* c-exp.y, m2-exp.y: Change type of address for msymbol to
[deliverable/binutils-gdb.git] / gdb / m2-exp.y
1 /* YACC grammar for Modula-2 expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
3 Generated from expread.y (now c-exp.y) and contributed by the Department
4 of Computer Science at the State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* Parse a Modula-2 expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result.
30
31 Note that malloc's and realloc's in this file are transformed to
32 xmalloc and xrealloc respectively by the same sed command in the
33 makefile that remaps any other malloc/realloc inserted by the parser
34 generator. Doing this with #defines and trying to control the interaction
35 with include files (<malloc.h> and <stdlib.h> for example) just became
36 too messy, particularly when such includes can be inserted at random
37 times by the parser generator. */
38
39 %{
40
41 #include "defs.h"
42 #include "expression.h"
43 #include "language.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "m2-lang.h"
47
48 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
49 as well as gratuitiously global symbol names, so we can have multiple
50 yacc generated parsers in gdb. Note that these are only the variables
51 produced by yacc. If other parser generators (bison, byacc, etc) produce
52 additional global names that conflict at link time, then those parser
53 generators need to be fixed instead of adding those names to this list. */
54
55 #define yymaxdepth m2_maxdepth
56 #define yyparse m2_parse
57 #define yylex m2_lex
58 #define yyerror m2_error
59 #define yylval m2_lval
60 #define yychar m2_char
61 #define yydebug m2_debug
62 #define yypact m2_pact
63 #define yyr1 m2_r1
64 #define yyr2 m2_r2
65 #define yydef m2_def
66 #define yychk m2_chk
67 #define yypgo m2_pgo
68 #define yyact m2_act
69 #define yyexca m2_exca
70 #define yyerrflag m2_errflag
71 #define yynerrs m2_nerrs
72 #define yyps m2_ps
73 #define yypv m2_pv
74 #define yys m2_s
75 #define yy_yys m2_yys
76 #define yystate m2_state
77 #define yytmp m2_tmp
78 #define yyv m2_v
79 #define yy_yyv m2_yyv
80 #define yyval m2_val
81 #define yylloc m2_lloc
82 #define yyreds m2_reds /* With YYDEBUG defined */
83 #define yytoks m2_toks /* With YYDEBUG defined */
84
85 #ifndef YYDEBUG
86 #define YYDEBUG 0 /* Default to no yydebug support */
87 #endif
88
89 int
90 yyparse PARAMS ((void));
91
92 static int
93 yylex PARAMS ((void));
94
95 void
96 yyerror PARAMS ((char *));
97
98 #if 0
99 static char *
100 make_qualname PARAMS ((char *, char *));
101 #endif
102
103 static int
104 parse_number PARAMS ((int));
105
106 /* The sign of the number being parsed. */
107 static int number_sign = 1;
108
109 /* The block that the module specified by the qualifer on an identifer is
110 contained in, */
111 #if 0
112 static struct block *modblock=0;
113 #endif
114
115 %}
116
117 /* Although the yacc "value" of an expression is not used,
118 since the result is stored in the structure being created,
119 other node types do have values. */
120
121 %union
122 {
123 LONGEST lval;
124 unsigned LONGEST ulval;
125 double dval;
126 struct symbol *sym;
127 struct type *tval;
128 struct stoken sval;
129 int voidval;
130 struct block *bval;
131 enum exp_opcode opcode;
132 struct internalvar *ivar;
133
134 struct type **tvec;
135 int *ivec;
136 }
137
138 %type <voidval> exp type_exp start set
139 %type <voidval> variable
140 %type <tval> type
141 %type <bval> block
142 %type <sym> fblock
143
144 %token <lval> INT HEX ERROR
145 %token <ulval> UINT M2_TRUE M2_FALSE CHAR
146 %token <dval> FLOAT
147
148 /* Both NAME and TYPENAME tokens represent symbols in the input,
149 and both convey their data as strings.
150 But a TYPENAME is a string that happens to be defined as a typedef
151 or builtin type name (such as int or char)
152 and a NAME is any other symbol.
153
154 Contexts where this distinction is not important can use the
155 nonterminal "name", which matches either NAME or TYPENAME. */
156
157 %token <sval> STRING
158 %token <sval> NAME BLOCKNAME IDENT VARNAME
159 %token <sval> TYPENAME
160
161 %token SIZE CAP ORD HIGH ABS MIN_FUNC MAX_FUNC FLOAT_FUNC VAL CHR ODD TRUNC
162 %token INC DEC INCL EXCL
163
164 /* The GDB scope operator */
165 %token COLONCOLON
166
167 %token <lval> LAST REGNAME
168
169 %token <ivar> INTERNAL_VAR
170
171 /* M2 tokens */
172 %left ','
173 %left ABOVE_COMMA
174 %nonassoc ASSIGN
175 %left '<' '>' LEQ GEQ '=' NOTEQUAL '#' IN
176 %left OROR
177 %left LOGICAL_AND '&'
178 %left '@'
179 %left '+' '-'
180 %left '*' '/' DIV MOD
181 %right UNARY
182 %right '^' DOT '[' '('
183 %right NOT '~'
184 %left COLONCOLON QID
185 /* This is not an actual token ; it is used for precedence.
186 %right QID
187 */
188
189 \f
190 %%
191
192 start : exp
193 | type_exp
194 ;
195
196 type_exp: type
197 { write_exp_elt_opcode(OP_TYPE);
198 write_exp_elt_type($1);
199 write_exp_elt_opcode(OP_TYPE);
200 }
201 ;
202
203 /* Expressions */
204
205 exp : exp '^' %prec UNARY
206 { write_exp_elt_opcode (UNOP_IND); }
207
208 exp : '-'
209 { number_sign = -1; }
210 exp %prec UNARY
211 { number_sign = 1;
212 write_exp_elt_opcode (UNOP_NEG); }
213 ;
214
215 exp : '+' exp %prec UNARY
216 { write_exp_elt_opcode(UNOP_PLUS); }
217 ;
218
219 exp : not_exp exp %prec UNARY
220 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
221 ;
222
223 not_exp : NOT
224 | '~'
225 ;
226
227 exp : CAP '(' exp ')'
228 { write_exp_elt_opcode (UNOP_CAP); }
229 ;
230
231 exp : ORD '(' exp ')'
232 { write_exp_elt_opcode (UNOP_ORD); }
233 ;
234
235 exp : ABS '(' exp ')'
236 { write_exp_elt_opcode (UNOP_ABS); }
237 ;
238
239 exp : HIGH '(' exp ')'
240 { write_exp_elt_opcode (UNOP_HIGH); }
241 ;
242
243 exp : MIN_FUNC '(' type ')'
244 { write_exp_elt_opcode (UNOP_MIN);
245 write_exp_elt_type ($3);
246 write_exp_elt_opcode (UNOP_MIN); }
247 ;
248
249 exp : MAX_FUNC '(' type ')'
250 { write_exp_elt_opcode (UNOP_MAX);
251 write_exp_elt_type ($3);
252 write_exp_elt_opcode (UNOP_MIN); }
253 ;
254
255 exp : FLOAT_FUNC '(' exp ')'
256 { write_exp_elt_opcode (UNOP_FLOAT); }
257 ;
258
259 exp : VAL '(' type ',' exp ')'
260 { write_exp_elt_opcode (BINOP_VAL);
261 write_exp_elt_type ($3);
262 write_exp_elt_opcode (BINOP_VAL); }
263 ;
264
265 exp : CHR '(' exp ')'
266 { write_exp_elt_opcode (UNOP_CHR); }
267 ;
268
269 exp : ODD '(' exp ')'
270 { write_exp_elt_opcode (UNOP_ODD); }
271 ;
272
273 exp : TRUNC '(' exp ')'
274 { write_exp_elt_opcode (UNOP_TRUNC); }
275 ;
276
277 exp : SIZE exp %prec UNARY
278 { write_exp_elt_opcode (UNOP_SIZEOF); }
279 ;
280
281
282 exp : INC '(' exp ')'
283 { write_exp_elt_opcode(UNOP_PREINCREMENT); }
284 ;
285
286 exp : INC '(' exp ',' exp ')'
287 { write_exp_elt_opcode(BINOP_ASSIGN_MODIFY);
288 write_exp_elt_opcode(BINOP_ADD);
289 write_exp_elt_opcode(BINOP_ASSIGN_MODIFY); }
290 ;
291
292 exp : DEC '(' exp ')'
293 { write_exp_elt_opcode(UNOP_PREDECREMENT);}
294 ;
295
296 exp : DEC '(' exp ',' exp ')'
297 { write_exp_elt_opcode(BINOP_ASSIGN_MODIFY);
298 write_exp_elt_opcode(BINOP_SUB);
299 write_exp_elt_opcode(BINOP_ASSIGN_MODIFY); }
300 ;
301
302 exp : exp DOT NAME
303 { write_exp_elt_opcode (STRUCTOP_STRUCT);
304 write_exp_string ($3);
305 write_exp_elt_opcode (STRUCTOP_STRUCT); }
306 ;
307
308 exp : set
309 ;
310
311 exp : exp IN set
312 { error("Sets are not implemented.");}
313 ;
314
315 exp : INCL '(' exp ',' exp ')'
316 { error("Sets are not implemented.");}
317 ;
318
319 exp : EXCL '(' exp ',' exp ')'
320 { error("Sets are not implemented.");}
321
322 set : '{' arglist '}'
323 { error("Sets are not implemented.");}
324 | type '{' arglist '}'
325 { error("Sets are not implemented.");}
326 ;
327
328
329 /* Modula-2 array subscript notation [a,b,c...] */
330 exp : exp '['
331 /* This function just saves the number of arguments
332 that follow in the list. It is *not* specific to
333 function types */
334 { start_arglist(); }
335 non_empty_arglist ']' %prec DOT
336 { write_exp_elt_opcode (MULTI_SUBSCRIPT);
337 write_exp_elt_longcst ((LONGEST) end_arglist());
338 write_exp_elt_opcode (MULTI_SUBSCRIPT); }
339 ;
340
341 exp : exp '('
342 /* This is to save the value of arglist_len
343 being accumulated by an outer function call. */
344 { start_arglist (); }
345 arglist ')' %prec DOT
346 { write_exp_elt_opcode (OP_FUNCALL);
347 write_exp_elt_longcst ((LONGEST) end_arglist ());
348 write_exp_elt_opcode (OP_FUNCALL); }
349 ;
350
351 arglist :
352 ;
353
354 arglist : exp
355 { arglist_len = 1; }
356 ;
357
358 arglist : arglist ',' exp %prec ABOVE_COMMA
359 { arglist_len++; }
360 ;
361
362 non_empty_arglist
363 : exp
364 { arglist_len = 1; }
365 ;
366
367 non_empty_arglist
368 : non_empty_arglist ',' exp %prec ABOVE_COMMA
369 { arglist_len++; }
370 ;
371
372 /* GDB construct */
373 exp : '{' type '}' exp %prec UNARY
374 { write_exp_elt_opcode (UNOP_MEMVAL);
375 write_exp_elt_type ($2);
376 write_exp_elt_opcode (UNOP_MEMVAL); }
377 ;
378
379 exp : type '(' exp ')' %prec UNARY
380 { write_exp_elt_opcode (UNOP_CAST);
381 write_exp_elt_type ($1);
382 write_exp_elt_opcode (UNOP_CAST); }
383 ;
384
385 exp : '(' exp ')'
386 { }
387 ;
388
389 /* Binary operators in order of decreasing precedence. Note that some
390 of these operators are overloaded! (ie. sets) */
391
392 /* GDB construct */
393 exp : exp '@' exp
394 { write_exp_elt_opcode (BINOP_REPEAT); }
395 ;
396
397 exp : exp '*' exp
398 { write_exp_elt_opcode (BINOP_MUL); }
399 ;
400
401 exp : exp '/' exp
402 { write_exp_elt_opcode (BINOP_DIV); }
403 ;
404
405 exp : exp DIV exp
406 { write_exp_elt_opcode (BINOP_INTDIV); }
407 ;
408
409 exp : exp MOD exp
410 { write_exp_elt_opcode (BINOP_REM); }
411 ;
412
413 exp : exp '+' exp
414 { write_exp_elt_opcode (BINOP_ADD); }
415 ;
416
417 exp : exp '-' exp
418 { write_exp_elt_opcode (BINOP_SUB); }
419 ;
420
421 exp : exp '=' exp
422 { write_exp_elt_opcode (BINOP_EQUAL); }
423 ;
424
425 exp : exp NOTEQUAL exp
426 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
427 | exp '#' exp
428 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
429 ;
430
431 exp : exp LEQ exp
432 { write_exp_elt_opcode (BINOP_LEQ); }
433 ;
434
435 exp : exp GEQ exp
436 { write_exp_elt_opcode (BINOP_GEQ); }
437 ;
438
439 exp : exp '<' exp
440 { write_exp_elt_opcode (BINOP_LESS); }
441 ;
442
443 exp : exp '>' exp
444 { write_exp_elt_opcode (BINOP_GTR); }
445 ;
446
447 exp : exp LOGICAL_AND exp
448 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
449 ;
450
451 exp : exp OROR exp
452 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
453 ;
454
455 exp : exp ASSIGN exp
456 { write_exp_elt_opcode (BINOP_ASSIGN); }
457 ;
458
459
460 /* Constants */
461
462 exp : M2_TRUE
463 { write_exp_elt_opcode (OP_BOOL);
464 write_exp_elt_longcst ((LONGEST) $1);
465 write_exp_elt_opcode (OP_BOOL); }
466 ;
467
468 exp : M2_FALSE
469 { write_exp_elt_opcode (OP_BOOL);
470 write_exp_elt_longcst ((LONGEST) $1);
471 write_exp_elt_opcode (OP_BOOL); }
472 ;
473
474 exp : INT
475 { write_exp_elt_opcode (OP_LONG);
476 write_exp_elt_type (builtin_type_m2_int);
477 write_exp_elt_longcst ((LONGEST) $1);
478 write_exp_elt_opcode (OP_LONG); }
479 ;
480
481 exp : UINT
482 {
483 write_exp_elt_opcode (OP_LONG);
484 write_exp_elt_type (builtin_type_m2_card);
485 write_exp_elt_longcst ((LONGEST) $1);
486 write_exp_elt_opcode (OP_LONG);
487 }
488 ;
489
490 exp : CHAR
491 { write_exp_elt_opcode (OP_LONG);
492 write_exp_elt_type (builtin_type_m2_char);
493 write_exp_elt_longcst ((LONGEST) $1);
494 write_exp_elt_opcode (OP_LONG); }
495 ;
496
497
498 exp : FLOAT
499 { write_exp_elt_opcode (OP_DOUBLE);
500 write_exp_elt_type (builtin_type_m2_real);
501 write_exp_elt_dblcst ($1);
502 write_exp_elt_opcode (OP_DOUBLE); }
503 ;
504
505 exp : variable
506 ;
507
508 /* The GDB internal variable $$, et al. */
509 exp : LAST
510 { write_exp_elt_opcode (OP_LAST);
511 write_exp_elt_longcst ((LONGEST) $1);
512 write_exp_elt_opcode (OP_LAST); }
513 ;
514
515 exp : REGNAME
516 { write_exp_elt_opcode (OP_REGISTER);
517 write_exp_elt_longcst ((LONGEST) $1);
518 write_exp_elt_opcode (OP_REGISTER); }
519 ;
520
521 exp : SIZE '(' type ')' %prec UNARY
522 { write_exp_elt_opcode (OP_LONG);
523 write_exp_elt_type (builtin_type_int);
524 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
525 write_exp_elt_opcode (OP_LONG); }
526 ;
527
528 exp : STRING
529 { write_exp_elt_opcode (OP_M2_STRING);
530 write_exp_string ($1);
531 write_exp_elt_opcode (OP_M2_STRING); }
532 ;
533
534 /* This will be used for extensions later. Like adding modules. */
535 block : fblock
536 { $$ = SYMBOL_BLOCK_VALUE($1); }
537 ;
538
539 fblock : BLOCKNAME
540 { struct symbol *sym
541 = lookup_symbol (copy_name ($1), expression_context_block,
542 VAR_NAMESPACE, 0, NULL);
543 $$ = sym;}
544 ;
545
546
547 /* GDB scope operator */
548 fblock : block COLONCOLON BLOCKNAME
549 { struct symbol *tem
550 = lookup_symbol (copy_name ($3), $1,
551 VAR_NAMESPACE, 0, NULL);
552 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
553 error ("No function \"%s\" in specified context.",
554 copy_name ($3));
555 $$ = tem;
556 }
557 ;
558
559 /* Useful for assigning to PROCEDURE variables */
560 variable: fblock
561 { write_exp_elt_opcode(OP_VAR_VALUE);
562 write_exp_elt_block (NULL);
563 write_exp_elt_sym ($1);
564 write_exp_elt_opcode (OP_VAR_VALUE); }
565 ;
566
567 /* GDB internal ($foo) variable */
568 variable: INTERNAL_VAR
569 { write_exp_elt_opcode (OP_INTERNALVAR);
570 write_exp_elt_intern ($1);
571 write_exp_elt_opcode (OP_INTERNALVAR); }
572 ;
573
574 /* GDB scope operator */
575 variable: block COLONCOLON NAME
576 { struct symbol *sym;
577 sym = lookup_symbol (copy_name ($3), $1,
578 VAR_NAMESPACE, 0, NULL);
579 if (sym == 0)
580 error ("No symbol \"%s\" in specified context.",
581 copy_name ($3));
582
583 write_exp_elt_opcode (OP_VAR_VALUE);
584 /* block_found is set by lookup_symbol. */
585 write_exp_elt_block (block_found);
586 write_exp_elt_sym (sym);
587 write_exp_elt_opcode (OP_VAR_VALUE); }
588 ;
589
590 /* Base case for variables. */
591 variable: NAME
592 { struct symbol *sym;
593 int is_a_field_of_this;
594
595 sym = lookup_symbol (copy_name ($1),
596 expression_context_block,
597 VAR_NAMESPACE,
598 &is_a_field_of_this,
599 NULL);
600 if (sym)
601 {
602 switch (sym->class)
603 {
604 case LOC_REGISTER:
605 case LOC_ARG:
606 case LOC_LOCAL:
607 case LOC_REF_ARG:
608 case LOC_REGPARM:
609 case LOC_REGPARM_ADDR:
610 case LOC_LOCAL_ARG:
611 case LOC_BASEREG:
612 case LOC_BASEREG_ARG:
613 if (innermost_block == 0 ||
614 contained_in (block_found,
615 innermost_block))
616 innermost_block = block_found;
617 break;
618
619 case LOC_UNDEF:
620 case LOC_CONST:
621 case LOC_STATIC:
622 case LOC_TYPEDEF:
623 case LOC_LABEL: /* maybe should go above? */
624 case LOC_BLOCK:
625 case LOC_CONST_BYTES:
626 case LOC_OPTIMIZED_OUT:
627 /* These are listed so gcc -Wall will reveal
628 un-handled cases. */
629 break;
630 }
631 write_exp_elt_opcode (OP_VAR_VALUE);
632 /* We want to use the selected frame, not
633 another more inner frame which happens to
634 be in the same block. */
635 write_exp_elt_block (NULL);
636 write_exp_elt_sym (sym);
637 write_exp_elt_opcode (OP_VAR_VALUE);
638 }
639 else
640 {
641 struct minimal_symbol *msymbol;
642 register char *arg = copy_name ($1);
643
644 msymbol = lookup_minimal_symbol (arg,
645 (struct objfile *) NULL);
646 if (msymbol != NULL)
647 {
648 write_exp_elt_opcode (OP_LONG);
649 write_exp_elt_type (builtin_type_long);
650 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
651 write_exp_elt_opcode (OP_LONG);
652 write_exp_elt_opcode (UNOP_MEMVAL);
653 if (msymbol -> type == mst_data ||
654 msymbol -> type == mst_bss)
655 write_exp_elt_type (builtin_type_int);
656 else if (msymbol -> type == mst_text)
657 write_exp_elt_type (lookup_function_type (builtin_type_int));
658 else
659 write_exp_elt_type (builtin_type_char);
660 write_exp_elt_opcode (UNOP_MEMVAL);
661 }
662 else if (!have_full_symbols () && !have_partial_symbols ())
663 error ("No symbol table is loaded. Use the \"symbol-file\" command.");
664 else
665 error ("No symbol \"%s\" in current context.",
666 copy_name ($1));
667 }
668 }
669 ;
670
671 type
672 : TYPENAME
673 { $$ = lookup_typename (copy_name ($1),
674 expression_context_block, 0); }
675
676 ;
677
678 %%
679
680 #if 0 /* FIXME! */
681 int
682 overflow(a,b)
683 long a,b;
684 {
685 return (MAX_OF_TYPE(builtin_type_m2_int) - b) < a;
686 }
687
688 int
689 uoverflow(a,b)
690 unsigned long a,b;
691 {
692 return (MAX_OF_TYPE(builtin_type_m2_card) - b) < a;
693 }
694 #endif /* FIXME */
695
696 /* Take care of parsing a number (anything that starts with a digit).
697 Set yylval and return the token type; update lexptr.
698 LEN is the number of characters in it. */
699
700 /*** Needs some error checking for the float case ***/
701
702 static int
703 parse_number (olen)
704 int olen;
705 {
706 register char *p = lexptr;
707 register LONGEST n = 0;
708 register LONGEST prevn = 0;
709 register int c,i,ischar=0;
710 register int base = input_radix;
711 register int len = olen;
712 int unsigned_p = number_sign == 1 ? 1 : 0;
713
714 if(p[len-1] == 'H')
715 {
716 base = 16;
717 len--;
718 }
719 else if(p[len-1] == 'C' || p[len-1] == 'B')
720 {
721 base = 8;
722 ischar = p[len-1] == 'C';
723 len--;
724 }
725
726 /* Scan the number */
727 for (c = 0; c < len; c++)
728 {
729 if (p[c] == '.' && base == 10)
730 {
731 /* It's a float since it contains a point. */
732 yylval.dval = atof (p);
733 lexptr += len;
734 return FLOAT;
735 }
736 if (p[c] == '.' && base != 10)
737 error("Floating point numbers must be base 10.");
738 if (base == 10 && (p[c] < '0' || p[c] > '9'))
739 error("Invalid digit \'%c\' in number.",p[c]);
740 }
741
742 while (len-- > 0)
743 {
744 c = *p++;
745 n *= base;
746 if( base == 8 && (c == '8' || c == '9'))
747 error("Invalid digit \'%c\' in octal number.",c);
748 if (c >= '0' && c <= '9')
749 i = c - '0';
750 else
751 {
752 if (base == 16 && c >= 'A' && c <= 'F')
753 i = c - 'A' + 10;
754 else
755 return ERROR;
756 }
757 n+=i;
758 if(i >= base)
759 return ERROR;
760 if(!unsigned_p && number_sign == 1 && (prevn >= n))
761 unsigned_p=1; /* Try something unsigned */
762 /* Don't do the range check if n==i and i==0, since that special
763 case will give an overflow error. */
764 if(RANGE_CHECK && n!=i && i)
765 {
766 if((unsigned_p && (unsigned)prevn >= (unsigned)n) ||
767 ((!unsigned_p && number_sign==-1) && -prevn <= -n))
768 range_error("Overflow on numeric constant.");
769 }
770 prevn=n;
771 }
772
773 lexptr = p;
774 if(*p == 'B' || *p == 'C' || *p == 'H')
775 lexptr++; /* Advance past B,C or H */
776
777 if (ischar)
778 {
779 yylval.ulval = n;
780 return CHAR;
781 }
782 else if ( unsigned_p && number_sign == 1)
783 {
784 yylval.ulval = n;
785 return UINT;
786 }
787 else if((unsigned_p && (n<0))) {
788 range_error("Overflow on numeric constant -- number too large.");
789 /* But, this can return if range_check == range_warn. */
790 }
791 yylval.lval = n;
792 return INT;
793 }
794
795
796 /* Some tokens */
797
798 static struct
799 {
800 char name[2];
801 int token;
802 } tokentab2[] =
803 {
804 { {'<', '>'}, NOTEQUAL },
805 { {':', '='}, ASSIGN },
806 { {'<', '='}, LEQ },
807 { {'>', '='}, GEQ },
808 { {':', ':'}, COLONCOLON },
809
810 };
811
812 /* Some specific keywords */
813
814 struct keyword {
815 char keyw[10];
816 int token;
817 };
818
819 static struct keyword keytab[] =
820 {
821 {"OR" , OROR },
822 {"IN", IN },/* Note space after IN */
823 {"AND", LOGICAL_AND},
824 {"ABS", ABS },
825 {"CHR", CHR },
826 {"DEC", DEC },
827 {"NOT", NOT },
828 {"DIV", DIV },
829 {"INC", INC },
830 {"MAX", MAX_FUNC },
831 {"MIN", MIN_FUNC },
832 {"MOD", MOD },
833 {"ODD", ODD },
834 {"CAP", CAP },
835 {"ORD", ORD },
836 {"VAL", VAL },
837 {"EXCL", EXCL },
838 {"HIGH", HIGH },
839 {"INCL", INCL },
840 {"SIZE", SIZE },
841 {"FLOAT", FLOAT_FUNC },
842 {"TRUNC", TRUNC },
843 };
844
845
846 /* Read one token, getting characters through lexptr. */
847
848 /* This is where we will check to make sure that the language and the operators used are
849 compatible */
850
851 static int
852 yylex ()
853 {
854 register int c;
855 register int namelen;
856 register int i;
857 register char *tokstart;
858 register char quote;
859
860 retry:
861
862 tokstart = lexptr;
863
864
865 /* See if it is a special token of length 2 */
866 for( i = 0 ; i < sizeof tokentab2 / sizeof tokentab2[0] ; i++)
867 if(STREQN(tokentab2[i].name, tokstart, 2))
868 {
869 lexptr += 2;
870 return tokentab2[i].token;
871 }
872
873 switch (c = *tokstart)
874 {
875 case 0:
876 return 0;
877
878 case ' ':
879 case '\t':
880 case '\n':
881 lexptr++;
882 goto retry;
883
884 case '(':
885 paren_depth++;
886 lexptr++;
887 return c;
888
889 case ')':
890 if (paren_depth == 0)
891 return 0;
892 paren_depth--;
893 lexptr++;
894 return c;
895
896 case ',':
897 if (comma_terminates && paren_depth == 0)
898 return 0;
899 lexptr++;
900 return c;
901
902 case '.':
903 /* Might be a floating point number. */
904 if (lexptr[1] >= '0' && lexptr[1] <= '9')
905 break; /* Falls into number code. */
906 else
907 {
908 lexptr++;
909 return DOT;
910 }
911
912 /* These are character tokens that appear as-is in the YACC grammar */
913 case '+':
914 case '-':
915 case '*':
916 case '/':
917 case '^':
918 case '<':
919 case '>':
920 case '[':
921 case ']':
922 case '=':
923 case '{':
924 case '}':
925 case '#':
926 case '@':
927 case '~':
928 case '&':
929 lexptr++;
930 return c;
931
932 case '\'' :
933 case '"':
934 quote = c;
935 for (namelen = 1; (c = tokstart[namelen]) != quote && c != '\0'; namelen++)
936 if (c == '\\')
937 {
938 c = tokstart[++namelen];
939 if (c >= '0' && c <= '9')
940 {
941 c = tokstart[++namelen];
942 if (c >= '0' && c <= '9')
943 c = tokstart[++namelen];
944 }
945 }
946 if(c != quote)
947 error("Unterminated string or character constant.");
948 yylval.sval.ptr = tokstart + 1;
949 yylval.sval.length = namelen - 1;
950 lexptr += namelen + 1;
951
952 if(namelen == 2) /* Single character */
953 {
954 yylval.ulval = tokstart[1];
955 return CHAR;
956 }
957 else
958 return STRING;
959 }
960
961 /* Is it a number? */
962 /* Note: We have already dealt with the case of the token '.'.
963 See case '.' above. */
964 if ((c >= '0' && c <= '9'))
965 {
966 /* It's a number. */
967 int got_dot = 0, got_e = 0;
968 register char *p = tokstart;
969 int toktype;
970
971 for (++p ;; ++p)
972 {
973 if (!got_e && (*p == 'e' || *p == 'E'))
974 got_dot = got_e = 1;
975 else if (!got_dot && *p == '.')
976 got_dot = 1;
977 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
978 && (*p == '-' || *p == '+'))
979 /* This is the sign of the exponent, not the end of the
980 number. */
981 continue;
982 else if ((*p < '0' || *p > '9') &&
983 (*p < 'A' || *p > 'F') &&
984 (*p != 'H')) /* Modula-2 hexadecimal number */
985 break;
986 }
987 toktype = parse_number (p - tokstart);
988 if (toktype == ERROR)
989 {
990 char *err_copy = (char *) alloca (p - tokstart + 1);
991
992 memcpy (err_copy, tokstart, p - tokstart);
993 err_copy[p - tokstart] = 0;
994 error ("Invalid number \"%s\".", err_copy);
995 }
996 lexptr = p;
997 return toktype;
998 }
999
1000 if (!(c == '_' || c == '$'
1001 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1002 /* We must have come across a bad character (e.g. ';'). */
1003 error ("Invalid character '%c' in expression.", c);
1004
1005 /* It's a name. See how long it is. */
1006 namelen = 0;
1007 for (c = tokstart[namelen];
1008 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1009 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1010 c = tokstart[++namelen])
1011 ;
1012
1013 /* The token "if" terminates the expression and is NOT
1014 removed from the input stream. */
1015 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1016 {
1017 return 0;
1018 }
1019
1020 lexptr += namelen;
1021
1022 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1023 and $$digits (equivalent to $<-digits> if you could type that).
1024 Make token type LAST, and put the number (the digits) in yylval. */
1025
1026 if (*tokstart == '$')
1027 {
1028 register int negate = 0;
1029 c = 1;
1030 /* Double dollar means negate the number and add -1 as well.
1031 Thus $$ alone means -1. */
1032 if (namelen >= 2 && tokstart[1] == '$')
1033 {
1034 negate = 1;
1035 c = 2;
1036 }
1037 if (c == namelen)
1038 {
1039 /* Just dollars (one or two) */
1040 yylval.lval = - negate;
1041 return LAST;
1042 }
1043 /* Is the rest of the token digits? */
1044 for (; c < namelen; c++)
1045 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1046 break;
1047 if (c == namelen)
1048 {
1049 yylval.lval = atoi (tokstart + 1 + negate);
1050 if (negate)
1051 yylval.lval = - yylval.lval;
1052 return LAST;
1053 }
1054 }
1055
1056 /* Handle tokens that refer to machine registers:
1057 $ followed by a register name. */
1058
1059 if (*tokstart == '$') {
1060 for (c = 0; c < NUM_REGS; c++)
1061 if (namelen - 1 == strlen (reg_names[c])
1062 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1063 {
1064 yylval.lval = c;
1065 return REGNAME;
1066 }
1067 for (c = 0; c < num_std_regs; c++)
1068 if (namelen - 1 == strlen (std_regs[c].name)
1069 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1070 {
1071 yylval.lval = std_regs[c].regnum;
1072 return REGNAME;
1073 }
1074 }
1075
1076
1077 /* Lookup special keywords */
1078 for(i = 0 ; i < sizeof(keytab) / sizeof(keytab[0]) ; i++)
1079 if(namelen == strlen(keytab[i].keyw) && STREQN(tokstart,keytab[i].keyw,namelen))
1080 return keytab[i].token;
1081
1082 yylval.sval.ptr = tokstart;
1083 yylval.sval.length = namelen;
1084
1085 /* Any other names starting in $ are debugger internal variables. */
1086
1087 if (*tokstart == '$')
1088 {
1089 yylval.ivar = (struct internalvar *) lookup_internalvar (copy_name (yylval.sval) + 1);
1090 return INTERNAL_VAR;
1091 }
1092
1093
1094 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1095 functions. If this is not so, then ...
1096 Use token-type TYPENAME for symbols that happen to be defined
1097 currently as names of types; NAME for other symbols.
1098 The caller is not constrained to care about the distinction. */
1099 {
1100
1101
1102 char *tmp = copy_name (yylval.sval);
1103 struct symbol *sym;
1104
1105 if (lookup_partial_symtab (tmp))
1106 return BLOCKNAME;
1107 sym = lookup_symbol (tmp, expression_context_block,
1108 VAR_NAMESPACE, 0, NULL);
1109 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
1110 return BLOCKNAME;
1111 if (lookup_typename (copy_name (yylval.sval), expression_context_block, 1))
1112 return TYPENAME;
1113
1114 if(sym)
1115 {
1116 switch(sym->class)
1117 {
1118 case LOC_STATIC:
1119 case LOC_REGISTER:
1120 case LOC_ARG:
1121 case LOC_REF_ARG:
1122 case LOC_REGPARM:
1123 case LOC_REGPARM_ADDR:
1124 case LOC_LOCAL:
1125 case LOC_LOCAL_ARG:
1126 case LOC_BASEREG:
1127 case LOC_BASEREG_ARG:
1128 case LOC_CONST:
1129 case LOC_CONST_BYTES:
1130 case LOC_OPTIMIZED_OUT:
1131 return NAME;
1132
1133 case LOC_TYPEDEF:
1134 return TYPENAME;
1135
1136 case LOC_BLOCK:
1137 return BLOCKNAME;
1138
1139 case LOC_UNDEF:
1140 error("internal: Undefined class in m2lex()");
1141
1142 case LOC_LABEL:
1143 error("internal: Unforseen case in m2lex()");
1144 }
1145 }
1146 else
1147 {
1148 /* Built-in BOOLEAN type. This is sort of a hack. */
1149 if(STREQN(tokstart,"TRUE",4))
1150 {
1151 yylval.ulval = 1;
1152 return M2_TRUE;
1153 }
1154 else if(STREQN(tokstart,"FALSE",5))
1155 {
1156 yylval.ulval = 0;
1157 return M2_FALSE;
1158 }
1159 }
1160
1161 /* Must be another type of name... */
1162 return NAME;
1163 }
1164 }
1165
1166 #if 0 /* Unused */
1167 static char *
1168 make_qualname(mod,ident)
1169 char *mod, *ident;
1170 {
1171 char *new = malloc(strlen(mod)+strlen(ident)+2);
1172
1173 strcpy(new,mod);
1174 strcat(new,".");
1175 strcat(new,ident);
1176 return new;
1177 }
1178 #endif /* 0 */
1179
1180 void
1181 yyerror(msg)
1182 char *msg; /* unused */
1183 {
1184 printf("Parsing: %s\n",lexptr);
1185 if (yychar < 256)
1186 error("Invalid syntax in expression near character '%c'.",yychar);
1187 else
1188 error("Invalid syntax in expression");
1189 }
1190
This page took 0.055355 seconds and 5 git commands to generate.