gdb/testsuite: restore configure script
[deliverable/binutils-gdb.git] / gdb / lm32-tdep.c
1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
3
4 Copyright (C) 2009-2021 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "inferior.h"
26 #include "dis-asm.h"
27 #include "symfile.h"
28 #include "remote.h"
29 #include "gdbcore.h"
30 #include "gdb/sim-lm32.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "trad-frame.h"
34 #include "reggroups.h"
35 #include "opcodes/lm32-desc.h"
36 #include <algorithm>
37
38 /* Macros to extract fields from an instruction. */
39 #define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
40 #define LM32_REG0(insn) ((insn >> 21) & 0x1f)
41 #define LM32_REG1(insn) ((insn >> 16) & 0x1f)
42 #define LM32_REG2(insn) ((insn >> 11) & 0x1f)
43 #define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
44
45 struct gdbarch_tdep
46 {
47 /* gdbarch target dependent data here. Currently unused for LM32. */
48 };
49
50 struct lm32_frame_cache
51 {
52 /* The frame's base. Used when constructing a frame ID. */
53 CORE_ADDR base;
54 CORE_ADDR pc;
55 /* Size of frame. */
56 int size;
57 /* Table indicating the location of each and every register. */
58 trad_frame_saved_reg *saved_regs;
59 };
60
61 /* Add the available register groups. */
62
63 static void
64 lm32_add_reggroups (struct gdbarch *gdbarch)
65 {
66 reggroup_add (gdbarch, general_reggroup);
67 reggroup_add (gdbarch, all_reggroup);
68 reggroup_add (gdbarch, system_reggroup);
69 }
70
71 /* Return whether a given register is in a given group. */
72
73 static int
74 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
75 struct reggroup *group)
76 {
77 if (group == general_reggroup)
78 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
79 || (regnum == SIM_LM32_PC_REGNUM);
80 else if (group == system_reggroup)
81 return ((regnum >= SIM_LM32_BA_REGNUM) && (regnum <= SIM_LM32_EA_REGNUM))
82 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
83 return default_register_reggroup_p (gdbarch, regnum, group);
84 }
85
86 /* Return a name that corresponds to the given register number. */
87
88 static const char *
89 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
90 {
91 static const char *register_names[] = {
92 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
93 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
94 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
95 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
96 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
97 };
98
99 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
100 return NULL;
101 else
102 return register_names[reg_nr];
103 }
104
105 /* Return type of register. */
106
107 static struct type *
108 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
109 {
110 return builtin_type (gdbarch)->builtin_int32;
111 }
112
113 /* Return non-zero if a register can't be written. */
114
115 static int
116 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
117 {
118 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
119 }
120
121 /* Analyze a function's prologue. */
122
123 static CORE_ADDR
124 lm32_analyze_prologue (struct gdbarch *gdbarch,
125 CORE_ADDR pc, CORE_ADDR limit,
126 struct lm32_frame_cache *info)
127 {
128 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
129 unsigned long instruction;
130
131 /* Keep reading though instructions, until we come across an instruction
132 that isn't likely to be part of the prologue. */
133 info->size = 0;
134 for (; pc < limit; pc += 4)
135 {
136
137 /* Read an instruction. */
138 instruction = read_memory_integer (pc, 4, byte_order);
139
140 if ((LM32_OPCODE (instruction) == OP_SW)
141 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
142 {
143 /* Any stack displaced store is likely part of the prologue.
144 Record that the register is being saved, and the offset
145 into the stack. */
146 info->saved_regs[LM32_REG1 (instruction)].set_addr (LM32_IMM16 (instruction));
147 }
148 else if ((LM32_OPCODE (instruction) == OP_ADDI)
149 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
150 {
151 /* An add to the SP is likely to be part of the prologue.
152 Adjust stack size by whatever the instruction adds to the sp. */
153 info->size -= LM32_IMM16 (instruction);
154 }
155 else if ( /* add fp,fp,sp */
156 ((LM32_OPCODE (instruction) == OP_ADD)
157 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
158 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
159 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
160 /* mv fp,imm */
161 || ((LM32_OPCODE (instruction) == OP_ADDI)
162 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
163 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
164 {
165 /* Likely to be in the prologue for functions that require
166 a frame pointer. */
167 }
168 else
169 {
170 /* Any other instruction is likely not to be part of the
171 prologue. */
172 break;
173 }
174 }
175
176 return pc;
177 }
178
179 /* Return PC of first non prologue instruction, for the function at the
180 specified address. */
181
182 static CORE_ADDR
183 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
184 {
185 CORE_ADDR func_addr, limit_pc;
186 struct lm32_frame_cache frame_info;
187 trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
188
189 /* See if we can determine the end of the prologue via the symbol table.
190 If so, then return either PC, or the PC after the prologue, whichever
191 is greater. */
192 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
193 {
194 CORE_ADDR post_prologue_pc
195 = skip_prologue_using_sal (gdbarch, func_addr);
196 if (post_prologue_pc != 0)
197 return std::max (pc, post_prologue_pc);
198 }
199
200 /* Can't determine prologue from the symbol table, need to examine
201 instructions. */
202
203 /* Find an upper limit on the function prologue using the debug
204 information. If the debug information could not be used to provide
205 that bound, then use an arbitrary large number as the upper bound. */
206 limit_pc = skip_prologue_using_sal (gdbarch, pc);
207 if (limit_pc == 0)
208 limit_pc = pc + 100; /* Magic. */
209
210 frame_info.saved_regs = saved_regs;
211 return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
212 }
213
214 /* Create a breakpoint instruction. */
215 constexpr gdb_byte lm32_break_insn[4] = { OP_RAISE << 2, 0, 0, 2 };
216
217 typedef BP_MANIPULATION (lm32_break_insn) lm32_breakpoint;
218
219
220 /* Setup registers and stack for faking a call to a function in the
221 inferior. */
222
223 static CORE_ADDR
224 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
225 struct regcache *regcache, CORE_ADDR bp_addr,
226 int nargs, struct value **args, CORE_ADDR sp,
227 function_call_return_method return_method,
228 CORE_ADDR struct_addr)
229 {
230 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
231 int first_arg_reg = SIM_LM32_R1_REGNUM;
232 int num_arg_regs = 8;
233 int i;
234
235 /* Set the return address. */
236 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
237
238 /* If we're returning a large struct, a pointer to the address to
239 store it at is passed as a first hidden parameter. */
240 if (return_method == return_method_struct)
241 {
242 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
243 first_arg_reg++;
244 num_arg_regs--;
245 sp -= 4;
246 }
247
248 /* Setup parameters. */
249 for (i = 0; i < nargs; i++)
250 {
251 struct value *arg = args[i];
252 struct type *arg_type = check_typedef (value_type (arg));
253 gdb_byte *contents;
254 ULONGEST val;
255
256 /* Promote small integer types to int. */
257 switch (arg_type->code ())
258 {
259 case TYPE_CODE_INT:
260 case TYPE_CODE_BOOL:
261 case TYPE_CODE_CHAR:
262 case TYPE_CODE_RANGE:
263 case TYPE_CODE_ENUM:
264 if (TYPE_LENGTH (arg_type) < 4)
265 {
266 arg_type = builtin_type (gdbarch)->builtin_int32;
267 arg = value_cast (arg_type, arg);
268 }
269 break;
270 }
271
272 /* FIXME: Handle structures. */
273
274 contents = (gdb_byte *) value_contents (arg);
275 val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
276 byte_order);
277
278 /* First num_arg_regs parameters are passed by registers,
279 and the rest are passed on the stack. */
280 if (i < num_arg_regs)
281 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
282 else
283 {
284 write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
285 val);
286 sp -= 4;
287 }
288 }
289
290 /* Update stack pointer. */
291 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
292
293 /* Return adjusted stack pointer. */
294 return sp;
295 }
296
297 /* Extract return value after calling a function in the inferior. */
298
299 static void
300 lm32_extract_return_value (struct type *type, struct regcache *regcache,
301 gdb_byte *valbuf)
302 {
303 struct gdbarch *gdbarch = regcache->arch ();
304 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
305 ULONGEST l;
306 CORE_ADDR return_buffer;
307
308 if (type->code () != TYPE_CODE_STRUCT
309 && type->code () != TYPE_CODE_UNION
310 && type->code () != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
311 {
312 /* Return value is returned in a single register. */
313 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
314 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
315 }
316 else if ((type->code () == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
317 {
318 /* 64-bit values are returned in a register pair. */
319 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
320 memcpy (valbuf, &l, 4);
321 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
322 memcpy (valbuf + 4, &l, 4);
323 }
324 else
325 {
326 /* Aggregate types greater than a single register are returned
327 in memory. FIXME: Unless they are only 2 regs?. */
328 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
329 return_buffer = l;
330 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
331 }
332 }
333
334 /* Write into appropriate registers a function return value of type
335 TYPE, given in virtual format. */
336 static void
337 lm32_store_return_value (struct type *type, struct regcache *regcache,
338 const gdb_byte *valbuf)
339 {
340 struct gdbarch *gdbarch = regcache->arch ();
341 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
342 ULONGEST val;
343 int len = TYPE_LENGTH (type);
344
345 if (len <= 4)
346 {
347 val = extract_unsigned_integer (valbuf, len, byte_order);
348 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
349 }
350 else if (len <= 8)
351 {
352 val = extract_unsigned_integer (valbuf, 4, byte_order);
353 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
354 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
355 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
356 }
357 else
358 error (_("lm32_store_return_value: type length too large."));
359 }
360
361 /* Determine whether a functions return value is in a register or memory. */
362 static enum return_value_convention
363 lm32_return_value (struct gdbarch *gdbarch, struct value *function,
364 struct type *valtype, struct regcache *regcache,
365 gdb_byte *readbuf, const gdb_byte *writebuf)
366 {
367 enum type_code code = valtype->code ();
368
369 if (code == TYPE_CODE_STRUCT
370 || code == TYPE_CODE_UNION
371 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
372 return RETURN_VALUE_STRUCT_CONVENTION;
373
374 if (readbuf)
375 lm32_extract_return_value (valtype, regcache, readbuf);
376 if (writebuf)
377 lm32_store_return_value (valtype, regcache, writebuf);
378
379 return RETURN_VALUE_REGISTER_CONVENTION;
380 }
381
382 /* Put here the code to store, into fi->saved_regs, the addresses of
383 the saved registers of frame described by FRAME_INFO. This
384 includes special registers such as pc and fp saved in special ways
385 in the stack frame. sp is even more special: the address we return
386 for it IS the sp for the next frame. */
387
388 static struct lm32_frame_cache *
389 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
390 {
391 CORE_ADDR current_pc;
392 ULONGEST prev_sp;
393 ULONGEST this_base;
394 struct lm32_frame_cache *info;
395 int i;
396
397 if ((*this_prologue_cache))
398 return (struct lm32_frame_cache *) (*this_prologue_cache);
399
400 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
401 (*this_prologue_cache) = info;
402 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
403
404 info->pc = get_frame_func (this_frame);
405 current_pc = get_frame_pc (this_frame);
406 lm32_analyze_prologue (get_frame_arch (this_frame),
407 info->pc, current_pc, info);
408
409 /* Compute the frame's base, and the previous frame's SP. */
410 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
411 prev_sp = this_base + info->size;
412 info->base = this_base;
413
414 /* Convert callee save offsets into addresses. */
415 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
416 {
417 if (info->saved_regs[i].is_addr ())
418 info->saved_regs[i].set_addr (this_base + info->saved_regs[i].addr ());
419 }
420
421 /* The call instruction moves the caller's PC in the callee's RA register.
422 Since this is an unwind, do the reverse. Copy the location of RA register
423 into PC (the address / regnum) so that a request for PC will be
424 converted into a request for the RA register. */
425 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
426
427 /* The previous frame's SP needed to be computed. Save the computed
428 value. */
429 info->saved_regs[SIM_LM32_SP_REGNUM].set_value (prev_sp);
430
431 return info;
432 }
433
434 static void
435 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
436 struct frame_id *this_id)
437 {
438 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
439
440 /* This marks the outermost frame. */
441 if (cache->base == 0)
442 return;
443
444 (*this_id) = frame_id_build (cache->base, cache->pc);
445 }
446
447 static struct value *
448 lm32_frame_prev_register (struct frame_info *this_frame,
449 void **this_prologue_cache, int regnum)
450 {
451 struct lm32_frame_cache *info;
452
453 info = lm32_frame_cache (this_frame, this_prologue_cache);
454 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
455 }
456
457 static const struct frame_unwind lm32_frame_unwind = {
458 "lm32 prologue",
459 NORMAL_FRAME,
460 default_frame_unwind_stop_reason,
461 lm32_frame_this_id,
462 lm32_frame_prev_register,
463 NULL,
464 default_frame_sniffer
465 };
466
467 static CORE_ADDR
468 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
469 {
470 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
471
472 return info->base;
473 }
474
475 static const struct frame_base lm32_frame_base = {
476 &lm32_frame_unwind,
477 lm32_frame_base_address,
478 lm32_frame_base_address,
479 lm32_frame_base_address
480 };
481
482 static CORE_ADDR
483 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
484 {
485 /* Align to the size of an instruction (so that they can safely be
486 pushed onto the stack. */
487 return sp & ~3;
488 }
489
490 static struct gdbarch *
491 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
492 {
493 struct gdbarch *gdbarch;
494 struct gdbarch_tdep *tdep;
495
496 /* If there is already a candidate, use it. */
497 arches = gdbarch_list_lookup_by_info (arches, &info);
498 if (arches != NULL)
499 return arches->gdbarch;
500
501 /* None found, create a new architecture from the information provided. */
502 tdep = XCNEW (struct gdbarch_tdep);
503 gdbarch = gdbarch_alloc (&info, tdep);
504
505 /* Type sizes. */
506 set_gdbarch_short_bit (gdbarch, 16);
507 set_gdbarch_int_bit (gdbarch, 32);
508 set_gdbarch_long_bit (gdbarch, 32);
509 set_gdbarch_long_long_bit (gdbarch, 64);
510 set_gdbarch_float_bit (gdbarch, 32);
511 set_gdbarch_double_bit (gdbarch, 64);
512 set_gdbarch_long_double_bit (gdbarch, 64);
513 set_gdbarch_ptr_bit (gdbarch, 32);
514
515 /* Register info. */
516 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
517 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
518 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
519 set_gdbarch_register_name (gdbarch, lm32_register_name);
520 set_gdbarch_register_type (gdbarch, lm32_register_type);
521 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
522
523 /* Frame info. */
524 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
525 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
526 set_gdbarch_decr_pc_after_break (gdbarch, 0);
527 set_gdbarch_frame_args_skip (gdbarch, 0);
528
529 /* Frame unwinding. */
530 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
531 frame_base_set_default (gdbarch, &lm32_frame_base);
532 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
533
534 /* Breakpoints. */
535 set_gdbarch_breakpoint_kind_from_pc (gdbarch, lm32_breakpoint::kind_from_pc);
536 set_gdbarch_sw_breakpoint_from_kind (gdbarch, lm32_breakpoint::bp_from_kind);
537 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
538
539 /* Calling functions in the inferior. */
540 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
541 set_gdbarch_return_value (gdbarch, lm32_return_value);
542
543 lm32_add_reggroups (gdbarch);
544 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
545
546 return gdbarch;
547 }
548
549 void _initialize_lm32_tdep ();
550 void
551 _initialize_lm32_tdep ()
552 {
553 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
554 }
This page took 0.039684 seconds and 4 git commands to generate.