Remove cleanups from linux-tdep.c
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observer.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41 #include "common/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static int use_coredump_filter = 1;
95
96 /* This enum represents the signals' numbers on a generic architecture
97 running the Linux kernel. The definition of "generic" comes from
98 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
99 tree, which is the "de facto" implementation of signal numbers to
100 be used by new architecture ports.
101
102 For those architectures which have differences between the generic
103 standard (e.g., Alpha), we define the different signals (and *only*
104 those) in the specific target-dependent file (e.g.,
105 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
106 tdep file for more information.
107
108 ARM deserves a special mention here. On the file
109 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
110 (and ARM-only) signal, which is SIGSWI, with the same number as
111 SIGRTMIN. This signal is used only for a very specific target,
112 called ArthurOS (from RISCOS). Therefore, we do not handle it on
113 the ARM-tdep file, and we can safely use the generic signal handler
114 here for ARM targets.
115
116 As stated above, this enum is derived from
117 <include/uapi/asm-generic/signal.h>, from the Linux kernel
118 tree. */
119
120 enum
121 {
122 LINUX_SIGHUP = 1,
123 LINUX_SIGINT = 2,
124 LINUX_SIGQUIT = 3,
125 LINUX_SIGILL = 4,
126 LINUX_SIGTRAP = 5,
127 LINUX_SIGABRT = 6,
128 LINUX_SIGIOT = 6,
129 LINUX_SIGBUS = 7,
130 LINUX_SIGFPE = 8,
131 LINUX_SIGKILL = 9,
132 LINUX_SIGUSR1 = 10,
133 LINUX_SIGSEGV = 11,
134 LINUX_SIGUSR2 = 12,
135 LINUX_SIGPIPE = 13,
136 LINUX_SIGALRM = 14,
137 LINUX_SIGTERM = 15,
138 LINUX_SIGSTKFLT = 16,
139 LINUX_SIGCHLD = 17,
140 LINUX_SIGCONT = 18,
141 LINUX_SIGSTOP = 19,
142 LINUX_SIGTSTP = 20,
143 LINUX_SIGTTIN = 21,
144 LINUX_SIGTTOU = 22,
145 LINUX_SIGURG = 23,
146 LINUX_SIGXCPU = 24,
147 LINUX_SIGXFSZ = 25,
148 LINUX_SIGVTALRM = 26,
149 LINUX_SIGPROF = 27,
150 LINUX_SIGWINCH = 28,
151 LINUX_SIGIO = 29,
152 LINUX_SIGPOLL = LINUX_SIGIO,
153 LINUX_SIGPWR = 30,
154 LINUX_SIGSYS = 31,
155 LINUX_SIGUNUSED = 31,
156
157 LINUX_SIGRTMIN = 32,
158 LINUX_SIGRTMAX = 64,
159 };
160
161 static struct gdbarch_data *linux_gdbarch_data_handle;
162
163 struct linux_gdbarch_data
164 {
165 struct type *siginfo_type;
166 };
167
168 static void *
169 init_linux_gdbarch_data (struct gdbarch *gdbarch)
170 {
171 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
172 }
173
174 static struct linux_gdbarch_data *
175 get_linux_gdbarch_data (struct gdbarch *gdbarch)
176 {
177 return ((struct linux_gdbarch_data *)
178 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
179 }
180
181 /* Per-inferior data key. */
182 static const struct inferior_data *linux_inferior_data;
183
184 /* Linux-specific cached data. This is used by GDB for caching
185 purposes for each inferior. This helps reduce the overhead of
186 transfering data from a remote target to the local host. */
187 struct linux_info
188 {
189 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
190 if VSYSCALL_RANGE_P is positive. This is cached because getting
191 at this info requires an auxv lookup (which is itself cached),
192 and looking through the inferior's mappings (which change
193 throughout execution and therefore cannot be cached). */
194 struct mem_range vsyscall_range;
195
196 /* Zero if we haven't tried looking up the vsyscall's range before
197 yet. Positive if we tried looking it up, and found it. Negative
198 if we tried looking it up but failed. */
199 int vsyscall_range_p;
200 };
201
202 /* Frees whatever allocated space there is to be freed and sets INF's
203 linux cache data pointer to NULL. */
204
205 static void
206 invalidate_linux_cache_inf (struct inferior *inf)
207 {
208 struct linux_info *info;
209
210 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
211 if (info != NULL)
212 {
213 xfree (info);
214 set_inferior_data (inf, linux_inferior_data, NULL);
215 }
216 }
217
218 /* Handles the cleanup of the linux cache for inferior INF. ARG is
219 ignored. Callback for the inferior_appeared and inferior_exit
220 events. */
221
222 static void
223 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
224 {
225 invalidate_linux_cache_inf (inf);
226 }
227
228 /* Fetch the linux cache info for INF. This function always returns a
229 valid INFO pointer. */
230
231 static struct linux_info *
232 get_linux_inferior_data (void)
233 {
234 struct linux_info *info;
235 struct inferior *inf = current_inferior ();
236
237 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
238 if (info == NULL)
239 {
240 info = XCNEW (struct linux_info);
241 set_inferior_data (inf, linux_inferior_data, info);
242 }
243
244 return info;
245 }
246
247 /* See linux-tdep.h. */
248
249 struct type *
250 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
251 linux_siginfo_extra_fields extra_fields)
252 {
253 struct linux_gdbarch_data *linux_gdbarch_data;
254 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
255 struct type *uid_type, *pid_type;
256 struct type *sigval_type, *clock_type;
257 struct type *siginfo_type, *sifields_type;
258 struct type *type;
259
260 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
261 if (linux_gdbarch_data->siginfo_type != NULL)
262 return linux_gdbarch_data->siginfo_type;
263
264 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
265 0, "int");
266 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
267 1, "unsigned int");
268 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
269 0, "long");
270 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
271 0, "short");
272 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
273
274 /* sival_t */
275 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
276 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
277 append_composite_type_field (sigval_type, "sival_int", int_type);
278 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
279
280 /* __pid_t */
281 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
282 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
283 TYPE_TARGET_TYPE (pid_type) = int_type;
284 TYPE_TARGET_STUB (pid_type) = 1;
285
286 /* __uid_t */
287 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
288 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
289 TYPE_TARGET_TYPE (uid_type) = uint_type;
290 TYPE_TARGET_STUB (uid_type) = 1;
291
292 /* __clock_t */
293 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
294 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
295 "__clock_t");
296 TYPE_TARGET_TYPE (clock_type) = long_type;
297 TYPE_TARGET_STUB (clock_type) = 1;
298
299 /* _sifields */
300 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
301
302 {
303 const int si_max_size = 128;
304 int si_pad_size;
305 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
306
307 /* _pad */
308 if (gdbarch_ptr_bit (gdbarch) == 64)
309 si_pad_size = (si_max_size / size_of_int) - 4;
310 else
311 si_pad_size = (si_max_size / size_of_int) - 3;
312 append_composite_type_field (sifields_type, "_pad",
313 init_vector_type (int_type, si_pad_size));
314 }
315
316 /* _kill */
317 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
318 append_composite_type_field (type, "si_pid", pid_type);
319 append_composite_type_field (type, "si_uid", uid_type);
320 append_composite_type_field (sifields_type, "_kill", type);
321
322 /* _timer */
323 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
324 append_composite_type_field (type, "si_tid", int_type);
325 append_composite_type_field (type, "si_overrun", int_type);
326 append_composite_type_field (type, "si_sigval", sigval_type);
327 append_composite_type_field (sifields_type, "_timer", type);
328
329 /* _rt */
330 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
331 append_composite_type_field (type, "si_pid", pid_type);
332 append_composite_type_field (type, "si_uid", uid_type);
333 append_composite_type_field (type, "si_sigval", sigval_type);
334 append_composite_type_field (sifields_type, "_rt", type);
335
336 /* _sigchld */
337 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
338 append_composite_type_field (type, "si_pid", pid_type);
339 append_composite_type_field (type, "si_uid", uid_type);
340 append_composite_type_field (type, "si_status", int_type);
341 append_composite_type_field (type, "si_utime", clock_type);
342 append_composite_type_field (type, "si_stime", clock_type);
343 append_composite_type_field (sifields_type, "_sigchld", type);
344
345 /* _sigfault */
346 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
347 append_composite_type_field (type, "si_addr", void_ptr_type);
348
349 /* Additional bound fields for _sigfault in case they were requested. */
350 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
351 {
352 struct type *sigfault_bnd_fields;
353
354 append_composite_type_field (type, "_addr_lsb", short_type);
355 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
356 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
357 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
358 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
359 }
360 append_composite_type_field (sifields_type, "_sigfault", type);
361
362 /* _sigpoll */
363 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
364 append_composite_type_field (type, "si_band", long_type);
365 append_composite_type_field (type, "si_fd", int_type);
366 append_composite_type_field (sifields_type, "_sigpoll", type);
367
368 /* struct siginfo */
369 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
370 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
371 append_composite_type_field (siginfo_type, "si_signo", int_type);
372 append_composite_type_field (siginfo_type, "si_errno", int_type);
373 append_composite_type_field (siginfo_type, "si_code", int_type);
374 append_composite_type_field_aligned (siginfo_type,
375 "_sifields", sifields_type,
376 TYPE_LENGTH (long_type));
377
378 linux_gdbarch_data->siginfo_type = siginfo_type;
379
380 return siginfo_type;
381 }
382
383 /* This function is suitable for architectures that don't
384 extend/override the standard siginfo structure. */
385
386 static struct type *
387 linux_get_siginfo_type (struct gdbarch *gdbarch)
388 {
389 return linux_get_siginfo_type_with_fields (gdbarch, 0);
390 }
391
392 /* Return true if the target is running on uClinux instead of normal
393 Linux kernel. */
394
395 int
396 linux_is_uclinux (void)
397 {
398 CORE_ADDR dummy;
399
400 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
401 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
402 }
403
404 static int
405 linux_has_shared_address_space (struct gdbarch *gdbarch)
406 {
407 return linux_is_uclinux ();
408 }
409
410 /* This is how we want PTIDs from core files to be printed. */
411
412 static const char *
413 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
414 {
415 static char buf[80];
416
417 if (ptid_get_lwp (ptid) != 0)
418 {
419 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
420 return buf;
421 }
422
423 return normal_pid_to_str (ptid);
424 }
425
426 /* Service function for corefiles and info proc. */
427
428 static void
429 read_mapping (const char *line,
430 ULONGEST *addr, ULONGEST *endaddr,
431 const char **permissions, size_t *permissions_len,
432 ULONGEST *offset,
433 const char **device, size_t *device_len,
434 ULONGEST *inode,
435 const char **filename)
436 {
437 const char *p = line;
438
439 *addr = strtoulst (p, &p, 16);
440 if (*p == '-')
441 p++;
442 *endaddr = strtoulst (p, &p, 16);
443
444 p = skip_spaces (p);
445 *permissions = p;
446 while (*p && !isspace (*p))
447 p++;
448 *permissions_len = p - *permissions;
449
450 *offset = strtoulst (p, &p, 16);
451
452 p = skip_spaces (p);
453 *device = p;
454 while (*p && !isspace (*p))
455 p++;
456 *device_len = p - *device;
457
458 *inode = strtoulst (p, &p, 10);
459
460 p = skip_spaces (p);
461 *filename = p;
462 }
463
464 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
465
466 This function was based on the documentation found on
467 <Documentation/filesystems/proc.txt>, on the Linux kernel.
468
469 Linux kernels before commit
470 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
471 field on smaps. */
472
473 static void
474 decode_vmflags (char *p, struct smaps_vmflags *v)
475 {
476 char *saveptr = NULL;
477 const char *s;
478
479 v->initialized_p = 1;
480 p = skip_to_space (p);
481 p = skip_spaces (p);
482
483 for (s = strtok_r (p, " ", &saveptr);
484 s != NULL;
485 s = strtok_r (NULL, " ", &saveptr))
486 {
487 if (strcmp (s, "io") == 0)
488 v->io_page = 1;
489 else if (strcmp (s, "ht") == 0)
490 v->uses_huge_tlb = 1;
491 else if (strcmp (s, "dd") == 0)
492 v->exclude_coredump = 1;
493 else if (strcmp (s, "sh") == 0)
494 v->shared_mapping = 1;
495 }
496 }
497
498 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
499 they're initialized lazily. */
500
501 struct mapping_regexes
502 {
503 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
504 string in the end). We know for sure, based on the Linux kernel
505 code, that memory mappings whose associated filename is
506 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
507 compiled_regex dev_zero
508 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
509 _("Could not compile regex to match /dev/zero filename")};
510
511 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
512 string in the end). These filenames refer to shared memory
513 (shmem), and memory mappings associated with them are
514 MAP_ANONYMOUS as well. */
515 compiled_regex shmem_file
516 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
517 _("Could not compile regex to match shmem filenames")};
518
519 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
520 0' code, which is responsible to decide if it is dealing with a
521 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
522 FILE_DELETED matches, it does not necessarily mean that we are
523 dealing with an anonymous shared mapping. However, there is no
524 easy way to detect this currently, so this is the best
525 approximation we have.
526
527 As a result, GDB will dump readonly pages of deleted executables
528 when using the default value of coredump_filter (0x33), while the
529 Linux kernel will not dump those pages. But we can live with
530 that. */
531 compiled_regex file_deleted
532 {" (deleted)$", REG_NOSUB,
533 _("Could not compile regex to match '<file> (deleted)'")};
534 };
535
536 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
537
538 FILENAME is the name of the file present in the first line of the
539 memory mapping, in the "/proc/PID/smaps" output. For example, if
540 the first line is:
541
542 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
543
544 Then FILENAME will be "/path/to/file". */
545
546 static int
547 mapping_is_anonymous_p (const char *filename)
548 {
549 static gdb::optional<mapping_regexes> regexes;
550 static int init_regex_p = 0;
551
552 if (!init_regex_p)
553 {
554 /* Let's be pessimistic and assume there will be an error while
555 compiling the regex'es. */
556 init_regex_p = -1;
557
558 regexes.emplace ();
559
560 /* If we reached this point, then everything succeeded. */
561 init_regex_p = 1;
562 }
563
564 if (init_regex_p == -1)
565 {
566 const char deleted[] = " (deleted)";
567 size_t del_len = sizeof (deleted) - 1;
568 size_t filename_len = strlen (filename);
569
570 /* There was an error while compiling the regex'es above. In
571 order to try to give some reliable information to the caller,
572 we just try to find the string " (deleted)" in the filename.
573 If we managed to find it, then we assume the mapping is
574 anonymous. */
575 return (filename_len >= del_len
576 && strcmp (filename + filename_len - del_len, deleted) == 0);
577 }
578
579 if (*filename == '\0'
580 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
581 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
582 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
583 return 1;
584
585 return 0;
586 }
587
588 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
589 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
590 greater than 0 if it should.
591
592 In a nutshell, this is the logic that we follow in order to decide
593 if a mapping should be dumped or not.
594
595 - If the mapping is associated to a file whose name ends with
596 " (deleted)", or if the file is "/dev/zero", or if it is
597 "/SYSV%08x" (shared memory), or if there is no file associated
598 with it, or if the AnonHugePages: or the Anonymous: fields in the
599 /proc/PID/smaps have contents, then GDB considers this mapping to
600 be anonymous. Otherwise, GDB considers this mapping to be a
601 file-backed mapping (because there will be a file associated with
602 it).
603
604 It is worth mentioning that, from all those checks described
605 above, the most fragile is the one to see if the file name ends
606 with " (deleted)". This does not necessarily mean that the
607 mapping is anonymous, because the deleted file associated with
608 the mapping may have been a hard link to another file, for
609 example. The Linux kernel checks to see if "i_nlink == 0", but
610 GDB cannot easily (and normally) do this check (iff running as
611 root, it could find the mapping in /proc/PID/map_files/ and
612 determine whether there still are other hard links to the
613 inode/file). Therefore, we made a compromise here, and we assume
614 that if the file name ends with " (deleted)", then the mapping is
615 indeed anonymous. FWIW, this is something the Linux kernel could
616 do better: expose this information in a more direct way.
617
618 - If we see the flag "sh" in the "VmFlags:" field (in
619 /proc/PID/smaps), then certainly the memory mapping is shared
620 (VM_SHARED). If we have access to the VmFlags, and we don't see
621 the "sh" there, then certainly the mapping is private. However,
622 Linux kernels before commit
623 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
624 "VmFlags:" field; in that case, we use another heuristic: if we
625 see 'p' in the permission flags, then we assume that the mapping
626 is private, even though the presence of the 's' flag there would
627 mean VM_MAYSHARE, which means the mapping could still be private.
628 This should work OK enough, however. */
629
630 static int
631 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
632 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
633 const char *filename)
634 {
635 /* Initially, we trust in what we received from our caller. This
636 value may not be very precise (i.e., it was probably gathered
637 from the permission line in the /proc/PID/smaps list, which
638 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
639 what we have until we take a look at the "VmFlags:" field
640 (assuming that the version of the Linux kernel being used
641 supports it, of course). */
642 int private_p = maybe_private_p;
643
644 /* We always dump vDSO and vsyscall mappings, because it's likely that
645 there'll be no file to read the contents from at core load time.
646 The kernel does the same. */
647 if (strcmp ("[vdso]", filename) == 0
648 || strcmp ("[vsyscall]", filename) == 0)
649 return 1;
650
651 if (v->initialized_p)
652 {
653 /* We never dump I/O mappings. */
654 if (v->io_page)
655 return 0;
656
657 /* Check if we should exclude this mapping. */
658 if (v->exclude_coredump)
659 return 0;
660
661 /* Update our notion of whether this mapping is shared or
662 private based on a trustworthy value. */
663 private_p = !v->shared_mapping;
664
665 /* HugeTLB checking. */
666 if (v->uses_huge_tlb)
667 {
668 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
669 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
670 return 1;
671
672 return 0;
673 }
674 }
675
676 if (private_p)
677 {
678 if (mapping_anon_p && mapping_file_p)
679 {
680 /* This is a special situation. It can happen when we see a
681 mapping that is file-backed, but that contains anonymous
682 pages. */
683 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
684 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
685 }
686 else if (mapping_anon_p)
687 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
688 else
689 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
690 }
691 else
692 {
693 if (mapping_anon_p && mapping_file_p)
694 {
695 /* This is a special situation. It can happen when we see a
696 mapping that is file-backed, but that contains anonymous
697 pages. */
698 return ((filterflags & COREFILTER_ANON_SHARED) != 0
699 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
700 }
701 else if (mapping_anon_p)
702 return (filterflags & COREFILTER_ANON_SHARED) != 0;
703 else
704 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
705 }
706 }
707
708 /* Implement the "info proc" command. */
709
710 static void
711 linux_info_proc (struct gdbarch *gdbarch, const char *args,
712 enum info_proc_what what)
713 {
714 /* A long is used for pid instead of an int to avoid a loss of precision
715 compiler warning from the output of strtoul. */
716 long pid;
717 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
718 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
719 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
720 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
721 int status_f = (what == IP_STATUS || what == IP_ALL);
722 int stat_f = (what == IP_STAT || what == IP_ALL);
723 char filename[100];
724 char *data;
725 int target_errno;
726
727 if (args && isdigit (args[0]))
728 {
729 char *tem;
730
731 pid = strtoul (args, &tem, 10);
732 args = tem;
733 }
734 else
735 {
736 if (!target_has_execution)
737 error (_("No current process: you must name one."));
738 if (current_inferior ()->fake_pid_p)
739 error (_("Can't determine the current process's PID: you must name one."));
740
741 pid = current_inferior ()->pid;
742 }
743
744 args = skip_spaces (args);
745 if (args && args[0])
746 error (_("Too many parameters: %s"), args);
747
748 printf_filtered (_("process %ld\n"), pid);
749 if (cmdline_f)
750 {
751 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
752 gdb::unique_xmalloc_ptr<char> cmdline
753 = target_fileio_read_stralloc (NULL, filename);
754 if (cmdline)
755 printf_filtered ("cmdline = '%s'\n", cmdline.get ());
756 else
757 warning (_("unable to open /proc file '%s'"), filename);
758 }
759 if (cwd_f)
760 {
761 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
762 data = target_fileio_readlink (NULL, filename, &target_errno);
763 if (data)
764 {
765 struct cleanup *cleanup = make_cleanup (xfree, data);
766 printf_filtered ("cwd = '%s'\n", data);
767 do_cleanups (cleanup);
768 }
769 else
770 warning (_("unable to read link '%s'"), filename);
771 }
772 if (exe_f)
773 {
774 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
775 data = target_fileio_readlink (NULL, filename, &target_errno);
776 if (data)
777 {
778 struct cleanup *cleanup = make_cleanup (xfree, data);
779 printf_filtered ("exe = '%s'\n", data);
780 do_cleanups (cleanup);
781 }
782 else
783 warning (_("unable to read link '%s'"), filename);
784 }
785 if (mappings_f)
786 {
787 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
788 gdb::unique_xmalloc_ptr<char> map
789 = target_fileio_read_stralloc (NULL, filename);
790 if (map != NULL)
791 {
792 char *line;
793
794 printf_filtered (_("Mapped address spaces:\n\n"));
795 if (gdbarch_addr_bit (gdbarch) == 32)
796 {
797 printf_filtered ("\t%10s %10s %10s %10s %s\n",
798 "Start Addr",
799 " End Addr",
800 " Size", " Offset", "objfile");
801 }
802 else
803 {
804 printf_filtered (" %18s %18s %10s %10s %s\n",
805 "Start Addr",
806 " End Addr",
807 " Size", " Offset", "objfile");
808 }
809
810 for (line = strtok (map.get (), "\n");
811 line;
812 line = strtok (NULL, "\n"))
813 {
814 ULONGEST addr, endaddr, offset, inode;
815 const char *permissions, *device, *filename;
816 size_t permissions_len, device_len;
817
818 read_mapping (line, &addr, &endaddr,
819 &permissions, &permissions_len,
820 &offset, &device, &device_len,
821 &inode, &filename);
822
823 if (gdbarch_addr_bit (gdbarch) == 32)
824 {
825 printf_filtered ("\t%10s %10s %10s %10s %s\n",
826 paddress (gdbarch, addr),
827 paddress (gdbarch, endaddr),
828 hex_string (endaddr - addr),
829 hex_string (offset),
830 *filename? filename : "");
831 }
832 else
833 {
834 printf_filtered (" %18s %18s %10s %10s %s\n",
835 paddress (gdbarch, addr),
836 paddress (gdbarch, endaddr),
837 hex_string (endaddr - addr),
838 hex_string (offset),
839 *filename? filename : "");
840 }
841 }
842 }
843 else
844 warning (_("unable to open /proc file '%s'"), filename);
845 }
846 if (status_f)
847 {
848 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
849 gdb::unique_xmalloc_ptr<char> status
850 = target_fileio_read_stralloc (NULL, filename);
851 if (status)
852 puts_filtered (status.get ());
853 else
854 warning (_("unable to open /proc file '%s'"), filename);
855 }
856 if (stat_f)
857 {
858 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
859 gdb::unique_xmalloc_ptr<char> statstr
860 = target_fileio_read_stralloc (NULL, filename);
861 if (statstr)
862 {
863 const char *p = statstr.get ();
864
865 printf_filtered (_("Process: %s\n"),
866 pulongest (strtoulst (p, &p, 10)));
867
868 p = skip_spaces (p);
869 if (*p == '(')
870 {
871 /* ps command also relies on no trailing fields
872 ever contain ')'. */
873 const char *ep = strrchr (p, ')');
874 if (ep != NULL)
875 {
876 printf_filtered ("Exec file: %.*s\n",
877 (int) (ep - p - 1), p + 1);
878 p = ep + 1;
879 }
880 }
881
882 p = skip_spaces (p);
883 if (*p)
884 printf_filtered (_("State: %c\n"), *p++);
885
886 if (*p)
887 printf_filtered (_("Parent process: %s\n"),
888 pulongest (strtoulst (p, &p, 10)));
889 if (*p)
890 printf_filtered (_("Process group: %s\n"),
891 pulongest (strtoulst (p, &p, 10)));
892 if (*p)
893 printf_filtered (_("Session id: %s\n"),
894 pulongest (strtoulst (p, &p, 10)));
895 if (*p)
896 printf_filtered (_("TTY: %s\n"),
897 pulongest (strtoulst (p, &p, 10)));
898 if (*p)
899 printf_filtered (_("TTY owner process group: %s\n"),
900 pulongest (strtoulst (p, &p, 10)));
901
902 if (*p)
903 printf_filtered (_("Flags: %s\n"),
904 hex_string (strtoulst (p, &p, 10)));
905 if (*p)
906 printf_filtered (_("Minor faults (no memory page): %s\n"),
907 pulongest (strtoulst (p, &p, 10)));
908 if (*p)
909 printf_filtered (_("Minor faults, children: %s\n"),
910 pulongest (strtoulst (p, &p, 10)));
911 if (*p)
912 printf_filtered (_("Major faults (memory page faults): %s\n"),
913 pulongest (strtoulst (p, &p, 10)));
914 if (*p)
915 printf_filtered (_("Major faults, children: %s\n"),
916 pulongest (strtoulst (p, &p, 10)));
917 if (*p)
918 printf_filtered (_("utime: %s\n"),
919 pulongest (strtoulst (p, &p, 10)));
920 if (*p)
921 printf_filtered (_("stime: %s\n"),
922 pulongest (strtoulst (p, &p, 10)));
923 if (*p)
924 printf_filtered (_("utime, children: %s\n"),
925 pulongest (strtoulst (p, &p, 10)));
926 if (*p)
927 printf_filtered (_("stime, children: %s\n"),
928 pulongest (strtoulst (p, &p, 10)));
929 if (*p)
930 printf_filtered (_("jiffies remaining in current "
931 "time slice: %s\n"),
932 pulongest (strtoulst (p, &p, 10)));
933 if (*p)
934 printf_filtered (_("'nice' value: %s\n"),
935 pulongest (strtoulst (p, &p, 10)));
936 if (*p)
937 printf_filtered (_("jiffies until next timeout: %s\n"),
938 pulongest (strtoulst (p, &p, 10)));
939 if (*p)
940 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
941 pulongest (strtoulst (p, &p, 10)));
942 if (*p)
943 printf_filtered (_("start time (jiffies since "
944 "system boot): %s\n"),
945 pulongest (strtoulst (p, &p, 10)));
946 if (*p)
947 printf_filtered (_("Virtual memory size: %s\n"),
948 pulongest (strtoulst (p, &p, 10)));
949 if (*p)
950 printf_filtered (_("Resident set size: %s\n"),
951 pulongest (strtoulst (p, &p, 10)));
952 if (*p)
953 printf_filtered (_("rlim: %s\n"),
954 pulongest (strtoulst (p, &p, 10)));
955 if (*p)
956 printf_filtered (_("Start of text: %s\n"),
957 hex_string (strtoulst (p, &p, 10)));
958 if (*p)
959 printf_filtered (_("End of text: %s\n"),
960 hex_string (strtoulst (p, &p, 10)));
961 if (*p)
962 printf_filtered (_("Start of stack: %s\n"),
963 hex_string (strtoulst (p, &p, 10)));
964 #if 0 /* Don't know how architecture-dependent the rest is...
965 Anyway the signal bitmap info is available from "status". */
966 if (*p)
967 printf_filtered (_("Kernel stack pointer: %s\n"),
968 hex_string (strtoulst (p, &p, 10)));
969 if (*p)
970 printf_filtered (_("Kernel instr pointer: %s\n"),
971 hex_string (strtoulst (p, &p, 10)));
972 if (*p)
973 printf_filtered (_("Pending signals bitmap: %s\n"),
974 hex_string (strtoulst (p, &p, 10)));
975 if (*p)
976 printf_filtered (_("Blocked signals bitmap: %s\n"),
977 hex_string (strtoulst (p, &p, 10)));
978 if (*p)
979 printf_filtered (_("Ignored signals bitmap: %s\n"),
980 hex_string (strtoulst (p, &p, 10)));
981 if (*p)
982 printf_filtered (_("Catched signals bitmap: %s\n"),
983 hex_string (strtoulst (p, &p, 10)));
984 if (*p)
985 printf_filtered (_("wchan (system call): %s\n"),
986 hex_string (strtoulst (p, &p, 10)));
987 #endif
988 }
989 else
990 warning (_("unable to open /proc file '%s'"), filename);
991 }
992 }
993
994 /* Implement "info proc mappings" for a corefile. */
995
996 static void
997 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
998 {
999 asection *section;
1000 ULONGEST count, page_size;
1001 unsigned char *descdata, *filenames, *descend;
1002 size_t note_size;
1003 unsigned int addr_size_bits, addr_size;
1004 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1005 /* We assume this for reading 64-bit core files. */
1006 gdb_static_assert (sizeof (ULONGEST) >= 8);
1007
1008 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1009 if (section == NULL)
1010 {
1011 warning (_("unable to find mappings in core file"));
1012 return;
1013 }
1014
1015 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1016 addr_size = addr_size_bits / 8;
1017 note_size = bfd_get_section_size (section);
1018
1019 if (note_size < 2 * addr_size)
1020 error (_("malformed core note - too short for header"));
1021
1022 gdb::def_vector<unsigned char> contents (note_size);
1023 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1024 0, note_size))
1025 error (_("could not get core note contents"));
1026
1027 descdata = contents.data ();
1028 descend = descdata + note_size;
1029
1030 if (descdata[note_size - 1] != '\0')
1031 error (_("malformed note - does not end with \\0"));
1032
1033 count = bfd_get (addr_size_bits, core_bfd, descdata);
1034 descdata += addr_size;
1035
1036 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1037 descdata += addr_size;
1038
1039 if (note_size < 2 * addr_size + count * 3 * addr_size)
1040 error (_("malformed note - too short for supplied file count"));
1041
1042 printf_filtered (_("Mapped address spaces:\n\n"));
1043 if (gdbarch_addr_bit (gdbarch) == 32)
1044 {
1045 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1046 "Start Addr",
1047 " End Addr",
1048 " Size", " Offset", "objfile");
1049 }
1050 else
1051 {
1052 printf_filtered (" %18s %18s %10s %10s %s\n",
1053 "Start Addr",
1054 " End Addr",
1055 " Size", " Offset", "objfile");
1056 }
1057
1058 filenames = descdata + count * 3 * addr_size;
1059 while (--count > 0)
1060 {
1061 ULONGEST start, end, file_ofs;
1062
1063 if (filenames == descend)
1064 error (_("malformed note - filenames end too early"));
1065
1066 start = bfd_get (addr_size_bits, core_bfd, descdata);
1067 descdata += addr_size;
1068 end = bfd_get (addr_size_bits, core_bfd, descdata);
1069 descdata += addr_size;
1070 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1071 descdata += addr_size;
1072
1073 file_ofs *= page_size;
1074
1075 if (gdbarch_addr_bit (gdbarch) == 32)
1076 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1077 paddress (gdbarch, start),
1078 paddress (gdbarch, end),
1079 hex_string (end - start),
1080 hex_string (file_ofs),
1081 filenames);
1082 else
1083 printf_filtered (" %18s %18s %10s %10s %s\n",
1084 paddress (gdbarch, start),
1085 paddress (gdbarch, end),
1086 hex_string (end - start),
1087 hex_string (file_ofs),
1088 filenames);
1089
1090 filenames += 1 + strlen ((char *) filenames);
1091 }
1092 }
1093
1094 /* Implement "info proc" for a corefile. */
1095
1096 static void
1097 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1098 enum info_proc_what what)
1099 {
1100 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1101 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1102
1103 if (exe_f)
1104 {
1105 const char *exe;
1106
1107 exe = bfd_core_file_failing_command (core_bfd);
1108 if (exe != NULL)
1109 printf_filtered ("exe = '%s'\n", exe);
1110 else
1111 warning (_("unable to find command name in core file"));
1112 }
1113
1114 if (mappings_f)
1115 linux_core_info_proc_mappings (gdbarch, args);
1116
1117 if (!exe_f && !mappings_f)
1118 error (_("unable to handle request"));
1119 }
1120
1121 /* Read siginfo data from the core, if possible. Returns -1 on
1122 failure. Otherwise, returns the number of bytes read. READBUF,
1123 OFFSET, and LEN are all as specified by the to_xfer_partial
1124 interface. */
1125
1126 static LONGEST
1127 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1128 ULONGEST offset, ULONGEST len)
1129 {
1130 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1131 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1132 if (section == NULL)
1133 return -1;
1134
1135 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1136 return -1;
1137
1138 return len;
1139 }
1140
1141 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1142 ULONGEST offset, ULONGEST inode,
1143 int read, int write,
1144 int exec, int modified,
1145 const char *filename,
1146 void *data);
1147
1148 /* List memory regions in the inferior for a corefile. */
1149
1150 static int
1151 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1152 linux_find_memory_region_ftype *func,
1153 void *obfd)
1154 {
1155 char mapsfilename[100];
1156 char coredumpfilter_name[100];
1157 pid_t pid;
1158 /* Default dump behavior of coredump_filter (0x33), according to
1159 Documentation/filesystems/proc.txt from the Linux kernel
1160 tree. */
1161 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1162 | COREFILTER_ANON_SHARED
1163 | COREFILTER_ELF_HEADERS
1164 | COREFILTER_HUGETLB_PRIVATE);
1165
1166 /* We need to know the real target PID to access /proc. */
1167 if (current_inferior ()->fake_pid_p)
1168 return 1;
1169
1170 pid = current_inferior ()->pid;
1171
1172 if (use_coredump_filter)
1173 {
1174 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1175 "/proc/%d/coredump_filter", pid);
1176 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1177 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1178 if (coredumpfilterdata != NULL)
1179 {
1180 unsigned int flags;
1181
1182 sscanf (coredumpfilterdata.get (), "%x", &flags);
1183 filterflags = (enum filter_flag) flags;
1184 }
1185 }
1186
1187 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1188 gdb::unique_xmalloc_ptr<char> data
1189 = target_fileio_read_stralloc (NULL, mapsfilename);
1190 if (data == NULL)
1191 {
1192 /* Older Linux kernels did not support /proc/PID/smaps. */
1193 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1194 data = target_fileio_read_stralloc (NULL, mapsfilename);
1195 }
1196
1197 if (data != NULL)
1198 {
1199 char *line, *t;
1200
1201 line = strtok_r (data.get (), "\n", &t);
1202 while (line != NULL)
1203 {
1204 ULONGEST addr, endaddr, offset, inode;
1205 const char *permissions, *device, *filename;
1206 struct smaps_vmflags v;
1207 size_t permissions_len, device_len;
1208 int read, write, exec, priv;
1209 int has_anonymous = 0;
1210 int should_dump_p = 0;
1211 int mapping_anon_p;
1212 int mapping_file_p;
1213
1214 memset (&v, 0, sizeof (v));
1215 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1216 &offset, &device, &device_len, &inode, &filename);
1217 mapping_anon_p = mapping_is_anonymous_p (filename);
1218 /* If the mapping is not anonymous, then we can consider it
1219 to be file-backed. These two states (anonymous or
1220 file-backed) seem to be exclusive, but they can actually
1221 coexist. For example, if a file-backed mapping has
1222 "Anonymous:" pages (see more below), then the Linux
1223 kernel will dump this mapping when the user specified
1224 that she only wants anonymous mappings in the corefile
1225 (*even* when she explicitly disabled the dumping of
1226 file-backed mappings). */
1227 mapping_file_p = !mapping_anon_p;
1228
1229 /* Decode permissions. */
1230 read = (memchr (permissions, 'r', permissions_len) != 0);
1231 write = (memchr (permissions, 'w', permissions_len) != 0);
1232 exec = (memchr (permissions, 'x', permissions_len) != 0);
1233 /* 'private' here actually means VM_MAYSHARE, and not
1234 VM_SHARED. In order to know if a mapping is really
1235 private or not, we must check the flag "sh" in the
1236 VmFlags field. This is done by decode_vmflags. However,
1237 if we are using a Linux kernel released before the commit
1238 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1239 not have the VmFlags there. In this case, there is
1240 really no way to know if we are dealing with VM_SHARED,
1241 so we just assume that VM_MAYSHARE is enough. */
1242 priv = memchr (permissions, 'p', permissions_len) != 0;
1243
1244 /* Try to detect if region should be dumped by parsing smaps
1245 counters. */
1246 for (line = strtok_r (NULL, "\n", &t);
1247 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1248 line = strtok_r (NULL, "\n", &t))
1249 {
1250 char keyword[64 + 1];
1251
1252 if (sscanf (line, "%64s", keyword) != 1)
1253 {
1254 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1255 break;
1256 }
1257
1258 if (strcmp (keyword, "Anonymous:") == 0)
1259 {
1260 /* Older Linux kernels did not support the
1261 "Anonymous:" counter. Check it here. */
1262 has_anonymous = 1;
1263 }
1264 else if (strcmp (keyword, "VmFlags:") == 0)
1265 decode_vmflags (line, &v);
1266
1267 if (strcmp (keyword, "AnonHugePages:") == 0
1268 || strcmp (keyword, "Anonymous:") == 0)
1269 {
1270 unsigned long number;
1271
1272 if (sscanf (line, "%*s%lu", &number) != 1)
1273 {
1274 warning (_("Error parsing {s,}maps file '%s' number"),
1275 mapsfilename);
1276 break;
1277 }
1278 if (number > 0)
1279 {
1280 /* Even if we are dealing with a file-backed
1281 mapping, if it contains anonymous pages we
1282 consider it to be *also* an anonymous
1283 mapping, because this is what the Linux
1284 kernel does:
1285
1286 // Dump segments that have been written to.
1287 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1288 goto whole;
1289
1290 Note that if the mapping is already marked as
1291 file-backed (i.e., mapping_file_p is
1292 non-zero), then this is a special case, and
1293 this mapping will be dumped either when the
1294 user wants to dump file-backed *or* anonymous
1295 mappings. */
1296 mapping_anon_p = 1;
1297 }
1298 }
1299 }
1300
1301 if (has_anonymous)
1302 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1303 mapping_anon_p, mapping_file_p,
1304 filename);
1305 else
1306 {
1307 /* Older Linux kernels did not support the "Anonymous:" counter.
1308 If it is missing, we can't be sure - dump all the pages. */
1309 should_dump_p = 1;
1310 }
1311
1312 /* Invoke the callback function to create the corefile segment. */
1313 if (should_dump_p)
1314 func (addr, endaddr - addr, offset, inode,
1315 read, write, exec, 1, /* MODIFIED is true because we
1316 want to dump the mapping. */
1317 filename, obfd);
1318 }
1319
1320 return 0;
1321 }
1322
1323 return 1;
1324 }
1325
1326 /* A structure for passing information through
1327 linux_find_memory_regions_full. */
1328
1329 struct linux_find_memory_regions_data
1330 {
1331 /* The original callback. */
1332
1333 find_memory_region_ftype func;
1334
1335 /* The original datum. */
1336
1337 void *obfd;
1338 };
1339
1340 /* A callback for linux_find_memory_regions that converts between the
1341 "full"-style callback and find_memory_region_ftype. */
1342
1343 static int
1344 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1345 ULONGEST offset, ULONGEST inode,
1346 int read, int write, int exec, int modified,
1347 const char *filename, void *arg)
1348 {
1349 struct linux_find_memory_regions_data *data
1350 = (struct linux_find_memory_regions_data *) arg;
1351
1352 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1353 }
1354
1355 /* A variant of linux_find_memory_regions_full that is suitable as the
1356 gdbarch find_memory_regions method. */
1357
1358 static int
1359 linux_find_memory_regions (struct gdbarch *gdbarch,
1360 find_memory_region_ftype func, void *obfd)
1361 {
1362 struct linux_find_memory_regions_data data;
1363
1364 data.func = func;
1365 data.obfd = obfd;
1366
1367 return linux_find_memory_regions_full (gdbarch,
1368 linux_find_memory_regions_thunk,
1369 &data);
1370 }
1371
1372 /* Determine which signal stopped execution. */
1373
1374 static int
1375 find_signalled_thread (struct thread_info *info, void *data)
1376 {
1377 if (info->suspend.stop_signal != GDB_SIGNAL_0
1378 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1379 return 1;
1380
1381 return 0;
1382 }
1383
1384 /* Generate corefile notes for SPU contexts. */
1385
1386 static char *
1387 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1388 {
1389 static const char *spu_files[] =
1390 {
1391 "object-id",
1392 "mem",
1393 "regs",
1394 "fpcr",
1395 "lslr",
1396 "decr",
1397 "decr_status",
1398 "signal1",
1399 "signal1_type",
1400 "signal2",
1401 "signal2_type",
1402 "event_mask",
1403 "event_status",
1404 "mbox_info",
1405 "ibox_info",
1406 "wbox_info",
1407 "dma_info",
1408 "proxydma_info",
1409 };
1410
1411 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1412 gdb_byte *spu_ids;
1413 LONGEST i, j, size;
1414
1415 /* Determine list of SPU ids. */
1416 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1417 NULL, &spu_ids);
1418
1419 /* Generate corefile notes for each SPU file. */
1420 for (i = 0; i < size; i += 4)
1421 {
1422 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1423
1424 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1425 {
1426 char annex[32], note_name[32];
1427 gdb_byte *spu_data;
1428 LONGEST spu_len;
1429
1430 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1431 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1432 annex, &spu_data);
1433 if (spu_len > 0)
1434 {
1435 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1436 note_data = elfcore_write_note (obfd, note_data, note_size,
1437 note_name, NT_SPU,
1438 spu_data, spu_len);
1439 xfree (spu_data);
1440
1441 if (!note_data)
1442 {
1443 xfree (spu_ids);
1444 return NULL;
1445 }
1446 }
1447 }
1448 }
1449
1450 if (size > 0)
1451 xfree (spu_ids);
1452
1453 return note_data;
1454 }
1455
1456 /* This is used to pass information from
1457 linux_make_mappings_corefile_notes through
1458 linux_find_memory_regions_full. */
1459
1460 struct linux_make_mappings_data
1461 {
1462 /* Number of files mapped. */
1463 ULONGEST file_count;
1464
1465 /* The obstack for the main part of the data. */
1466 struct obstack *data_obstack;
1467
1468 /* The filename obstack. */
1469 struct obstack *filename_obstack;
1470
1471 /* The architecture's "long" type. */
1472 struct type *long_type;
1473 };
1474
1475 static linux_find_memory_region_ftype linux_make_mappings_callback;
1476
1477 /* A callback for linux_find_memory_regions_full that updates the
1478 mappings data for linux_make_mappings_corefile_notes. */
1479
1480 static int
1481 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1482 ULONGEST offset, ULONGEST inode,
1483 int read, int write, int exec, int modified,
1484 const char *filename, void *data)
1485 {
1486 struct linux_make_mappings_data *map_data
1487 = (struct linux_make_mappings_data *) data;
1488 gdb_byte buf[sizeof (ULONGEST)];
1489
1490 if (*filename == '\0' || inode == 0)
1491 return 0;
1492
1493 ++map_data->file_count;
1494
1495 pack_long (buf, map_data->long_type, vaddr);
1496 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1497 pack_long (buf, map_data->long_type, vaddr + size);
1498 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1499 pack_long (buf, map_data->long_type, offset);
1500 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1501
1502 obstack_grow_str0 (map_data->filename_obstack, filename);
1503
1504 return 0;
1505 }
1506
1507 /* Write the file mapping data to the core file, if possible. OBFD is
1508 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1509 is a pointer to the note size. Returns the new NOTE_DATA and
1510 updates NOTE_SIZE. */
1511
1512 static char *
1513 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1514 char *note_data, int *note_size)
1515 {
1516 struct linux_make_mappings_data mapping_data;
1517 struct type *long_type
1518 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1519 gdb_byte buf[sizeof (ULONGEST)];
1520
1521 auto_obstack data_obstack, filename_obstack;
1522
1523 mapping_data.file_count = 0;
1524 mapping_data.data_obstack = &data_obstack;
1525 mapping_data.filename_obstack = &filename_obstack;
1526 mapping_data.long_type = long_type;
1527
1528 /* Reserve space for the count. */
1529 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1530 /* We always write the page size as 1 since we have no good way to
1531 determine the correct value. */
1532 pack_long (buf, long_type, 1);
1533 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1534
1535 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1536 &mapping_data);
1537
1538 if (mapping_data.file_count != 0)
1539 {
1540 /* Write the count to the obstack. */
1541 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1542 long_type, mapping_data.file_count);
1543
1544 /* Copy the filenames to the data obstack. */
1545 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1546 obstack_object_size (&filename_obstack));
1547
1548 note_data = elfcore_write_note (obfd, note_data, note_size,
1549 "CORE", NT_FILE,
1550 obstack_base (&data_obstack),
1551 obstack_object_size (&data_obstack));
1552 }
1553
1554 return note_data;
1555 }
1556
1557 /* Structure for passing information from
1558 linux_collect_thread_registers via an iterator to
1559 linux_collect_regset_section_cb. */
1560
1561 struct linux_collect_regset_section_cb_data
1562 {
1563 struct gdbarch *gdbarch;
1564 const struct regcache *regcache;
1565 bfd *obfd;
1566 char *note_data;
1567 int *note_size;
1568 unsigned long lwp;
1569 enum gdb_signal stop_signal;
1570 int abort_iteration;
1571 };
1572
1573 /* Callback for iterate_over_regset_sections that records a single
1574 regset in the corefile note section. */
1575
1576 static void
1577 linux_collect_regset_section_cb (const char *sect_name, int size,
1578 const struct regset *regset,
1579 const char *human_name, void *cb_data)
1580 {
1581 char *buf;
1582 struct linux_collect_regset_section_cb_data *data
1583 = (struct linux_collect_regset_section_cb_data *) cb_data;
1584
1585 if (data->abort_iteration)
1586 return;
1587
1588 gdb_assert (regset && regset->collect_regset);
1589
1590 buf = (char *) xmalloc (size);
1591 regset->collect_regset (regset, data->regcache, -1, buf, size);
1592
1593 /* PRSTATUS still needs to be treated specially. */
1594 if (strcmp (sect_name, ".reg") == 0)
1595 data->note_data = (char *) elfcore_write_prstatus
1596 (data->obfd, data->note_data, data->note_size, data->lwp,
1597 gdb_signal_to_host (data->stop_signal), buf);
1598 else
1599 data->note_data = (char *) elfcore_write_register_note
1600 (data->obfd, data->note_data, data->note_size,
1601 sect_name, buf, size);
1602 xfree (buf);
1603
1604 if (data->note_data == NULL)
1605 data->abort_iteration = 1;
1606 }
1607
1608 /* Records the thread's register state for the corefile note
1609 section. */
1610
1611 static char *
1612 linux_collect_thread_registers (const struct regcache *regcache,
1613 ptid_t ptid, bfd *obfd,
1614 char *note_data, int *note_size,
1615 enum gdb_signal stop_signal)
1616 {
1617 struct gdbarch *gdbarch = regcache->arch ();
1618 struct linux_collect_regset_section_cb_data data;
1619
1620 data.gdbarch = gdbarch;
1621 data.regcache = regcache;
1622 data.obfd = obfd;
1623 data.note_data = note_data;
1624 data.note_size = note_size;
1625 data.stop_signal = stop_signal;
1626 data.abort_iteration = 0;
1627
1628 /* For remote targets the LWP may not be available, so use the TID. */
1629 data.lwp = ptid_get_lwp (ptid);
1630 if (!data.lwp)
1631 data.lwp = ptid_get_tid (ptid);
1632
1633 gdbarch_iterate_over_regset_sections (gdbarch,
1634 linux_collect_regset_section_cb,
1635 &data, regcache);
1636 return data.note_data;
1637 }
1638
1639 /* Fetch the siginfo data for the specified thread, if it exists. If
1640 there is no data, or we could not read it, return an empty
1641 buffer. */
1642
1643 static gdb::byte_vector
1644 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1645 {
1646 struct type *siginfo_type;
1647 LONGEST bytes_read;
1648
1649 if (!gdbarch_get_siginfo_type_p (gdbarch))
1650 return gdb::byte_vector ();
1651
1652 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1653 inferior_ptid = thread->ptid;
1654
1655 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1656
1657 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1658
1659 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1660 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1661 if (bytes_read != TYPE_LENGTH (siginfo_type))
1662 buf.clear ();
1663
1664 return buf;
1665 }
1666
1667 struct linux_corefile_thread_data
1668 {
1669 struct gdbarch *gdbarch;
1670 bfd *obfd;
1671 char *note_data;
1672 int *note_size;
1673 enum gdb_signal stop_signal;
1674 };
1675
1676 /* Records the thread's register state for the corefile note
1677 section. */
1678
1679 static void
1680 linux_corefile_thread (struct thread_info *info,
1681 struct linux_corefile_thread_data *args)
1682 {
1683 struct regcache *regcache;
1684
1685 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1686
1687 target_fetch_registers (regcache, -1);
1688 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1689
1690 args->note_data = linux_collect_thread_registers
1691 (regcache, info->ptid, args->obfd, args->note_data,
1692 args->note_size, args->stop_signal);
1693
1694 /* Don't return anything if we got no register information above,
1695 such a core file is useless. */
1696 if (args->note_data != NULL)
1697 if (!siginfo_data.empty ())
1698 args->note_data = elfcore_write_note (args->obfd,
1699 args->note_data,
1700 args->note_size,
1701 "CORE", NT_SIGINFO,
1702 siginfo_data.data (),
1703 siginfo_data.size ());
1704 }
1705
1706 /* Fill the PRPSINFO structure with information about the process being
1707 debugged. Returns 1 in case of success, 0 for failures. Please note that
1708 even if the structure cannot be entirely filled (e.g., GDB was unable to
1709 gather information about the process UID/GID), this function will still
1710 return 1 since some information was already recorded. It will only return
1711 0 iff nothing can be gathered. */
1712
1713 static int
1714 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1715 {
1716 /* The filename which we will use to obtain some info about the process.
1717 We will basically use this to store the `/proc/PID/FILENAME' file. */
1718 char filename[100];
1719 /* The basename of the executable. */
1720 const char *basename;
1721 char *infargs;
1722 /* Temporary buffer. */
1723 char *tmpstr;
1724 /* The valid states of a process, according to the Linux kernel. */
1725 const char valid_states[] = "RSDTZW";
1726 /* The program state. */
1727 const char *prog_state;
1728 /* The state of the process. */
1729 char pr_sname;
1730 /* The PID of the program which generated the corefile. */
1731 pid_t pid;
1732 /* Process flags. */
1733 unsigned int pr_flag;
1734 /* Process nice value. */
1735 long pr_nice;
1736 /* The number of fields read by `sscanf'. */
1737 int n_fields = 0;
1738
1739 gdb_assert (p != NULL);
1740
1741 /* Obtaining PID and filename. */
1742 pid = ptid_get_pid (inferior_ptid);
1743 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1744 /* The full name of the program which generated the corefile. */
1745 gdb::unique_xmalloc_ptr<char> fname
1746 = target_fileio_read_stralloc (NULL, filename);
1747
1748 if (fname == NULL || fname.get ()[0] == '\0')
1749 {
1750 /* No program name was read, so we won't be able to retrieve more
1751 information about the process. */
1752 return 0;
1753 }
1754
1755 memset (p, 0, sizeof (*p));
1756
1757 /* Defining the PID. */
1758 p->pr_pid = pid;
1759
1760 /* Copying the program name. Only the basename matters. */
1761 basename = lbasename (fname.get ());
1762 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1763 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1764
1765 infargs = get_inferior_args ();
1766
1767 /* The arguments of the program. */
1768 std::string psargs = fname.get ();
1769 if (infargs != NULL)
1770 psargs = psargs + " " + infargs;
1771
1772 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
1773 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1774
1775 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1776 /* The contents of `/proc/PID/stat'. */
1777 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1778 = target_fileio_read_stralloc (NULL, filename);
1779 char *proc_stat = proc_stat_contents.get ();
1780
1781 if (proc_stat == NULL || *proc_stat == '\0')
1782 {
1783 /* Despite being unable to read more information about the
1784 process, we return 1 here because at least we have its
1785 command line, PID and arguments. */
1786 return 1;
1787 }
1788
1789 /* Ok, we have the stats. It's time to do a little parsing of the
1790 contents of the buffer, so that we end up reading what we want.
1791
1792 The following parsing mechanism is strongly based on the
1793 information generated by the `fs/proc/array.c' file, present in
1794 the Linux kernel tree. More details about how the information is
1795 displayed can be obtained by seeing the manpage of proc(5),
1796 specifically under the entry of `/proc/[pid]/stat'. */
1797
1798 /* Getting rid of the PID, since we already have it. */
1799 while (isdigit (*proc_stat))
1800 ++proc_stat;
1801
1802 proc_stat = skip_spaces (proc_stat);
1803
1804 /* ps command also relies on no trailing fields ever contain ')'. */
1805 proc_stat = strrchr (proc_stat, ')');
1806 if (proc_stat == NULL)
1807 return 1;
1808 proc_stat++;
1809
1810 proc_stat = skip_spaces (proc_stat);
1811
1812 n_fields = sscanf (proc_stat,
1813 "%c" /* Process state. */
1814 "%d%d%d" /* Parent PID, group ID, session ID. */
1815 "%*d%*d" /* tty_nr, tpgid (not used). */
1816 "%u" /* Flags. */
1817 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1818 cmajflt (not used). */
1819 "%*s%*s%*s%*s" /* utime, stime, cutime,
1820 cstime (not used). */
1821 "%*s" /* Priority (not used). */
1822 "%ld", /* Nice. */
1823 &pr_sname,
1824 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1825 &pr_flag,
1826 &pr_nice);
1827
1828 if (n_fields != 6)
1829 {
1830 /* Again, we couldn't read the complementary information about
1831 the process state. However, we already have minimal
1832 information, so we just return 1 here. */
1833 return 1;
1834 }
1835
1836 /* Filling the structure fields. */
1837 prog_state = strchr (valid_states, pr_sname);
1838 if (prog_state != NULL)
1839 p->pr_state = prog_state - valid_states;
1840 else
1841 {
1842 /* Zero means "Running". */
1843 p->pr_state = 0;
1844 }
1845
1846 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1847 p->pr_zomb = p->pr_sname == 'Z';
1848 p->pr_nice = pr_nice;
1849 p->pr_flag = pr_flag;
1850
1851 /* Finally, obtaining the UID and GID. For that, we read and parse the
1852 contents of the `/proc/PID/status' file. */
1853 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1854 /* The contents of `/proc/PID/status'. */
1855 gdb::unique_xmalloc_ptr<char> proc_status_contents
1856 = target_fileio_read_stralloc (NULL, filename);
1857 char *proc_status = proc_status_contents.get ();
1858
1859 if (proc_status == NULL || *proc_status == '\0')
1860 {
1861 /* Returning 1 since we already have a bunch of information. */
1862 return 1;
1863 }
1864
1865 /* Extracting the UID. */
1866 tmpstr = strstr (proc_status, "Uid:");
1867 if (tmpstr != NULL)
1868 {
1869 /* Advancing the pointer to the beginning of the UID. */
1870 tmpstr += sizeof ("Uid:");
1871 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1872 ++tmpstr;
1873
1874 if (isdigit (*tmpstr))
1875 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1876 }
1877
1878 /* Extracting the GID. */
1879 tmpstr = strstr (proc_status, "Gid:");
1880 if (tmpstr != NULL)
1881 {
1882 /* Advancing the pointer to the beginning of the GID. */
1883 tmpstr += sizeof ("Gid:");
1884 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1885 ++tmpstr;
1886
1887 if (isdigit (*tmpstr))
1888 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1889 }
1890
1891 return 1;
1892 }
1893
1894 /* Build the note section for a corefile, and return it in a malloc
1895 buffer. */
1896
1897 static char *
1898 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1899 {
1900 struct linux_corefile_thread_data thread_args;
1901 struct elf_internal_linux_prpsinfo prpsinfo;
1902 char *note_data = NULL;
1903 gdb_byte *auxv;
1904 int auxv_len;
1905 struct thread_info *curr_thr, *signalled_thr, *thr;
1906
1907 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1908 return NULL;
1909
1910 if (linux_fill_prpsinfo (&prpsinfo))
1911 {
1912 if (gdbarch_ptr_bit (gdbarch) == 64)
1913 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1914 note_data, note_size,
1915 &prpsinfo);
1916 else
1917 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1918 note_data, note_size,
1919 &prpsinfo);
1920 }
1921
1922 /* Thread register information. */
1923 TRY
1924 {
1925 update_thread_list ();
1926 }
1927 CATCH (e, RETURN_MASK_ERROR)
1928 {
1929 exception_print (gdb_stderr, e);
1930 }
1931 END_CATCH
1932
1933 /* Like the kernel, prefer dumping the signalled thread first.
1934 "First thread" is what tools use to infer the signalled thread.
1935 In case there's more than one signalled thread, prefer the
1936 current thread, if it is signalled. */
1937 curr_thr = inferior_thread ();
1938 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1939 signalled_thr = curr_thr;
1940 else
1941 {
1942 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1943 if (signalled_thr == NULL)
1944 signalled_thr = curr_thr;
1945 }
1946
1947 thread_args.gdbarch = gdbarch;
1948 thread_args.obfd = obfd;
1949 thread_args.note_data = note_data;
1950 thread_args.note_size = note_size;
1951 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1952
1953 linux_corefile_thread (signalled_thr, &thread_args);
1954 ALL_NON_EXITED_THREADS (thr)
1955 {
1956 if (thr == signalled_thr)
1957 continue;
1958 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
1959 continue;
1960
1961 linux_corefile_thread (thr, &thread_args);
1962 }
1963
1964 note_data = thread_args.note_data;
1965 if (!note_data)
1966 return NULL;
1967
1968 /* Auxillary vector. */
1969 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
1970 NULL, &auxv);
1971 if (auxv_len > 0)
1972 {
1973 note_data = elfcore_write_note (obfd, note_data, note_size,
1974 "CORE", NT_AUXV, auxv, auxv_len);
1975 xfree (auxv);
1976
1977 if (!note_data)
1978 return NULL;
1979 }
1980
1981 /* SPU information. */
1982 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
1983 if (!note_data)
1984 return NULL;
1985
1986 /* File mappings. */
1987 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1988 note_data, note_size);
1989
1990 return note_data;
1991 }
1992
1993 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
1994 gdbarch.h. This function is not static because it is exported to
1995 other -tdep files. */
1996
1997 enum gdb_signal
1998 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1999 {
2000 switch (signal)
2001 {
2002 case 0:
2003 return GDB_SIGNAL_0;
2004
2005 case LINUX_SIGHUP:
2006 return GDB_SIGNAL_HUP;
2007
2008 case LINUX_SIGINT:
2009 return GDB_SIGNAL_INT;
2010
2011 case LINUX_SIGQUIT:
2012 return GDB_SIGNAL_QUIT;
2013
2014 case LINUX_SIGILL:
2015 return GDB_SIGNAL_ILL;
2016
2017 case LINUX_SIGTRAP:
2018 return GDB_SIGNAL_TRAP;
2019
2020 case LINUX_SIGABRT:
2021 return GDB_SIGNAL_ABRT;
2022
2023 case LINUX_SIGBUS:
2024 return GDB_SIGNAL_BUS;
2025
2026 case LINUX_SIGFPE:
2027 return GDB_SIGNAL_FPE;
2028
2029 case LINUX_SIGKILL:
2030 return GDB_SIGNAL_KILL;
2031
2032 case LINUX_SIGUSR1:
2033 return GDB_SIGNAL_USR1;
2034
2035 case LINUX_SIGSEGV:
2036 return GDB_SIGNAL_SEGV;
2037
2038 case LINUX_SIGUSR2:
2039 return GDB_SIGNAL_USR2;
2040
2041 case LINUX_SIGPIPE:
2042 return GDB_SIGNAL_PIPE;
2043
2044 case LINUX_SIGALRM:
2045 return GDB_SIGNAL_ALRM;
2046
2047 case LINUX_SIGTERM:
2048 return GDB_SIGNAL_TERM;
2049
2050 case LINUX_SIGCHLD:
2051 return GDB_SIGNAL_CHLD;
2052
2053 case LINUX_SIGCONT:
2054 return GDB_SIGNAL_CONT;
2055
2056 case LINUX_SIGSTOP:
2057 return GDB_SIGNAL_STOP;
2058
2059 case LINUX_SIGTSTP:
2060 return GDB_SIGNAL_TSTP;
2061
2062 case LINUX_SIGTTIN:
2063 return GDB_SIGNAL_TTIN;
2064
2065 case LINUX_SIGTTOU:
2066 return GDB_SIGNAL_TTOU;
2067
2068 case LINUX_SIGURG:
2069 return GDB_SIGNAL_URG;
2070
2071 case LINUX_SIGXCPU:
2072 return GDB_SIGNAL_XCPU;
2073
2074 case LINUX_SIGXFSZ:
2075 return GDB_SIGNAL_XFSZ;
2076
2077 case LINUX_SIGVTALRM:
2078 return GDB_SIGNAL_VTALRM;
2079
2080 case LINUX_SIGPROF:
2081 return GDB_SIGNAL_PROF;
2082
2083 case LINUX_SIGWINCH:
2084 return GDB_SIGNAL_WINCH;
2085
2086 /* No way to differentiate between SIGIO and SIGPOLL.
2087 Therefore, we just handle the first one. */
2088 case LINUX_SIGIO:
2089 return GDB_SIGNAL_IO;
2090
2091 case LINUX_SIGPWR:
2092 return GDB_SIGNAL_PWR;
2093
2094 case LINUX_SIGSYS:
2095 return GDB_SIGNAL_SYS;
2096
2097 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2098 therefore we have to handle them here. */
2099 case LINUX_SIGRTMIN:
2100 return GDB_SIGNAL_REALTIME_32;
2101
2102 case LINUX_SIGRTMAX:
2103 return GDB_SIGNAL_REALTIME_64;
2104 }
2105
2106 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2107 {
2108 int offset = signal - LINUX_SIGRTMIN + 1;
2109
2110 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2111 }
2112
2113 return GDB_SIGNAL_UNKNOWN;
2114 }
2115
2116 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2117 gdbarch.h. This function is not static because it is exported to
2118 other -tdep files. */
2119
2120 int
2121 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2122 enum gdb_signal signal)
2123 {
2124 switch (signal)
2125 {
2126 case GDB_SIGNAL_0:
2127 return 0;
2128
2129 case GDB_SIGNAL_HUP:
2130 return LINUX_SIGHUP;
2131
2132 case GDB_SIGNAL_INT:
2133 return LINUX_SIGINT;
2134
2135 case GDB_SIGNAL_QUIT:
2136 return LINUX_SIGQUIT;
2137
2138 case GDB_SIGNAL_ILL:
2139 return LINUX_SIGILL;
2140
2141 case GDB_SIGNAL_TRAP:
2142 return LINUX_SIGTRAP;
2143
2144 case GDB_SIGNAL_ABRT:
2145 return LINUX_SIGABRT;
2146
2147 case GDB_SIGNAL_FPE:
2148 return LINUX_SIGFPE;
2149
2150 case GDB_SIGNAL_KILL:
2151 return LINUX_SIGKILL;
2152
2153 case GDB_SIGNAL_BUS:
2154 return LINUX_SIGBUS;
2155
2156 case GDB_SIGNAL_SEGV:
2157 return LINUX_SIGSEGV;
2158
2159 case GDB_SIGNAL_SYS:
2160 return LINUX_SIGSYS;
2161
2162 case GDB_SIGNAL_PIPE:
2163 return LINUX_SIGPIPE;
2164
2165 case GDB_SIGNAL_ALRM:
2166 return LINUX_SIGALRM;
2167
2168 case GDB_SIGNAL_TERM:
2169 return LINUX_SIGTERM;
2170
2171 case GDB_SIGNAL_URG:
2172 return LINUX_SIGURG;
2173
2174 case GDB_SIGNAL_STOP:
2175 return LINUX_SIGSTOP;
2176
2177 case GDB_SIGNAL_TSTP:
2178 return LINUX_SIGTSTP;
2179
2180 case GDB_SIGNAL_CONT:
2181 return LINUX_SIGCONT;
2182
2183 case GDB_SIGNAL_CHLD:
2184 return LINUX_SIGCHLD;
2185
2186 case GDB_SIGNAL_TTIN:
2187 return LINUX_SIGTTIN;
2188
2189 case GDB_SIGNAL_TTOU:
2190 return LINUX_SIGTTOU;
2191
2192 case GDB_SIGNAL_IO:
2193 return LINUX_SIGIO;
2194
2195 case GDB_SIGNAL_XCPU:
2196 return LINUX_SIGXCPU;
2197
2198 case GDB_SIGNAL_XFSZ:
2199 return LINUX_SIGXFSZ;
2200
2201 case GDB_SIGNAL_VTALRM:
2202 return LINUX_SIGVTALRM;
2203
2204 case GDB_SIGNAL_PROF:
2205 return LINUX_SIGPROF;
2206
2207 case GDB_SIGNAL_WINCH:
2208 return LINUX_SIGWINCH;
2209
2210 case GDB_SIGNAL_USR1:
2211 return LINUX_SIGUSR1;
2212
2213 case GDB_SIGNAL_USR2:
2214 return LINUX_SIGUSR2;
2215
2216 case GDB_SIGNAL_PWR:
2217 return LINUX_SIGPWR;
2218
2219 case GDB_SIGNAL_POLL:
2220 return LINUX_SIGPOLL;
2221
2222 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2223 therefore we have to handle it here. */
2224 case GDB_SIGNAL_REALTIME_32:
2225 return LINUX_SIGRTMIN;
2226
2227 /* Same comment applies to _64. */
2228 case GDB_SIGNAL_REALTIME_64:
2229 return LINUX_SIGRTMAX;
2230 }
2231
2232 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2233 if (signal >= GDB_SIGNAL_REALTIME_33
2234 && signal <= GDB_SIGNAL_REALTIME_63)
2235 {
2236 int offset = signal - GDB_SIGNAL_REALTIME_33;
2237
2238 return LINUX_SIGRTMIN + 1 + offset;
2239 }
2240
2241 return -1;
2242 }
2243
2244 /* Helper for linux_vsyscall_range that does the real work of finding
2245 the vsyscall's address range. */
2246
2247 static int
2248 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2249 {
2250 char filename[100];
2251 long pid;
2252
2253 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2254 return 0;
2255
2256 /* It doesn't make sense to access the host's /proc when debugging a
2257 core file. Instead, look for the PT_LOAD segment that matches
2258 the vDSO. */
2259 if (!target_has_execution)
2260 {
2261 Elf_Internal_Phdr *phdrs;
2262 long phdrs_size;
2263 int num_phdrs, i;
2264
2265 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2266 if (phdrs_size == -1)
2267 return 0;
2268
2269 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
2270 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs);
2271 if (num_phdrs == -1)
2272 return 0;
2273
2274 for (i = 0; i < num_phdrs; i++)
2275 if (phdrs[i].p_type == PT_LOAD
2276 && phdrs[i].p_vaddr == range->start)
2277 {
2278 range->length = phdrs[i].p_memsz;
2279 return 1;
2280 }
2281
2282 return 0;
2283 }
2284
2285 /* We need to know the real target PID to access /proc. */
2286 if (current_inferior ()->fake_pid_p)
2287 return 0;
2288
2289 pid = current_inferior ()->pid;
2290
2291 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2292 reading /proc/PID/maps (2). The later identifies thread stacks
2293 in the output, which requires scanning every thread in the thread
2294 group to check whether a VMA is actually a thread's stack. With
2295 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2296 a few thousand threads, (1) takes a few miliseconds, while (2)
2297 takes several seconds. Also note that "smaps", what we read for
2298 determining core dump mappings, is even slower than "maps". */
2299 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2300 gdb::unique_xmalloc_ptr<char> data
2301 = target_fileio_read_stralloc (NULL, filename);
2302 if (data != NULL)
2303 {
2304 char *line;
2305 char *saveptr = NULL;
2306
2307 for (line = strtok_r (data.get (), "\n", &saveptr);
2308 line != NULL;
2309 line = strtok_r (NULL, "\n", &saveptr))
2310 {
2311 ULONGEST addr, endaddr;
2312 const char *p = line;
2313
2314 addr = strtoulst (p, &p, 16);
2315 if (addr == range->start)
2316 {
2317 if (*p == '-')
2318 p++;
2319 endaddr = strtoulst (p, &p, 16);
2320 range->length = endaddr - addr;
2321 return 1;
2322 }
2323 }
2324 }
2325 else
2326 warning (_("unable to open /proc file '%s'"), filename);
2327
2328 return 0;
2329 }
2330
2331 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2332 caching, and defers the real work to linux_vsyscall_range_raw. */
2333
2334 static int
2335 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2336 {
2337 struct linux_info *info = get_linux_inferior_data ();
2338
2339 if (info->vsyscall_range_p == 0)
2340 {
2341 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2342 info->vsyscall_range_p = 1;
2343 else
2344 info->vsyscall_range_p = -1;
2345 }
2346
2347 if (info->vsyscall_range_p < 0)
2348 return 0;
2349
2350 *range = info->vsyscall_range;
2351 return 1;
2352 }
2353
2354 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2355 definitions would be dependent on compilation host. */
2356 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2357 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2358
2359 /* See gdbarch.sh 'infcall_mmap'. */
2360
2361 static CORE_ADDR
2362 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2363 {
2364 struct objfile *objf;
2365 /* Do there still exist any Linux systems without "mmap64"?
2366 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2367 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2368 struct value *addr_val;
2369 struct gdbarch *gdbarch = get_objfile_arch (objf);
2370 CORE_ADDR retval;
2371 enum
2372 {
2373 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2374 };
2375 struct value *arg[ARG_LAST];
2376
2377 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2378 0);
2379 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2380 arg[ARG_LENGTH] = value_from_ulongest
2381 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2382 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2383 | GDB_MMAP_PROT_EXEC))
2384 == 0);
2385 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2386 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2387 GDB_MMAP_MAP_PRIVATE
2388 | GDB_MMAP_MAP_ANONYMOUS);
2389 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2390 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2391 0);
2392 addr_val = call_function_by_hand (mmap_val, NULL, ARG_LAST, arg);
2393 retval = value_as_address (addr_val);
2394 if (retval == (CORE_ADDR) -1)
2395 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2396 pulongest (size));
2397 return retval;
2398 }
2399
2400 /* See gdbarch.sh 'infcall_munmap'. */
2401
2402 static void
2403 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2404 {
2405 struct objfile *objf;
2406 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2407 struct value *retval_val;
2408 struct gdbarch *gdbarch = get_objfile_arch (objf);
2409 LONGEST retval;
2410 enum
2411 {
2412 ARG_ADDR, ARG_LENGTH, ARG_LAST
2413 };
2414 struct value *arg[ARG_LAST];
2415
2416 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2417 addr);
2418 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2419 arg[ARG_LENGTH] = value_from_ulongest
2420 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2421 retval_val = call_function_by_hand (munmap_val, NULL, ARG_LAST, arg);
2422 retval = value_as_long (retval_val);
2423 if (retval != 0)
2424 warning (_("Failed inferior munmap call at %s for %s bytes, "
2425 "errno is changed."),
2426 hex_string (addr), pulongest (size));
2427 }
2428
2429 /* See linux-tdep.h. */
2430
2431 CORE_ADDR
2432 linux_displaced_step_location (struct gdbarch *gdbarch)
2433 {
2434 CORE_ADDR addr;
2435 int bp_len;
2436
2437 /* Determine entry point from target auxiliary vector. This avoids
2438 the need for symbols. Also, when debugging a stand-alone SPU
2439 executable, entry_point_address () will point to an SPU
2440 local-store address and is thus not usable as displaced stepping
2441 location. The auxiliary vector gets us the PowerPC-side entry
2442 point address instead. */
2443 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
2444 throw_error (NOT_SUPPORTED_ERROR,
2445 _("Cannot find AT_ENTRY auxiliary vector entry."));
2446
2447 /* Make certain that the address points at real code, and not a
2448 function descriptor. */
2449 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2450 &current_target);
2451
2452 /* Inferior calls also use the entry point as a breakpoint location.
2453 We don't want displaced stepping to interfere with those
2454 breakpoints, so leave space. */
2455 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2456 addr += bp_len * 2;
2457
2458 return addr;
2459 }
2460
2461 /* Display whether the gcore command is using the
2462 /proc/PID/coredump_filter file. */
2463
2464 static void
2465 show_use_coredump_filter (struct ui_file *file, int from_tty,
2466 struct cmd_list_element *c, const char *value)
2467 {
2468 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2469 " corefiles is %s.\n"), value);
2470 }
2471
2472 /* To be called from the various GDB_OSABI_LINUX handlers for the
2473 various GNU/Linux architectures and machine types. */
2474
2475 void
2476 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2477 {
2478 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2479 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2480 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2481 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2482 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2483 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2484 set_gdbarch_has_shared_address_space (gdbarch,
2485 linux_has_shared_address_space);
2486 set_gdbarch_gdb_signal_from_target (gdbarch,
2487 linux_gdb_signal_from_target);
2488 set_gdbarch_gdb_signal_to_target (gdbarch,
2489 linux_gdb_signal_to_target);
2490 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2491 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2492 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2493 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2494 }
2495
2496 void
2497 _initialize_linux_tdep (void)
2498 {
2499 linux_gdbarch_data_handle =
2500 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2501
2502 /* Set a cache per-inferior. */
2503 linux_inferior_data
2504 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2505 /* Observers used to invalidate the cache when needed. */
2506 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2507 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
2508
2509 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2510 &use_coredump_filter, _("\
2511 Set whether gcore should consider /proc/PID/coredump_filter."),
2512 _("\
2513 Show whether gcore should consider /proc/PID/coredump_filter."),
2514 _("\
2515 Use this command to set whether gcore should consider the contents\n\
2516 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2517 about this file, refer to the manpage of core(5)."),
2518 NULL, show_use_coredump_filter,
2519 &setlist, &showlist);
2520 }
This page took 0.130911 seconds and 5 git commands to generate.