Zero-initialize linux note sections
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41 #include "common/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static int use_coredump_filter = 1;
95
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99 static int dump_excluded_mappings = 0;
100
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125 enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
166 static struct gdbarch_data *linux_gdbarch_data_handle;
167
168 struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173 static void *
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177 }
178
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
181 {
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
184 }
185
186 /* Per-inferior data key. */
187 static const struct inferior_data *linux_inferior_data;
188
189 /* Linux-specific cached data. This is used by GDB for caching
190 purposes for each inferior. This helps reduce the overhead of
191 transfering data from a remote target to the local host. */
192 struct linux_info
193 {
194 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
195 if VSYSCALL_RANGE_P is positive. This is cached because getting
196 at this info requires an auxv lookup (which is itself cached),
197 and looking through the inferior's mappings (which change
198 throughout execution and therefore cannot be cached). */
199 struct mem_range vsyscall_range;
200
201 /* Zero if we haven't tried looking up the vsyscall's range before
202 yet. Positive if we tried looking it up, and found it. Negative
203 if we tried looking it up but failed. */
204 int vsyscall_range_p;
205 };
206
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210 static void
211 invalidate_linux_cache_inf (struct inferior *inf)
212 {
213 struct linux_info *info;
214
215 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
216 if (info != NULL)
217 {
218 xfree (info);
219 set_inferior_data (inf, linux_inferior_data, NULL);
220 }
221 }
222
223 /* Handles the cleanup of the linux cache for inferior INF. ARG is
224 ignored. Callback for the inferior_appeared and inferior_exit
225 events. */
226
227 static void
228 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
229 {
230 invalidate_linux_cache_inf (inf);
231 }
232
233 /* Fetch the linux cache info for INF. This function always returns a
234 valid INFO pointer. */
235
236 static struct linux_info *
237 get_linux_inferior_data (void)
238 {
239 struct linux_info *info;
240 struct inferior *inf = current_inferior ();
241
242 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
243 if (info == NULL)
244 {
245 info = XCNEW (struct linux_info);
246 set_inferior_data (inf, linux_inferior_data, info);
247 }
248
249 return info;
250 }
251
252 /* See linux-tdep.h. */
253
254 struct type *
255 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
256 linux_siginfo_extra_fields extra_fields)
257 {
258 struct linux_gdbarch_data *linux_gdbarch_data;
259 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
260 struct type *uid_type, *pid_type;
261 struct type *sigval_type, *clock_type;
262 struct type *siginfo_type, *sifields_type;
263 struct type *type;
264
265 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
266 if (linux_gdbarch_data->siginfo_type != NULL)
267 return linux_gdbarch_data->siginfo_type;
268
269 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
270 0, "int");
271 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
272 1, "unsigned int");
273 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
274 0, "long");
275 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
276 0, "short");
277 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
278
279 /* sival_t */
280 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
281 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
282 append_composite_type_field (sigval_type, "sival_int", int_type);
283 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
284
285 /* __pid_t */
286 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
287 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
288 TYPE_TARGET_TYPE (pid_type) = int_type;
289 TYPE_TARGET_STUB (pid_type) = 1;
290
291 /* __uid_t */
292 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
293 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
294 TYPE_TARGET_TYPE (uid_type) = uint_type;
295 TYPE_TARGET_STUB (uid_type) = 1;
296
297 /* __clock_t */
298 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
299 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
300 "__clock_t");
301 TYPE_TARGET_TYPE (clock_type) = long_type;
302 TYPE_TARGET_STUB (clock_type) = 1;
303
304 /* _sifields */
305 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
306
307 {
308 const int si_max_size = 128;
309 int si_pad_size;
310 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
311
312 /* _pad */
313 if (gdbarch_ptr_bit (gdbarch) == 64)
314 si_pad_size = (si_max_size / size_of_int) - 4;
315 else
316 si_pad_size = (si_max_size / size_of_int) - 3;
317 append_composite_type_field (sifields_type, "_pad",
318 init_vector_type (int_type, si_pad_size));
319 }
320
321 /* _kill */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (sifields_type, "_kill", type);
326
327 /* _timer */
328 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
329 append_composite_type_field (type, "si_tid", int_type);
330 append_composite_type_field (type, "si_overrun", int_type);
331 append_composite_type_field (type, "si_sigval", sigval_type);
332 append_composite_type_field (sifields_type, "_timer", type);
333
334 /* _rt */
335 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
336 append_composite_type_field (type, "si_pid", pid_type);
337 append_composite_type_field (type, "si_uid", uid_type);
338 append_composite_type_field (type, "si_sigval", sigval_type);
339 append_composite_type_field (sifields_type, "_rt", type);
340
341 /* _sigchld */
342 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
343 append_composite_type_field (type, "si_pid", pid_type);
344 append_composite_type_field (type, "si_uid", uid_type);
345 append_composite_type_field (type, "si_status", int_type);
346 append_composite_type_field (type, "si_utime", clock_type);
347 append_composite_type_field (type, "si_stime", clock_type);
348 append_composite_type_field (sifields_type, "_sigchld", type);
349
350 /* _sigfault */
351 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
352 append_composite_type_field (type, "si_addr", void_ptr_type);
353
354 /* Additional bound fields for _sigfault in case they were requested. */
355 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
356 {
357 struct type *sigfault_bnd_fields;
358
359 append_composite_type_field (type, "_addr_lsb", short_type);
360 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
361 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
362 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
363 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
364 }
365 append_composite_type_field (sifields_type, "_sigfault", type);
366
367 /* _sigpoll */
368 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
369 append_composite_type_field (type, "si_band", long_type);
370 append_composite_type_field (type, "si_fd", int_type);
371 append_composite_type_field (sifields_type, "_sigpoll", type);
372
373 /* struct siginfo */
374 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
375 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
376 append_composite_type_field (siginfo_type, "si_signo", int_type);
377 append_composite_type_field (siginfo_type, "si_errno", int_type);
378 append_composite_type_field (siginfo_type, "si_code", int_type);
379 append_composite_type_field_aligned (siginfo_type,
380 "_sifields", sifields_type,
381 TYPE_LENGTH (long_type));
382
383 linux_gdbarch_data->siginfo_type = siginfo_type;
384
385 return siginfo_type;
386 }
387
388 /* This function is suitable for architectures that don't
389 extend/override the standard siginfo structure. */
390
391 static struct type *
392 linux_get_siginfo_type (struct gdbarch *gdbarch)
393 {
394 return linux_get_siginfo_type_with_fields (gdbarch, 0);
395 }
396
397 /* Return true if the target is running on uClinux instead of normal
398 Linux kernel. */
399
400 int
401 linux_is_uclinux (void)
402 {
403 CORE_ADDR dummy;
404
405 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
406 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
407 }
408
409 static int
410 linux_has_shared_address_space (struct gdbarch *gdbarch)
411 {
412 return linux_is_uclinux ();
413 }
414
415 /* This is how we want PTIDs from core files to be printed. */
416
417 static const char *
418 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
419 {
420 static char buf[80];
421
422 if (ptid.lwp () != 0)
423 {
424 snprintf (buf, sizeof (buf), "LWP %ld", ptid.lwp ());
425 return buf;
426 }
427
428 return normal_pid_to_str (ptid);
429 }
430
431 /* Service function for corefiles and info proc. */
432
433 static void
434 read_mapping (const char *line,
435 ULONGEST *addr, ULONGEST *endaddr,
436 const char **permissions, size_t *permissions_len,
437 ULONGEST *offset,
438 const char **device, size_t *device_len,
439 ULONGEST *inode,
440 const char **filename)
441 {
442 const char *p = line;
443
444 *addr = strtoulst (p, &p, 16);
445 if (*p == '-')
446 p++;
447 *endaddr = strtoulst (p, &p, 16);
448
449 p = skip_spaces (p);
450 *permissions = p;
451 while (*p && !isspace (*p))
452 p++;
453 *permissions_len = p - *permissions;
454
455 *offset = strtoulst (p, &p, 16);
456
457 p = skip_spaces (p);
458 *device = p;
459 while (*p && !isspace (*p))
460 p++;
461 *device_len = p - *device;
462
463 *inode = strtoulst (p, &p, 10);
464
465 p = skip_spaces (p);
466 *filename = p;
467 }
468
469 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
470
471 This function was based on the documentation found on
472 <Documentation/filesystems/proc.txt>, on the Linux kernel.
473
474 Linux kernels before commit
475 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
476 field on smaps. */
477
478 static void
479 decode_vmflags (char *p, struct smaps_vmflags *v)
480 {
481 char *saveptr = NULL;
482 const char *s;
483
484 v->initialized_p = 1;
485 p = skip_to_space (p);
486 p = skip_spaces (p);
487
488 for (s = strtok_r (p, " ", &saveptr);
489 s != NULL;
490 s = strtok_r (NULL, " ", &saveptr))
491 {
492 if (strcmp (s, "io") == 0)
493 v->io_page = 1;
494 else if (strcmp (s, "ht") == 0)
495 v->uses_huge_tlb = 1;
496 else if (strcmp (s, "dd") == 0)
497 v->exclude_coredump = 1;
498 else if (strcmp (s, "sh") == 0)
499 v->shared_mapping = 1;
500 }
501 }
502
503 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
504 they're initialized lazily. */
505
506 struct mapping_regexes
507 {
508 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
509 string in the end). We know for sure, based on the Linux kernel
510 code, that memory mappings whose associated filename is
511 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
512 compiled_regex dev_zero
513 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
514 _("Could not compile regex to match /dev/zero filename")};
515
516 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
517 string in the end). These filenames refer to shared memory
518 (shmem), and memory mappings associated with them are
519 MAP_ANONYMOUS as well. */
520 compiled_regex shmem_file
521 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
522 _("Could not compile regex to match shmem filenames")};
523
524 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
525 0' code, which is responsible to decide if it is dealing with a
526 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
527 FILE_DELETED matches, it does not necessarily mean that we are
528 dealing with an anonymous shared mapping. However, there is no
529 easy way to detect this currently, so this is the best
530 approximation we have.
531
532 As a result, GDB will dump readonly pages of deleted executables
533 when using the default value of coredump_filter (0x33), while the
534 Linux kernel will not dump those pages. But we can live with
535 that. */
536 compiled_regex file_deleted
537 {" (deleted)$", REG_NOSUB,
538 _("Could not compile regex to match '<file> (deleted)'")};
539 };
540
541 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
542
543 FILENAME is the name of the file present in the first line of the
544 memory mapping, in the "/proc/PID/smaps" output. For example, if
545 the first line is:
546
547 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
548
549 Then FILENAME will be "/path/to/file". */
550
551 static int
552 mapping_is_anonymous_p (const char *filename)
553 {
554 static gdb::optional<mapping_regexes> regexes;
555 static int init_regex_p = 0;
556
557 if (!init_regex_p)
558 {
559 /* Let's be pessimistic and assume there will be an error while
560 compiling the regex'es. */
561 init_regex_p = -1;
562
563 regexes.emplace ();
564
565 /* If we reached this point, then everything succeeded. */
566 init_regex_p = 1;
567 }
568
569 if (init_regex_p == -1)
570 {
571 const char deleted[] = " (deleted)";
572 size_t del_len = sizeof (deleted) - 1;
573 size_t filename_len = strlen (filename);
574
575 /* There was an error while compiling the regex'es above. In
576 order to try to give some reliable information to the caller,
577 we just try to find the string " (deleted)" in the filename.
578 If we managed to find it, then we assume the mapping is
579 anonymous. */
580 return (filename_len >= del_len
581 && strcmp (filename + filename_len - del_len, deleted) == 0);
582 }
583
584 if (*filename == '\0'
585 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
586 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
587 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
588 return 1;
589
590 return 0;
591 }
592
593 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
594 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
595 greater than 0 if it should.
596
597 In a nutshell, this is the logic that we follow in order to decide
598 if a mapping should be dumped or not.
599
600 - If the mapping is associated to a file whose name ends with
601 " (deleted)", or if the file is "/dev/zero", or if it is
602 "/SYSV%08x" (shared memory), or if there is no file associated
603 with it, or if the AnonHugePages: or the Anonymous: fields in the
604 /proc/PID/smaps have contents, then GDB considers this mapping to
605 be anonymous. Otherwise, GDB considers this mapping to be a
606 file-backed mapping (because there will be a file associated with
607 it).
608
609 It is worth mentioning that, from all those checks described
610 above, the most fragile is the one to see if the file name ends
611 with " (deleted)". This does not necessarily mean that the
612 mapping is anonymous, because the deleted file associated with
613 the mapping may have been a hard link to another file, for
614 example. The Linux kernel checks to see if "i_nlink == 0", but
615 GDB cannot easily (and normally) do this check (iff running as
616 root, it could find the mapping in /proc/PID/map_files/ and
617 determine whether there still are other hard links to the
618 inode/file). Therefore, we made a compromise here, and we assume
619 that if the file name ends with " (deleted)", then the mapping is
620 indeed anonymous. FWIW, this is something the Linux kernel could
621 do better: expose this information in a more direct way.
622
623 - If we see the flag "sh" in the "VmFlags:" field (in
624 /proc/PID/smaps), then certainly the memory mapping is shared
625 (VM_SHARED). If we have access to the VmFlags, and we don't see
626 the "sh" there, then certainly the mapping is private. However,
627 Linux kernels before commit
628 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
629 "VmFlags:" field; in that case, we use another heuristic: if we
630 see 'p' in the permission flags, then we assume that the mapping
631 is private, even though the presence of the 's' flag there would
632 mean VM_MAYSHARE, which means the mapping could still be private.
633 This should work OK enough, however. */
634
635 static int
636 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
637 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
638 const char *filename)
639 {
640 /* Initially, we trust in what we received from our caller. This
641 value may not be very precise (i.e., it was probably gathered
642 from the permission line in the /proc/PID/smaps list, which
643 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
644 what we have until we take a look at the "VmFlags:" field
645 (assuming that the version of the Linux kernel being used
646 supports it, of course). */
647 int private_p = maybe_private_p;
648
649 /* We always dump vDSO and vsyscall mappings, because it's likely that
650 there'll be no file to read the contents from at core load time.
651 The kernel does the same. */
652 if (strcmp ("[vdso]", filename) == 0
653 || strcmp ("[vsyscall]", filename) == 0)
654 return 1;
655
656 if (v->initialized_p)
657 {
658 /* We never dump I/O mappings. */
659 if (v->io_page)
660 return 0;
661
662 /* Check if we should exclude this mapping. */
663 if (!dump_excluded_mappings && v->exclude_coredump)
664 return 0;
665
666 /* Update our notion of whether this mapping is shared or
667 private based on a trustworthy value. */
668 private_p = !v->shared_mapping;
669
670 /* HugeTLB checking. */
671 if (v->uses_huge_tlb)
672 {
673 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
674 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
675 return 1;
676
677 return 0;
678 }
679 }
680
681 if (private_p)
682 {
683 if (mapping_anon_p && mapping_file_p)
684 {
685 /* This is a special situation. It can happen when we see a
686 mapping that is file-backed, but that contains anonymous
687 pages. */
688 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
689 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
690 }
691 else if (mapping_anon_p)
692 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
693 else
694 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
695 }
696 else
697 {
698 if (mapping_anon_p && mapping_file_p)
699 {
700 /* This is a special situation. It can happen when we see a
701 mapping that is file-backed, but that contains anonymous
702 pages. */
703 return ((filterflags & COREFILTER_ANON_SHARED) != 0
704 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
705 }
706 else if (mapping_anon_p)
707 return (filterflags & COREFILTER_ANON_SHARED) != 0;
708 else
709 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
710 }
711 }
712
713 /* Implement the "info proc" command. */
714
715 static void
716 linux_info_proc (struct gdbarch *gdbarch, const char *args,
717 enum info_proc_what what)
718 {
719 /* A long is used for pid instead of an int to avoid a loss of precision
720 compiler warning from the output of strtoul. */
721 long pid;
722 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
723 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
724 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
725 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
726 int status_f = (what == IP_STATUS || what == IP_ALL);
727 int stat_f = (what == IP_STAT || what == IP_ALL);
728 char filename[100];
729 int target_errno;
730
731 if (args && isdigit (args[0]))
732 {
733 char *tem;
734
735 pid = strtoul (args, &tem, 10);
736 args = tem;
737 }
738 else
739 {
740 if (!target_has_execution)
741 error (_("No current process: you must name one."));
742 if (current_inferior ()->fake_pid_p)
743 error (_("Can't determine the current process's PID: you must name one."));
744
745 pid = current_inferior ()->pid;
746 }
747
748 args = skip_spaces (args);
749 if (args && args[0])
750 error (_("Too many parameters: %s"), args);
751
752 printf_filtered (_("process %ld\n"), pid);
753 if (cmdline_f)
754 {
755 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
756 gdb_byte *buffer;
757 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
758
759 if (len > 0)
760 {
761 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
762 ssize_t pos;
763
764 for (pos = 0; pos < len - 1; pos++)
765 {
766 if (buffer[pos] == '\0')
767 buffer[pos] = ' ';
768 }
769 buffer[len - 1] = '\0';
770 printf_filtered ("cmdline = '%s'\n", buffer);
771 }
772 else
773 warning (_("unable to open /proc file '%s'"), filename);
774 }
775 if (cwd_f)
776 {
777 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
778 gdb::optional<std::string> contents
779 = target_fileio_readlink (NULL, filename, &target_errno);
780 if (contents.has_value ())
781 printf_filtered ("cwd = '%s'\n", contents->c_str ());
782 else
783 warning (_("unable to read link '%s'"), filename);
784 }
785 if (exe_f)
786 {
787 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
788 gdb::optional<std::string> contents
789 = target_fileio_readlink (NULL, filename, &target_errno);
790 if (contents.has_value ())
791 printf_filtered ("exe = '%s'\n", contents->c_str ());
792 else
793 warning (_("unable to read link '%s'"), filename);
794 }
795 if (mappings_f)
796 {
797 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
798 gdb::unique_xmalloc_ptr<char> map
799 = target_fileio_read_stralloc (NULL, filename);
800 if (map != NULL)
801 {
802 char *line;
803
804 printf_filtered (_("Mapped address spaces:\n\n"));
805 if (gdbarch_addr_bit (gdbarch) == 32)
806 {
807 printf_filtered ("\t%10s %10s %10s %10s %s\n",
808 "Start Addr",
809 " End Addr",
810 " Size", " Offset", "objfile");
811 }
812 else
813 {
814 printf_filtered (" %18s %18s %10s %10s %s\n",
815 "Start Addr",
816 " End Addr",
817 " Size", " Offset", "objfile");
818 }
819
820 for (line = strtok (map.get (), "\n");
821 line;
822 line = strtok (NULL, "\n"))
823 {
824 ULONGEST addr, endaddr, offset, inode;
825 const char *permissions, *device, *mapping_filename;
826 size_t permissions_len, device_len;
827
828 read_mapping (line, &addr, &endaddr,
829 &permissions, &permissions_len,
830 &offset, &device, &device_len,
831 &inode, &mapping_filename);
832
833 if (gdbarch_addr_bit (gdbarch) == 32)
834 {
835 printf_filtered ("\t%10s %10s %10s %10s %s\n",
836 paddress (gdbarch, addr),
837 paddress (gdbarch, endaddr),
838 hex_string (endaddr - addr),
839 hex_string (offset),
840 *mapping_filename ? mapping_filename : "");
841 }
842 else
843 {
844 printf_filtered (" %18s %18s %10s %10s %s\n",
845 paddress (gdbarch, addr),
846 paddress (gdbarch, endaddr),
847 hex_string (endaddr - addr),
848 hex_string (offset),
849 *mapping_filename ? mapping_filename : "");
850 }
851 }
852 }
853 else
854 warning (_("unable to open /proc file '%s'"), filename);
855 }
856 if (status_f)
857 {
858 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
859 gdb::unique_xmalloc_ptr<char> status
860 = target_fileio_read_stralloc (NULL, filename);
861 if (status)
862 puts_filtered (status.get ());
863 else
864 warning (_("unable to open /proc file '%s'"), filename);
865 }
866 if (stat_f)
867 {
868 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
869 gdb::unique_xmalloc_ptr<char> statstr
870 = target_fileio_read_stralloc (NULL, filename);
871 if (statstr)
872 {
873 const char *p = statstr.get ();
874
875 printf_filtered (_("Process: %s\n"),
876 pulongest (strtoulst (p, &p, 10)));
877
878 p = skip_spaces (p);
879 if (*p == '(')
880 {
881 /* ps command also relies on no trailing fields
882 ever contain ')'. */
883 const char *ep = strrchr (p, ')');
884 if (ep != NULL)
885 {
886 printf_filtered ("Exec file: %.*s\n",
887 (int) (ep - p - 1), p + 1);
888 p = ep + 1;
889 }
890 }
891
892 p = skip_spaces (p);
893 if (*p)
894 printf_filtered (_("State: %c\n"), *p++);
895
896 if (*p)
897 printf_filtered (_("Parent process: %s\n"),
898 pulongest (strtoulst (p, &p, 10)));
899 if (*p)
900 printf_filtered (_("Process group: %s\n"),
901 pulongest (strtoulst (p, &p, 10)));
902 if (*p)
903 printf_filtered (_("Session id: %s\n"),
904 pulongest (strtoulst (p, &p, 10)));
905 if (*p)
906 printf_filtered (_("TTY: %s\n"),
907 pulongest (strtoulst (p, &p, 10)));
908 if (*p)
909 printf_filtered (_("TTY owner process group: %s\n"),
910 pulongest (strtoulst (p, &p, 10)));
911
912 if (*p)
913 printf_filtered (_("Flags: %s\n"),
914 hex_string (strtoulst (p, &p, 10)));
915 if (*p)
916 printf_filtered (_("Minor faults (no memory page): %s\n"),
917 pulongest (strtoulst (p, &p, 10)));
918 if (*p)
919 printf_filtered (_("Minor faults, children: %s\n"),
920 pulongest (strtoulst (p, &p, 10)));
921 if (*p)
922 printf_filtered (_("Major faults (memory page faults): %s\n"),
923 pulongest (strtoulst (p, &p, 10)));
924 if (*p)
925 printf_filtered (_("Major faults, children: %s\n"),
926 pulongest (strtoulst (p, &p, 10)));
927 if (*p)
928 printf_filtered (_("utime: %s\n"),
929 pulongest (strtoulst (p, &p, 10)));
930 if (*p)
931 printf_filtered (_("stime: %s\n"),
932 pulongest (strtoulst (p, &p, 10)));
933 if (*p)
934 printf_filtered (_("utime, children: %s\n"),
935 pulongest (strtoulst (p, &p, 10)));
936 if (*p)
937 printf_filtered (_("stime, children: %s\n"),
938 pulongest (strtoulst (p, &p, 10)));
939 if (*p)
940 printf_filtered (_("jiffies remaining in current "
941 "time slice: %s\n"),
942 pulongest (strtoulst (p, &p, 10)));
943 if (*p)
944 printf_filtered (_("'nice' value: %s\n"),
945 pulongest (strtoulst (p, &p, 10)));
946 if (*p)
947 printf_filtered (_("jiffies until next timeout: %s\n"),
948 pulongest (strtoulst (p, &p, 10)));
949 if (*p)
950 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
951 pulongest (strtoulst (p, &p, 10)));
952 if (*p)
953 printf_filtered (_("start time (jiffies since "
954 "system boot): %s\n"),
955 pulongest (strtoulst (p, &p, 10)));
956 if (*p)
957 printf_filtered (_("Virtual memory size: %s\n"),
958 pulongest (strtoulst (p, &p, 10)));
959 if (*p)
960 printf_filtered (_("Resident set size: %s\n"),
961 pulongest (strtoulst (p, &p, 10)));
962 if (*p)
963 printf_filtered (_("rlim: %s\n"),
964 pulongest (strtoulst (p, &p, 10)));
965 if (*p)
966 printf_filtered (_("Start of text: %s\n"),
967 hex_string (strtoulst (p, &p, 10)));
968 if (*p)
969 printf_filtered (_("End of text: %s\n"),
970 hex_string (strtoulst (p, &p, 10)));
971 if (*p)
972 printf_filtered (_("Start of stack: %s\n"),
973 hex_string (strtoulst (p, &p, 10)));
974 #if 0 /* Don't know how architecture-dependent the rest is...
975 Anyway the signal bitmap info is available from "status". */
976 if (*p)
977 printf_filtered (_("Kernel stack pointer: %s\n"),
978 hex_string (strtoulst (p, &p, 10)));
979 if (*p)
980 printf_filtered (_("Kernel instr pointer: %s\n"),
981 hex_string (strtoulst (p, &p, 10)));
982 if (*p)
983 printf_filtered (_("Pending signals bitmap: %s\n"),
984 hex_string (strtoulst (p, &p, 10)));
985 if (*p)
986 printf_filtered (_("Blocked signals bitmap: %s\n"),
987 hex_string (strtoulst (p, &p, 10)));
988 if (*p)
989 printf_filtered (_("Ignored signals bitmap: %s\n"),
990 hex_string (strtoulst (p, &p, 10)));
991 if (*p)
992 printf_filtered (_("Catched signals bitmap: %s\n"),
993 hex_string (strtoulst (p, &p, 10)));
994 if (*p)
995 printf_filtered (_("wchan (system call): %s\n"),
996 hex_string (strtoulst (p, &p, 10)));
997 #endif
998 }
999 else
1000 warning (_("unable to open /proc file '%s'"), filename);
1001 }
1002 }
1003
1004 /* Implement "info proc mappings" for a corefile. */
1005
1006 static void
1007 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1008 {
1009 asection *section;
1010 ULONGEST count, page_size;
1011 unsigned char *descdata, *filenames, *descend;
1012 size_t note_size;
1013 unsigned int addr_size_bits, addr_size;
1014 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1015 /* We assume this for reading 64-bit core files. */
1016 gdb_static_assert (sizeof (ULONGEST) >= 8);
1017
1018 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1019 if (section == NULL)
1020 {
1021 warning (_("unable to find mappings in core file"));
1022 return;
1023 }
1024
1025 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1026 addr_size = addr_size_bits / 8;
1027 note_size = bfd_get_section_size (section);
1028
1029 if (note_size < 2 * addr_size)
1030 error (_("malformed core note - too short for header"));
1031
1032 gdb::def_vector<unsigned char> contents (note_size);
1033 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1034 0, note_size))
1035 error (_("could not get core note contents"));
1036
1037 descdata = contents.data ();
1038 descend = descdata + note_size;
1039
1040 if (descdata[note_size - 1] != '\0')
1041 error (_("malformed note - does not end with \\0"));
1042
1043 count = bfd_get (addr_size_bits, core_bfd, descdata);
1044 descdata += addr_size;
1045
1046 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1047 descdata += addr_size;
1048
1049 if (note_size < 2 * addr_size + count * 3 * addr_size)
1050 error (_("malformed note - too short for supplied file count"));
1051
1052 printf_filtered (_("Mapped address spaces:\n\n"));
1053 if (gdbarch_addr_bit (gdbarch) == 32)
1054 {
1055 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1056 "Start Addr",
1057 " End Addr",
1058 " Size", " Offset", "objfile");
1059 }
1060 else
1061 {
1062 printf_filtered (" %18s %18s %10s %10s %s\n",
1063 "Start Addr",
1064 " End Addr",
1065 " Size", " Offset", "objfile");
1066 }
1067
1068 filenames = descdata + count * 3 * addr_size;
1069 while (--count > 0)
1070 {
1071 ULONGEST start, end, file_ofs;
1072
1073 if (filenames == descend)
1074 error (_("malformed note - filenames end too early"));
1075
1076 start = bfd_get (addr_size_bits, core_bfd, descdata);
1077 descdata += addr_size;
1078 end = bfd_get (addr_size_bits, core_bfd, descdata);
1079 descdata += addr_size;
1080 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1081 descdata += addr_size;
1082
1083 file_ofs *= page_size;
1084
1085 if (gdbarch_addr_bit (gdbarch) == 32)
1086 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1087 paddress (gdbarch, start),
1088 paddress (gdbarch, end),
1089 hex_string (end - start),
1090 hex_string (file_ofs),
1091 filenames);
1092 else
1093 printf_filtered (" %18s %18s %10s %10s %s\n",
1094 paddress (gdbarch, start),
1095 paddress (gdbarch, end),
1096 hex_string (end - start),
1097 hex_string (file_ofs),
1098 filenames);
1099
1100 filenames += 1 + strlen ((char *) filenames);
1101 }
1102 }
1103
1104 /* Implement "info proc" for a corefile. */
1105
1106 static void
1107 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1108 enum info_proc_what what)
1109 {
1110 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1111 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1112
1113 if (exe_f)
1114 {
1115 const char *exe;
1116
1117 exe = bfd_core_file_failing_command (core_bfd);
1118 if (exe != NULL)
1119 printf_filtered ("exe = '%s'\n", exe);
1120 else
1121 warning (_("unable to find command name in core file"));
1122 }
1123
1124 if (mappings_f)
1125 linux_core_info_proc_mappings (gdbarch, args);
1126
1127 if (!exe_f && !mappings_f)
1128 error (_("unable to handle request"));
1129 }
1130
1131 /* Read siginfo data from the core, if possible. Returns -1 on
1132 failure. Otherwise, returns the number of bytes read. READBUF,
1133 OFFSET, and LEN are all as specified by the to_xfer_partial
1134 interface. */
1135
1136 static LONGEST
1137 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1138 ULONGEST offset, ULONGEST len)
1139 {
1140 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1141 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1142 if (section == NULL)
1143 return -1;
1144
1145 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1146 return -1;
1147
1148 return len;
1149 }
1150
1151 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1152 ULONGEST offset, ULONGEST inode,
1153 int read, int write,
1154 int exec, int modified,
1155 const char *filename,
1156 void *data);
1157
1158 /* List memory regions in the inferior for a corefile. */
1159
1160 static int
1161 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1162 linux_find_memory_region_ftype *func,
1163 void *obfd)
1164 {
1165 char mapsfilename[100];
1166 char coredumpfilter_name[100];
1167 pid_t pid;
1168 /* Default dump behavior of coredump_filter (0x33), according to
1169 Documentation/filesystems/proc.txt from the Linux kernel
1170 tree. */
1171 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1172 | COREFILTER_ANON_SHARED
1173 | COREFILTER_ELF_HEADERS
1174 | COREFILTER_HUGETLB_PRIVATE);
1175
1176 /* We need to know the real target PID to access /proc. */
1177 if (current_inferior ()->fake_pid_p)
1178 return 1;
1179
1180 pid = current_inferior ()->pid;
1181
1182 if (use_coredump_filter)
1183 {
1184 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1185 "/proc/%d/coredump_filter", pid);
1186 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1187 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1188 if (coredumpfilterdata != NULL)
1189 {
1190 unsigned int flags;
1191
1192 sscanf (coredumpfilterdata.get (), "%x", &flags);
1193 filterflags = (enum filter_flag) flags;
1194 }
1195 }
1196
1197 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1198 gdb::unique_xmalloc_ptr<char> data
1199 = target_fileio_read_stralloc (NULL, mapsfilename);
1200 if (data == NULL)
1201 {
1202 /* Older Linux kernels did not support /proc/PID/smaps. */
1203 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1204 data = target_fileio_read_stralloc (NULL, mapsfilename);
1205 }
1206
1207 if (data != NULL)
1208 {
1209 char *line, *t;
1210
1211 line = strtok_r (data.get (), "\n", &t);
1212 while (line != NULL)
1213 {
1214 ULONGEST addr, endaddr, offset, inode;
1215 const char *permissions, *device, *filename;
1216 struct smaps_vmflags v;
1217 size_t permissions_len, device_len;
1218 int read, write, exec, priv;
1219 int has_anonymous = 0;
1220 int should_dump_p = 0;
1221 int mapping_anon_p;
1222 int mapping_file_p;
1223
1224 memset (&v, 0, sizeof (v));
1225 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1226 &offset, &device, &device_len, &inode, &filename);
1227 mapping_anon_p = mapping_is_anonymous_p (filename);
1228 /* If the mapping is not anonymous, then we can consider it
1229 to be file-backed. These two states (anonymous or
1230 file-backed) seem to be exclusive, but they can actually
1231 coexist. For example, if a file-backed mapping has
1232 "Anonymous:" pages (see more below), then the Linux
1233 kernel will dump this mapping when the user specified
1234 that she only wants anonymous mappings in the corefile
1235 (*even* when she explicitly disabled the dumping of
1236 file-backed mappings). */
1237 mapping_file_p = !mapping_anon_p;
1238
1239 /* Decode permissions. */
1240 read = (memchr (permissions, 'r', permissions_len) != 0);
1241 write = (memchr (permissions, 'w', permissions_len) != 0);
1242 exec = (memchr (permissions, 'x', permissions_len) != 0);
1243 /* 'private' here actually means VM_MAYSHARE, and not
1244 VM_SHARED. In order to know if a mapping is really
1245 private or not, we must check the flag "sh" in the
1246 VmFlags field. This is done by decode_vmflags. However,
1247 if we are using a Linux kernel released before the commit
1248 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1249 not have the VmFlags there. In this case, there is
1250 really no way to know if we are dealing with VM_SHARED,
1251 so we just assume that VM_MAYSHARE is enough. */
1252 priv = memchr (permissions, 'p', permissions_len) != 0;
1253
1254 /* Try to detect if region should be dumped by parsing smaps
1255 counters. */
1256 for (line = strtok_r (NULL, "\n", &t);
1257 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1258 line = strtok_r (NULL, "\n", &t))
1259 {
1260 char keyword[64 + 1];
1261
1262 if (sscanf (line, "%64s", keyword) != 1)
1263 {
1264 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1265 break;
1266 }
1267
1268 if (strcmp (keyword, "Anonymous:") == 0)
1269 {
1270 /* Older Linux kernels did not support the
1271 "Anonymous:" counter. Check it here. */
1272 has_anonymous = 1;
1273 }
1274 else if (strcmp (keyword, "VmFlags:") == 0)
1275 decode_vmflags (line, &v);
1276
1277 if (strcmp (keyword, "AnonHugePages:") == 0
1278 || strcmp (keyword, "Anonymous:") == 0)
1279 {
1280 unsigned long number;
1281
1282 if (sscanf (line, "%*s%lu", &number) != 1)
1283 {
1284 warning (_("Error parsing {s,}maps file '%s' number"),
1285 mapsfilename);
1286 break;
1287 }
1288 if (number > 0)
1289 {
1290 /* Even if we are dealing with a file-backed
1291 mapping, if it contains anonymous pages we
1292 consider it to be *also* an anonymous
1293 mapping, because this is what the Linux
1294 kernel does:
1295
1296 // Dump segments that have been written to.
1297 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1298 goto whole;
1299
1300 Note that if the mapping is already marked as
1301 file-backed (i.e., mapping_file_p is
1302 non-zero), then this is a special case, and
1303 this mapping will be dumped either when the
1304 user wants to dump file-backed *or* anonymous
1305 mappings. */
1306 mapping_anon_p = 1;
1307 }
1308 }
1309 }
1310
1311 if (has_anonymous)
1312 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1313 mapping_anon_p, mapping_file_p,
1314 filename);
1315 else
1316 {
1317 /* Older Linux kernels did not support the "Anonymous:" counter.
1318 If it is missing, we can't be sure - dump all the pages. */
1319 should_dump_p = 1;
1320 }
1321
1322 /* Invoke the callback function to create the corefile segment. */
1323 if (should_dump_p)
1324 func (addr, endaddr - addr, offset, inode,
1325 read, write, exec, 1, /* MODIFIED is true because we
1326 want to dump the mapping. */
1327 filename, obfd);
1328 }
1329
1330 return 0;
1331 }
1332
1333 return 1;
1334 }
1335
1336 /* A structure for passing information through
1337 linux_find_memory_regions_full. */
1338
1339 struct linux_find_memory_regions_data
1340 {
1341 /* The original callback. */
1342
1343 find_memory_region_ftype func;
1344
1345 /* The original datum. */
1346
1347 void *obfd;
1348 };
1349
1350 /* A callback for linux_find_memory_regions that converts between the
1351 "full"-style callback and find_memory_region_ftype. */
1352
1353 static int
1354 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1355 ULONGEST offset, ULONGEST inode,
1356 int read, int write, int exec, int modified,
1357 const char *filename, void *arg)
1358 {
1359 struct linux_find_memory_regions_data *data
1360 = (struct linux_find_memory_regions_data *) arg;
1361
1362 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1363 }
1364
1365 /* A variant of linux_find_memory_regions_full that is suitable as the
1366 gdbarch find_memory_regions method. */
1367
1368 static int
1369 linux_find_memory_regions (struct gdbarch *gdbarch,
1370 find_memory_region_ftype func, void *obfd)
1371 {
1372 struct linux_find_memory_regions_data data;
1373
1374 data.func = func;
1375 data.obfd = obfd;
1376
1377 return linux_find_memory_regions_full (gdbarch,
1378 linux_find_memory_regions_thunk,
1379 &data);
1380 }
1381
1382 /* Determine which signal stopped execution. */
1383
1384 static int
1385 find_signalled_thread (struct thread_info *info, void *data)
1386 {
1387 if (info->suspend.stop_signal != GDB_SIGNAL_0
1388 && info->ptid.pid () == inferior_ptid.pid ())
1389 return 1;
1390
1391 return 0;
1392 }
1393
1394 /* Generate corefile notes for SPU contexts. */
1395
1396 static char *
1397 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1398 {
1399 static const char *spu_files[] =
1400 {
1401 "object-id",
1402 "mem",
1403 "regs",
1404 "fpcr",
1405 "lslr",
1406 "decr",
1407 "decr_status",
1408 "signal1",
1409 "signal1_type",
1410 "signal2",
1411 "signal2_type",
1412 "event_mask",
1413 "event_status",
1414 "mbox_info",
1415 "ibox_info",
1416 "wbox_info",
1417 "dma_info",
1418 "proxydma_info",
1419 };
1420
1421 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1422
1423 /* Determine list of SPU ids. */
1424 gdb::optional<gdb::byte_vector>
1425 spu_ids = target_read_alloc (current_top_target (),
1426 TARGET_OBJECT_SPU, NULL);
1427
1428 if (!spu_ids)
1429 return note_data;
1430
1431 /* Generate corefile notes for each SPU file. */
1432 for (size_t i = 0; i < spu_ids->size (); i += 4)
1433 {
1434 int fd = extract_unsigned_integer (spu_ids->data () + i, 4, byte_order);
1435
1436 for (size_t j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1437 {
1438 char annex[32], note_name[32];
1439
1440 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1441 gdb::optional<gdb::byte_vector> spu_data
1442 = target_read_alloc (current_top_target (), TARGET_OBJECT_SPU, annex);
1443
1444 if (spu_data && !spu_data->empty ())
1445 {
1446 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1447 note_data = elfcore_write_note (obfd, note_data, note_size,
1448 note_name, NT_SPU,
1449 spu_data->data (),
1450 spu_data->size ());
1451
1452 if (!note_data)
1453 return nullptr;
1454 }
1455 }
1456 }
1457
1458 return note_data;
1459 }
1460
1461 /* This is used to pass information from
1462 linux_make_mappings_corefile_notes through
1463 linux_find_memory_regions_full. */
1464
1465 struct linux_make_mappings_data
1466 {
1467 /* Number of files mapped. */
1468 ULONGEST file_count;
1469
1470 /* The obstack for the main part of the data. */
1471 struct obstack *data_obstack;
1472
1473 /* The filename obstack. */
1474 struct obstack *filename_obstack;
1475
1476 /* The architecture's "long" type. */
1477 struct type *long_type;
1478 };
1479
1480 static linux_find_memory_region_ftype linux_make_mappings_callback;
1481
1482 /* A callback for linux_find_memory_regions_full that updates the
1483 mappings data for linux_make_mappings_corefile_notes. */
1484
1485 static int
1486 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1487 ULONGEST offset, ULONGEST inode,
1488 int read, int write, int exec, int modified,
1489 const char *filename, void *data)
1490 {
1491 struct linux_make_mappings_data *map_data
1492 = (struct linux_make_mappings_data *) data;
1493 gdb_byte buf[sizeof (ULONGEST)];
1494
1495 if (*filename == '\0' || inode == 0)
1496 return 0;
1497
1498 ++map_data->file_count;
1499
1500 pack_long (buf, map_data->long_type, vaddr);
1501 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1502 pack_long (buf, map_data->long_type, vaddr + size);
1503 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1504 pack_long (buf, map_data->long_type, offset);
1505 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1506
1507 obstack_grow_str0 (map_data->filename_obstack, filename);
1508
1509 return 0;
1510 }
1511
1512 /* Write the file mapping data to the core file, if possible. OBFD is
1513 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1514 is a pointer to the note size. Returns the new NOTE_DATA and
1515 updates NOTE_SIZE. */
1516
1517 static char *
1518 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1519 char *note_data, int *note_size)
1520 {
1521 struct linux_make_mappings_data mapping_data;
1522 struct type *long_type
1523 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1524 gdb_byte buf[sizeof (ULONGEST)];
1525
1526 auto_obstack data_obstack, filename_obstack;
1527
1528 mapping_data.file_count = 0;
1529 mapping_data.data_obstack = &data_obstack;
1530 mapping_data.filename_obstack = &filename_obstack;
1531 mapping_data.long_type = long_type;
1532
1533 /* Reserve space for the count. */
1534 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1535 /* We always write the page size as 1 since we have no good way to
1536 determine the correct value. */
1537 pack_long (buf, long_type, 1);
1538 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1539
1540 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1541 &mapping_data);
1542
1543 if (mapping_data.file_count != 0)
1544 {
1545 /* Write the count to the obstack. */
1546 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1547 long_type, mapping_data.file_count);
1548
1549 /* Copy the filenames to the data obstack. */
1550 int size = obstack_object_size (&filename_obstack);
1551 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1552 size);
1553
1554 note_data = elfcore_write_note (obfd, note_data, note_size,
1555 "CORE", NT_FILE,
1556 obstack_base (&data_obstack),
1557 obstack_object_size (&data_obstack));
1558 }
1559
1560 return note_data;
1561 }
1562
1563 /* Structure for passing information from
1564 linux_collect_thread_registers via an iterator to
1565 linux_collect_regset_section_cb. */
1566
1567 struct linux_collect_regset_section_cb_data
1568 {
1569 struct gdbarch *gdbarch;
1570 const struct regcache *regcache;
1571 bfd *obfd;
1572 char *note_data;
1573 int *note_size;
1574 unsigned long lwp;
1575 enum gdb_signal stop_signal;
1576 int abort_iteration;
1577 };
1578
1579 /* Callback for iterate_over_regset_sections that records a single
1580 regset in the corefile note section. */
1581
1582 static void
1583 linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1584 int collect_size, const struct regset *regset,
1585 const char *human_name, void *cb_data)
1586 {
1587 struct linux_collect_regset_section_cb_data *data
1588 = (struct linux_collect_regset_section_cb_data *) cb_data;
1589 bool variable_size_section = (regset != NULL
1590 && regset->flags & REGSET_VARIABLE_SIZE);
1591
1592 if (!variable_size_section)
1593 gdb_assert (supply_size == collect_size);
1594
1595 if (data->abort_iteration)
1596 return;
1597
1598 gdb_assert (regset && regset->collect_regset);
1599
1600 /* This is intentionally zero-initialized by using std::vector, so
1601 that any padding bytes in the core file will show as 0. */
1602 std::vector<gdb_byte> buf (collect_size);
1603
1604 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1605 collect_size);
1606
1607 /* PRSTATUS still needs to be treated specially. */
1608 if (strcmp (sect_name, ".reg") == 0)
1609 data->note_data = (char *) elfcore_write_prstatus
1610 (data->obfd, data->note_data, data->note_size, data->lwp,
1611 gdb_signal_to_host (data->stop_signal), buf.data ());
1612 else
1613 data->note_data = (char *) elfcore_write_register_note
1614 (data->obfd, data->note_data, data->note_size,
1615 sect_name, buf.data (), collect_size);
1616
1617 if (data->note_data == NULL)
1618 data->abort_iteration = 1;
1619 }
1620
1621 /* Records the thread's register state for the corefile note
1622 section. */
1623
1624 static char *
1625 linux_collect_thread_registers (const struct regcache *regcache,
1626 ptid_t ptid, bfd *obfd,
1627 char *note_data, int *note_size,
1628 enum gdb_signal stop_signal)
1629 {
1630 struct gdbarch *gdbarch = regcache->arch ();
1631 struct linux_collect_regset_section_cb_data data;
1632
1633 data.gdbarch = gdbarch;
1634 data.regcache = regcache;
1635 data.obfd = obfd;
1636 data.note_data = note_data;
1637 data.note_size = note_size;
1638 data.stop_signal = stop_signal;
1639 data.abort_iteration = 0;
1640
1641 /* For remote targets the LWP may not be available, so use the TID. */
1642 data.lwp = ptid.lwp ();
1643 if (!data.lwp)
1644 data.lwp = ptid.tid ();
1645
1646 gdbarch_iterate_over_regset_sections (gdbarch,
1647 linux_collect_regset_section_cb,
1648 &data, regcache);
1649 return data.note_data;
1650 }
1651
1652 /* Fetch the siginfo data for the specified thread, if it exists. If
1653 there is no data, or we could not read it, return an empty
1654 buffer. */
1655
1656 static gdb::byte_vector
1657 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1658 {
1659 struct type *siginfo_type;
1660 LONGEST bytes_read;
1661
1662 if (!gdbarch_get_siginfo_type_p (gdbarch))
1663 return gdb::byte_vector ();
1664
1665 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1666 inferior_ptid = thread->ptid;
1667
1668 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1669
1670 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1671
1672 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1673 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1674 if (bytes_read != TYPE_LENGTH (siginfo_type))
1675 buf.clear ();
1676
1677 return buf;
1678 }
1679
1680 struct linux_corefile_thread_data
1681 {
1682 struct gdbarch *gdbarch;
1683 bfd *obfd;
1684 char *note_data;
1685 int *note_size;
1686 enum gdb_signal stop_signal;
1687 };
1688
1689 /* Records the thread's register state for the corefile note
1690 section. */
1691
1692 static void
1693 linux_corefile_thread (struct thread_info *info,
1694 struct linux_corefile_thread_data *args)
1695 {
1696 struct regcache *regcache;
1697
1698 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1699
1700 target_fetch_registers (regcache, -1);
1701 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1702
1703 args->note_data = linux_collect_thread_registers
1704 (regcache, info->ptid, args->obfd, args->note_data,
1705 args->note_size, args->stop_signal);
1706
1707 /* Don't return anything if we got no register information above,
1708 such a core file is useless. */
1709 if (args->note_data != NULL)
1710 if (!siginfo_data.empty ())
1711 args->note_data = elfcore_write_note (args->obfd,
1712 args->note_data,
1713 args->note_size,
1714 "CORE", NT_SIGINFO,
1715 siginfo_data.data (),
1716 siginfo_data.size ());
1717 }
1718
1719 /* Fill the PRPSINFO structure with information about the process being
1720 debugged. Returns 1 in case of success, 0 for failures. Please note that
1721 even if the structure cannot be entirely filled (e.g., GDB was unable to
1722 gather information about the process UID/GID), this function will still
1723 return 1 since some information was already recorded. It will only return
1724 0 iff nothing can be gathered. */
1725
1726 static int
1727 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1728 {
1729 /* The filename which we will use to obtain some info about the process.
1730 We will basically use this to store the `/proc/PID/FILENAME' file. */
1731 char filename[100];
1732 /* The basename of the executable. */
1733 const char *basename;
1734 const char *infargs;
1735 /* Temporary buffer. */
1736 char *tmpstr;
1737 /* The valid states of a process, according to the Linux kernel. */
1738 const char valid_states[] = "RSDTZW";
1739 /* The program state. */
1740 const char *prog_state;
1741 /* The state of the process. */
1742 char pr_sname;
1743 /* The PID of the program which generated the corefile. */
1744 pid_t pid;
1745 /* Process flags. */
1746 unsigned int pr_flag;
1747 /* Process nice value. */
1748 long pr_nice;
1749 /* The number of fields read by `sscanf'. */
1750 int n_fields = 0;
1751
1752 gdb_assert (p != NULL);
1753
1754 /* Obtaining PID and filename. */
1755 pid = inferior_ptid.pid ();
1756 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1757 /* The full name of the program which generated the corefile. */
1758 gdb::unique_xmalloc_ptr<char> fname
1759 = target_fileio_read_stralloc (NULL, filename);
1760
1761 if (fname == NULL || fname.get ()[0] == '\0')
1762 {
1763 /* No program name was read, so we won't be able to retrieve more
1764 information about the process. */
1765 return 0;
1766 }
1767
1768 memset (p, 0, sizeof (*p));
1769
1770 /* Defining the PID. */
1771 p->pr_pid = pid;
1772
1773 /* Copying the program name. Only the basename matters. */
1774 basename = lbasename (fname.get ());
1775 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1776 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1777
1778 infargs = get_inferior_args ();
1779
1780 /* The arguments of the program. */
1781 std::string psargs = fname.get ();
1782 if (infargs != NULL)
1783 psargs = psargs + " " + infargs;
1784
1785 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
1786 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1787
1788 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1789 /* The contents of `/proc/PID/stat'. */
1790 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1791 = target_fileio_read_stralloc (NULL, filename);
1792 char *proc_stat = proc_stat_contents.get ();
1793
1794 if (proc_stat == NULL || *proc_stat == '\0')
1795 {
1796 /* Despite being unable to read more information about the
1797 process, we return 1 here because at least we have its
1798 command line, PID and arguments. */
1799 return 1;
1800 }
1801
1802 /* Ok, we have the stats. It's time to do a little parsing of the
1803 contents of the buffer, so that we end up reading what we want.
1804
1805 The following parsing mechanism is strongly based on the
1806 information generated by the `fs/proc/array.c' file, present in
1807 the Linux kernel tree. More details about how the information is
1808 displayed can be obtained by seeing the manpage of proc(5),
1809 specifically under the entry of `/proc/[pid]/stat'. */
1810
1811 /* Getting rid of the PID, since we already have it. */
1812 while (isdigit (*proc_stat))
1813 ++proc_stat;
1814
1815 proc_stat = skip_spaces (proc_stat);
1816
1817 /* ps command also relies on no trailing fields ever contain ')'. */
1818 proc_stat = strrchr (proc_stat, ')');
1819 if (proc_stat == NULL)
1820 return 1;
1821 proc_stat++;
1822
1823 proc_stat = skip_spaces (proc_stat);
1824
1825 n_fields = sscanf (proc_stat,
1826 "%c" /* Process state. */
1827 "%d%d%d" /* Parent PID, group ID, session ID. */
1828 "%*d%*d" /* tty_nr, tpgid (not used). */
1829 "%u" /* Flags. */
1830 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1831 cmajflt (not used). */
1832 "%*s%*s%*s%*s" /* utime, stime, cutime,
1833 cstime (not used). */
1834 "%*s" /* Priority (not used). */
1835 "%ld", /* Nice. */
1836 &pr_sname,
1837 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1838 &pr_flag,
1839 &pr_nice);
1840
1841 if (n_fields != 6)
1842 {
1843 /* Again, we couldn't read the complementary information about
1844 the process state. However, we already have minimal
1845 information, so we just return 1 here. */
1846 return 1;
1847 }
1848
1849 /* Filling the structure fields. */
1850 prog_state = strchr (valid_states, pr_sname);
1851 if (prog_state != NULL)
1852 p->pr_state = prog_state - valid_states;
1853 else
1854 {
1855 /* Zero means "Running". */
1856 p->pr_state = 0;
1857 }
1858
1859 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1860 p->pr_zomb = p->pr_sname == 'Z';
1861 p->pr_nice = pr_nice;
1862 p->pr_flag = pr_flag;
1863
1864 /* Finally, obtaining the UID and GID. For that, we read and parse the
1865 contents of the `/proc/PID/status' file. */
1866 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1867 /* The contents of `/proc/PID/status'. */
1868 gdb::unique_xmalloc_ptr<char> proc_status_contents
1869 = target_fileio_read_stralloc (NULL, filename);
1870 char *proc_status = proc_status_contents.get ();
1871
1872 if (proc_status == NULL || *proc_status == '\0')
1873 {
1874 /* Returning 1 since we already have a bunch of information. */
1875 return 1;
1876 }
1877
1878 /* Extracting the UID. */
1879 tmpstr = strstr (proc_status, "Uid:");
1880 if (tmpstr != NULL)
1881 {
1882 /* Advancing the pointer to the beginning of the UID. */
1883 tmpstr += sizeof ("Uid:");
1884 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1885 ++tmpstr;
1886
1887 if (isdigit (*tmpstr))
1888 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1889 }
1890
1891 /* Extracting the GID. */
1892 tmpstr = strstr (proc_status, "Gid:");
1893 if (tmpstr != NULL)
1894 {
1895 /* Advancing the pointer to the beginning of the GID. */
1896 tmpstr += sizeof ("Gid:");
1897 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1898 ++tmpstr;
1899
1900 if (isdigit (*tmpstr))
1901 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1902 }
1903
1904 return 1;
1905 }
1906
1907 /* Build the note section for a corefile, and return it in a malloc
1908 buffer. */
1909
1910 static char *
1911 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1912 {
1913 struct linux_corefile_thread_data thread_args;
1914 struct elf_internal_linux_prpsinfo prpsinfo;
1915 char *note_data = NULL;
1916 struct thread_info *curr_thr, *signalled_thr, *thr;
1917
1918 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1919 return NULL;
1920
1921 if (linux_fill_prpsinfo (&prpsinfo))
1922 {
1923 if (gdbarch_ptr_bit (gdbarch) == 64)
1924 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1925 note_data, note_size,
1926 &prpsinfo);
1927 else
1928 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1929 note_data, note_size,
1930 &prpsinfo);
1931 }
1932
1933 /* Thread register information. */
1934 TRY
1935 {
1936 update_thread_list ();
1937 }
1938 CATCH (e, RETURN_MASK_ERROR)
1939 {
1940 exception_print (gdb_stderr, e);
1941 }
1942 END_CATCH
1943
1944 /* Like the kernel, prefer dumping the signalled thread first.
1945 "First thread" is what tools use to infer the signalled thread.
1946 In case there's more than one signalled thread, prefer the
1947 current thread, if it is signalled. */
1948 curr_thr = inferior_thread ();
1949 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1950 signalled_thr = curr_thr;
1951 else
1952 {
1953 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1954 if (signalled_thr == NULL)
1955 signalled_thr = curr_thr;
1956 }
1957
1958 thread_args.gdbarch = gdbarch;
1959 thread_args.obfd = obfd;
1960 thread_args.note_data = note_data;
1961 thread_args.note_size = note_size;
1962 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1963
1964 linux_corefile_thread (signalled_thr, &thread_args);
1965 ALL_NON_EXITED_THREADS (thr)
1966 {
1967 if (thr == signalled_thr)
1968 continue;
1969 if (thr->ptid.pid () != inferior_ptid.pid ())
1970 continue;
1971
1972 linux_corefile_thread (thr, &thread_args);
1973 }
1974
1975 note_data = thread_args.note_data;
1976 if (!note_data)
1977 return NULL;
1978
1979 /* Auxillary vector. */
1980 gdb::optional<gdb::byte_vector> auxv =
1981 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
1982 if (auxv && !auxv->empty ())
1983 {
1984 note_data = elfcore_write_note (obfd, note_data, note_size,
1985 "CORE", NT_AUXV, auxv->data (),
1986 auxv->size ());
1987
1988 if (!note_data)
1989 return NULL;
1990 }
1991
1992 /* SPU information. */
1993 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
1994 if (!note_data)
1995 return NULL;
1996
1997 /* File mappings. */
1998 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1999 note_data, note_size);
2000
2001 return note_data;
2002 }
2003
2004 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2005 gdbarch.h. This function is not static because it is exported to
2006 other -tdep files. */
2007
2008 enum gdb_signal
2009 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2010 {
2011 switch (signal)
2012 {
2013 case 0:
2014 return GDB_SIGNAL_0;
2015
2016 case LINUX_SIGHUP:
2017 return GDB_SIGNAL_HUP;
2018
2019 case LINUX_SIGINT:
2020 return GDB_SIGNAL_INT;
2021
2022 case LINUX_SIGQUIT:
2023 return GDB_SIGNAL_QUIT;
2024
2025 case LINUX_SIGILL:
2026 return GDB_SIGNAL_ILL;
2027
2028 case LINUX_SIGTRAP:
2029 return GDB_SIGNAL_TRAP;
2030
2031 case LINUX_SIGABRT:
2032 return GDB_SIGNAL_ABRT;
2033
2034 case LINUX_SIGBUS:
2035 return GDB_SIGNAL_BUS;
2036
2037 case LINUX_SIGFPE:
2038 return GDB_SIGNAL_FPE;
2039
2040 case LINUX_SIGKILL:
2041 return GDB_SIGNAL_KILL;
2042
2043 case LINUX_SIGUSR1:
2044 return GDB_SIGNAL_USR1;
2045
2046 case LINUX_SIGSEGV:
2047 return GDB_SIGNAL_SEGV;
2048
2049 case LINUX_SIGUSR2:
2050 return GDB_SIGNAL_USR2;
2051
2052 case LINUX_SIGPIPE:
2053 return GDB_SIGNAL_PIPE;
2054
2055 case LINUX_SIGALRM:
2056 return GDB_SIGNAL_ALRM;
2057
2058 case LINUX_SIGTERM:
2059 return GDB_SIGNAL_TERM;
2060
2061 case LINUX_SIGCHLD:
2062 return GDB_SIGNAL_CHLD;
2063
2064 case LINUX_SIGCONT:
2065 return GDB_SIGNAL_CONT;
2066
2067 case LINUX_SIGSTOP:
2068 return GDB_SIGNAL_STOP;
2069
2070 case LINUX_SIGTSTP:
2071 return GDB_SIGNAL_TSTP;
2072
2073 case LINUX_SIGTTIN:
2074 return GDB_SIGNAL_TTIN;
2075
2076 case LINUX_SIGTTOU:
2077 return GDB_SIGNAL_TTOU;
2078
2079 case LINUX_SIGURG:
2080 return GDB_SIGNAL_URG;
2081
2082 case LINUX_SIGXCPU:
2083 return GDB_SIGNAL_XCPU;
2084
2085 case LINUX_SIGXFSZ:
2086 return GDB_SIGNAL_XFSZ;
2087
2088 case LINUX_SIGVTALRM:
2089 return GDB_SIGNAL_VTALRM;
2090
2091 case LINUX_SIGPROF:
2092 return GDB_SIGNAL_PROF;
2093
2094 case LINUX_SIGWINCH:
2095 return GDB_SIGNAL_WINCH;
2096
2097 /* No way to differentiate between SIGIO and SIGPOLL.
2098 Therefore, we just handle the first one. */
2099 case LINUX_SIGIO:
2100 return GDB_SIGNAL_IO;
2101
2102 case LINUX_SIGPWR:
2103 return GDB_SIGNAL_PWR;
2104
2105 case LINUX_SIGSYS:
2106 return GDB_SIGNAL_SYS;
2107
2108 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2109 therefore we have to handle them here. */
2110 case LINUX_SIGRTMIN:
2111 return GDB_SIGNAL_REALTIME_32;
2112
2113 case LINUX_SIGRTMAX:
2114 return GDB_SIGNAL_REALTIME_64;
2115 }
2116
2117 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2118 {
2119 int offset = signal - LINUX_SIGRTMIN + 1;
2120
2121 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2122 }
2123
2124 return GDB_SIGNAL_UNKNOWN;
2125 }
2126
2127 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2128 gdbarch.h. This function is not static because it is exported to
2129 other -tdep files. */
2130
2131 int
2132 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2133 enum gdb_signal signal)
2134 {
2135 switch (signal)
2136 {
2137 case GDB_SIGNAL_0:
2138 return 0;
2139
2140 case GDB_SIGNAL_HUP:
2141 return LINUX_SIGHUP;
2142
2143 case GDB_SIGNAL_INT:
2144 return LINUX_SIGINT;
2145
2146 case GDB_SIGNAL_QUIT:
2147 return LINUX_SIGQUIT;
2148
2149 case GDB_SIGNAL_ILL:
2150 return LINUX_SIGILL;
2151
2152 case GDB_SIGNAL_TRAP:
2153 return LINUX_SIGTRAP;
2154
2155 case GDB_SIGNAL_ABRT:
2156 return LINUX_SIGABRT;
2157
2158 case GDB_SIGNAL_FPE:
2159 return LINUX_SIGFPE;
2160
2161 case GDB_SIGNAL_KILL:
2162 return LINUX_SIGKILL;
2163
2164 case GDB_SIGNAL_BUS:
2165 return LINUX_SIGBUS;
2166
2167 case GDB_SIGNAL_SEGV:
2168 return LINUX_SIGSEGV;
2169
2170 case GDB_SIGNAL_SYS:
2171 return LINUX_SIGSYS;
2172
2173 case GDB_SIGNAL_PIPE:
2174 return LINUX_SIGPIPE;
2175
2176 case GDB_SIGNAL_ALRM:
2177 return LINUX_SIGALRM;
2178
2179 case GDB_SIGNAL_TERM:
2180 return LINUX_SIGTERM;
2181
2182 case GDB_SIGNAL_URG:
2183 return LINUX_SIGURG;
2184
2185 case GDB_SIGNAL_STOP:
2186 return LINUX_SIGSTOP;
2187
2188 case GDB_SIGNAL_TSTP:
2189 return LINUX_SIGTSTP;
2190
2191 case GDB_SIGNAL_CONT:
2192 return LINUX_SIGCONT;
2193
2194 case GDB_SIGNAL_CHLD:
2195 return LINUX_SIGCHLD;
2196
2197 case GDB_SIGNAL_TTIN:
2198 return LINUX_SIGTTIN;
2199
2200 case GDB_SIGNAL_TTOU:
2201 return LINUX_SIGTTOU;
2202
2203 case GDB_SIGNAL_IO:
2204 return LINUX_SIGIO;
2205
2206 case GDB_SIGNAL_XCPU:
2207 return LINUX_SIGXCPU;
2208
2209 case GDB_SIGNAL_XFSZ:
2210 return LINUX_SIGXFSZ;
2211
2212 case GDB_SIGNAL_VTALRM:
2213 return LINUX_SIGVTALRM;
2214
2215 case GDB_SIGNAL_PROF:
2216 return LINUX_SIGPROF;
2217
2218 case GDB_SIGNAL_WINCH:
2219 return LINUX_SIGWINCH;
2220
2221 case GDB_SIGNAL_USR1:
2222 return LINUX_SIGUSR1;
2223
2224 case GDB_SIGNAL_USR2:
2225 return LINUX_SIGUSR2;
2226
2227 case GDB_SIGNAL_PWR:
2228 return LINUX_SIGPWR;
2229
2230 case GDB_SIGNAL_POLL:
2231 return LINUX_SIGPOLL;
2232
2233 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2234 therefore we have to handle it here. */
2235 case GDB_SIGNAL_REALTIME_32:
2236 return LINUX_SIGRTMIN;
2237
2238 /* Same comment applies to _64. */
2239 case GDB_SIGNAL_REALTIME_64:
2240 return LINUX_SIGRTMAX;
2241 }
2242
2243 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2244 if (signal >= GDB_SIGNAL_REALTIME_33
2245 && signal <= GDB_SIGNAL_REALTIME_63)
2246 {
2247 int offset = signal - GDB_SIGNAL_REALTIME_33;
2248
2249 return LINUX_SIGRTMIN + 1 + offset;
2250 }
2251
2252 return -1;
2253 }
2254
2255 /* Helper for linux_vsyscall_range that does the real work of finding
2256 the vsyscall's address range. */
2257
2258 static int
2259 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2260 {
2261 char filename[100];
2262 long pid;
2263
2264 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
2265 return 0;
2266
2267 /* It doesn't make sense to access the host's /proc when debugging a
2268 core file. Instead, look for the PT_LOAD segment that matches
2269 the vDSO. */
2270 if (!target_has_execution)
2271 {
2272 Elf_Internal_Phdr *phdrs;
2273 long phdrs_size;
2274 int num_phdrs, i;
2275
2276 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2277 if (phdrs_size == -1)
2278 return 0;
2279
2280 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
2281 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs);
2282 if (num_phdrs == -1)
2283 return 0;
2284
2285 for (i = 0; i < num_phdrs; i++)
2286 if (phdrs[i].p_type == PT_LOAD
2287 && phdrs[i].p_vaddr == range->start)
2288 {
2289 range->length = phdrs[i].p_memsz;
2290 return 1;
2291 }
2292
2293 return 0;
2294 }
2295
2296 /* We need to know the real target PID to access /proc. */
2297 if (current_inferior ()->fake_pid_p)
2298 return 0;
2299
2300 pid = current_inferior ()->pid;
2301
2302 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2303 reading /proc/PID/maps (2). The later identifies thread stacks
2304 in the output, which requires scanning every thread in the thread
2305 group to check whether a VMA is actually a thread's stack. With
2306 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2307 a few thousand threads, (1) takes a few miliseconds, while (2)
2308 takes several seconds. Also note that "smaps", what we read for
2309 determining core dump mappings, is even slower than "maps". */
2310 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2311 gdb::unique_xmalloc_ptr<char> data
2312 = target_fileio_read_stralloc (NULL, filename);
2313 if (data != NULL)
2314 {
2315 char *line;
2316 char *saveptr = NULL;
2317
2318 for (line = strtok_r (data.get (), "\n", &saveptr);
2319 line != NULL;
2320 line = strtok_r (NULL, "\n", &saveptr))
2321 {
2322 ULONGEST addr, endaddr;
2323 const char *p = line;
2324
2325 addr = strtoulst (p, &p, 16);
2326 if (addr == range->start)
2327 {
2328 if (*p == '-')
2329 p++;
2330 endaddr = strtoulst (p, &p, 16);
2331 range->length = endaddr - addr;
2332 return 1;
2333 }
2334 }
2335 }
2336 else
2337 warning (_("unable to open /proc file '%s'"), filename);
2338
2339 return 0;
2340 }
2341
2342 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2343 caching, and defers the real work to linux_vsyscall_range_raw. */
2344
2345 static int
2346 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2347 {
2348 struct linux_info *info = get_linux_inferior_data ();
2349
2350 if (info->vsyscall_range_p == 0)
2351 {
2352 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2353 info->vsyscall_range_p = 1;
2354 else
2355 info->vsyscall_range_p = -1;
2356 }
2357
2358 if (info->vsyscall_range_p < 0)
2359 return 0;
2360
2361 *range = info->vsyscall_range;
2362 return 1;
2363 }
2364
2365 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2366 definitions would be dependent on compilation host. */
2367 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2368 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2369
2370 /* See gdbarch.sh 'infcall_mmap'. */
2371
2372 static CORE_ADDR
2373 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2374 {
2375 struct objfile *objf;
2376 /* Do there still exist any Linux systems without "mmap64"?
2377 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2378 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2379 struct value *addr_val;
2380 struct gdbarch *gdbarch = get_objfile_arch (objf);
2381 CORE_ADDR retval;
2382 enum
2383 {
2384 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2385 };
2386 struct value *arg[ARG_LAST];
2387
2388 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2389 0);
2390 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2391 arg[ARG_LENGTH] = value_from_ulongest
2392 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2393 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2394 | GDB_MMAP_PROT_EXEC))
2395 == 0);
2396 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2397 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2398 GDB_MMAP_MAP_PRIVATE
2399 | GDB_MMAP_MAP_ANONYMOUS);
2400 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2401 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2402 0);
2403 addr_val = call_function_by_hand (mmap_val, NULL, ARG_LAST, arg);
2404 retval = value_as_address (addr_val);
2405 if (retval == (CORE_ADDR) -1)
2406 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2407 pulongest (size));
2408 return retval;
2409 }
2410
2411 /* See gdbarch.sh 'infcall_munmap'. */
2412
2413 static void
2414 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2415 {
2416 struct objfile *objf;
2417 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2418 struct value *retval_val;
2419 struct gdbarch *gdbarch = get_objfile_arch (objf);
2420 LONGEST retval;
2421 enum
2422 {
2423 ARG_ADDR, ARG_LENGTH, ARG_LAST
2424 };
2425 struct value *arg[ARG_LAST];
2426
2427 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2428 addr);
2429 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2430 arg[ARG_LENGTH] = value_from_ulongest
2431 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2432 retval_val = call_function_by_hand (munmap_val, NULL, ARG_LAST, arg);
2433 retval = value_as_long (retval_val);
2434 if (retval != 0)
2435 warning (_("Failed inferior munmap call at %s for %s bytes, "
2436 "errno is changed."),
2437 hex_string (addr), pulongest (size));
2438 }
2439
2440 /* See linux-tdep.h. */
2441
2442 CORE_ADDR
2443 linux_displaced_step_location (struct gdbarch *gdbarch)
2444 {
2445 CORE_ADDR addr;
2446 int bp_len;
2447
2448 /* Determine entry point from target auxiliary vector. This avoids
2449 the need for symbols. Also, when debugging a stand-alone SPU
2450 executable, entry_point_address () will point to an SPU
2451 local-store address and is thus not usable as displaced stepping
2452 location. The auxiliary vector gets us the PowerPC-side entry
2453 point address instead. */
2454 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
2455 throw_error (NOT_SUPPORTED_ERROR,
2456 _("Cannot find AT_ENTRY auxiliary vector entry."));
2457
2458 /* Make certain that the address points at real code, and not a
2459 function descriptor. */
2460 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2461 current_top_target ());
2462
2463 /* Inferior calls also use the entry point as a breakpoint location.
2464 We don't want displaced stepping to interfere with those
2465 breakpoints, so leave space. */
2466 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2467 addr += bp_len * 2;
2468
2469 return addr;
2470 }
2471
2472 /* Display whether the gcore command is using the
2473 /proc/PID/coredump_filter file. */
2474
2475 static void
2476 show_use_coredump_filter (struct ui_file *file, int from_tty,
2477 struct cmd_list_element *c, const char *value)
2478 {
2479 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2480 " corefiles is %s.\n"), value);
2481 }
2482
2483 /* Display whether the gcore command is dumping mappings marked with
2484 the VM_DONTDUMP flag. */
2485
2486 static void
2487 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2488 struct cmd_list_element *c, const char *value)
2489 {
2490 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2491 " flag is %s.\n"), value);
2492 }
2493
2494 /* To be called from the various GDB_OSABI_LINUX handlers for the
2495 various GNU/Linux architectures and machine types. */
2496
2497 void
2498 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2499 {
2500 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2501 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2502 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2503 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2504 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2505 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2506 set_gdbarch_has_shared_address_space (gdbarch,
2507 linux_has_shared_address_space);
2508 set_gdbarch_gdb_signal_from_target (gdbarch,
2509 linux_gdb_signal_from_target);
2510 set_gdbarch_gdb_signal_to_target (gdbarch,
2511 linux_gdb_signal_to_target);
2512 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2513 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2514 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2515 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2516 }
2517
2518 void
2519 _initialize_linux_tdep (void)
2520 {
2521 linux_gdbarch_data_handle =
2522 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2523
2524 /* Set a cache per-inferior. */
2525 linux_inferior_data
2526 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2527 /* Observers used to invalidate the cache when needed. */
2528 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2529 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
2530
2531 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2532 &use_coredump_filter, _("\
2533 Set whether gcore should consider /proc/PID/coredump_filter."),
2534 _("\
2535 Show whether gcore should consider /proc/PID/coredump_filter."),
2536 _("\
2537 Use this command to set whether gcore should consider the contents\n\
2538 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2539 about this file, refer to the manpage of core(5)."),
2540 NULL, show_use_coredump_filter,
2541 &setlist, &showlist);
2542
2543 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2544 &dump_excluded_mappings, _("\
2545 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2546 _("\
2547 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2548 _("\
2549 Use this command to set whether gcore should dump mappings marked with the\n\
2550 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2551 more information about this file, refer to the manpage of proc(5) and core(5)."),
2552 NULL, show_dump_excluded_mappings,
2553 &setlist, &showlist);
2554 }
This page took 0.297324 seconds and 5 git commands to generate.