Add missing sentinel 'char *' casts in concat/reconcat calls
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observer.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41
42 #include <ctype.h>
43
44 /* This enum represents the values that the user can choose when
45 informing the Linux kernel about which memory mappings will be
46 dumped in a corefile. They are described in the file
47 Documentation/filesystems/proc.txt, inside the Linux kernel
48 tree. */
49
50 enum filter_flag
51 {
52 COREFILTER_ANON_PRIVATE = 1 << 0,
53 COREFILTER_ANON_SHARED = 1 << 1,
54 COREFILTER_MAPPED_PRIVATE = 1 << 2,
55 COREFILTER_MAPPED_SHARED = 1 << 3,
56 COREFILTER_ELF_HEADERS = 1 << 4,
57 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
58 COREFILTER_HUGETLB_SHARED = 1 << 6,
59 };
60 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
61
62 /* This struct is used to map flags found in the "VmFlags:" field (in
63 the /proc/<PID>/smaps file). */
64
65 struct smaps_vmflags
66 {
67 /* Zero if this structure has not been initialized yet. It
68 probably means that the Linux kernel being used does not emit
69 the "VmFlags:" field on "/proc/PID/smaps". */
70
71 unsigned int initialized_p : 1;
72
73 /* Memory mapped I/O area (VM_IO, "io"). */
74
75 unsigned int io_page : 1;
76
77 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
78
79 unsigned int uses_huge_tlb : 1;
80
81 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
82
83 unsigned int exclude_coredump : 1;
84
85 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
86
87 unsigned int shared_mapping : 1;
88 };
89
90 /* Whether to take the /proc/PID/coredump_filter into account when
91 generating a corefile. */
92
93 static int use_coredump_filter = 1;
94
95 /* This enum represents the signals' numbers on a generic architecture
96 running the Linux kernel. The definition of "generic" comes from
97 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
98 tree, which is the "de facto" implementation of signal numbers to
99 be used by new architecture ports.
100
101 For those architectures which have differences between the generic
102 standard (e.g., Alpha), we define the different signals (and *only*
103 those) in the specific target-dependent file (e.g.,
104 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
105 tdep file for more information.
106
107 ARM deserves a special mention here. On the file
108 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
109 (and ARM-only) signal, which is SIGSWI, with the same number as
110 SIGRTMIN. This signal is used only for a very specific target,
111 called ArthurOS (from RISCOS). Therefore, we do not handle it on
112 the ARM-tdep file, and we can safely use the generic signal handler
113 here for ARM targets.
114
115 As stated above, this enum is derived from
116 <include/uapi/asm-generic/signal.h>, from the Linux kernel
117 tree. */
118
119 enum
120 {
121 LINUX_SIGHUP = 1,
122 LINUX_SIGINT = 2,
123 LINUX_SIGQUIT = 3,
124 LINUX_SIGILL = 4,
125 LINUX_SIGTRAP = 5,
126 LINUX_SIGABRT = 6,
127 LINUX_SIGIOT = 6,
128 LINUX_SIGBUS = 7,
129 LINUX_SIGFPE = 8,
130 LINUX_SIGKILL = 9,
131 LINUX_SIGUSR1 = 10,
132 LINUX_SIGSEGV = 11,
133 LINUX_SIGUSR2 = 12,
134 LINUX_SIGPIPE = 13,
135 LINUX_SIGALRM = 14,
136 LINUX_SIGTERM = 15,
137 LINUX_SIGSTKFLT = 16,
138 LINUX_SIGCHLD = 17,
139 LINUX_SIGCONT = 18,
140 LINUX_SIGSTOP = 19,
141 LINUX_SIGTSTP = 20,
142 LINUX_SIGTTIN = 21,
143 LINUX_SIGTTOU = 22,
144 LINUX_SIGURG = 23,
145 LINUX_SIGXCPU = 24,
146 LINUX_SIGXFSZ = 25,
147 LINUX_SIGVTALRM = 26,
148 LINUX_SIGPROF = 27,
149 LINUX_SIGWINCH = 28,
150 LINUX_SIGIO = 29,
151 LINUX_SIGPOLL = LINUX_SIGIO,
152 LINUX_SIGPWR = 30,
153 LINUX_SIGSYS = 31,
154 LINUX_SIGUNUSED = 31,
155
156 LINUX_SIGRTMIN = 32,
157 LINUX_SIGRTMAX = 64,
158 };
159
160 static struct gdbarch_data *linux_gdbarch_data_handle;
161
162 struct linux_gdbarch_data
163 {
164 struct type *siginfo_type;
165 };
166
167 static void *
168 init_linux_gdbarch_data (struct gdbarch *gdbarch)
169 {
170 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
171 }
172
173 static struct linux_gdbarch_data *
174 get_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return ((struct linux_gdbarch_data *)
177 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
178 }
179
180 /* Per-inferior data key. */
181 static const struct inferior_data *linux_inferior_data;
182
183 /* Linux-specific cached data. This is used by GDB for caching
184 purposes for each inferior. This helps reduce the overhead of
185 transfering data from a remote target to the local host. */
186 struct linux_info
187 {
188 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
189 if VSYSCALL_RANGE_P is positive. This is cached because getting
190 at this info requires an auxv lookup (which is itself cached),
191 and looking through the inferior's mappings (which change
192 throughout execution and therefore cannot be cached). */
193 struct mem_range vsyscall_range;
194
195 /* Zero if we haven't tried looking up the vsyscall's range before
196 yet. Positive if we tried looking it up, and found it. Negative
197 if we tried looking it up but failed. */
198 int vsyscall_range_p;
199 };
200
201 /* Frees whatever allocated space there is to be freed and sets INF's
202 linux cache data pointer to NULL. */
203
204 static void
205 invalidate_linux_cache_inf (struct inferior *inf)
206 {
207 struct linux_info *info;
208
209 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
210 if (info != NULL)
211 {
212 xfree (info);
213 set_inferior_data (inf, linux_inferior_data, NULL);
214 }
215 }
216
217 /* Handles the cleanup of the linux cache for inferior INF. ARG is
218 ignored. Callback for the inferior_appeared and inferior_exit
219 events. */
220
221 static void
222 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
223 {
224 invalidate_linux_cache_inf (inf);
225 }
226
227 /* Fetch the linux cache info for INF. This function always returns a
228 valid INFO pointer. */
229
230 static struct linux_info *
231 get_linux_inferior_data (void)
232 {
233 struct linux_info *info;
234 struct inferior *inf = current_inferior ();
235
236 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
237 if (info == NULL)
238 {
239 info = XCNEW (struct linux_info);
240 set_inferior_data (inf, linux_inferior_data, info);
241 }
242
243 return info;
244 }
245
246 /* See linux-tdep.h. */
247
248 struct type *
249 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
250 linux_siginfo_extra_fields extra_fields)
251 {
252 struct linux_gdbarch_data *linux_gdbarch_data;
253 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
254 struct type *uid_type, *pid_type;
255 struct type *sigval_type, *clock_type;
256 struct type *siginfo_type, *sifields_type;
257 struct type *type;
258
259 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
260 if (linux_gdbarch_data->siginfo_type != NULL)
261 return linux_gdbarch_data->siginfo_type;
262
263 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
264 0, "int");
265 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
266 1, "unsigned int");
267 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
268 0, "long");
269 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
270 0, "short");
271 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
272
273 /* sival_t */
274 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
275 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
276 append_composite_type_field (sigval_type, "sival_int", int_type);
277 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
278
279 /* __pid_t */
280 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
281 TYPE_LENGTH (int_type), "__pid_t");
282 TYPE_TARGET_TYPE (pid_type) = int_type;
283 TYPE_TARGET_STUB (pid_type) = 1;
284
285 /* __uid_t */
286 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
287 TYPE_LENGTH (uint_type), "__uid_t");
288 TYPE_TARGET_TYPE (uid_type) = uint_type;
289 TYPE_TARGET_STUB (uid_type) = 1;
290
291 /* __clock_t */
292 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
293 TYPE_LENGTH (long_type), "__clock_t");
294 TYPE_TARGET_TYPE (clock_type) = long_type;
295 TYPE_TARGET_STUB (clock_type) = 1;
296
297 /* _sifields */
298 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
299
300 {
301 const int si_max_size = 128;
302 int si_pad_size;
303 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
304
305 /* _pad */
306 if (gdbarch_ptr_bit (gdbarch) == 64)
307 si_pad_size = (si_max_size / size_of_int) - 4;
308 else
309 si_pad_size = (si_max_size / size_of_int) - 3;
310 append_composite_type_field (sifields_type, "_pad",
311 init_vector_type (int_type, si_pad_size));
312 }
313
314 /* _kill */
315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (sifields_type, "_kill", type);
319
320 /* _timer */
321 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
322 append_composite_type_field (type, "si_tid", int_type);
323 append_composite_type_field (type, "si_overrun", int_type);
324 append_composite_type_field (type, "si_sigval", sigval_type);
325 append_composite_type_field (sifields_type, "_timer", type);
326
327 /* _rt */
328 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
329 append_composite_type_field (type, "si_pid", pid_type);
330 append_composite_type_field (type, "si_uid", uid_type);
331 append_composite_type_field (type, "si_sigval", sigval_type);
332 append_composite_type_field (sifields_type, "_rt", type);
333
334 /* _sigchld */
335 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
336 append_composite_type_field (type, "si_pid", pid_type);
337 append_composite_type_field (type, "si_uid", uid_type);
338 append_composite_type_field (type, "si_status", int_type);
339 append_composite_type_field (type, "si_utime", clock_type);
340 append_composite_type_field (type, "si_stime", clock_type);
341 append_composite_type_field (sifields_type, "_sigchld", type);
342
343 /* _sigfault */
344 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
345 append_composite_type_field (type, "si_addr", void_ptr_type);
346
347 /* Additional bound fields for _sigfault in case they were requested. */
348 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
349 {
350 struct type *sigfault_bnd_fields;
351
352 append_composite_type_field (type, "_addr_lsb", short_type);
353 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
354 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
355 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
356 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
357 }
358 append_composite_type_field (sifields_type, "_sigfault", type);
359
360 /* _sigpoll */
361 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
362 append_composite_type_field (type, "si_band", long_type);
363 append_composite_type_field (type, "si_fd", int_type);
364 append_composite_type_field (sifields_type, "_sigpoll", type);
365
366 /* struct siginfo */
367 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
368 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
369 append_composite_type_field (siginfo_type, "si_signo", int_type);
370 append_composite_type_field (siginfo_type, "si_errno", int_type);
371 append_composite_type_field (siginfo_type, "si_code", int_type);
372 append_composite_type_field_aligned (siginfo_type,
373 "_sifields", sifields_type,
374 TYPE_LENGTH (long_type));
375
376 linux_gdbarch_data->siginfo_type = siginfo_type;
377
378 return siginfo_type;
379 }
380
381 /* This function is suitable for architectures that don't
382 extend/override the standard siginfo structure. */
383
384 static struct type *
385 linux_get_siginfo_type (struct gdbarch *gdbarch)
386 {
387 return linux_get_siginfo_type_with_fields (gdbarch, 0);
388 }
389
390 /* Return true if the target is running on uClinux instead of normal
391 Linux kernel. */
392
393 int
394 linux_is_uclinux (void)
395 {
396 CORE_ADDR dummy;
397
398 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
399 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
400 }
401
402 static int
403 linux_has_shared_address_space (struct gdbarch *gdbarch)
404 {
405 return linux_is_uclinux ();
406 }
407
408 /* This is how we want PTIDs from core files to be printed. */
409
410 static char *
411 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
412 {
413 static char buf[80];
414
415 if (ptid_get_lwp (ptid) != 0)
416 {
417 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
418 return buf;
419 }
420
421 return normal_pid_to_str (ptid);
422 }
423
424 /* Service function for corefiles and info proc. */
425
426 static void
427 read_mapping (const char *line,
428 ULONGEST *addr, ULONGEST *endaddr,
429 const char **permissions, size_t *permissions_len,
430 ULONGEST *offset,
431 const char **device, size_t *device_len,
432 ULONGEST *inode,
433 const char **filename)
434 {
435 const char *p = line;
436
437 *addr = strtoulst (p, &p, 16);
438 if (*p == '-')
439 p++;
440 *endaddr = strtoulst (p, &p, 16);
441
442 p = skip_spaces_const (p);
443 *permissions = p;
444 while (*p && !isspace (*p))
445 p++;
446 *permissions_len = p - *permissions;
447
448 *offset = strtoulst (p, &p, 16);
449
450 p = skip_spaces_const (p);
451 *device = p;
452 while (*p && !isspace (*p))
453 p++;
454 *device_len = p - *device;
455
456 *inode = strtoulst (p, &p, 10);
457
458 p = skip_spaces_const (p);
459 *filename = p;
460 }
461
462 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
463
464 This function was based on the documentation found on
465 <Documentation/filesystems/proc.txt>, on the Linux kernel.
466
467 Linux kernels before commit
468 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
469 field on smaps. */
470
471 static void
472 decode_vmflags (char *p, struct smaps_vmflags *v)
473 {
474 char *saveptr = NULL;
475 const char *s;
476
477 v->initialized_p = 1;
478 p = skip_to_space (p);
479 p = skip_spaces (p);
480
481 for (s = strtok_r (p, " ", &saveptr);
482 s != NULL;
483 s = strtok_r (NULL, " ", &saveptr))
484 {
485 if (strcmp (s, "io") == 0)
486 v->io_page = 1;
487 else if (strcmp (s, "ht") == 0)
488 v->uses_huge_tlb = 1;
489 else if (strcmp (s, "dd") == 0)
490 v->exclude_coredump = 1;
491 else if (strcmp (s, "sh") == 0)
492 v->shared_mapping = 1;
493 }
494 }
495
496 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
497
498 FILENAME is the name of the file present in the first line of the
499 memory mapping, in the "/proc/PID/smaps" output. For example, if
500 the first line is:
501
502 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
503
504 Then FILENAME will be "/path/to/file". */
505
506 static int
507 mapping_is_anonymous_p (const char *filename)
508 {
509 static regex_t dev_zero_regex, shmem_file_regex, file_deleted_regex;
510 static int init_regex_p = 0;
511
512 if (!init_regex_p)
513 {
514 struct cleanup *c = make_cleanup (null_cleanup, NULL);
515
516 /* Let's be pessimistic and assume there will be an error while
517 compiling the regex'es. */
518 init_regex_p = -1;
519
520 /* DEV_ZERO_REGEX matches "/dev/zero" filenames (with or
521 without the "(deleted)" string in the end). We know for
522 sure, based on the Linux kernel code, that memory mappings
523 whose associated filename is "/dev/zero" are guaranteed to be
524 MAP_ANONYMOUS. */
525 compile_rx_or_error (&dev_zero_regex, "^/dev/zero\\( (deleted)\\)\\?$",
526 _("Could not compile regex to match /dev/zero "
527 "filename"));
528 /* SHMEM_FILE_REGEX matches "/SYSV%08x" filenames (with or
529 without the "(deleted)" string in the end). These filenames
530 refer to shared memory (shmem), and memory mappings
531 associated with them are MAP_ANONYMOUS as well. */
532 compile_rx_or_error (&shmem_file_regex,
533 "^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$",
534 _("Could not compile regex to match shmem "
535 "filenames"));
536 /* FILE_DELETED_REGEX is a heuristic we use to try to mimic the
537 Linux kernel's 'n_link == 0' code, which is responsible to
538 decide if it is dealing with a 'MAP_SHARED | MAP_ANONYMOUS'
539 mapping. In other words, if FILE_DELETED_REGEX matches, it
540 does not necessarily mean that we are dealing with an
541 anonymous shared mapping. However, there is no easy way to
542 detect this currently, so this is the best approximation we
543 have.
544
545 As a result, GDB will dump readonly pages of deleted
546 executables when using the default value of coredump_filter
547 (0x33), while the Linux kernel will not dump those pages.
548 But we can live with that. */
549 compile_rx_or_error (&file_deleted_regex, " (deleted)$",
550 _("Could not compile regex to match "
551 "'<file> (deleted)'"));
552 /* We will never release these regexes, so just discard the
553 cleanups. */
554 discard_cleanups (c);
555
556 /* If we reached this point, then everything succeeded. */
557 init_regex_p = 1;
558 }
559
560 if (init_regex_p == -1)
561 {
562 const char deleted[] = " (deleted)";
563 size_t del_len = sizeof (deleted) - 1;
564 size_t filename_len = strlen (filename);
565
566 /* There was an error while compiling the regex'es above. In
567 order to try to give some reliable information to the caller,
568 we just try to find the string " (deleted)" in the filename.
569 If we managed to find it, then we assume the mapping is
570 anonymous. */
571 return (filename_len >= del_len
572 && strcmp (filename + filename_len - del_len, deleted) == 0);
573 }
574
575 if (*filename == '\0'
576 || regexec (&dev_zero_regex, filename, 0, NULL, 0) == 0
577 || regexec (&shmem_file_regex, filename, 0, NULL, 0) == 0
578 || regexec (&file_deleted_regex, filename, 0, NULL, 0) == 0)
579 return 1;
580
581 return 0;
582 }
583
584 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
585 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
586 greater than 0 if it should.
587
588 In a nutshell, this is the logic that we follow in order to decide
589 if a mapping should be dumped or not.
590
591 - If the mapping is associated to a file whose name ends with
592 " (deleted)", or if the file is "/dev/zero", or if it is
593 "/SYSV%08x" (shared memory), or if there is no file associated
594 with it, or if the AnonHugePages: or the Anonymous: fields in the
595 /proc/PID/smaps have contents, then GDB considers this mapping to
596 be anonymous. Otherwise, GDB considers this mapping to be a
597 file-backed mapping (because there will be a file associated with
598 it).
599
600 It is worth mentioning that, from all those checks described
601 above, the most fragile is the one to see if the file name ends
602 with " (deleted)". This does not necessarily mean that the
603 mapping is anonymous, because the deleted file associated with
604 the mapping may have been a hard link to another file, for
605 example. The Linux kernel checks to see if "i_nlink == 0", but
606 GDB cannot easily (and normally) do this check (iff running as
607 root, it could find the mapping in /proc/PID/map_files/ and
608 determine whether there still are other hard links to the
609 inode/file). Therefore, we made a compromise here, and we assume
610 that if the file name ends with " (deleted)", then the mapping is
611 indeed anonymous. FWIW, this is something the Linux kernel could
612 do better: expose this information in a more direct way.
613
614 - If we see the flag "sh" in the "VmFlags:" field (in
615 /proc/PID/smaps), then certainly the memory mapping is shared
616 (VM_SHARED). If we have access to the VmFlags, and we don't see
617 the "sh" there, then certainly the mapping is private. However,
618 Linux kernels before commit
619 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
620 "VmFlags:" field; in that case, we use another heuristic: if we
621 see 'p' in the permission flags, then we assume that the mapping
622 is private, even though the presence of the 's' flag there would
623 mean VM_MAYSHARE, which means the mapping could still be private.
624 This should work OK enough, however. */
625
626 static int
627 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
628 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
629 const char *filename)
630 {
631 /* Initially, we trust in what we received from our caller. This
632 value may not be very precise (i.e., it was probably gathered
633 from the permission line in the /proc/PID/smaps list, which
634 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
635 what we have until we take a look at the "VmFlags:" field
636 (assuming that the version of the Linux kernel being used
637 supports it, of course). */
638 int private_p = maybe_private_p;
639
640 /* We always dump vDSO and vsyscall mappings, because it's likely that
641 there'll be no file to read the contents from at core load time.
642 The kernel does the same. */
643 if (strcmp ("[vdso]", filename) == 0
644 || strcmp ("[vsyscall]", filename) == 0)
645 return 1;
646
647 if (v->initialized_p)
648 {
649 /* We never dump I/O mappings. */
650 if (v->io_page)
651 return 0;
652
653 /* Check if we should exclude this mapping. */
654 if (v->exclude_coredump)
655 return 0;
656
657 /* Update our notion of whether this mapping is shared or
658 private based on a trustworthy value. */
659 private_p = !v->shared_mapping;
660
661 /* HugeTLB checking. */
662 if (v->uses_huge_tlb)
663 {
664 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
665 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
666 return 1;
667
668 return 0;
669 }
670 }
671
672 if (private_p)
673 {
674 if (mapping_anon_p && mapping_file_p)
675 {
676 /* This is a special situation. It can happen when we see a
677 mapping that is file-backed, but that contains anonymous
678 pages. */
679 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
680 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
681 }
682 else if (mapping_anon_p)
683 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
684 else
685 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
686 }
687 else
688 {
689 if (mapping_anon_p && mapping_file_p)
690 {
691 /* This is a special situation. It can happen when we see a
692 mapping that is file-backed, but that contains anonymous
693 pages. */
694 return ((filterflags & COREFILTER_ANON_SHARED) != 0
695 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
696 }
697 else if (mapping_anon_p)
698 return (filterflags & COREFILTER_ANON_SHARED) != 0;
699 else
700 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
701 }
702 }
703
704 /* Implement the "info proc" command. */
705
706 static void
707 linux_info_proc (struct gdbarch *gdbarch, const char *args,
708 enum info_proc_what what)
709 {
710 /* A long is used for pid instead of an int to avoid a loss of precision
711 compiler warning from the output of strtoul. */
712 long pid;
713 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
714 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
715 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
716 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
717 int status_f = (what == IP_STATUS || what == IP_ALL);
718 int stat_f = (what == IP_STAT || what == IP_ALL);
719 char filename[100];
720 char *data;
721 int target_errno;
722
723 if (args && isdigit (args[0]))
724 {
725 char *tem;
726
727 pid = strtoul (args, &tem, 10);
728 args = tem;
729 }
730 else
731 {
732 if (!target_has_execution)
733 error (_("No current process: you must name one."));
734 if (current_inferior ()->fake_pid_p)
735 error (_("Can't determine the current process's PID: you must name one."));
736
737 pid = current_inferior ()->pid;
738 }
739
740 args = skip_spaces_const (args);
741 if (args && args[0])
742 error (_("Too many parameters: %s"), args);
743
744 printf_filtered (_("process %ld\n"), pid);
745 if (cmdline_f)
746 {
747 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
748 data = target_fileio_read_stralloc (NULL, filename);
749 if (data)
750 {
751 struct cleanup *cleanup = make_cleanup (xfree, data);
752 printf_filtered ("cmdline = '%s'\n", data);
753 do_cleanups (cleanup);
754 }
755 else
756 warning (_("unable to open /proc file '%s'"), filename);
757 }
758 if (cwd_f)
759 {
760 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
761 data = target_fileio_readlink (NULL, filename, &target_errno);
762 if (data)
763 {
764 struct cleanup *cleanup = make_cleanup (xfree, data);
765 printf_filtered ("cwd = '%s'\n", data);
766 do_cleanups (cleanup);
767 }
768 else
769 warning (_("unable to read link '%s'"), filename);
770 }
771 if (exe_f)
772 {
773 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
774 data = target_fileio_readlink (NULL, filename, &target_errno);
775 if (data)
776 {
777 struct cleanup *cleanup = make_cleanup (xfree, data);
778 printf_filtered ("exe = '%s'\n", data);
779 do_cleanups (cleanup);
780 }
781 else
782 warning (_("unable to read link '%s'"), filename);
783 }
784 if (mappings_f)
785 {
786 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
787 data = target_fileio_read_stralloc (NULL, filename);
788 if (data)
789 {
790 struct cleanup *cleanup = make_cleanup (xfree, data);
791 char *line;
792
793 printf_filtered (_("Mapped address spaces:\n\n"));
794 if (gdbarch_addr_bit (gdbarch) == 32)
795 {
796 printf_filtered ("\t%10s %10s %10s %10s %s\n",
797 "Start Addr",
798 " End Addr",
799 " Size", " Offset", "objfile");
800 }
801 else
802 {
803 printf_filtered (" %18s %18s %10s %10s %s\n",
804 "Start Addr",
805 " End Addr",
806 " Size", " Offset", "objfile");
807 }
808
809 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n"))
810 {
811 ULONGEST addr, endaddr, offset, inode;
812 const char *permissions, *device, *filename;
813 size_t permissions_len, device_len;
814
815 read_mapping (line, &addr, &endaddr,
816 &permissions, &permissions_len,
817 &offset, &device, &device_len,
818 &inode, &filename);
819
820 if (gdbarch_addr_bit (gdbarch) == 32)
821 {
822 printf_filtered ("\t%10s %10s %10s %10s %s\n",
823 paddress (gdbarch, addr),
824 paddress (gdbarch, endaddr),
825 hex_string (endaddr - addr),
826 hex_string (offset),
827 *filename? filename : "");
828 }
829 else
830 {
831 printf_filtered (" %18s %18s %10s %10s %s\n",
832 paddress (gdbarch, addr),
833 paddress (gdbarch, endaddr),
834 hex_string (endaddr - addr),
835 hex_string (offset),
836 *filename? filename : "");
837 }
838 }
839
840 do_cleanups (cleanup);
841 }
842 else
843 warning (_("unable to open /proc file '%s'"), filename);
844 }
845 if (status_f)
846 {
847 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
848 data = target_fileio_read_stralloc (NULL, filename);
849 if (data)
850 {
851 struct cleanup *cleanup = make_cleanup (xfree, data);
852 puts_filtered (data);
853 do_cleanups (cleanup);
854 }
855 else
856 warning (_("unable to open /proc file '%s'"), filename);
857 }
858 if (stat_f)
859 {
860 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
861 data = target_fileio_read_stralloc (NULL, filename);
862 if (data)
863 {
864 struct cleanup *cleanup = make_cleanup (xfree, data);
865 const char *p = data;
866
867 printf_filtered (_("Process: %s\n"),
868 pulongest (strtoulst (p, &p, 10)));
869
870 p = skip_spaces_const (p);
871 if (*p == '(')
872 {
873 /* ps command also relies on no trailing fields
874 ever contain ')'. */
875 const char *ep = strrchr (p, ')');
876 if (ep != NULL)
877 {
878 printf_filtered ("Exec file: %.*s\n",
879 (int) (ep - p - 1), p + 1);
880 p = ep + 1;
881 }
882 }
883
884 p = skip_spaces_const (p);
885 if (*p)
886 printf_filtered (_("State: %c\n"), *p++);
887
888 if (*p)
889 printf_filtered (_("Parent process: %s\n"),
890 pulongest (strtoulst (p, &p, 10)));
891 if (*p)
892 printf_filtered (_("Process group: %s\n"),
893 pulongest (strtoulst (p, &p, 10)));
894 if (*p)
895 printf_filtered (_("Session id: %s\n"),
896 pulongest (strtoulst (p, &p, 10)));
897 if (*p)
898 printf_filtered (_("TTY: %s\n"),
899 pulongest (strtoulst (p, &p, 10)));
900 if (*p)
901 printf_filtered (_("TTY owner process group: %s\n"),
902 pulongest (strtoulst (p, &p, 10)));
903
904 if (*p)
905 printf_filtered (_("Flags: %s\n"),
906 hex_string (strtoulst (p, &p, 10)));
907 if (*p)
908 printf_filtered (_("Minor faults (no memory page): %s\n"),
909 pulongest (strtoulst (p, &p, 10)));
910 if (*p)
911 printf_filtered (_("Minor faults, children: %s\n"),
912 pulongest (strtoulst (p, &p, 10)));
913 if (*p)
914 printf_filtered (_("Major faults (memory page faults): %s\n"),
915 pulongest (strtoulst (p, &p, 10)));
916 if (*p)
917 printf_filtered (_("Major faults, children: %s\n"),
918 pulongest (strtoulst (p, &p, 10)));
919 if (*p)
920 printf_filtered (_("utime: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("stime: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("utime, children: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("stime, children: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("jiffies remaining in current "
933 "time slice: %s\n"),
934 pulongest (strtoulst (p, &p, 10)));
935 if (*p)
936 printf_filtered (_("'nice' value: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("jiffies until next timeout: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("start time (jiffies since "
946 "system boot): %s\n"),
947 pulongest (strtoulst (p, &p, 10)));
948 if (*p)
949 printf_filtered (_("Virtual memory size: %s\n"),
950 pulongest (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Resident set size: %s\n"),
953 pulongest (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("rlim: %s\n"),
956 pulongest (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("Start of text: %s\n"),
959 hex_string (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("End of text: %s\n"),
962 hex_string (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("Start of stack: %s\n"),
965 hex_string (strtoulst (p, &p, 10)));
966 #if 0 /* Don't know how architecture-dependent the rest is...
967 Anyway the signal bitmap info is available from "status". */
968 if (*p)
969 printf_filtered (_("Kernel stack pointer: %s\n"),
970 hex_string (strtoulst (p, &p, 10)));
971 if (*p)
972 printf_filtered (_("Kernel instr pointer: %s\n"),
973 hex_string (strtoulst (p, &p, 10)));
974 if (*p)
975 printf_filtered (_("Pending signals bitmap: %s\n"),
976 hex_string (strtoulst (p, &p, 10)));
977 if (*p)
978 printf_filtered (_("Blocked signals bitmap: %s\n"),
979 hex_string (strtoulst (p, &p, 10)));
980 if (*p)
981 printf_filtered (_("Ignored signals bitmap: %s\n"),
982 hex_string (strtoulst (p, &p, 10)));
983 if (*p)
984 printf_filtered (_("Catched signals bitmap: %s\n"),
985 hex_string (strtoulst (p, &p, 10)));
986 if (*p)
987 printf_filtered (_("wchan (system call): %s\n"),
988 hex_string (strtoulst (p, &p, 10)));
989 #endif
990 do_cleanups (cleanup);
991 }
992 else
993 warning (_("unable to open /proc file '%s'"), filename);
994 }
995 }
996
997 /* Implement "info proc mappings" for a corefile. */
998
999 static void
1000 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1001 {
1002 asection *section;
1003 ULONGEST count, page_size;
1004 unsigned char *descdata, *filenames, *descend, *contents;
1005 size_t note_size;
1006 unsigned int addr_size_bits, addr_size;
1007 struct cleanup *cleanup;
1008 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1009 /* We assume this for reading 64-bit core files. */
1010 gdb_static_assert (sizeof (ULONGEST) >= 8);
1011
1012 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1013 if (section == NULL)
1014 {
1015 warning (_("unable to find mappings in core file"));
1016 return;
1017 }
1018
1019 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1020 addr_size = addr_size_bits / 8;
1021 note_size = bfd_get_section_size (section);
1022
1023 if (note_size < 2 * addr_size)
1024 error (_("malformed core note - too short for header"));
1025
1026 contents = (unsigned char *) xmalloc (note_size);
1027 cleanup = make_cleanup (xfree, contents);
1028 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
1029 error (_("could not get core note contents"));
1030
1031 descdata = contents;
1032 descend = descdata + note_size;
1033
1034 if (descdata[note_size - 1] != '\0')
1035 error (_("malformed note - does not end with \\0"));
1036
1037 count = bfd_get (addr_size_bits, core_bfd, descdata);
1038 descdata += addr_size;
1039
1040 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1041 descdata += addr_size;
1042
1043 if (note_size < 2 * addr_size + count * 3 * addr_size)
1044 error (_("malformed note - too short for supplied file count"));
1045
1046 printf_filtered (_("Mapped address spaces:\n\n"));
1047 if (gdbarch_addr_bit (gdbarch) == 32)
1048 {
1049 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1050 "Start Addr",
1051 " End Addr",
1052 " Size", " Offset", "objfile");
1053 }
1054 else
1055 {
1056 printf_filtered (" %18s %18s %10s %10s %s\n",
1057 "Start Addr",
1058 " End Addr",
1059 " Size", " Offset", "objfile");
1060 }
1061
1062 filenames = descdata + count * 3 * addr_size;
1063 while (--count > 0)
1064 {
1065 ULONGEST start, end, file_ofs;
1066
1067 if (filenames == descend)
1068 error (_("malformed note - filenames end too early"));
1069
1070 start = bfd_get (addr_size_bits, core_bfd, descdata);
1071 descdata += addr_size;
1072 end = bfd_get (addr_size_bits, core_bfd, descdata);
1073 descdata += addr_size;
1074 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1075 descdata += addr_size;
1076
1077 file_ofs *= page_size;
1078
1079 if (gdbarch_addr_bit (gdbarch) == 32)
1080 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1081 paddress (gdbarch, start),
1082 paddress (gdbarch, end),
1083 hex_string (end - start),
1084 hex_string (file_ofs),
1085 filenames);
1086 else
1087 printf_filtered (" %18s %18s %10s %10s %s\n",
1088 paddress (gdbarch, start),
1089 paddress (gdbarch, end),
1090 hex_string (end - start),
1091 hex_string (file_ofs),
1092 filenames);
1093
1094 filenames += 1 + strlen ((char *) filenames);
1095 }
1096
1097 do_cleanups (cleanup);
1098 }
1099
1100 /* Implement "info proc" for a corefile. */
1101
1102 static void
1103 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1104 enum info_proc_what what)
1105 {
1106 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1107 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1108
1109 if (exe_f)
1110 {
1111 const char *exe;
1112
1113 exe = bfd_core_file_failing_command (core_bfd);
1114 if (exe != NULL)
1115 printf_filtered ("exe = '%s'\n", exe);
1116 else
1117 warning (_("unable to find command name in core file"));
1118 }
1119
1120 if (mappings_f)
1121 linux_core_info_proc_mappings (gdbarch, args);
1122
1123 if (!exe_f && !mappings_f)
1124 error (_("unable to handle request"));
1125 }
1126
1127 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1128 ULONGEST offset, ULONGEST inode,
1129 int read, int write,
1130 int exec, int modified,
1131 const char *filename,
1132 void *data);
1133
1134 /* List memory regions in the inferior for a corefile. */
1135
1136 static int
1137 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1138 linux_find_memory_region_ftype *func,
1139 void *obfd)
1140 {
1141 char mapsfilename[100];
1142 char coredumpfilter_name[100];
1143 char *data, *coredumpfilterdata;
1144 pid_t pid;
1145 /* Default dump behavior of coredump_filter (0x33), according to
1146 Documentation/filesystems/proc.txt from the Linux kernel
1147 tree. */
1148 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1149 | COREFILTER_ANON_SHARED
1150 | COREFILTER_ELF_HEADERS
1151 | COREFILTER_HUGETLB_PRIVATE);
1152
1153 /* We need to know the real target PID to access /proc. */
1154 if (current_inferior ()->fake_pid_p)
1155 return 1;
1156
1157 pid = current_inferior ()->pid;
1158
1159 if (use_coredump_filter)
1160 {
1161 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1162 "/proc/%d/coredump_filter", pid);
1163 coredumpfilterdata = target_fileio_read_stralloc (NULL,
1164 coredumpfilter_name);
1165 if (coredumpfilterdata != NULL)
1166 {
1167 unsigned int flags;
1168
1169 sscanf (coredumpfilterdata, "%x", &flags);
1170 filterflags = (enum filter_flag) flags;
1171 xfree (coredumpfilterdata);
1172 }
1173 }
1174
1175 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1176 data = target_fileio_read_stralloc (NULL, mapsfilename);
1177 if (data == NULL)
1178 {
1179 /* Older Linux kernels did not support /proc/PID/smaps. */
1180 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1181 data = target_fileio_read_stralloc (NULL, mapsfilename);
1182 }
1183
1184 if (data != NULL)
1185 {
1186 struct cleanup *cleanup = make_cleanup (xfree, data);
1187 char *line, *t;
1188
1189 line = strtok_r (data, "\n", &t);
1190 while (line != NULL)
1191 {
1192 ULONGEST addr, endaddr, offset, inode;
1193 const char *permissions, *device, *filename;
1194 struct smaps_vmflags v;
1195 size_t permissions_len, device_len;
1196 int read, write, exec, priv;
1197 int has_anonymous = 0;
1198 int should_dump_p = 0;
1199 int mapping_anon_p;
1200 int mapping_file_p;
1201
1202 memset (&v, 0, sizeof (v));
1203 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1204 &offset, &device, &device_len, &inode, &filename);
1205 mapping_anon_p = mapping_is_anonymous_p (filename);
1206 /* If the mapping is not anonymous, then we can consider it
1207 to be file-backed. These two states (anonymous or
1208 file-backed) seem to be exclusive, but they can actually
1209 coexist. For example, if a file-backed mapping has
1210 "Anonymous:" pages (see more below), then the Linux
1211 kernel will dump this mapping when the user specified
1212 that she only wants anonymous mappings in the corefile
1213 (*even* when she explicitly disabled the dumping of
1214 file-backed mappings). */
1215 mapping_file_p = !mapping_anon_p;
1216
1217 /* Decode permissions. */
1218 read = (memchr (permissions, 'r', permissions_len) != 0);
1219 write = (memchr (permissions, 'w', permissions_len) != 0);
1220 exec = (memchr (permissions, 'x', permissions_len) != 0);
1221 /* 'private' here actually means VM_MAYSHARE, and not
1222 VM_SHARED. In order to know if a mapping is really
1223 private or not, we must check the flag "sh" in the
1224 VmFlags field. This is done by decode_vmflags. However,
1225 if we are using a Linux kernel released before the commit
1226 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1227 not have the VmFlags there. In this case, there is
1228 really no way to know if we are dealing with VM_SHARED,
1229 so we just assume that VM_MAYSHARE is enough. */
1230 priv = memchr (permissions, 'p', permissions_len) != 0;
1231
1232 /* Try to detect if region should be dumped by parsing smaps
1233 counters. */
1234 for (line = strtok_r (NULL, "\n", &t);
1235 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1236 line = strtok_r (NULL, "\n", &t))
1237 {
1238 char keyword[64 + 1];
1239
1240 if (sscanf (line, "%64s", keyword) != 1)
1241 {
1242 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1243 break;
1244 }
1245
1246 if (strcmp (keyword, "Anonymous:") == 0)
1247 {
1248 /* Older Linux kernels did not support the
1249 "Anonymous:" counter. Check it here. */
1250 has_anonymous = 1;
1251 }
1252 else if (strcmp (keyword, "VmFlags:") == 0)
1253 decode_vmflags (line, &v);
1254
1255 if (strcmp (keyword, "AnonHugePages:") == 0
1256 || strcmp (keyword, "Anonymous:") == 0)
1257 {
1258 unsigned long number;
1259
1260 if (sscanf (line, "%*s%lu", &number) != 1)
1261 {
1262 warning (_("Error parsing {s,}maps file '%s' number"),
1263 mapsfilename);
1264 break;
1265 }
1266 if (number > 0)
1267 {
1268 /* Even if we are dealing with a file-backed
1269 mapping, if it contains anonymous pages we
1270 consider it to be *also* an anonymous
1271 mapping, because this is what the Linux
1272 kernel does:
1273
1274 // Dump segments that have been written to.
1275 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1276 goto whole;
1277
1278 Note that if the mapping is already marked as
1279 file-backed (i.e., mapping_file_p is
1280 non-zero), then this is a special case, and
1281 this mapping will be dumped either when the
1282 user wants to dump file-backed *or* anonymous
1283 mappings. */
1284 mapping_anon_p = 1;
1285 }
1286 }
1287 }
1288
1289 if (has_anonymous)
1290 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1291 mapping_anon_p, mapping_file_p,
1292 filename);
1293 else
1294 {
1295 /* Older Linux kernels did not support the "Anonymous:" counter.
1296 If it is missing, we can't be sure - dump all the pages. */
1297 should_dump_p = 1;
1298 }
1299
1300 /* Invoke the callback function to create the corefile segment. */
1301 if (should_dump_p)
1302 func (addr, endaddr - addr, offset, inode,
1303 read, write, exec, 1, /* MODIFIED is true because we
1304 want to dump the mapping. */
1305 filename, obfd);
1306 }
1307
1308 do_cleanups (cleanup);
1309 return 0;
1310 }
1311
1312 return 1;
1313 }
1314
1315 /* A structure for passing information through
1316 linux_find_memory_regions_full. */
1317
1318 struct linux_find_memory_regions_data
1319 {
1320 /* The original callback. */
1321
1322 find_memory_region_ftype func;
1323
1324 /* The original datum. */
1325
1326 void *obfd;
1327 };
1328
1329 /* A callback for linux_find_memory_regions that converts between the
1330 "full"-style callback and find_memory_region_ftype. */
1331
1332 static int
1333 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1334 ULONGEST offset, ULONGEST inode,
1335 int read, int write, int exec, int modified,
1336 const char *filename, void *arg)
1337 {
1338 struct linux_find_memory_regions_data *data
1339 = (struct linux_find_memory_regions_data *) arg;
1340
1341 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1342 }
1343
1344 /* A variant of linux_find_memory_regions_full that is suitable as the
1345 gdbarch find_memory_regions method. */
1346
1347 static int
1348 linux_find_memory_regions (struct gdbarch *gdbarch,
1349 find_memory_region_ftype func, void *obfd)
1350 {
1351 struct linux_find_memory_regions_data data;
1352
1353 data.func = func;
1354 data.obfd = obfd;
1355
1356 return linux_find_memory_regions_full (gdbarch,
1357 linux_find_memory_regions_thunk,
1358 &data);
1359 }
1360
1361 /* Determine which signal stopped execution. */
1362
1363 static int
1364 find_signalled_thread (struct thread_info *info, void *data)
1365 {
1366 if (info->suspend.stop_signal != GDB_SIGNAL_0
1367 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1368 return 1;
1369
1370 return 0;
1371 }
1372
1373 /* Generate corefile notes for SPU contexts. */
1374
1375 static char *
1376 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1377 {
1378 static const char *spu_files[] =
1379 {
1380 "object-id",
1381 "mem",
1382 "regs",
1383 "fpcr",
1384 "lslr",
1385 "decr",
1386 "decr_status",
1387 "signal1",
1388 "signal1_type",
1389 "signal2",
1390 "signal2_type",
1391 "event_mask",
1392 "event_status",
1393 "mbox_info",
1394 "ibox_info",
1395 "wbox_info",
1396 "dma_info",
1397 "proxydma_info",
1398 };
1399
1400 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1401 gdb_byte *spu_ids;
1402 LONGEST i, j, size;
1403
1404 /* Determine list of SPU ids. */
1405 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1406 NULL, &spu_ids);
1407
1408 /* Generate corefile notes for each SPU file. */
1409 for (i = 0; i < size; i += 4)
1410 {
1411 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1412
1413 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1414 {
1415 char annex[32], note_name[32];
1416 gdb_byte *spu_data;
1417 LONGEST spu_len;
1418
1419 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1420 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1421 annex, &spu_data);
1422 if (spu_len > 0)
1423 {
1424 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1425 note_data = elfcore_write_note (obfd, note_data, note_size,
1426 note_name, NT_SPU,
1427 spu_data, spu_len);
1428 xfree (spu_data);
1429
1430 if (!note_data)
1431 {
1432 xfree (spu_ids);
1433 return NULL;
1434 }
1435 }
1436 }
1437 }
1438
1439 if (size > 0)
1440 xfree (spu_ids);
1441
1442 return note_data;
1443 }
1444
1445 /* This is used to pass information from
1446 linux_make_mappings_corefile_notes through
1447 linux_find_memory_regions_full. */
1448
1449 struct linux_make_mappings_data
1450 {
1451 /* Number of files mapped. */
1452 ULONGEST file_count;
1453
1454 /* The obstack for the main part of the data. */
1455 struct obstack *data_obstack;
1456
1457 /* The filename obstack. */
1458 struct obstack *filename_obstack;
1459
1460 /* The architecture's "long" type. */
1461 struct type *long_type;
1462 };
1463
1464 static linux_find_memory_region_ftype linux_make_mappings_callback;
1465
1466 /* A callback for linux_find_memory_regions_full that updates the
1467 mappings data for linux_make_mappings_corefile_notes. */
1468
1469 static int
1470 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1471 ULONGEST offset, ULONGEST inode,
1472 int read, int write, int exec, int modified,
1473 const char *filename, void *data)
1474 {
1475 struct linux_make_mappings_data *map_data
1476 = (struct linux_make_mappings_data *) data;
1477 gdb_byte buf[sizeof (ULONGEST)];
1478
1479 if (*filename == '\0' || inode == 0)
1480 return 0;
1481
1482 ++map_data->file_count;
1483
1484 pack_long (buf, map_data->long_type, vaddr);
1485 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1486 pack_long (buf, map_data->long_type, vaddr + size);
1487 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1488 pack_long (buf, map_data->long_type, offset);
1489 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1490
1491 obstack_grow_str0 (map_data->filename_obstack, filename);
1492
1493 return 0;
1494 }
1495
1496 /* Write the file mapping data to the core file, if possible. OBFD is
1497 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1498 is a pointer to the note size. Returns the new NOTE_DATA and
1499 updates NOTE_SIZE. */
1500
1501 static char *
1502 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1503 char *note_data, int *note_size)
1504 {
1505 struct cleanup *cleanup;
1506 struct obstack data_obstack, filename_obstack;
1507 struct linux_make_mappings_data mapping_data;
1508 struct type *long_type
1509 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1510 gdb_byte buf[sizeof (ULONGEST)];
1511
1512 obstack_init (&data_obstack);
1513 cleanup = make_cleanup_obstack_free (&data_obstack);
1514 obstack_init (&filename_obstack);
1515 make_cleanup_obstack_free (&filename_obstack);
1516
1517 mapping_data.file_count = 0;
1518 mapping_data.data_obstack = &data_obstack;
1519 mapping_data.filename_obstack = &filename_obstack;
1520 mapping_data.long_type = long_type;
1521
1522 /* Reserve space for the count. */
1523 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1524 /* We always write the page size as 1 since we have no good way to
1525 determine the correct value. */
1526 pack_long (buf, long_type, 1);
1527 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1528
1529 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1530 &mapping_data);
1531
1532 if (mapping_data.file_count != 0)
1533 {
1534 /* Write the count to the obstack. */
1535 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1536 long_type, mapping_data.file_count);
1537
1538 /* Copy the filenames to the data obstack. */
1539 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1540 obstack_object_size (&filename_obstack));
1541
1542 note_data = elfcore_write_note (obfd, note_data, note_size,
1543 "CORE", NT_FILE,
1544 obstack_base (&data_obstack),
1545 obstack_object_size (&data_obstack));
1546 }
1547
1548 do_cleanups (cleanup);
1549 return note_data;
1550 }
1551
1552 /* Structure for passing information from
1553 linux_collect_thread_registers via an iterator to
1554 linux_collect_regset_section_cb. */
1555
1556 struct linux_collect_regset_section_cb_data
1557 {
1558 struct gdbarch *gdbarch;
1559 const struct regcache *regcache;
1560 bfd *obfd;
1561 char *note_data;
1562 int *note_size;
1563 unsigned long lwp;
1564 enum gdb_signal stop_signal;
1565 int abort_iteration;
1566 };
1567
1568 /* Callback for iterate_over_regset_sections that records a single
1569 regset in the corefile note section. */
1570
1571 static void
1572 linux_collect_regset_section_cb (const char *sect_name, int size,
1573 const struct regset *regset,
1574 const char *human_name, void *cb_data)
1575 {
1576 char *buf;
1577 struct linux_collect_regset_section_cb_data *data
1578 = (struct linux_collect_regset_section_cb_data *) cb_data;
1579
1580 if (data->abort_iteration)
1581 return;
1582
1583 gdb_assert (regset && regset->collect_regset);
1584
1585 buf = (char *) xmalloc (size);
1586 regset->collect_regset (regset, data->regcache, -1, buf, size);
1587
1588 /* PRSTATUS still needs to be treated specially. */
1589 if (strcmp (sect_name, ".reg") == 0)
1590 data->note_data = (char *) elfcore_write_prstatus
1591 (data->obfd, data->note_data, data->note_size, data->lwp,
1592 gdb_signal_to_host (data->stop_signal), buf);
1593 else
1594 data->note_data = (char *) elfcore_write_register_note
1595 (data->obfd, data->note_data, data->note_size,
1596 sect_name, buf, size);
1597 xfree (buf);
1598
1599 if (data->note_data == NULL)
1600 data->abort_iteration = 1;
1601 }
1602
1603 /* Records the thread's register state for the corefile note
1604 section. */
1605
1606 static char *
1607 linux_collect_thread_registers (const struct regcache *regcache,
1608 ptid_t ptid, bfd *obfd,
1609 char *note_data, int *note_size,
1610 enum gdb_signal stop_signal)
1611 {
1612 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1613 struct linux_collect_regset_section_cb_data data;
1614
1615 data.gdbarch = gdbarch;
1616 data.regcache = regcache;
1617 data.obfd = obfd;
1618 data.note_data = note_data;
1619 data.note_size = note_size;
1620 data.stop_signal = stop_signal;
1621 data.abort_iteration = 0;
1622
1623 /* For remote targets the LWP may not be available, so use the TID. */
1624 data.lwp = ptid_get_lwp (ptid);
1625 if (!data.lwp)
1626 data.lwp = ptid_get_tid (ptid);
1627
1628 gdbarch_iterate_over_regset_sections (gdbarch,
1629 linux_collect_regset_section_cb,
1630 &data, regcache);
1631 return data.note_data;
1632 }
1633
1634 /* Fetch the siginfo data for the current thread, if it exists. If
1635 there is no data, or we could not read it, return NULL. Otherwise,
1636 return a newly malloc'd buffer holding the data and fill in *SIZE
1637 with the size of the data. The caller is responsible for freeing
1638 the data. */
1639
1640 static gdb_byte *
1641 linux_get_siginfo_data (struct gdbarch *gdbarch, LONGEST *size)
1642 {
1643 struct type *siginfo_type;
1644 gdb_byte *buf;
1645 LONGEST bytes_read;
1646 struct cleanup *cleanups;
1647
1648 if (!gdbarch_get_siginfo_type_p (gdbarch))
1649 return NULL;
1650
1651 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1652
1653 buf = (gdb_byte *) xmalloc (TYPE_LENGTH (siginfo_type));
1654 cleanups = make_cleanup (xfree, buf);
1655
1656 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1657 buf, 0, TYPE_LENGTH (siginfo_type));
1658 if (bytes_read == TYPE_LENGTH (siginfo_type))
1659 {
1660 discard_cleanups (cleanups);
1661 *size = bytes_read;
1662 }
1663 else
1664 {
1665 do_cleanups (cleanups);
1666 buf = NULL;
1667 }
1668
1669 return buf;
1670 }
1671
1672 struct linux_corefile_thread_data
1673 {
1674 struct gdbarch *gdbarch;
1675 bfd *obfd;
1676 char *note_data;
1677 int *note_size;
1678 enum gdb_signal stop_signal;
1679 };
1680
1681 /* Records the thread's register state for the corefile note
1682 section. */
1683
1684 static void
1685 linux_corefile_thread (struct thread_info *info,
1686 struct linux_corefile_thread_data *args)
1687 {
1688 struct cleanup *old_chain;
1689 struct regcache *regcache;
1690 gdb_byte *siginfo_data;
1691 LONGEST siginfo_size = 0;
1692
1693 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1694
1695 old_chain = save_inferior_ptid ();
1696 inferior_ptid = info->ptid;
1697 target_fetch_registers (regcache, -1);
1698 siginfo_data = linux_get_siginfo_data (args->gdbarch, &siginfo_size);
1699 do_cleanups (old_chain);
1700
1701 old_chain = make_cleanup (xfree, siginfo_data);
1702
1703 args->note_data = linux_collect_thread_registers
1704 (regcache, info->ptid, args->obfd, args->note_data,
1705 args->note_size, args->stop_signal);
1706
1707 /* Don't return anything if we got no register information above,
1708 such a core file is useless. */
1709 if (args->note_data != NULL)
1710 if (siginfo_data != NULL)
1711 args->note_data = elfcore_write_note (args->obfd,
1712 args->note_data,
1713 args->note_size,
1714 "CORE", NT_SIGINFO,
1715 siginfo_data, siginfo_size);
1716
1717 do_cleanups (old_chain);
1718 }
1719
1720 /* Fill the PRPSINFO structure with information about the process being
1721 debugged. Returns 1 in case of success, 0 for failures. Please note that
1722 even if the structure cannot be entirely filled (e.g., GDB was unable to
1723 gather information about the process UID/GID), this function will still
1724 return 1 since some information was already recorded. It will only return
1725 0 iff nothing can be gathered. */
1726
1727 static int
1728 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1729 {
1730 /* The filename which we will use to obtain some info about the process.
1731 We will basically use this to store the `/proc/PID/FILENAME' file. */
1732 char filename[100];
1733 /* The full name of the program which generated the corefile. */
1734 char *fname;
1735 /* The basename of the executable. */
1736 const char *basename;
1737 /* The arguments of the program. */
1738 char *psargs;
1739 char *infargs;
1740 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */
1741 char *proc_stat, *proc_status;
1742 /* Temporary buffer. */
1743 char *tmpstr;
1744 /* The valid states of a process, according to the Linux kernel. */
1745 const char valid_states[] = "RSDTZW";
1746 /* The program state. */
1747 const char *prog_state;
1748 /* The state of the process. */
1749 char pr_sname;
1750 /* The PID of the program which generated the corefile. */
1751 pid_t pid;
1752 /* Process flags. */
1753 unsigned int pr_flag;
1754 /* Process nice value. */
1755 long pr_nice;
1756 /* The number of fields read by `sscanf'. */
1757 int n_fields = 0;
1758 /* Cleanups. */
1759 struct cleanup *c;
1760 int i;
1761
1762 gdb_assert (p != NULL);
1763
1764 /* Obtaining PID and filename. */
1765 pid = ptid_get_pid (inferior_ptid);
1766 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1767 fname = target_fileio_read_stralloc (NULL, filename);
1768
1769 if (fname == NULL || *fname == '\0')
1770 {
1771 /* No program name was read, so we won't be able to retrieve more
1772 information about the process. */
1773 xfree (fname);
1774 return 0;
1775 }
1776
1777 c = make_cleanup (xfree, fname);
1778 memset (p, 0, sizeof (*p));
1779
1780 /* Defining the PID. */
1781 p->pr_pid = pid;
1782
1783 /* Copying the program name. Only the basename matters. */
1784 basename = lbasename (fname);
1785 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1786 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1787
1788 infargs = get_inferior_args ();
1789
1790 psargs = xstrdup (fname);
1791 if (infargs != NULL)
1792 psargs = reconcat (psargs, psargs, " ", infargs, (char *) NULL);
1793
1794 make_cleanup (xfree, psargs);
1795
1796 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs));
1797 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1798
1799 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1800 proc_stat = target_fileio_read_stralloc (NULL, filename);
1801 make_cleanup (xfree, proc_stat);
1802
1803 if (proc_stat == NULL || *proc_stat == '\0')
1804 {
1805 /* Despite being unable to read more information about the
1806 process, we return 1 here because at least we have its
1807 command line, PID and arguments. */
1808 do_cleanups (c);
1809 return 1;
1810 }
1811
1812 /* Ok, we have the stats. It's time to do a little parsing of the
1813 contents of the buffer, so that we end up reading what we want.
1814
1815 The following parsing mechanism is strongly based on the
1816 information generated by the `fs/proc/array.c' file, present in
1817 the Linux kernel tree. More details about how the information is
1818 displayed can be obtained by seeing the manpage of proc(5),
1819 specifically under the entry of `/proc/[pid]/stat'. */
1820
1821 /* Getting rid of the PID, since we already have it. */
1822 while (isdigit (*proc_stat))
1823 ++proc_stat;
1824
1825 proc_stat = skip_spaces (proc_stat);
1826
1827 /* ps command also relies on no trailing fields ever contain ')'. */
1828 proc_stat = strrchr (proc_stat, ')');
1829 if (proc_stat == NULL)
1830 {
1831 do_cleanups (c);
1832 return 1;
1833 }
1834 proc_stat++;
1835
1836 proc_stat = skip_spaces (proc_stat);
1837
1838 n_fields = sscanf (proc_stat,
1839 "%c" /* Process state. */
1840 "%d%d%d" /* Parent PID, group ID, session ID. */
1841 "%*d%*d" /* tty_nr, tpgid (not used). */
1842 "%u" /* Flags. */
1843 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1844 cmajflt (not used). */
1845 "%*s%*s%*s%*s" /* utime, stime, cutime,
1846 cstime (not used). */
1847 "%*s" /* Priority (not used). */
1848 "%ld", /* Nice. */
1849 &pr_sname,
1850 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1851 &pr_flag,
1852 &pr_nice);
1853
1854 if (n_fields != 6)
1855 {
1856 /* Again, we couldn't read the complementary information about
1857 the process state. However, we already have minimal
1858 information, so we just return 1 here. */
1859 do_cleanups (c);
1860 return 1;
1861 }
1862
1863 /* Filling the structure fields. */
1864 prog_state = strchr (valid_states, pr_sname);
1865 if (prog_state != NULL)
1866 p->pr_state = prog_state - valid_states;
1867 else
1868 {
1869 /* Zero means "Running". */
1870 p->pr_state = 0;
1871 }
1872
1873 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1874 p->pr_zomb = p->pr_sname == 'Z';
1875 p->pr_nice = pr_nice;
1876 p->pr_flag = pr_flag;
1877
1878 /* Finally, obtaining the UID and GID. For that, we read and parse the
1879 contents of the `/proc/PID/status' file. */
1880 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1881 proc_status = target_fileio_read_stralloc (NULL, filename);
1882 make_cleanup (xfree, proc_status);
1883
1884 if (proc_status == NULL || *proc_status == '\0')
1885 {
1886 /* Returning 1 since we already have a bunch of information. */
1887 do_cleanups (c);
1888 return 1;
1889 }
1890
1891 /* Extracting the UID. */
1892 tmpstr = strstr (proc_status, "Uid:");
1893 if (tmpstr != NULL)
1894 {
1895 /* Advancing the pointer to the beginning of the UID. */
1896 tmpstr += sizeof ("Uid:");
1897 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1898 ++tmpstr;
1899
1900 if (isdigit (*tmpstr))
1901 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1902 }
1903
1904 /* Extracting the GID. */
1905 tmpstr = strstr (proc_status, "Gid:");
1906 if (tmpstr != NULL)
1907 {
1908 /* Advancing the pointer to the beginning of the GID. */
1909 tmpstr += sizeof ("Gid:");
1910 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1911 ++tmpstr;
1912
1913 if (isdigit (*tmpstr))
1914 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1915 }
1916
1917 do_cleanups (c);
1918
1919 return 1;
1920 }
1921
1922 /* Build the note section for a corefile, and return it in a malloc
1923 buffer. */
1924
1925 static char *
1926 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1927 {
1928 struct linux_corefile_thread_data thread_args;
1929 struct elf_internal_linux_prpsinfo prpsinfo;
1930 char *note_data = NULL;
1931 gdb_byte *auxv;
1932 int auxv_len;
1933 struct thread_info *curr_thr, *signalled_thr, *thr;
1934
1935 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1936 return NULL;
1937
1938 if (linux_fill_prpsinfo (&prpsinfo))
1939 {
1940 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch))
1941 {
1942 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd,
1943 note_data, note_size,
1944 &prpsinfo);
1945 }
1946 else
1947 {
1948 if (gdbarch_ptr_bit (gdbarch) == 64)
1949 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1950 note_data, note_size,
1951 &prpsinfo);
1952 else
1953 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1954 note_data, note_size,
1955 &prpsinfo);
1956 }
1957 }
1958
1959 /* Thread register information. */
1960 TRY
1961 {
1962 update_thread_list ();
1963 }
1964 CATCH (e, RETURN_MASK_ERROR)
1965 {
1966 exception_print (gdb_stderr, e);
1967 }
1968 END_CATCH
1969
1970 /* Like the kernel, prefer dumping the signalled thread first.
1971 "First thread" is what tools use to infer the signalled thread.
1972 In case there's more than one signalled thread, prefer the
1973 current thread, if it is signalled. */
1974 curr_thr = inferior_thread ();
1975 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1976 signalled_thr = curr_thr;
1977 else
1978 {
1979 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1980 if (signalled_thr == NULL)
1981 signalled_thr = curr_thr;
1982 }
1983
1984 thread_args.gdbarch = gdbarch;
1985 thread_args.obfd = obfd;
1986 thread_args.note_data = note_data;
1987 thread_args.note_size = note_size;
1988 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1989
1990 linux_corefile_thread (signalled_thr, &thread_args);
1991 ALL_NON_EXITED_THREADS (thr)
1992 {
1993 if (thr == signalled_thr)
1994 continue;
1995 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
1996 continue;
1997
1998 linux_corefile_thread (thr, &thread_args);
1999 }
2000
2001 note_data = thread_args.note_data;
2002 if (!note_data)
2003 return NULL;
2004
2005 /* Auxillary vector. */
2006 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
2007 NULL, &auxv);
2008 if (auxv_len > 0)
2009 {
2010 note_data = elfcore_write_note (obfd, note_data, note_size,
2011 "CORE", NT_AUXV, auxv, auxv_len);
2012 xfree (auxv);
2013
2014 if (!note_data)
2015 return NULL;
2016 }
2017
2018 /* SPU information. */
2019 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2020 if (!note_data)
2021 return NULL;
2022
2023 /* File mappings. */
2024 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2025 note_data, note_size);
2026
2027 return note_data;
2028 }
2029
2030 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2031 gdbarch.h. This function is not static because it is exported to
2032 other -tdep files. */
2033
2034 enum gdb_signal
2035 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2036 {
2037 switch (signal)
2038 {
2039 case 0:
2040 return GDB_SIGNAL_0;
2041
2042 case LINUX_SIGHUP:
2043 return GDB_SIGNAL_HUP;
2044
2045 case LINUX_SIGINT:
2046 return GDB_SIGNAL_INT;
2047
2048 case LINUX_SIGQUIT:
2049 return GDB_SIGNAL_QUIT;
2050
2051 case LINUX_SIGILL:
2052 return GDB_SIGNAL_ILL;
2053
2054 case LINUX_SIGTRAP:
2055 return GDB_SIGNAL_TRAP;
2056
2057 case LINUX_SIGABRT:
2058 return GDB_SIGNAL_ABRT;
2059
2060 case LINUX_SIGBUS:
2061 return GDB_SIGNAL_BUS;
2062
2063 case LINUX_SIGFPE:
2064 return GDB_SIGNAL_FPE;
2065
2066 case LINUX_SIGKILL:
2067 return GDB_SIGNAL_KILL;
2068
2069 case LINUX_SIGUSR1:
2070 return GDB_SIGNAL_USR1;
2071
2072 case LINUX_SIGSEGV:
2073 return GDB_SIGNAL_SEGV;
2074
2075 case LINUX_SIGUSR2:
2076 return GDB_SIGNAL_USR2;
2077
2078 case LINUX_SIGPIPE:
2079 return GDB_SIGNAL_PIPE;
2080
2081 case LINUX_SIGALRM:
2082 return GDB_SIGNAL_ALRM;
2083
2084 case LINUX_SIGTERM:
2085 return GDB_SIGNAL_TERM;
2086
2087 case LINUX_SIGCHLD:
2088 return GDB_SIGNAL_CHLD;
2089
2090 case LINUX_SIGCONT:
2091 return GDB_SIGNAL_CONT;
2092
2093 case LINUX_SIGSTOP:
2094 return GDB_SIGNAL_STOP;
2095
2096 case LINUX_SIGTSTP:
2097 return GDB_SIGNAL_TSTP;
2098
2099 case LINUX_SIGTTIN:
2100 return GDB_SIGNAL_TTIN;
2101
2102 case LINUX_SIGTTOU:
2103 return GDB_SIGNAL_TTOU;
2104
2105 case LINUX_SIGURG:
2106 return GDB_SIGNAL_URG;
2107
2108 case LINUX_SIGXCPU:
2109 return GDB_SIGNAL_XCPU;
2110
2111 case LINUX_SIGXFSZ:
2112 return GDB_SIGNAL_XFSZ;
2113
2114 case LINUX_SIGVTALRM:
2115 return GDB_SIGNAL_VTALRM;
2116
2117 case LINUX_SIGPROF:
2118 return GDB_SIGNAL_PROF;
2119
2120 case LINUX_SIGWINCH:
2121 return GDB_SIGNAL_WINCH;
2122
2123 /* No way to differentiate between SIGIO and SIGPOLL.
2124 Therefore, we just handle the first one. */
2125 case LINUX_SIGIO:
2126 return GDB_SIGNAL_IO;
2127
2128 case LINUX_SIGPWR:
2129 return GDB_SIGNAL_PWR;
2130
2131 case LINUX_SIGSYS:
2132 return GDB_SIGNAL_SYS;
2133
2134 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2135 therefore we have to handle them here. */
2136 case LINUX_SIGRTMIN:
2137 return GDB_SIGNAL_REALTIME_32;
2138
2139 case LINUX_SIGRTMAX:
2140 return GDB_SIGNAL_REALTIME_64;
2141 }
2142
2143 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2144 {
2145 int offset = signal - LINUX_SIGRTMIN + 1;
2146
2147 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2148 }
2149
2150 return GDB_SIGNAL_UNKNOWN;
2151 }
2152
2153 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2154 gdbarch.h. This function is not static because it is exported to
2155 other -tdep files. */
2156
2157 int
2158 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2159 enum gdb_signal signal)
2160 {
2161 switch (signal)
2162 {
2163 case GDB_SIGNAL_0:
2164 return 0;
2165
2166 case GDB_SIGNAL_HUP:
2167 return LINUX_SIGHUP;
2168
2169 case GDB_SIGNAL_INT:
2170 return LINUX_SIGINT;
2171
2172 case GDB_SIGNAL_QUIT:
2173 return LINUX_SIGQUIT;
2174
2175 case GDB_SIGNAL_ILL:
2176 return LINUX_SIGILL;
2177
2178 case GDB_SIGNAL_TRAP:
2179 return LINUX_SIGTRAP;
2180
2181 case GDB_SIGNAL_ABRT:
2182 return LINUX_SIGABRT;
2183
2184 case GDB_SIGNAL_FPE:
2185 return LINUX_SIGFPE;
2186
2187 case GDB_SIGNAL_KILL:
2188 return LINUX_SIGKILL;
2189
2190 case GDB_SIGNAL_BUS:
2191 return LINUX_SIGBUS;
2192
2193 case GDB_SIGNAL_SEGV:
2194 return LINUX_SIGSEGV;
2195
2196 case GDB_SIGNAL_SYS:
2197 return LINUX_SIGSYS;
2198
2199 case GDB_SIGNAL_PIPE:
2200 return LINUX_SIGPIPE;
2201
2202 case GDB_SIGNAL_ALRM:
2203 return LINUX_SIGALRM;
2204
2205 case GDB_SIGNAL_TERM:
2206 return LINUX_SIGTERM;
2207
2208 case GDB_SIGNAL_URG:
2209 return LINUX_SIGURG;
2210
2211 case GDB_SIGNAL_STOP:
2212 return LINUX_SIGSTOP;
2213
2214 case GDB_SIGNAL_TSTP:
2215 return LINUX_SIGTSTP;
2216
2217 case GDB_SIGNAL_CONT:
2218 return LINUX_SIGCONT;
2219
2220 case GDB_SIGNAL_CHLD:
2221 return LINUX_SIGCHLD;
2222
2223 case GDB_SIGNAL_TTIN:
2224 return LINUX_SIGTTIN;
2225
2226 case GDB_SIGNAL_TTOU:
2227 return LINUX_SIGTTOU;
2228
2229 case GDB_SIGNAL_IO:
2230 return LINUX_SIGIO;
2231
2232 case GDB_SIGNAL_XCPU:
2233 return LINUX_SIGXCPU;
2234
2235 case GDB_SIGNAL_XFSZ:
2236 return LINUX_SIGXFSZ;
2237
2238 case GDB_SIGNAL_VTALRM:
2239 return LINUX_SIGVTALRM;
2240
2241 case GDB_SIGNAL_PROF:
2242 return LINUX_SIGPROF;
2243
2244 case GDB_SIGNAL_WINCH:
2245 return LINUX_SIGWINCH;
2246
2247 case GDB_SIGNAL_USR1:
2248 return LINUX_SIGUSR1;
2249
2250 case GDB_SIGNAL_USR2:
2251 return LINUX_SIGUSR2;
2252
2253 case GDB_SIGNAL_PWR:
2254 return LINUX_SIGPWR;
2255
2256 case GDB_SIGNAL_POLL:
2257 return LINUX_SIGPOLL;
2258
2259 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2260 therefore we have to handle it here. */
2261 case GDB_SIGNAL_REALTIME_32:
2262 return LINUX_SIGRTMIN;
2263
2264 /* Same comment applies to _64. */
2265 case GDB_SIGNAL_REALTIME_64:
2266 return LINUX_SIGRTMAX;
2267 }
2268
2269 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2270 if (signal >= GDB_SIGNAL_REALTIME_33
2271 && signal <= GDB_SIGNAL_REALTIME_63)
2272 {
2273 int offset = signal - GDB_SIGNAL_REALTIME_33;
2274
2275 return LINUX_SIGRTMIN + 1 + offset;
2276 }
2277
2278 return -1;
2279 }
2280
2281 /* Rummage through mappings to find a mapping's size. */
2282
2283 static int
2284 find_mapping_size (CORE_ADDR vaddr, unsigned long size,
2285 int read, int write, int exec, int modified,
2286 void *data)
2287 {
2288 struct mem_range *range = (struct mem_range *) data;
2289
2290 if (vaddr == range->start)
2291 {
2292 range->length = size;
2293 return 1;
2294 }
2295 return 0;
2296 }
2297
2298 /* Helper for linux_vsyscall_range that does the real work of finding
2299 the vsyscall's address range. */
2300
2301 static int
2302 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2303 {
2304 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2305 return 0;
2306
2307 /* This is installed by linux_init_abi below, so should always be
2308 available. */
2309 gdb_assert (gdbarch_find_memory_regions_p (target_gdbarch ()));
2310
2311 range->length = 0;
2312 gdbarch_find_memory_regions (gdbarch, find_mapping_size, range);
2313 return 1;
2314 }
2315
2316 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2317 caching, and defers the real work to linux_vsyscall_range_raw. */
2318
2319 static int
2320 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2321 {
2322 struct linux_info *info = get_linux_inferior_data ();
2323
2324 if (info->vsyscall_range_p == 0)
2325 {
2326 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2327 info->vsyscall_range_p = 1;
2328 else
2329 info->vsyscall_range_p = -1;
2330 }
2331
2332 if (info->vsyscall_range_p < 0)
2333 return 0;
2334
2335 *range = info->vsyscall_range;
2336 return 1;
2337 }
2338
2339 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2340 definitions would be dependent on compilation host. */
2341 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2342 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2343
2344 /* See gdbarch.sh 'infcall_mmap'. */
2345
2346 static CORE_ADDR
2347 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2348 {
2349 struct objfile *objf;
2350 /* Do there still exist any Linux systems without "mmap64"?
2351 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2352 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2353 struct value *addr_val;
2354 struct gdbarch *gdbarch = get_objfile_arch (objf);
2355 CORE_ADDR retval;
2356 enum
2357 {
2358 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2359 };
2360 struct value *arg[ARG_LAST];
2361
2362 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2363 0);
2364 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2365 arg[ARG_LENGTH] = value_from_ulongest
2366 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2367 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2368 | GDB_MMAP_PROT_EXEC))
2369 == 0);
2370 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2371 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2372 GDB_MMAP_MAP_PRIVATE
2373 | GDB_MMAP_MAP_ANONYMOUS);
2374 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2375 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2376 0);
2377 addr_val = call_function_by_hand (mmap_val, ARG_LAST, arg);
2378 retval = value_as_address (addr_val);
2379 if (retval == (CORE_ADDR) -1)
2380 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2381 pulongest (size));
2382 return retval;
2383 }
2384
2385 /* See gdbarch.sh 'infcall_munmap'. */
2386
2387 static void
2388 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2389 {
2390 struct objfile *objf;
2391 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2392 struct value *retval_val;
2393 struct gdbarch *gdbarch = get_objfile_arch (objf);
2394 LONGEST retval;
2395 enum
2396 {
2397 ARG_ADDR, ARG_LENGTH, ARG_LAST
2398 };
2399 struct value *arg[ARG_LAST];
2400
2401 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2402 addr);
2403 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2404 arg[ARG_LENGTH] = value_from_ulongest
2405 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2406 retval_val = call_function_by_hand (munmap_val, ARG_LAST, arg);
2407 retval = value_as_long (retval_val);
2408 if (retval != 0)
2409 warning (_("Failed inferior munmap call at %s for %s bytes, "
2410 "errno is changed."),
2411 hex_string (addr), pulongest (size));
2412 }
2413
2414 /* See linux-tdep.h. */
2415
2416 CORE_ADDR
2417 linux_displaced_step_location (struct gdbarch *gdbarch)
2418 {
2419 CORE_ADDR addr;
2420 int bp_len;
2421
2422 /* Determine entry point from target auxiliary vector. This avoids
2423 the need for symbols. Also, when debugging a stand-alone SPU
2424 executable, entry_point_address () will point to an SPU
2425 local-store address and is thus not usable as displaced stepping
2426 location. The auxiliary vector gets us the PowerPC-side entry
2427 point address instead. */
2428 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
2429 throw_error (NOT_SUPPORTED_ERROR,
2430 _("Cannot find AT_ENTRY auxiliary vector entry."));
2431
2432 /* Make certain that the address points at real code, and not a
2433 function descriptor. */
2434 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2435 &current_target);
2436
2437 /* Inferior calls also use the entry point as a breakpoint location.
2438 We don't want displaced stepping to interfere with those
2439 breakpoints, so leave space. */
2440 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2441 addr += bp_len * 2;
2442
2443 return addr;
2444 }
2445
2446 /* Display whether the gcore command is using the
2447 /proc/PID/coredump_filter file. */
2448
2449 static void
2450 show_use_coredump_filter (struct ui_file *file, int from_tty,
2451 struct cmd_list_element *c, const char *value)
2452 {
2453 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2454 " corefiles is %s.\n"), value);
2455 }
2456
2457 /* To be called from the various GDB_OSABI_LINUX handlers for the
2458 various GNU/Linux architectures and machine types. */
2459
2460 void
2461 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2462 {
2463 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2464 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2465 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2466 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2467 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2468 set_gdbarch_has_shared_address_space (gdbarch,
2469 linux_has_shared_address_space);
2470 set_gdbarch_gdb_signal_from_target (gdbarch,
2471 linux_gdb_signal_from_target);
2472 set_gdbarch_gdb_signal_to_target (gdbarch,
2473 linux_gdb_signal_to_target);
2474 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2475 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2476 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2477 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2478 }
2479
2480 /* Provide a prototype to silence -Wmissing-prototypes. */
2481 extern initialize_file_ftype _initialize_linux_tdep;
2482
2483 void
2484 _initialize_linux_tdep (void)
2485 {
2486 linux_gdbarch_data_handle =
2487 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2488
2489 /* Set a cache per-inferior. */
2490 linux_inferior_data
2491 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2492 /* Observers used to invalidate the cache when needed. */
2493 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2494 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
2495
2496 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2497 &use_coredump_filter, _("\
2498 Set whether gcore should consider /proc/PID/coredump_filter."),
2499 _("\
2500 Show whether gcore should consider /proc/PID/coredump_filter."),
2501 _("\
2502 Use this command to set whether gcore should consider the contents\n\
2503 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2504 about this file, refer to the manpage of core(5)."),
2505 NULL, show_use_coredump_filter,
2506 &setlist, &showlist);
2507 }
This page took 0.218945 seconds and 5 git commands to generate.