SIGABRT:
2035 return GDB_SIGNAL_ABRT;
2036
2037 case LINUX_SIGBUS:
2038 return GDB_SIGNAL_BUS;
2039
2040 case LINUX_SIGFPE:
2041 return GDB_SIGNAL_FPE;
2042
2043 case LINUX_SIGKILL:
2044 return GDB_SIGNAL_KILL;
2045
2046 case LINUX_SIGUSR1:
2047 return GDB_SIGNAL_USR1;
2048
2049 case LINUX_SIGSEGV:
2050 return GDB_SIGNAL_SEGV;
2051
2052 case LINUX_SIGUSR2:
2053 return GDB_SIGNAL_USR2;
2054
2055 case LINUX_SIGPIPE:
2056 return GDB_SIGNAL_PIPE;
2057
2058 case LINUX_SIGALRM:
2059 return GDB_SIGNAL_ALRM;
2060
2061 case LINUX_SIGTERM:
2062 return GDB_SIGNAL_TERM;
2063
2064 case LINUX_SIGCHLD:
2065 return GDB_SIGNAL_CHLD;
2066
2067 case LINUX_SIGCONT:
2068 return GDB_SIGNAL_CONT;
2069
2070 case LINUX_SIGSTOP:
2071 return GDB_SIGNAL_STOP;
2072
2073 case LINUX_SIGTSTP:
2074 return GDB_SIGNAL_TSTP;
2075
2076 case LINUX_SIGTTIN:
2077 return GDB_SIGNAL_TTIN;
2078
2079 case LINUX_SIGTTOU:
2080 return GDB_SIGNAL_TTOU;
2081
2082 case LINUX_SIGURG:
2083 return GDB_SIGNAL_URG;
2084
2085 case LINUX_SIGXCPU:
2086 return GDB_SIGNAL_XCPU;
2087
2088 case LINUX_SIGXFSZ:
2089 return GDB_SIGNAL_XFSZ;
2090
2091 case LINUX_SIGVTALRM:
2092 return GDB_SIGNAL_VTALRM;
2093
2094 case LINUX_SIGPROF:
2095 return GDB_SIGNAL_PROF;
2096
2097 case LINUX_SIGWINCH:
2098 return GDB_SIGNAL_WINCH;
2099
2100 /* No way to differentiate between SIGIO and SIGPOLL.
2101 Therefore, we just handle the first one. */
2102 case LINUX_SIGIO:
2103 return GDB_SIGNAL_IO;
2104
2105 case LINUX_SIGPWR:
2106 return GDB_SIGNAL_PWR;
2107
2108 case LINUX_SIGSYS:
2109 return GDB_SIGNAL_SYS;
2110
2111 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2112 therefore we have to handle them here. */
2113 case LINUX_SIGRTMIN:
2114 return GDB_SIGNAL_REALTIME_32;
2115
2116 case LINUX_SIGRTMAX:
2117 return GDB_SIGNAL_REALTIME_64;
2118 }
2119
2120 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2121 {
2122 int offset = signal - LINUX_SIGRTMIN + 1;
2123
2124 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2125 }
2126
2127 return GDB_SIGNAL_UNKNOWN;
2128 }
2129
2130 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2131 gdbarch.h. This function is not static because it is exported to
2132 other -tdep files. */
2133
2134 int
2135 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2136 enum gdb_signal signal)
2137 {
2138 switch (signal)
2139 {
2140 case GDB_SIGNAL_0:
2141 return 0;
2142
2143 case GDB_SIGNAL_HUP:
2144 return LINUX_SIGHUP;
2145
2146 case GDB_SIGNAL_INT:
2147 return LINUX_SIGINT;
2148
2149 case GDB_SIGNAL_QUIT:
2150 return LINUX_SIGQUIT;
2151
2152 case GDB_SIGNAL_ILL:
2153 return LINUX_SIGILL;
2154
2155 case GDB_SIGNAL_TRAP:
2156 return LINUX_SIGTRAP;
2157
2158 case GDB_SIGNAL_ABRT:
2159 return LINUX_SIGABRT;
2160
2161 case GDB_SIGNAL_FPE:
2162 return LINUX_SIGFPE;
2163
2164 case GDB_SIGNAL_KILL:
2165 return LINUX_SIGKILL;
2166
2167 case GDB_SIGNAL_BUS:
2168 return LINUX_SIGBUS;
2169
2170 case GDB_SIGNAL_SEGV:
2171 return LINUX_SIGSEGV;
2172
2173 case GDB_SIGNAL_SYS:
2174 return LINUX_SIGSYS;
2175
2176 case GDB_SIGNAL_PIPE:
2177 return LINUX_SIGPIPE;
2178
2179 case GDB_SIGNAL_ALRM:
2180 return LINUX_SIGALRM;
2181
2182 case GDB_SIGNAL_TERM:
2183 return LINUX_SIGTERM;
2184
2185 case GDB_SIGNAL_URG:
2186 return LINUX_SIGURG;
2187
2188 case GDB_SIGNAL_STOP:
2189 return LINUX_SIGSTOP;
2190
2191 case GDB_SIGNAL_TSTP:
2192 return LINUX_SIGTSTP;
2193
2194 case GDB_SIGNAL_CONT:
2195 return LINUX_SIGCONT;
2196
2197 case GDB_SIGNAL_CHLD:
2198 return LINUX_SIGCHLD;
2199
2200 case GDB_SIGNAL_TTIN:
2201 return LINUX_SIGTTIN;
2202
2203 case GDB_SIGNAL_TTOU:
2204 return LINUX_SIGTTOU;
2205
2206 case GDB_SIGNAL_IO:
2207 return LINUX_SIGIO;
2208
2209 case GDB_SIGNAL_XCPU:
2210 return LINUX_SIGXCPU;
2211
2212 case GDB_SIGNAL_XFSZ:
2213 return LINUX_SIGXFSZ;
2214
2215 case GDB_SIGNAL_VTALRM:
2216 return LINUX_SIGVTALRM;
2217
2218 case GDB_SIGNAL_PROF:
2219 return LINUX_SIGPROF;
2220
2221 case GDB_SIGNAL_WINCH:
2222 return LINUX_SIGWINCH;
2223
2224 case GDB_SIGNAL_USR1:
2225 return LINUX_SIGUSR1;
2226
2227 case GDB_SIGNAL_USR2:
2228 return LINUX_SIGUSR2;
2229
2230 case GDB_SIGNAL_PWR:
2231 return LINUX_SIGPWR;
2232
2233 case GDB_SIGNAL_POLL:
2234 return LINUX_SIGPOLL;
2235
2236 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2237 therefore we have to handle it here. */
2238 case GDB_SIGNAL_REALTIME_32:
2239 return LINUX_SIGRTMIN;
2240
2241 /* Same comment applies to _64. */
2242 case GDB_SIGNAL_REALTIME_64:
2243 return LINUX_SIGRTMAX;
2244 }
2245
2246 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2247 if (signal >= GDB_SIGNAL_REALTIME_33
2248 && signal <= GDB_SIGNAL_REALTIME_63)
2249 {
2250 int offset = signal - GDB_SIGNAL_REALTIME_33;
2251
2252 return LINUX_SIGRTMIN + 1 + offset;
2253 }
2254
2255 return -1;
2256 }
2257
2258 /* Rummage through mappings to find a mapping's size. */
2259
2260 static int
2261 find_mapping_size (CORE_ADDR vaddr, unsigned long size,
2262 int read, int write, int exec, int modified,
2263 void *data)
2264 {
2265 struct mem_range *range = (struct mem_range *) data;
2266
2267 if (vaddr == range->start)
2268 {
2269 range->length = size;
2270 return 1;
2271 }
2272 return 0;
2273 }
2274
2275 /* Helper for linux_vsyscall_range that does the real work of finding
2276 the vsyscall's address range. */
2277
2278 static int
2279 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2280 {
2281 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2282 return 0;
2283
2284 /* This is installed by linux_init_abi below, so should always be
2285 available. */
2286 gdb_assert (gdbarch_find_memory_regions_p (target_gdbarch ()));
2287
2288 range->length = 0;
2289 gdbarch_find_memory_regions (gdbarch, find_mapping_size, range);
2290 return 1;
2291 }
2292
2293 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2294 caching, and defers the real work to linux_vsyscall_range_raw. */
2295
2296 static int
2297 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2298 {
2299 struct linux_info *info = get_linux_inferior_data ();
2300
2301 if (info->vsyscall_range_p == 0)
2302 {
2303 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2304 info->vsyscall_range_p = 1;
2305 else
2306 info->vsyscall_range_p = -1;
2307 }
2308
2309 if (info->vsyscall_range_p < 0)
2310 return 0;
2311
2312 *range = info->vsyscall_range;
2313 return 1;
2314 }
2315
2316 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2317 definitions would be dependent on compilation host. */
2318 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2319 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2320
2321 /* See gdbarch.sh 'infcall_mmap'. */
2322
2323 static CORE_ADDR
2324 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2325 {
2326 struct objfile *objf;
2327 /* Do there still exist any Linux systems without "mmap64"?
2328 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2329 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2330 struct value *addr_val;
2331 struct gdbarch *gdbarch = get_objfile_arch (objf);
2332 CORE_ADDR retval;
2333 enum
2334 {
2335 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2336 };
2337 struct value *arg[ARG_LAST];
2338
2339 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2340 0);
2341 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2342 arg[ARG_LENGTH] = value_from_ulongest
2343 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2344 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2345 | GDB_MMAP_PROT_EXEC))
2346 == 0);
2347 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2348 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2349 GDB_MMAP_MAP_PRIVATE
2350 | GDB_MMAP_MAP_ANONYMOUS);
2351 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2352 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2353 0);
2354 addr_val = call_function_by_hand (mmap_val, ARG_LAST, arg);
2355 retval = value_as_address (addr_val);
2356 if (retval == (CORE_ADDR) -1)
2357 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2358 pulongest (size));
2359 return retval;
2360 }
2361
2362 /* See gdbarch.sh 'infcall_munmap'. */
2363
2364 static void
2365 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2366 {
2367 struct objfile *objf;
2368 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2369 struct value *retval_val;
2370 struct gdbarch *gdbarch = get_objfile_arch (objf);
2371 LONGEST retval;
2372 enum
2373 {
2374 ARG_ADDR, ARG_LENGTH, ARG_LAST
2375 };
2376 struct value *arg[ARG_LAST];
2377
2378 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2379 addr);
2380 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2381 arg[ARG_LENGTH] = value_from_ulongest
2382 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2383 retval_val = call_function_by_hand (munmap_val, ARG_LAST, arg);
2384 retval = value_as_long (retval_val);
2385 if (retval != 0)
2386 warning (_("Failed inferior munmap call at %s for %s bytes, "
2387 "errno is changed."),
2388 hex_string (addr), pulongest (size));
2389 }
2390
2391 /* See linux-tdep.h. */
2392
2393 CORE_ADDR
2394 linux_displaced_step_location (struct gdbarch *gdbarch)
2395 {
2396 CORE_ADDR addr;
2397 int bp_len;
2398
2399 /* Determine entry point from target auxiliary vector. This avoids
2400 the need for symbols. Also, when debugging a stand-alone SPU
2401 executable, entry_point_address () will point to an SPU
2402 local-store address and is thus not usable as displaced stepping
2403 location. The auxiliary vector gets us the PowerPC-side entry
2404 point address instead. */
2405 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
2406 error (_("Cannot find AT_ENTRY auxiliary vector entry."));
2407
2408 /* Make certain that the address points at real code, and not a
2409 function descriptor. */
2410 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2411 &current_target);
2412
2413 /* Inferior calls also use the entry point as a breakpoint location.
2414 We don't want displaced stepping to interfere with those
2415 breakpoints, so leave space. */
2416 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2417 addr += bp_len * 2;
2418
2419 return addr;
2420 }
2421
2422 /* Display whether the gcore command is using the
2423 /proc/PID/coredump_filter file. */
2424
2425 static void
2426 show_use_coredump_filter (struct ui_file *file, int from_tty,
2427 struct cmd_list_element *c, const char *value)
2428 {
2429 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2430 " corefiles is %s.\n"), value);
2431 }
2432
2433 /* To be called from the various GDB_OSABI_LINUX handlers for the
2434 various GNU/Linux architectures and machine types. */
2435
2436 void
2437 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2438 {
2439 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2440 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2441 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2442 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2443 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2444 set_gdbarch_has_shared_address_space (gdbarch,
2445 linux_has_shared_address_space);
2446 set_gdbarch_gdb_signal_from_target (gdbarch,
2447 linux_gdb_signal_from_target);
2448 set_gdbarch_gdb_signal_to_target (gdbarch,
2449 linux_gdb_signal_to_target);
2450 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2451 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2452 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2453 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2454 }
2455
2456 /* Provide a prototype to silence -Wmissing-prototypes. */
2457 extern initialize_file_ftype _initialize_linux_tdep;
2458
2459 void
2460 _initialize_linux_tdep (void)
2461 {
2462 linux_gdbarch_data_handle =
2463 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2464
2465 /* Set a cache per-inferior. */
2466 linux_inferior_data
2467 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2468 /* Observers used to invalidate the cache when needed. */
2469 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2470 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
2471
2472 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2473 &use_coredump_filter, _("\
2474 Set whether gcore should consider /proc/PID/coredump_filter."),
2475 _("\
2476 Show whether gcore should consider /proc/PID/coredump_filter."),
2477 _("\
2478 Use this command to set whether gcore should consider the contents\n\
2479 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2480 about this file, refer to the manpage of core(5)."),
2481 NULL, show_use_coredump_filter,
2482 &setlist, &showlist);
2483 }
This page took 0.084551 seconds and 5 git commands to generate.