GDB copyright headers update after running GDB's copyright.py script.
[deliverable/binutils-gdb.git] / gdb / m2-exp.y
1 /* YACC grammar for Modula-2 expressions, for GDB.
2 Copyright (C) 1986-2016 Free Software Foundation, Inc.
3 Generated from expread.y (now c-exp.y) and contributed by the Department
4 of Computer Science at the State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Parse a Modula-2 expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include "expression.h"
42 #include "language.h"
43 #include "value.h"
44 #include "parser-defs.h"
45 #include "m2-lang.h"
46 #include "bfd.h" /* Required by objfiles.h. */
47 #include "symfile.h" /* Required by objfiles.h. */
48 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
49 #include "block.h"
50
51 #define parse_type(ps) builtin_type (parse_gdbarch (ps))
52 #define parse_m2_type(ps) builtin_m2_type (parse_gdbarch (ps))
53
54 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
55 as well as gratuitiously global symbol names, so we can have multiple
56 yacc generated parsers in gdb. Note that these are only the variables
57 produced by yacc. If other parser generators (bison, byacc, etc) produce
58 additional global names that conflict at link time, then those parser
59 generators need to be fixed instead of adding those names to this list. */
60
61 #define yymaxdepth m2_maxdepth
62 #define yyparse m2_parse_internal
63 #define yylex m2_lex
64 #define yyerror m2_error
65 #define yylval m2_lval
66 #define yychar m2_char
67 #define yydebug m2_debug
68 #define yypact m2_pact
69 #define yyr1 m2_r1
70 #define yyr2 m2_r2
71 #define yydef m2_def
72 #define yychk m2_chk
73 #define yypgo m2_pgo
74 #define yyact m2_act
75 #define yyexca m2_exca
76 #define yyerrflag m2_errflag
77 #define yynerrs m2_nerrs
78 #define yyps m2_ps
79 #define yypv m2_pv
80 #define yys m2_s
81 #define yy_yys m2_yys
82 #define yystate m2_state
83 #define yytmp m2_tmp
84 #define yyv m2_v
85 #define yy_yyv m2_yyv
86 #define yyval m2_val
87 #define yylloc m2_lloc
88 #define yyreds m2_reds /* With YYDEBUG defined */
89 #define yytoks m2_toks /* With YYDEBUG defined */
90 #define yyname m2_name /* With YYDEBUG defined */
91 #define yyrule m2_rule /* With YYDEBUG defined */
92 #define yylhs m2_yylhs
93 #define yylen m2_yylen
94 #define yydefred m2_yydefred
95 #define yydgoto m2_yydgoto
96 #define yysindex m2_yysindex
97 #define yyrindex m2_yyrindex
98 #define yygindex m2_yygindex
99 #define yytable m2_yytable
100 #define yycheck m2_yycheck
101 #define yyss m2_yyss
102 #define yysslim m2_yysslim
103 #define yyssp m2_yyssp
104 #define yystacksize m2_yystacksize
105 #define yyvs m2_yyvs
106 #define yyvsp m2_yyvsp
107
108 #ifndef YYDEBUG
109 #define YYDEBUG 1 /* Default to yydebug support */
110 #endif
111
112 #define YYFPRINTF parser_fprintf
113
114 /* The state of the parser, used internally when we are parsing the
115 expression. */
116
117 static struct parser_state *pstate = NULL;
118
119 int yyparse (void);
120
121 static int yylex (void);
122
123 void yyerror (char *);
124
125 static int parse_number (int);
126
127 /* The sign of the number being parsed. */
128 static int number_sign = 1;
129
130 %}
131
132 /* Although the yacc "value" of an expression is not used,
133 since the result is stored in the structure being created,
134 other node types do have values. */
135
136 %union
137 {
138 LONGEST lval;
139 ULONGEST ulval;
140 DOUBLEST dval;
141 struct symbol *sym;
142 struct type *tval;
143 struct stoken sval;
144 int voidval;
145 const struct block *bval;
146 enum exp_opcode opcode;
147 struct internalvar *ivar;
148
149 struct type **tvec;
150 int *ivec;
151 }
152
153 %type <voidval> exp type_exp start set
154 %type <voidval> variable
155 %type <tval> type
156 %type <bval> block
157 %type <sym> fblock
158
159 %token <lval> INT HEX ERROR
160 %token <ulval> UINT M2_TRUE M2_FALSE CHAR
161 %token <dval> FLOAT
162
163 /* Both NAME and TYPENAME tokens represent symbols in the input,
164 and both convey their data as strings.
165 But a TYPENAME is a string that happens to be defined as a typedef
166 or builtin type name (such as int or char)
167 and a NAME is any other symbol.
168
169 Contexts where this distinction is not important can use the
170 nonterminal "name", which matches either NAME or TYPENAME. */
171
172 %token <sval> STRING
173 %token <sval> NAME BLOCKNAME IDENT VARNAME
174 %token <sval> TYPENAME
175
176 %token SIZE CAP ORD HIGH ABS MIN_FUNC MAX_FUNC FLOAT_FUNC VAL CHR ODD TRUNC
177 %token TSIZE
178 %token INC DEC INCL EXCL
179
180 /* The GDB scope operator */
181 %token COLONCOLON
182
183 %token <voidval> INTERNAL_VAR
184
185 /* M2 tokens */
186 %left ','
187 %left ABOVE_COMMA
188 %nonassoc ASSIGN
189 %left '<' '>' LEQ GEQ '=' NOTEQUAL '#' IN
190 %left OROR
191 %left LOGICAL_AND '&'
192 %left '@'
193 %left '+' '-'
194 %left '*' '/' DIV MOD
195 %right UNARY
196 %right '^' DOT '[' '('
197 %right NOT '~'
198 %left COLONCOLON QID
199 /* This is not an actual token ; it is used for precedence.
200 %right QID
201 */
202
203 \f
204 %%
205
206 start : exp
207 | type_exp
208 ;
209
210 type_exp: type
211 { write_exp_elt_opcode (pstate, OP_TYPE);
212 write_exp_elt_type (pstate, $1);
213 write_exp_elt_opcode (pstate, OP_TYPE);
214 }
215 ;
216
217 /* Expressions */
218
219 exp : exp '^' %prec UNARY
220 { write_exp_elt_opcode (pstate, UNOP_IND); }
221 ;
222
223 exp : '-'
224 { number_sign = -1; }
225 exp %prec UNARY
226 { number_sign = 1;
227 write_exp_elt_opcode (pstate, UNOP_NEG); }
228 ;
229
230 exp : '+' exp %prec UNARY
231 { write_exp_elt_opcode (pstate, UNOP_PLUS); }
232 ;
233
234 exp : not_exp exp %prec UNARY
235 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
236 ;
237
238 not_exp : NOT
239 | '~'
240 ;
241
242 exp : CAP '(' exp ')'
243 { write_exp_elt_opcode (pstate, UNOP_CAP); }
244 ;
245
246 exp : ORD '(' exp ')'
247 { write_exp_elt_opcode (pstate, UNOP_ORD); }
248 ;
249
250 exp : ABS '(' exp ')'
251 { write_exp_elt_opcode (pstate, UNOP_ABS); }
252 ;
253
254 exp : HIGH '(' exp ')'
255 { write_exp_elt_opcode (pstate, UNOP_HIGH); }
256 ;
257
258 exp : MIN_FUNC '(' type ')'
259 { write_exp_elt_opcode (pstate, UNOP_MIN);
260 write_exp_elt_type (pstate, $3);
261 write_exp_elt_opcode (pstate, UNOP_MIN); }
262 ;
263
264 exp : MAX_FUNC '(' type ')'
265 { write_exp_elt_opcode (pstate, UNOP_MAX);
266 write_exp_elt_type (pstate, $3);
267 write_exp_elt_opcode (pstate, UNOP_MAX); }
268 ;
269
270 exp : FLOAT_FUNC '(' exp ')'
271 { write_exp_elt_opcode (pstate, UNOP_FLOAT); }
272 ;
273
274 exp : VAL '(' type ',' exp ')'
275 { write_exp_elt_opcode (pstate, BINOP_VAL);
276 write_exp_elt_type (pstate, $3);
277 write_exp_elt_opcode (pstate, BINOP_VAL); }
278 ;
279
280 exp : CHR '(' exp ')'
281 { write_exp_elt_opcode (pstate, UNOP_CHR); }
282 ;
283
284 exp : ODD '(' exp ')'
285 { write_exp_elt_opcode (pstate, UNOP_ODD); }
286 ;
287
288 exp : TRUNC '(' exp ')'
289 { write_exp_elt_opcode (pstate, UNOP_TRUNC); }
290 ;
291
292 exp : TSIZE '(' exp ')'
293 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
294 ;
295
296 exp : SIZE exp %prec UNARY
297 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
298 ;
299
300
301 exp : INC '(' exp ')'
302 { write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
303 ;
304
305 exp : INC '(' exp ',' exp ')'
306 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
307 write_exp_elt_opcode (pstate, BINOP_ADD);
308 write_exp_elt_opcode (pstate,
309 BINOP_ASSIGN_MODIFY); }
310 ;
311
312 exp : DEC '(' exp ')'
313 { write_exp_elt_opcode (pstate, UNOP_PREDECREMENT);}
314 ;
315
316 exp : DEC '(' exp ',' exp ')'
317 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
318 write_exp_elt_opcode (pstate, BINOP_SUB);
319 write_exp_elt_opcode (pstate,
320 BINOP_ASSIGN_MODIFY); }
321 ;
322
323 exp : exp DOT NAME
324 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
325 write_exp_string (pstate, $3);
326 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
327 ;
328
329 exp : set
330 ;
331
332 exp : exp IN set
333 { error (_("Sets are not implemented."));}
334 ;
335
336 exp : INCL '(' exp ',' exp ')'
337 { error (_("Sets are not implemented."));}
338 ;
339
340 exp : EXCL '(' exp ',' exp ')'
341 { error (_("Sets are not implemented."));}
342 ;
343
344 set : '{' arglist '}'
345 { error (_("Sets are not implemented."));}
346 | type '{' arglist '}'
347 { error (_("Sets are not implemented."));}
348 ;
349
350
351 /* Modula-2 array subscript notation [a,b,c...] */
352 exp : exp '['
353 /* This function just saves the number of arguments
354 that follow in the list. It is *not* specific to
355 function types */
356 { start_arglist(); }
357 non_empty_arglist ']' %prec DOT
358 { write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT);
359 write_exp_elt_longcst (pstate,
360 (LONGEST) end_arglist());
361 write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT); }
362 ;
363
364 exp : exp '[' exp ']'
365 { write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT); }
366 ;
367
368 exp : exp '('
369 /* This is to save the value of arglist_len
370 being accumulated by an outer function call. */
371 { start_arglist (); }
372 arglist ')' %prec DOT
373 { write_exp_elt_opcode (pstate, OP_FUNCALL);
374 write_exp_elt_longcst (pstate,
375 (LONGEST) end_arglist ());
376 write_exp_elt_opcode (pstate, OP_FUNCALL); }
377 ;
378
379 arglist :
380 ;
381
382 arglist : exp
383 { arglist_len = 1; }
384 ;
385
386 arglist : arglist ',' exp %prec ABOVE_COMMA
387 { arglist_len++; }
388 ;
389
390 non_empty_arglist
391 : exp
392 { arglist_len = 1; }
393 ;
394
395 non_empty_arglist
396 : non_empty_arglist ',' exp %prec ABOVE_COMMA
397 { arglist_len++; }
398 ;
399
400 /* GDB construct */
401 exp : '{' type '}' exp %prec UNARY
402 { write_exp_elt_opcode (pstate, UNOP_MEMVAL);
403 write_exp_elt_type (pstate, $2);
404 write_exp_elt_opcode (pstate, UNOP_MEMVAL); }
405 ;
406
407 exp : type '(' exp ')' %prec UNARY
408 { write_exp_elt_opcode (pstate, UNOP_CAST);
409 write_exp_elt_type (pstate, $1);
410 write_exp_elt_opcode (pstate, UNOP_CAST); }
411 ;
412
413 exp : '(' exp ')'
414 { }
415 ;
416
417 /* Binary operators in order of decreasing precedence. Note that some
418 of these operators are overloaded! (ie. sets) */
419
420 /* GDB construct */
421 exp : exp '@' exp
422 { write_exp_elt_opcode (pstate, BINOP_REPEAT); }
423 ;
424
425 exp : exp '*' exp
426 { write_exp_elt_opcode (pstate, BINOP_MUL); }
427 ;
428
429 exp : exp '/' exp
430 { write_exp_elt_opcode (pstate, BINOP_DIV); }
431 ;
432
433 exp : exp DIV exp
434 { write_exp_elt_opcode (pstate, BINOP_INTDIV); }
435 ;
436
437 exp : exp MOD exp
438 { write_exp_elt_opcode (pstate, BINOP_REM); }
439 ;
440
441 exp : exp '+' exp
442 { write_exp_elt_opcode (pstate, BINOP_ADD); }
443 ;
444
445 exp : exp '-' exp
446 { write_exp_elt_opcode (pstate, BINOP_SUB); }
447 ;
448
449 exp : exp '=' exp
450 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
451 ;
452
453 exp : exp NOTEQUAL exp
454 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
455 | exp '#' exp
456 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
457 ;
458
459 exp : exp LEQ exp
460 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
461 ;
462
463 exp : exp GEQ exp
464 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
465 ;
466
467 exp : exp '<' exp
468 { write_exp_elt_opcode (pstate, BINOP_LESS); }
469 ;
470
471 exp : exp '>' exp
472 { write_exp_elt_opcode (pstate, BINOP_GTR); }
473 ;
474
475 exp : exp LOGICAL_AND exp
476 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
477 ;
478
479 exp : exp OROR exp
480 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
481 ;
482
483 exp : exp ASSIGN exp
484 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
485 ;
486
487
488 /* Constants */
489
490 exp : M2_TRUE
491 { write_exp_elt_opcode (pstate, OP_BOOL);
492 write_exp_elt_longcst (pstate, (LONGEST) $1);
493 write_exp_elt_opcode (pstate, OP_BOOL); }
494 ;
495
496 exp : M2_FALSE
497 { write_exp_elt_opcode (pstate, OP_BOOL);
498 write_exp_elt_longcst (pstate, (LONGEST) $1);
499 write_exp_elt_opcode (pstate, OP_BOOL); }
500 ;
501
502 exp : INT
503 { write_exp_elt_opcode (pstate, OP_LONG);
504 write_exp_elt_type (pstate,
505 parse_m2_type (pstate)->builtin_int);
506 write_exp_elt_longcst (pstate, (LONGEST) $1);
507 write_exp_elt_opcode (pstate, OP_LONG); }
508 ;
509
510 exp : UINT
511 {
512 write_exp_elt_opcode (pstate, OP_LONG);
513 write_exp_elt_type (pstate,
514 parse_m2_type (pstate)
515 ->builtin_card);
516 write_exp_elt_longcst (pstate, (LONGEST) $1);
517 write_exp_elt_opcode (pstate, OP_LONG);
518 }
519 ;
520
521 exp : CHAR
522 { write_exp_elt_opcode (pstate, OP_LONG);
523 write_exp_elt_type (pstate,
524 parse_m2_type (pstate)
525 ->builtin_char);
526 write_exp_elt_longcst (pstate, (LONGEST) $1);
527 write_exp_elt_opcode (pstate, OP_LONG); }
528 ;
529
530
531 exp : FLOAT
532 { write_exp_elt_opcode (pstate, OP_DOUBLE);
533 write_exp_elt_type (pstate,
534 parse_m2_type (pstate)
535 ->builtin_real);
536 write_exp_elt_dblcst (pstate, $1);
537 write_exp_elt_opcode (pstate, OP_DOUBLE); }
538 ;
539
540 exp : variable
541 ;
542
543 exp : SIZE '(' type ')' %prec UNARY
544 { write_exp_elt_opcode (pstate, OP_LONG);
545 write_exp_elt_type (pstate,
546 parse_type (pstate)->builtin_int);
547 write_exp_elt_longcst (pstate,
548 (LONGEST) TYPE_LENGTH ($3));
549 write_exp_elt_opcode (pstate, OP_LONG); }
550 ;
551
552 exp : STRING
553 { write_exp_elt_opcode (pstate, OP_M2_STRING);
554 write_exp_string (pstate, $1);
555 write_exp_elt_opcode (pstate, OP_M2_STRING); }
556 ;
557
558 /* This will be used for extensions later. Like adding modules. */
559 block : fblock
560 { $$ = SYMBOL_BLOCK_VALUE($1); }
561 ;
562
563 fblock : BLOCKNAME
564 { struct symbol *sym
565 = lookup_symbol (copy_name ($1),
566 expression_context_block,
567 VAR_DOMAIN, 0).symbol;
568 $$ = sym;}
569 ;
570
571
572 /* GDB scope operator */
573 fblock : block COLONCOLON BLOCKNAME
574 { struct symbol *tem
575 = lookup_symbol (copy_name ($3), $1,
576 VAR_DOMAIN, 0).symbol;
577 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
578 error (_("No function \"%s\" in specified context."),
579 copy_name ($3));
580 $$ = tem;
581 }
582 ;
583
584 /* Useful for assigning to PROCEDURE variables */
585 variable: fblock
586 { write_exp_elt_opcode (pstate, OP_VAR_VALUE);
587 write_exp_elt_block (pstate, NULL);
588 write_exp_elt_sym (pstate, $1);
589 write_exp_elt_opcode (pstate, OP_VAR_VALUE); }
590 ;
591
592 /* GDB internal ($foo) variable */
593 variable: INTERNAL_VAR
594 ;
595
596 /* GDB scope operator */
597 variable: block COLONCOLON NAME
598 { struct block_symbol sym
599 = lookup_symbol (copy_name ($3), $1,
600 VAR_DOMAIN, 0);
601
602 if (sym.symbol == 0)
603 error (_("No symbol \"%s\" in specified context."),
604 copy_name ($3));
605 if (symbol_read_needs_frame (sym.symbol))
606 {
607 if (innermost_block == 0
608 || contained_in (sym.block,
609 innermost_block))
610 innermost_block = sym.block;
611 }
612
613 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
614 write_exp_elt_block (pstate, sym.block);
615 write_exp_elt_sym (pstate, sym.symbol);
616 write_exp_elt_opcode (pstate, OP_VAR_VALUE); }
617 ;
618
619 /* Base case for variables. */
620 variable: NAME
621 { struct block_symbol sym;
622 struct field_of_this_result is_a_field_of_this;
623
624 sym = lookup_symbol (copy_name ($1),
625 expression_context_block,
626 VAR_DOMAIN,
627 &is_a_field_of_this);
628
629 if (sym.symbol)
630 {
631 if (symbol_read_needs_frame (sym.symbol))
632 {
633 if (innermost_block == 0 ||
634 contained_in (sym.block,
635 innermost_block))
636 innermost_block = sym.block;
637 }
638
639 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
640 write_exp_elt_block (pstate, sym.block);
641 write_exp_elt_sym (pstate, sym.symbol);
642 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
643 }
644 else
645 {
646 struct bound_minimal_symbol msymbol;
647 char *arg = copy_name ($1);
648
649 msymbol =
650 lookup_bound_minimal_symbol (arg);
651 if (msymbol.minsym != NULL)
652 write_exp_msymbol (pstate, msymbol);
653 else if (!have_full_symbols () && !have_partial_symbols ())
654 error (_("No symbol table is loaded. Use the \"symbol-file\" command."));
655 else
656 error (_("No symbol \"%s\" in current context."),
657 copy_name ($1));
658 }
659 }
660 ;
661
662 type
663 : TYPENAME
664 { $$ = lookup_typename (parse_language (pstate),
665 parse_gdbarch (pstate),
666 copy_name ($1),
667 expression_context_block, 0); }
668
669 ;
670
671 %%
672
673 /* Take care of parsing a number (anything that starts with a digit).
674 Set yylval and return the token type; update lexptr.
675 LEN is the number of characters in it. */
676
677 /*** Needs some error checking for the float case ***/
678
679 static int
680 parse_number (int olen)
681 {
682 const char *p = lexptr;
683 LONGEST n = 0;
684 LONGEST prevn = 0;
685 int c,i,ischar=0;
686 int base = input_radix;
687 int len = olen;
688 int unsigned_p = number_sign == 1 ? 1 : 0;
689
690 if(p[len-1] == 'H')
691 {
692 base = 16;
693 len--;
694 }
695 else if(p[len-1] == 'C' || p[len-1] == 'B')
696 {
697 base = 8;
698 ischar = p[len-1] == 'C';
699 len--;
700 }
701
702 /* Scan the number */
703 for (c = 0; c < len; c++)
704 {
705 if (p[c] == '.' && base == 10)
706 {
707 /* It's a float since it contains a point. */
708 yylval.dval = atof (p);
709 lexptr += len;
710 return FLOAT;
711 }
712 if (p[c] == '.' && base != 10)
713 error (_("Floating point numbers must be base 10."));
714 if (base == 10 && (p[c] < '0' || p[c] > '9'))
715 error (_("Invalid digit \'%c\' in number."),p[c]);
716 }
717
718 while (len-- > 0)
719 {
720 c = *p++;
721 n *= base;
722 if( base == 8 && (c == '8' || c == '9'))
723 error (_("Invalid digit \'%c\' in octal number."),c);
724 if (c >= '0' && c <= '9')
725 i = c - '0';
726 else
727 {
728 if (base == 16 && c >= 'A' && c <= 'F')
729 i = c - 'A' + 10;
730 else
731 return ERROR;
732 }
733 n+=i;
734 if(i >= base)
735 return ERROR;
736 if(!unsigned_p && number_sign == 1 && (prevn >= n))
737 unsigned_p=1; /* Try something unsigned */
738 /* Don't do the range check if n==i and i==0, since that special
739 case will give an overflow error. */
740 if(RANGE_CHECK && n!=i && i)
741 {
742 if((unsigned_p && (unsigned)prevn >= (unsigned)n) ||
743 ((!unsigned_p && number_sign==-1) && -prevn <= -n))
744 range_error (_("Overflow on numeric constant."));
745 }
746 prevn=n;
747 }
748
749 lexptr = p;
750 if(*p == 'B' || *p == 'C' || *p == 'H')
751 lexptr++; /* Advance past B,C or H */
752
753 if (ischar)
754 {
755 yylval.ulval = n;
756 return CHAR;
757 }
758 else if ( unsigned_p && number_sign == 1)
759 {
760 yylval.ulval = n;
761 return UINT;
762 }
763 else if((unsigned_p && (n<0))) {
764 range_error (_("Overflow on numeric constant -- number too large."));
765 /* But, this can return if range_check == range_warn. */
766 }
767 yylval.lval = n;
768 return INT;
769 }
770
771
772 /* Some tokens */
773
774 static struct
775 {
776 char name[2];
777 int token;
778 } tokentab2[] =
779 {
780 { {'<', '>'}, NOTEQUAL },
781 { {':', '='}, ASSIGN },
782 { {'<', '='}, LEQ },
783 { {'>', '='}, GEQ },
784 { {':', ':'}, COLONCOLON },
785
786 };
787
788 /* Some specific keywords */
789
790 struct keyword {
791 char keyw[10];
792 int token;
793 };
794
795 static struct keyword keytab[] =
796 {
797 {"OR" , OROR },
798 {"IN", IN },/* Note space after IN */
799 {"AND", LOGICAL_AND},
800 {"ABS", ABS },
801 {"CHR", CHR },
802 {"DEC", DEC },
803 {"NOT", NOT },
804 {"DIV", DIV },
805 {"INC", INC },
806 {"MAX", MAX_FUNC },
807 {"MIN", MIN_FUNC },
808 {"MOD", MOD },
809 {"ODD", ODD },
810 {"CAP", CAP },
811 {"ORD", ORD },
812 {"VAL", VAL },
813 {"EXCL", EXCL },
814 {"HIGH", HIGH },
815 {"INCL", INCL },
816 {"SIZE", SIZE },
817 {"FLOAT", FLOAT_FUNC },
818 {"TRUNC", TRUNC },
819 {"TSIZE", SIZE },
820 };
821
822
823 /* Read one token, getting characters through lexptr. */
824
825 /* This is where we will check to make sure that the language and the
826 operators used are compatible */
827
828 static int
829 yylex (void)
830 {
831 int c;
832 int namelen;
833 int i;
834 const char *tokstart;
835 char quote;
836
837 retry:
838
839 prev_lexptr = lexptr;
840
841 tokstart = lexptr;
842
843
844 /* See if it is a special token of length 2 */
845 for( i = 0 ; i < (int) (sizeof tokentab2 / sizeof tokentab2[0]) ; i++)
846 if (strncmp (tokentab2[i].name, tokstart, 2) == 0)
847 {
848 lexptr += 2;
849 return tokentab2[i].token;
850 }
851
852 switch (c = *tokstart)
853 {
854 case 0:
855 return 0;
856
857 case ' ':
858 case '\t':
859 case '\n':
860 lexptr++;
861 goto retry;
862
863 case '(':
864 paren_depth++;
865 lexptr++;
866 return c;
867
868 case ')':
869 if (paren_depth == 0)
870 return 0;
871 paren_depth--;
872 lexptr++;
873 return c;
874
875 case ',':
876 if (comma_terminates && paren_depth == 0)
877 return 0;
878 lexptr++;
879 return c;
880
881 case '.':
882 /* Might be a floating point number. */
883 if (lexptr[1] >= '0' && lexptr[1] <= '9')
884 break; /* Falls into number code. */
885 else
886 {
887 lexptr++;
888 return DOT;
889 }
890
891 /* These are character tokens that appear as-is in the YACC grammar */
892 case '+':
893 case '-':
894 case '*':
895 case '/':
896 case '^':
897 case '<':
898 case '>':
899 case '[':
900 case ']':
901 case '=':
902 case '{':
903 case '}':
904 case '#':
905 case '@':
906 case '~':
907 case '&':
908 lexptr++;
909 return c;
910
911 case '\'' :
912 case '"':
913 quote = c;
914 for (namelen = 1; (c = tokstart[namelen]) != quote && c != '\0'; namelen++)
915 if (c == '\\')
916 {
917 c = tokstart[++namelen];
918 if (c >= '0' && c <= '9')
919 {
920 c = tokstart[++namelen];
921 if (c >= '0' && c <= '9')
922 c = tokstart[++namelen];
923 }
924 }
925 if(c != quote)
926 error (_("Unterminated string or character constant."));
927 yylval.sval.ptr = tokstart + 1;
928 yylval.sval.length = namelen - 1;
929 lexptr += namelen + 1;
930
931 if(namelen == 2) /* Single character */
932 {
933 yylval.ulval = tokstart[1];
934 return CHAR;
935 }
936 else
937 return STRING;
938 }
939
940 /* Is it a number? */
941 /* Note: We have already dealt with the case of the token '.'.
942 See case '.' above. */
943 if ((c >= '0' && c <= '9'))
944 {
945 /* It's a number. */
946 int got_dot = 0, got_e = 0;
947 const char *p = tokstart;
948 int toktype;
949
950 for (++p ;; ++p)
951 {
952 if (!got_e && (*p == 'e' || *p == 'E'))
953 got_dot = got_e = 1;
954 else if (!got_dot && *p == '.')
955 got_dot = 1;
956 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
957 && (*p == '-' || *p == '+'))
958 /* This is the sign of the exponent, not the end of the
959 number. */
960 continue;
961 else if ((*p < '0' || *p > '9') &&
962 (*p < 'A' || *p > 'F') &&
963 (*p != 'H')) /* Modula-2 hexadecimal number */
964 break;
965 }
966 toktype = parse_number (p - tokstart);
967 if (toktype == ERROR)
968 {
969 char *err_copy = (char *) alloca (p - tokstart + 1);
970
971 memcpy (err_copy, tokstart, p - tokstart);
972 err_copy[p - tokstart] = 0;
973 error (_("Invalid number \"%s\"."), err_copy);
974 }
975 lexptr = p;
976 return toktype;
977 }
978
979 if (!(c == '_' || c == '$'
980 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
981 /* We must have come across a bad character (e.g. ';'). */
982 error (_("Invalid character '%c' in expression."), c);
983
984 /* It's a name. See how long it is. */
985 namelen = 0;
986 for (c = tokstart[namelen];
987 (c == '_' || c == '$' || (c >= '0' && c <= '9')
988 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
989 c = tokstart[++namelen])
990 ;
991
992 /* The token "if" terminates the expression and is NOT
993 removed from the input stream. */
994 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
995 {
996 return 0;
997 }
998
999 lexptr += namelen;
1000
1001 /* Lookup special keywords */
1002 for(i = 0 ; i < (int) (sizeof(keytab) / sizeof(keytab[0])) ; i++)
1003 if (namelen == strlen (keytab[i].keyw)
1004 && strncmp (tokstart, keytab[i].keyw, namelen) == 0)
1005 return keytab[i].token;
1006
1007 yylval.sval.ptr = tokstart;
1008 yylval.sval.length = namelen;
1009
1010 if (*tokstart == '$')
1011 {
1012 write_dollar_variable (pstate, yylval.sval);
1013 return INTERNAL_VAR;
1014 }
1015
1016 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1017 functions. If this is not so, then ...
1018 Use token-type TYPENAME for symbols that happen to be defined
1019 currently as names of types; NAME for other symbols.
1020 The caller is not constrained to care about the distinction. */
1021 {
1022
1023
1024 char *tmp = copy_name (yylval.sval);
1025 struct symbol *sym;
1026
1027 if (lookup_symtab (tmp))
1028 return BLOCKNAME;
1029 sym = lookup_symbol (tmp, expression_context_block, VAR_DOMAIN, 0).symbol;
1030 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
1031 return BLOCKNAME;
1032 if (lookup_typename (parse_language (pstate), parse_gdbarch (pstate),
1033 copy_name (yylval.sval),
1034 expression_context_block, 1))
1035 return TYPENAME;
1036
1037 if(sym)
1038 {
1039 switch(SYMBOL_CLASS (sym))
1040 {
1041 case LOC_STATIC:
1042 case LOC_REGISTER:
1043 case LOC_ARG:
1044 case LOC_REF_ARG:
1045 case LOC_REGPARM_ADDR:
1046 case LOC_LOCAL:
1047 case LOC_CONST:
1048 case LOC_CONST_BYTES:
1049 case LOC_OPTIMIZED_OUT:
1050 case LOC_COMPUTED:
1051 return NAME;
1052
1053 case LOC_TYPEDEF:
1054 return TYPENAME;
1055
1056 case LOC_BLOCK:
1057 return BLOCKNAME;
1058
1059 case LOC_UNDEF:
1060 error (_("internal: Undefined class in m2lex()"));
1061
1062 case LOC_LABEL:
1063 case LOC_UNRESOLVED:
1064 error (_("internal: Unforseen case in m2lex()"));
1065
1066 default:
1067 error (_("unhandled token in m2lex()"));
1068 break;
1069 }
1070 }
1071 else
1072 {
1073 /* Built-in BOOLEAN type. This is sort of a hack. */
1074 if (strncmp (tokstart, "TRUE", 4) == 0)
1075 {
1076 yylval.ulval = 1;
1077 return M2_TRUE;
1078 }
1079 else if (strncmp (tokstart, "FALSE", 5) == 0)
1080 {
1081 yylval.ulval = 0;
1082 return M2_FALSE;
1083 }
1084 }
1085
1086 /* Must be another type of name... */
1087 return NAME;
1088 }
1089 }
1090
1091 int
1092 m2_parse (struct parser_state *par_state)
1093 {
1094 int result;
1095 struct cleanup *c = make_cleanup_clear_parser_state (&pstate);
1096
1097 /* Setting up the parser state. */
1098 gdb_assert (par_state != NULL);
1099 pstate = par_state;
1100
1101 result = yyparse ();
1102 do_cleanups (c);
1103
1104 return result;
1105 }
1106
1107 void
1108 yyerror (char *msg)
1109 {
1110 if (prev_lexptr)
1111 lexptr = prev_lexptr;
1112
1113 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
1114 }
This page took 0.070093 seconds and 5 git commands to generate.