* c-exp.y, m2-exp.y: Lint.
[deliverable/binutils-gdb.git] / gdb / m2-exp.y
1 /* YACC grammar for Modula-2 expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
3 Generated from expread.y (now c-exp.y) and contributed by the Department
4 of Computer Science at the State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* Parse a Modula-2 expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result. */
30
31 %{
32 #include <stdio.h>
33 #include <string.h>
34 #include "defs.h"
35 #include "param.h"
36 #include "symtab.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "language.h"
40 #include "parser-defs.h"
41
42 /* These MUST be included in any grammar file!!!!
43 Please choose unique names! */
44 #define yyparse m2_parse
45 #define yylex m2_lex
46 #define yyerror m2_error
47 #define yylval m2_lval
48 #define yychar m2_char
49 #define yydebug m2_debug
50 #define yypact m2_pact
51 #define yyr1 m2_r1
52 #define yyr2 m2_r2
53 #define yydef m2_def
54 #define yychk m2_chk
55 #define yypgo m2_pgo
56 #define yyact m2_act
57 #define yyexca m2_exca
58
59 /* Forward decl's */
60 void yyerror ();
61 static int yylex ();
62 int yyparse ();
63
64 /* The sign of the number being parsed. */
65 int number_sign = 1;
66
67 /* The block that the module specified by the qualifer on an identifer is
68 contained in, */
69 struct block *modblock=0;
70
71 char *make_qualname();
72
73 /* #define YYDEBUG 1 */
74
75 %}
76
77 /* Although the yacc "value" of an expression is not used,
78 since the result is stored in the structure being created,
79 other node types do have values. */
80
81 %union
82 {
83 LONGEST lval;
84 unsigned LONGEST ulval;
85 double dval;
86 struct symbol *sym;
87 struct type *tval;
88 struct stoken sval;
89 int voidval;
90 struct block *bval;
91 enum exp_opcode opcode;
92 struct internalvar *ivar;
93
94 struct type **tvec;
95 int *ivec;
96 }
97
98 %type <voidval> exp type_exp start set
99 %type <voidval> variable
100 %type <tval> type
101 %type <bval> block
102 %type <sym> fblock
103
104 %token <lval> INT HEX ERROR
105 %token <ulval> UINT TRUE FALSE CHAR
106 %token <dval> FLOAT
107
108 /* Both NAME and TYPENAME tokens represent symbols in the input,
109 and both convey their data as strings.
110 But a TYPENAME is a string that happens to be defined as a typedef
111 or builtin type name (such as int or char)
112 and a NAME is any other symbol.
113
114 Contexts where this distinction is not important can use the
115 nonterminal "name", which matches either NAME or TYPENAME. */
116
117 %token <sval> STRING
118 %token <sval> NAME BLOCKNAME IDENT CONST VARNAME
119 %token <sval> TYPENAME
120
121 %token SIZE CAP ORD HIGH ABS MIN MAX FLOAT_FUNC VAL CHR ODD TRUNC
122 %token INC DEC INCL EXCL
123
124 /* The GDB scope operator */
125 %token COLONCOLON
126
127 %token <lval> LAST REGNAME
128
129 %token <ivar> INTERNAL_VAR
130
131 /* M2 tokens */
132 %left ','
133 %left ABOVE_COMMA
134 %nonassoc ASSIGN
135 %left '<' '>' LEQ GEQ '=' NOTEQUAL '#' IN
136 %left OR
137 %left AND '&'
138 %left '@'
139 %left '+' '-'
140 %left '*' '/' DIV MOD
141 %right UNARY
142 %right '^' DOT '[' '('
143 %right NOT '~'
144 %left COLONCOLON QID
145 /* This is not an actual token ; it is used for precedence.
146 %right QID
147 */
148 %%
149
150 start : exp
151 | type_exp
152 ;
153
154 type_exp: type
155 { write_exp_elt_opcode(OP_TYPE);
156 write_exp_elt_type($1);
157 write_exp_elt_opcode(OP_TYPE);
158 }
159 ;
160
161 /* Expressions */
162
163 exp : exp '^' %prec UNARY
164 { write_exp_elt_opcode (UNOP_IND); }
165
166 exp : '-'
167 { number_sign = -1; }
168 exp %prec UNARY
169 { number_sign = 1;
170 write_exp_elt_opcode (UNOP_NEG); }
171 ;
172
173 exp : '+' exp %prec UNARY
174 { write_exp_elt_opcode(UNOP_PLUS); }
175 ;
176
177 exp : not_exp exp %prec UNARY
178 { write_exp_elt_opcode (UNOP_ZEROP); }
179 ;
180
181 not_exp : NOT
182 | '~'
183 ;
184
185 exp : CAP '(' exp ')'
186 { write_exp_elt_opcode (UNOP_CAP); }
187 ;
188
189 exp : ORD '(' exp ')'
190 { write_exp_elt_opcode (UNOP_ORD); }
191 ;
192
193 exp : ABS '(' exp ')'
194 { write_exp_elt_opcode (UNOP_ABS); }
195 ;
196
197 exp : HIGH '(' exp ')'
198 { write_exp_elt_opcode (UNOP_HIGH); }
199 ;
200
201 exp : MIN '(' type ')'
202 { write_exp_elt_opcode (UNOP_MIN);
203 write_exp_elt_type ($3);
204 write_exp_elt_opcode (UNOP_MIN); }
205 ;
206
207 exp : MAX '(' type ')'
208 { write_exp_elt_opcode (UNOP_MAX);
209 write_exp_elt_type ($3);
210 write_exp_elt_opcode (UNOP_MIN); }
211 ;
212
213 exp : FLOAT_FUNC '(' exp ')'
214 { write_exp_elt_opcode (UNOP_FLOAT); }
215 ;
216
217 exp : VAL '(' type ',' exp ')'
218 { write_exp_elt_opcode (BINOP_VAL);
219 write_exp_elt_type ($3);
220 write_exp_elt_opcode (BINOP_VAL); }
221 ;
222
223 exp : CHR '(' exp ')'
224 { write_exp_elt_opcode (UNOP_CHR); }
225 ;
226
227 exp : ODD '(' exp ')'
228 { write_exp_elt_opcode (UNOP_ODD); }
229 ;
230
231 exp : TRUNC '(' exp ')'
232 { write_exp_elt_opcode (UNOP_TRUNC); }
233 ;
234
235 exp : SIZE exp %prec UNARY
236 { write_exp_elt_opcode (UNOP_SIZEOF); }
237 ;
238
239
240 exp : INC '(' exp ')'
241 { write_exp_elt_opcode(UNOP_PREINCREMENT); }
242 ;
243
244 exp : INC '(' exp ',' exp ')'
245 { write_exp_elt_opcode(BINOP_ASSIGN_MODIFY);
246 write_exp_elt_opcode(BINOP_ADD);
247 write_exp_elt_opcode(BINOP_ASSIGN_MODIFY); }
248 ;
249
250 exp : DEC '(' exp ')'
251 { write_exp_elt_opcode(UNOP_PREDECREMENT);}
252 ;
253
254 exp : DEC '(' exp ',' exp ')'
255 { write_exp_elt_opcode(BINOP_ASSIGN_MODIFY);
256 write_exp_elt_opcode(BINOP_SUB);
257 write_exp_elt_opcode(BINOP_ASSIGN_MODIFY); }
258 ;
259
260 exp : exp DOT NAME
261 { write_exp_elt_opcode (STRUCTOP_STRUCT);
262 write_exp_string ($3);
263 write_exp_elt_opcode (STRUCTOP_STRUCT); }
264 ;
265
266 exp : set
267 ;
268
269 exp : exp IN set
270 { error("Sets are not implemented.");}
271 ;
272
273 exp : INCL '(' exp ',' exp ')'
274 { error("Sets are not implemented.");}
275 ;
276
277 exp : EXCL '(' exp ',' exp ')'
278 { error("Sets are not implemented.");}
279
280 set : '{' arglist '}'
281 { error("Sets are not implemented.");}
282 | type '{' arglist '}'
283 { error("Sets are not implemented.");}
284 ;
285
286
287 /* Modula-2 array subscript notation [a,b,c...] */
288 exp : exp '['
289 /* This function just saves the number of arguments
290 that follow in the list. It is *not* specific to
291 function types */
292 { start_arglist(); }
293 non_empty_arglist ']' %prec DOT
294 { write_exp_elt_opcode (BINOP_MULTI_SUBSCRIPT);
295 write_exp_elt_longcst ((LONGEST) end_arglist());
296 write_exp_elt_opcode (BINOP_MULTI_SUBSCRIPT); }
297 ;
298
299 exp : exp '('
300 /* This is to save the value of arglist_len
301 being accumulated by an outer function call. */
302 { start_arglist (); }
303 arglist ')' %prec DOT
304 { write_exp_elt_opcode (OP_FUNCALL);
305 write_exp_elt_longcst ((LONGEST) end_arglist ());
306 write_exp_elt_opcode (OP_FUNCALL); }
307 ;
308
309 arglist :
310 ;
311
312 arglist : exp
313 { arglist_len = 1; }
314 ;
315
316 arglist : arglist ',' exp %prec ABOVE_COMMA
317 { arglist_len++; }
318 ;
319
320 non_empty_arglist
321 : exp
322 { arglist_len = 1; }
323 ;
324
325 non_empty_arglist
326 : non_empty_arglist ',' exp %prec ABOVE_COMMA
327 { arglist_len++; }
328 ;
329
330 /* GDB construct */
331 exp : '{' type '}' exp %prec UNARY
332 { write_exp_elt_opcode (UNOP_MEMVAL);
333 write_exp_elt_type ($2);
334 write_exp_elt_opcode (UNOP_MEMVAL); }
335 ;
336
337 exp : type '(' exp ')' %prec UNARY
338 { write_exp_elt_opcode (UNOP_CAST);
339 write_exp_elt_type ($1);
340 write_exp_elt_opcode (UNOP_CAST); }
341 ;
342
343 exp : '(' exp ')'
344 { }
345 ;
346
347 /* Binary operators in order of decreasing precedence. Note that some
348 of these operators are overloaded! (ie. sets) */
349
350 /* GDB construct */
351 exp : exp '@' exp
352 { write_exp_elt_opcode (BINOP_REPEAT); }
353 ;
354
355 exp : exp '*' exp
356 { write_exp_elt_opcode (BINOP_MUL); }
357 ;
358
359 exp : exp '/' exp
360 { write_exp_elt_opcode (BINOP_DIV); }
361 ;
362
363 exp : exp DIV exp
364 { write_exp_elt_opcode (BINOP_INTDIV); }
365 ;
366
367 exp : exp MOD exp
368 { write_exp_elt_opcode (BINOP_REM); }
369 ;
370
371 exp : exp '+' exp
372 { write_exp_elt_opcode (BINOP_ADD); }
373 ;
374
375 exp : exp '-' exp
376 { write_exp_elt_opcode (BINOP_SUB); }
377 ;
378
379 exp : exp '=' exp
380 { write_exp_elt_opcode (BINOP_EQUAL); }
381 ;
382
383 exp : exp NOTEQUAL exp
384 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
385 | exp '#' exp
386 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
387 ;
388
389 exp : exp LEQ exp
390 { write_exp_elt_opcode (BINOP_LEQ); }
391 ;
392
393 exp : exp GEQ exp
394 { write_exp_elt_opcode (BINOP_GEQ); }
395 ;
396
397 exp : exp '<' exp
398 { write_exp_elt_opcode (BINOP_LESS); }
399 ;
400
401 exp : exp '>' exp
402 { write_exp_elt_opcode (BINOP_GTR); }
403 ;
404
405 exp : exp AND exp
406 { write_exp_elt_opcode (BINOP_AND); }
407 ;
408
409 exp : exp '&' exp
410 { write_exp_elt_opcode (BINOP_AND); }
411 ;
412
413 exp : exp OR exp
414 { write_exp_elt_opcode (BINOP_OR); }
415 ;
416
417 exp : exp ASSIGN exp
418 { write_exp_elt_opcode (BINOP_ASSIGN); }
419 ;
420
421
422 /* Constants */
423
424 exp : TRUE
425 { write_exp_elt_opcode (OP_BOOL);
426 write_exp_elt_longcst ((LONGEST) $1);
427 write_exp_elt_opcode (OP_BOOL); }
428 ;
429
430 exp : FALSE
431 { write_exp_elt_opcode (OP_BOOL);
432 write_exp_elt_longcst ((LONGEST) $1);
433 write_exp_elt_opcode (OP_BOOL); }
434 ;
435
436 exp : INT
437 { write_exp_elt_opcode (OP_LONG);
438 write_exp_elt_type (builtin_type_m2_int);
439 write_exp_elt_longcst ((LONGEST) $1);
440 write_exp_elt_opcode (OP_LONG); }
441 ;
442
443 exp : UINT
444 {
445 write_exp_elt_opcode (OP_LONG);
446 write_exp_elt_type (builtin_type_m2_card);
447 write_exp_elt_longcst ((LONGEST) $1);
448 write_exp_elt_opcode (OP_LONG);
449 }
450 ;
451
452 exp : CHAR
453 { write_exp_elt_opcode (OP_LONG);
454 write_exp_elt_type (builtin_type_m2_char);
455 write_exp_elt_longcst ((LONGEST) $1);
456 write_exp_elt_opcode (OP_LONG); }
457 ;
458
459
460 exp : FLOAT
461 { write_exp_elt_opcode (OP_DOUBLE);
462 write_exp_elt_type (builtin_type_m2_real);
463 write_exp_elt_dblcst ($1);
464 write_exp_elt_opcode (OP_DOUBLE); }
465 ;
466
467 exp : variable
468 ;
469
470 /* The GDB internal variable $$, et al. */
471 exp : LAST
472 { write_exp_elt_opcode (OP_LAST);
473 write_exp_elt_longcst ((LONGEST) $1);
474 write_exp_elt_opcode (OP_LAST); }
475 ;
476
477 exp : REGNAME
478 { write_exp_elt_opcode (OP_REGISTER);
479 write_exp_elt_longcst ((LONGEST) $1);
480 write_exp_elt_opcode (OP_REGISTER); }
481 ;
482
483 exp : SIZE '(' type ')' %prec UNARY
484 { write_exp_elt_opcode (OP_LONG);
485 write_exp_elt_type (builtin_type_int);
486 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
487 write_exp_elt_opcode (OP_LONG); }
488 ;
489
490 exp : STRING
491 { write_exp_elt_opcode (OP_M2_STRING);
492 write_exp_string ($1);
493 write_exp_elt_opcode (OP_M2_STRING); }
494 ;
495
496 /* This will be used for extensions later. Like adding modules. */
497 block : fblock
498 { $$ = SYMBOL_BLOCK_VALUE($1); }
499 ;
500
501 fblock : BLOCKNAME
502 { struct symbol *sym
503 = lookup_symbol (copy_name ($1), expression_context_block,
504 VAR_NAMESPACE, 0, NULL);
505 $$ = sym;}
506 ;
507
508
509 /* GDB scope operator */
510 fblock : block COLONCOLON BLOCKNAME
511 { struct symbol *tem
512 = lookup_symbol (copy_name ($3), $1,
513 VAR_NAMESPACE, 0, NULL);
514 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
515 error ("No function \"%s\" in specified context.",
516 copy_name ($3));
517 $$ = tem;
518 }
519 ;
520
521 /* Useful for assigning to PROCEDURE variables */
522 variable: fblock
523 { write_exp_elt_opcode(OP_VAR_VALUE);
524 write_exp_elt_sym ($1);
525 write_exp_elt_opcode (OP_VAR_VALUE); }
526 ;
527
528 /* GDB internal ($foo) variable */
529 variable: INTERNAL_VAR
530 { write_exp_elt_opcode (OP_INTERNALVAR);
531 write_exp_elt_intern ($1);
532 write_exp_elt_opcode (OP_INTERNALVAR); }
533 ;
534
535 /* GDB scope operator */
536 variable: block COLONCOLON NAME
537 { struct symbol *sym;
538 sym = lookup_symbol (copy_name ($3), $1,
539 VAR_NAMESPACE, 0, NULL);
540 if (sym == 0)
541 error ("No symbol \"%s\" in specified context.",
542 copy_name ($3));
543
544 write_exp_elt_opcode (OP_VAR_VALUE);
545 write_exp_elt_sym (sym);
546 write_exp_elt_opcode (OP_VAR_VALUE); }
547 ;
548
549 /* Base case for variables. */
550 variable: NAME
551 { struct symbol *sym;
552 int is_a_field_of_this;
553
554 sym = lookup_symbol (copy_name ($1),
555 expression_context_block,
556 VAR_NAMESPACE,
557 &is_a_field_of_this,
558 NULL);
559 if (sym)
560 {
561 switch (sym->class)
562 {
563 case LOC_REGISTER:
564 case LOC_ARG:
565 case LOC_LOCAL:
566 if (innermost_block == 0 ||
567 contained_in (block_found,
568 innermost_block))
569 innermost_block = block_found;
570 }
571 write_exp_elt_opcode (OP_VAR_VALUE);
572 write_exp_elt_sym (sym);
573 write_exp_elt_opcode (OP_VAR_VALUE);
574 }
575 else
576 {
577 register int i;
578 register char *arg = copy_name ($1);
579
580 for (i = 0; i < misc_function_count; i++)
581 if (!strcmp (misc_function_vector[i].name, arg))
582 break;
583
584 if (i < misc_function_count)
585 {
586 enum misc_function_type mft =
587 (enum misc_function_type)
588 misc_function_vector[i].type;
589
590 write_exp_elt_opcode (OP_LONG);
591 write_exp_elt_type (builtin_type_int);
592 write_exp_elt_longcst ((LONGEST) misc_function_vector[i].address);
593 write_exp_elt_opcode (OP_LONG);
594 write_exp_elt_opcode (UNOP_MEMVAL);
595 if (mft == mf_data || mft == mf_bss)
596 write_exp_elt_type (builtin_type_int);
597 else if (mft == mf_text)
598 write_exp_elt_type (lookup_function_type (builtin_type_int));
599 else
600 write_exp_elt_type (builtin_type_char);
601 write_exp_elt_opcode (UNOP_MEMVAL);
602 }
603 else if (symtab_list == 0
604 && partial_symtab_list == 0)
605 error ("No symbol table is loaded. Use the \"symbol-file\" command.");
606 else
607 error ("No symbol \"%s\" in current context.",
608 copy_name ($1));
609 }
610 }
611 ;
612
613 type
614 : TYPENAME
615 { $$ = lookup_typename (copy_name ($1),
616 expression_context_block, 0); }
617
618 ;
619
620 %%
621
622 #if 0 /* FIXME! */
623 int
624 overflow(a,b)
625 long a,b;
626 {
627 return (MAX_OF_TYPE(builtin_type_m2_int) - b) < a;
628 }
629
630 int
631 uoverflow(a,b)
632 unsigned long a,b;
633 {
634 return (MAX_OF_TYPE(builtin_type_m2_card) - b) < a;
635 }
636 #endif /* FIXME */
637
638 /* Take care of parsing a number (anything that starts with a digit).
639 Set yylval and return the token type; update lexptr.
640 LEN is the number of characters in it. */
641
642 /*** Needs some error checking for the float case ***/
643
644 static int
645 parse_number (olen)
646 int olen;
647 {
648 register char *p = lexptr;
649 register LONGEST n = 0;
650 register LONGEST prevn = 0;
651 register int c,i,ischar=0;
652 register int base = input_radix;
653 register int len = olen;
654 char *err_copy;
655 int unsigned_p = number_sign == 1 ? 1 : 0;
656
657 extern double atof ();
658
659 if(p[len-1] == 'H')
660 {
661 base = 16;
662 len--;
663 }
664 else if(p[len-1] == 'C' || p[len-1] == 'B')
665 {
666 base = 8;
667 ischar = p[len-1] == 'C';
668 len--;
669 }
670
671 /* Scan the number */
672 for (c = 0; c < len; c++)
673 {
674 if (p[c] == '.' && base == 10)
675 {
676 /* It's a float since it contains a point. */
677 yylval.dval = atof (p);
678 lexptr += len;
679 return FLOAT;
680 }
681 if (p[c] == '.' && base != 10)
682 error("Floating point numbers must be base 10.");
683 if (base == 10 && (p[c] < '0' || p[c] > '9'))
684 error("Invalid digit \'%c\' in number.",p[c]);
685 }
686
687 while (len-- > 0)
688 {
689 c = *p++;
690 n *= base;
691 if( base == 8 && (c == '8' || c == '9'))
692 error("Invalid digit \'%c\' in octal number.",c);
693 if (c >= '0' && c <= '9')
694 i = c - '0';
695 else
696 {
697 if (base == 16 && c >= 'A' && c <= 'F')
698 i = c - 'A' + 10;
699 else
700 return ERROR;
701 }
702 n+=i;
703 if(i >= base)
704 return ERROR;
705 if(!unsigned_p && number_sign == 1 && (prevn >= n))
706 unsigned_p=1; /* Try something unsigned */
707 /* Don't do the range check if n==i and i==0, since that special
708 case will give an overflow error. */
709 if(RANGE_CHECK && n!=i && i)
710 {
711 if((unsigned_p && (unsigned)prevn >= (unsigned)n) ||
712 ((!unsigned_p && number_sign==-1) && -prevn <= -n))
713 range_error("Overflow on numeric constant.");
714 }
715 prevn=n;
716 }
717
718 lexptr = p;
719 if(*p == 'B' || *p == 'C' || *p == 'H')
720 lexptr++; /* Advance past B,C or H */
721
722 if (ischar)
723 {
724 yylval.ulval = n;
725 return CHAR;
726 }
727 else if ( unsigned_p && number_sign == 1)
728 {
729 yylval.ulval = n;
730 return UINT;
731 }
732 else if((unsigned_p && (n<0))) {
733 range_error("Overflow on numeric constant -- number too large.");
734 /* But, this can return if range_check == range_warn. */
735 }
736 yylval.lval = n;
737 return INT;
738 }
739
740
741 /* Some tokens */
742
743 static struct
744 {
745 char name[2];
746 int token;
747 } tokentab2[] =
748 {
749 {"<>", NOTEQUAL },
750 {":=", ASSIGN },
751 {"<=", LEQ },
752 {">=", GEQ },
753 {"::", COLONCOLON },
754
755 };
756
757 /* Some specific keywords */
758
759 struct keyword {
760 char keyw[10];
761 int token;
762 };
763
764 static struct keyword keytab[] =
765 {
766 {"OR" , OR },
767 {"IN", IN },/* Note space after IN */
768 {"AND", AND },
769 {"ABS", ABS },
770 {"CHR", CHR },
771 {"DEC", DEC },
772 {"NOT", NOT },
773 {"DIV", DIV },
774 {"INC", INC },
775 {"MAX", MAX },
776 {"MIN", MIN },
777 {"MOD", MOD },
778 {"ODD", ODD },
779 {"CAP", CAP },
780 {"ORD", ORD },
781 {"VAL", VAL },
782 {"EXCL", EXCL },
783 {"HIGH", HIGH },
784 {"INCL", INCL },
785 {"SIZE", SIZE },
786 {"FLOAT", FLOAT_FUNC },
787 {"TRUNC", TRUNC },
788 };
789
790
791 /* Read one token, getting characters through lexptr. */
792
793 /* This is where we will check to make sure that the language and the operators used are
794 compatible */
795
796 static int
797 yylex ()
798 {
799 register int c;
800 register int namelen;
801 register int i;
802 register char *tokstart;
803 register char quote;
804
805 retry:
806
807 tokstart = lexptr;
808
809
810 /* See if it is a special token of length 2 */
811 for( i = 0 ; i < sizeof tokentab2 / sizeof tokentab2[0] ; i++)
812 if(!strncmp(tokentab2[i].name, tokstart, 2))
813 {
814 lexptr += 2;
815 return tokentab2[i].token;
816 }
817
818 switch (c = *tokstart)
819 {
820 case 0:
821 return 0;
822
823 case ' ':
824 case '\t':
825 case '\n':
826 lexptr++;
827 goto retry;
828
829 case '(':
830 paren_depth++;
831 lexptr++;
832 return c;
833
834 case ')':
835 if (paren_depth == 0)
836 return 0;
837 paren_depth--;
838 lexptr++;
839 return c;
840
841 case ',':
842 if (comma_terminates && paren_depth == 0)
843 return 0;
844 lexptr++;
845 return c;
846
847 case '.':
848 /* Might be a floating point number. */
849 if (lexptr[1] >= '0' && lexptr[1] <= '9')
850 break; /* Falls into number code. */
851 else
852 {
853 lexptr++;
854 return DOT;
855 }
856
857 /* These are character tokens that appear as-is in the YACC grammar */
858 case '+':
859 case '-':
860 case '*':
861 case '/':
862 case '^':
863 case '<':
864 case '>':
865 case '[':
866 case ']':
867 case '=':
868 case '{':
869 case '}':
870 case '#':
871 case '@':
872 case '~':
873 case '&':
874 lexptr++;
875 return c;
876
877 case '\'' :
878 case '"':
879 quote = c;
880 for (namelen = 1; (c = tokstart[namelen]) != quote && c != '\0'; namelen++)
881 if (c == '\\')
882 {
883 c = tokstart[++namelen];
884 if (c >= '0' && c <= '9')
885 {
886 c = tokstart[++namelen];
887 if (c >= '0' && c <= '9')
888 c = tokstart[++namelen];
889 }
890 }
891 if(c != quote)
892 error("Unterminated string or character constant.");
893 yylval.sval.ptr = tokstart + 1;
894 yylval.sval.length = namelen - 1;
895 lexptr += namelen + 1;
896
897 if(namelen == 2) /* Single character */
898 {
899 yylval.ulval = tokstart[1];
900 return CHAR;
901 }
902 else
903 return STRING;
904 }
905
906 /* Is it a number? */
907 /* Note: We have already dealt with the case of the token '.'.
908 See case '.' above. */
909 if ((c >= '0' && c <= '9'))
910 {
911 /* It's a number. */
912 int got_dot = 0, got_e = 0;
913 register char *p = tokstart;
914 int toktype;
915
916 for (++p ;; ++p)
917 {
918 if (!got_e && (*p == 'e' || *p == 'E'))
919 got_dot = got_e = 1;
920 else if (!got_dot && *p == '.')
921 got_dot = 1;
922 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
923 && (*p == '-' || *p == '+'))
924 /* This is the sign of the exponent, not the end of the
925 number. */
926 continue;
927 else if ((*p < '0' || *p > '9') &&
928 (*p < 'A' || *p > 'F') &&
929 (*p != 'H')) /* Modula-2 hexadecimal number */
930 break;
931 }
932 toktype = parse_number (p - tokstart);
933 if (toktype == ERROR)
934 {
935 char *err_copy = (char *) alloca (p - tokstart + 1);
936
937 bcopy (tokstart, err_copy, p - tokstart);
938 err_copy[p - tokstart] = 0;
939 error ("Invalid number \"%s\".", err_copy);
940 }
941 lexptr = p;
942 return toktype;
943 }
944
945 if (!(c == '_' || c == '$'
946 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
947 /* We must have come across a bad character (e.g. ';'). */
948 error ("Invalid character '%c' in expression.", c);
949
950 /* It's a name. See how long it is. */
951 namelen = 0;
952 for (c = tokstart[namelen];
953 (c == '_' || c == '$' || (c >= '0' && c <= '9')
954 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
955 c = tokstart[++namelen])
956 ;
957
958 /* The token "if" terminates the expression and is NOT
959 removed from the input stream. */
960 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
961 {
962 return 0;
963 }
964
965 lexptr += namelen;
966
967 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
968 and $$digits (equivalent to $<-digits> if you could type that).
969 Make token type LAST, and put the number (the digits) in yylval. */
970
971 if (*tokstart == '$')
972 {
973 register int negate = 0;
974 c = 1;
975 /* Double dollar means negate the number and add -1 as well.
976 Thus $$ alone means -1. */
977 if (namelen >= 2 && tokstart[1] == '$')
978 {
979 negate = 1;
980 c = 2;
981 }
982 if (c == namelen)
983 {
984 /* Just dollars (one or two) */
985 yylval.lval = - negate;
986 return LAST;
987 }
988 /* Is the rest of the token digits? */
989 for (; c < namelen; c++)
990 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
991 break;
992 if (c == namelen)
993 {
994 yylval.lval = atoi (tokstart + 1 + negate);
995 if (negate)
996 yylval.lval = - yylval.lval;
997 return LAST;
998 }
999 }
1000
1001 /* Handle tokens that refer to machine registers:
1002 $ followed by a register name. */
1003
1004 if (*tokstart == '$') {
1005 for (c = 0; c < NUM_REGS; c++)
1006 if (namelen - 1 == strlen (reg_names[c])
1007 && !strncmp (tokstart + 1, reg_names[c], namelen - 1))
1008 {
1009 yylval.lval = c;
1010 return REGNAME;
1011 }
1012 for (c = 0; c < num_std_regs; c++)
1013 if (namelen - 1 == strlen (std_regs[c].name)
1014 && !strncmp (tokstart + 1, std_regs[c].name, namelen - 1))
1015 {
1016 yylval.lval = std_regs[c].regnum;
1017 return REGNAME;
1018 }
1019 }
1020
1021
1022 /* Lookup special keywords */
1023 for(i = 0 ; i < sizeof(keytab) / sizeof(keytab[0]) ; i++)
1024 if(namelen == strlen(keytab[i].keyw) && !strncmp(tokstart,keytab[i].keyw,namelen))
1025 return keytab[i].token;
1026
1027 yylval.sval.ptr = tokstart;
1028 yylval.sval.length = namelen;
1029
1030 /* Any other names starting in $ are debugger internal variables. */
1031
1032 if (*tokstart == '$')
1033 {
1034 yylval.ivar = (struct internalvar *) lookup_internalvar (copy_name (yylval.sval) + 1);
1035 return INTERNAL_VAR;
1036 }
1037
1038
1039 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1040 functions. If this is not so, then ...
1041 Use token-type TYPENAME for symbols that happen to be defined
1042 currently as names of types; NAME for other symbols.
1043 The caller is not constrained to care about the distinction. */
1044 {
1045
1046
1047 char *tmp = copy_name (yylval.sval);
1048 struct symbol *sym;
1049
1050 if (lookup_partial_symtab (tmp))
1051 return BLOCKNAME;
1052 sym = lookup_symbol (tmp, expression_context_block,
1053 VAR_NAMESPACE, 0, NULL);
1054 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
1055 return BLOCKNAME;
1056 if (lookup_typename (copy_name (yylval.sval), expression_context_block, 1))
1057 return TYPENAME;
1058
1059 if(sym)
1060 {
1061 switch(sym->class)
1062 {
1063 case LOC_STATIC:
1064 case LOC_REGISTER:
1065 case LOC_ARG:
1066 case LOC_REF_ARG:
1067 case LOC_REGPARM:
1068 case LOC_LOCAL:
1069 case LOC_LOCAL_ARG:
1070 case LOC_CONST:
1071 case LOC_CONST_BYTES:
1072 return NAME;
1073
1074 case LOC_TYPEDEF:
1075 return TYPENAME;
1076
1077 case LOC_BLOCK:
1078 return BLOCKNAME;
1079
1080 case LOC_UNDEF:
1081 error("internal: Undefined class in m2lex()");
1082
1083 case LOC_LABEL:
1084 error("internal: Unforseen case in m2lex()");
1085 }
1086 }
1087 else
1088 {
1089 /* Built-in BOOLEAN type. This is sort of a hack. */
1090 if(!strncmp(tokstart,"TRUE",4))
1091 {
1092 yylval.ulval = 1;
1093 return TRUE;
1094 }
1095 else if(!strncmp(tokstart,"FALSE",5))
1096 {
1097 yylval.ulval = 0;
1098 return FALSE;
1099 }
1100 }
1101
1102 /* Must be another type of name... */
1103 return NAME;
1104 }
1105 }
1106
1107 char *
1108 make_qualname(mod,ident)
1109 char *mod, *ident;
1110 {
1111 char *new = xmalloc(strlen(mod)+strlen(ident)+2);
1112
1113 strcpy(new,mod);
1114 strcat(new,".");
1115 strcat(new,ident);
1116 return new;
1117 }
1118
1119
1120 void
1121 yyerror()
1122 {
1123 printf("Parsing: %s\n",lexptr);
1124 if (yychar < 256)
1125 error("Invalid syntax in expression near character '%c'.",yychar);
1126 else
1127 error("Invalid syntax in expression");
1128 }
1129 \f
1130 /* Table of operators and their precedences for printing expressions. */
1131
1132 const static struct op_print m2_op_print_tab[] = {
1133 {"+", BINOP_ADD, PREC_ADD, 0},
1134 {"+", UNOP_PLUS, PREC_PREFIX, 0},
1135 {"-", BINOP_SUB, PREC_ADD, 0},
1136 {"-", UNOP_NEG, PREC_PREFIX, 0},
1137 {"*", BINOP_MUL, PREC_MUL, 0},
1138 {"/", BINOP_DIV, PREC_MUL, 0},
1139 {"DIV", BINOP_INTDIV, PREC_MUL, 0},
1140 {"MOD", BINOP_REM, PREC_MUL, 0},
1141 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
1142 {"OR", BINOP_OR, PREC_OR, 0},
1143 {"AND", BINOP_AND, PREC_AND, 0},
1144 {"NOT", UNOP_ZEROP, PREC_PREFIX, 0},
1145 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
1146 {"<>", BINOP_NOTEQUAL, PREC_EQUAL, 0},
1147 {"<=", BINOP_LEQ, PREC_ORDER, 0},
1148 {">=", BINOP_GEQ, PREC_ORDER, 0},
1149 {">", BINOP_GTR, PREC_ORDER, 0},
1150 {"<", BINOP_LESS, PREC_ORDER, 0},
1151 {"^", UNOP_IND, PREC_PREFIX, 0},
1152 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
1153 };
1154 \f
1155 /* The built-in types of Modula-2. */
1156
1157 struct type *builtin_type_m2_char;
1158 struct type *builtin_type_m2_int;
1159 struct type *builtin_type_m2_card;
1160 struct type *builtin_type_m2_real;
1161 struct type *builtin_type_m2_bool;
1162
1163 struct type ** const (m2_builtin_types[]) =
1164 {
1165 &builtin_type_m2_char,
1166 &builtin_type_m2_int,
1167 &builtin_type_m2_card,
1168 &builtin_type_m2_real,
1169 &builtin_type_m2_bool,
1170 0
1171 };
1172
1173 const struct language_defn m2_language_defn = {
1174 "modula-2",
1175 language_m2,
1176 m2_builtin_types,
1177 range_check_on,
1178 type_check_on,
1179 m2_parse, /* parser */
1180 m2_error, /* parser error function */
1181 &builtin_type_m2_int, /* longest signed integral type */
1182 &builtin_type_m2_card, /* longest unsigned integral type */
1183 &builtin_type_m2_real, /* longest floating point type */
1184 "0%XH", "0%", "XH", /* Hex format string, prefix, suffix */
1185 "%oB", "%", "oB", /* Octal format string, prefix, suffix */
1186 m2_op_print_tab, /* expression operators for printing */
1187 LANG_MAGIC
1188 };
1189
1190 /* Initialization for Modula-2 */
1191
1192 void
1193 _initialize_m2_exp ()
1194 {
1195 /* FIXME: The code below assumes that the sizes of the basic data
1196 types are the same on the host and target machines!!! */
1197
1198 /* Modula-2 "pervasive" types. NOTE: these can be redefined!!! */
1199 builtin_type_m2_int = init_type (TYPE_CODE_INT, sizeof(int), 0, "INTEGER");
1200 builtin_type_m2_card = init_type (TYPE_CODE_INT, sizeof(int), 1, "CARDINAL");
1201 builtin_type_m2_real = init_type (TYPE_CODE_FLT, sizeof(float), 0, "REAL");
1202 builtin_type_m2_char = init_type (TYPE_CODE_CHAR, sizeof(char), 1, "CHAR");
1203
1204 builtin_type_m2_bool = init_type (TYPE_CODE_BOOL, sizeof(int), 1, "BOOLEAN");
1205 TYPE_NFIELDS(builtin_type_m2_bool) = 2;
1206 TYPE_FIELDS(builtin_type_m2_bool) =
1207 (struct field *) malloc (sizeof (struct field) * 2);
1208 TYPE_FIELD_BITPOS(builtin_type_m2_bool,0) = 0;
1209 TYPE_FIELD_NAME(builtin_type_m2_bool,0) = (char *)malloc(6);
1210 strcpy(TYPE_FIELD_NAME(builtin_type_m2_bool,0),"FALSE");
1211 TYPE_FIELD_BITPOS(builtin_type_m2_bool,1) = 1;
1212 TYPE_FIELD_NAME(builtin_type_m2_bool,1) = (char *)malloc(5);
1213 strcpy(TYPE_FIELD_NAME(builtin_type_m2_bool,1),"TRUE");
1214
1215 add_language (&m2_language_defn);
1216 }
This page took 0.067473 seconds and 5 git commands to generate.