gdb/remote: Use true/false instead of 1/0
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2004-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb/sim-m32c.h"
22 #include "gdbtypes.h"
23 #include "regcache.h"
24 #include "arch-utils.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "symtab.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "reggroups.h"
31 #include "prologue-value.h"
32 #include "objfiles.h"
33
34 \f
35 /* The m32c tdep structure. */
36
37 static struct reggroup *m32c_dma_reggroup;
38
39 /* The type of a function that moves the value of REG between CACHE or
40 BUF --- in either direction. */
41 typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
42 struct regcache *cache,
43 const gdb_byte *buf);
44
45 typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
46 readable_regcache *cache,
47 gdb_byte *buf);
48
49 struct m32c_reg
50 {
51 /* The name of this register. */
52 const char *name;
53
54 /* Its type. */
55 struct type *type;
56
57 /* The architecture this register belongs to. */
58 struct gdbarch *arch;
59
60 /* Its GDB register number. */
61 int num;
62
63 /* Its sim register number. */
64 int sim_num;
65
66 /* Its DWARF register number, or -1 if it doesn't have one. */
67 int dwarf_num;
68
69 /* Register group memberships. */
70 unsigned int general_p : 1;
71 unsigned int dma_p : 1;
72 unsigned int system_p : 1;
73 unsigned int save_restore_p : 1;
74
75 /* Functions to read its value from a regcache, and write its value
76 to a regcache. */
77 m32c_read_reg_t *read;
78 m32c_write_reg_t *write;
79
80 /* Data for READ and WRITE functions. The exact meaning depends on
81 the specific functions selected; see the comments for those
82 functions. */
83 struct m32c_reg *rx, *ry;
84 int n;
85 };
86
87
88 /* An overestimate of the number of raw and pseudoregisters we will
89 have. The exact answer depends on the variant of the architecture
90 at hand, but we can use this to declare statically allocated
91 arrays, and bump it up when needed. */
92 #define M32C_MAX_NUM_REGS (75)
93
94 /* The largest assigned DWARF register number. */
95 #define M32C_MAX_DWARF_REGNUM (40)
96
97
98 struct gdbarch_tdep
99 {
100 /* All the registers for this variant, indexed by GDB register
101 number, and the number of registers present. */
102 struct m32c_reg regs[M32C_MAX_NUM_REGS];
103
104 /* The number of valid registers. */
105 int num_regs;
106
107 /* Interesting registers. These are pointers into REGS. */
108 struct m32c_reg *pc, *flg;
109 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
110 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
111 struct m32c_reg *sb, *fb, *sp;
112
113 /* A table indexed by DWARF register numbers, pointing into
114 REGS. */
115 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
116
117 /* Types for this architecture. We can't use the builtin_type_foo
118 types, because they're not initialized when building a gdbarch
119 structure. */
120 struct type *voyd, *ptr_voyd, *func_voyd;
121 struct type *uint8, *uint16;
122 struct type *int8, *int16, *int32, *int64;
123
124 /* The types for data address and code address registers. */
125 struct type *data_addr_reg_type, *code_addr_reg_type;
126
127 /* The number of bytes a return address pushed by a 'jsr' instruction
128 occupies on the stack. */
129 int ret_addr_bytes;
130
131 /* The number of bytes an address register occupies on the stack
132 when saved by an 'enter' or 'pushm' instruction. */
133 int push_addr_bytes;
134 };
135
136 \f
137 /* Types. */
138
139 static void
140 make_types (struct gdbarch *arch)
141 {
142 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
143 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
144 int data_addr_reg_bits, code_addr_reg_bits;
145 char type_name[50];
146
147 #if 0
148 /* This is used to clip CORE_ADDR values, so this value is
149 appropriate both on the m32c, where pointers are 32 bits long,
150 and on the m16c, where pointers are sixteen bits long, but there
151 may be code above the 64k boundary. */
152 set_gdbarch_addr_bit (arch, 24);
153 #else
154 /* GCC uses 32 bits for addrs in the dwarf info, even though
155 only 16/24 bits are used. Setting addr_bit to 24 causes
156 errors in reading the dwarf addresses. */
157 set_gdbarch_addr_bit (arch, 32);
158 #endif
159
160 set_gdbarch_int_bit (arch, 16);
161 switch (mach)
162 {
163 case bfd_mach_m16c:
164 data_addr_reg_bits = 16;
165 code_addr_reg_bits = 24;
166 set_gdbarch_ptr_bit (arch, 16);
167 tdep->ret_addr_bytes = 3;
168 tdep->push_addr_bytes = 2;
169 break;
170
171 case bfd_mach_m32c:
172 data_addr_reg_bits = 24;
173 code_addr_reg_bits = 24;
174 set_gdbarch_ptr_bit (arch, 32);
175 tdep->ret_addr_bytes = 4;
176 tdep->push_addr_bytes = 4;
177 break;
178
179 default:
180 gdb_assert_not_reached ("unexpected mach");
181 }
182
183 /* The builtin_type_mumble variables are sometimes uninitialized when
184 this is called, so we avoid using them. */
185 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
186 tdep->ptr_voyd
187 = arch_pointer_type (arch, gdbarch_ptr_bit (arch), NULL, tdep->voyd);
188 tdep->func_voyd = lookup_function_type (tdep->voyd);
189
190 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
191 gdbarch_bfd_arch_info (arch)->printable_name);
192 tdep->data_addr_reg_type
193 = arch_pointer_type (arch, data_addr_reg_bits, type_name, tdep->voyd);
194
195 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
196 gdbarch_bfd_arch_info (arch)->printable_name);
197 tdep->code_addr_reg_type
198 = arch_pointer_type (arch, code_addr_reg_bits, type_name, tdep->func_voyd);
199
200 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
201 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
202 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
203 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
204 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
205 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
206 }
207
208
209 \f
210 /* Register set. */
211
212 static const char *
213 m32c_register_name (struct gdbarch *gdbarch, int num)
214 {
215 return gdbarch_tdep (gdbarch)->regs[num].name;
216 }
217
218
219 static struct type *
220 m32c_register_type (struct gdbarch *arch, int reg_nr)
221 {
222 return gdbarch_tdep (arch)->regs[reg_nr].type;
223 }
224
225
226 static int
227 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
228 {
229 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
230 }
231
232
233 static int
234 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
238 && tdep->dwarf_regs[reg_nr])
239 return tdep->dwarf_regs[reg_nr]->num;
240 else
241 /* The DWARF CFI code expects to see -1 for invalid register
242 numbers. */
243 return -1;
244 }
245
246
247 static int
248 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
249 struct reggroup *group)
250 {
251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252 struct m32c_reg *reg = &tdep->regs[regnum];
253
254 /* The anonymous raw registers aren't in any groups. */
255 if (! reg->name)
256 return 0;
257
258 if (group == all_reggroup)
259 return 1;
260
261 if (group == general_reggroup
262 && reg->general_p)
263 return 1;
264
265 if (group == m32c_dma_reggroup
266 && reg->dma_p)
267 return 1;
268
269 if (group == system_reggroup
270 && reg->system_p)
271 return 1;
272
273 /* Since the m32c DWARF register numbers refer to cooked registers, not
274 raw registers, and frame_pop depends on the save and restore groups
275 containing registers the DWARF CFI will actually mention, our save
276 and restore groups are cooked registers, not raw registers. (This is
277 why we can't use the default reggroup function.) */
278 if ((group == save_reggroup
279 || group == restore_reggroup)
280 && reg->save_restore_p)
281 return 1;
282
283 return 0;
284 }
285
286
287 /* Register move functions. We declare them here using
288 m32c_{read,write}_reg_t to check the types. */
289 static m32c_read_reg_t m32c_raw_read;
290 static m32c_read_reg_t m32c_banked_read;
291 static m32c_read_reg_t m32c_sb_read;
292 static m32c_read_reg_t m32c_part_read;
293 static m32c_read_reg_t m32c_cat_read;
294 static m32c_read_reg_t m32c_r3r2r1r0_read;
295
296 static m32c_write_reg_t m32c_raw_write;
297 static m32c_write_reg_t m32c_banked_write;
298 static m32c_write_reg_t m32c_sb_write;
299 static m32c_write_reg_t m32c_part_write;
300 static m32c_write_reg_t m32c_cat_write;
301 static m32c_write_reg_t m32c_r3r2r1r0_write;
302
303 /* Copy the value of the raw register REG from CACHE to BUF. */
304 static enum register_status
305 m32c_raw_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
306 {
307 return cache->raw_read (reg->num, buf);
308 }
309
310
311 /* Copy the value of the raw register REG from BUF to CACHE. */
312 static enum register_status
313 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
314 const gdb_byte *buf)
315 {
316 cache->raw_write (reg->num, buf);
317
318 return REG_VALID;
319 }
320
321
322 /* Return the value of the 'flg' register in CACHE. */
323 static int
324 m32c_read_flg (readable_regcache *cache)
325 {
326 struct gdbarch_tdep *tdep = gdbarch_tdep (cache->arch ());
327 ULONGEST flg;
328
329 cache->raw_read (tdep->flg->num, &flg);
330 return flg & 0xffff;
331 }
332
333
334 /* Evaluate the real register number of a banked register. */
335 static struct m32c_reg *
336 m32c_banked_register (struct m32c_reg *reg, readable_regcache *cache)
337 {
338 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
339 }
340
341
342 /* Move the value of a banked register from CACHE to BUF.
343 If the value of the 'flg' register in CACHE has any of the bits
344 masked in REG->n set, then read REG->ry. Otherwise, read
345 REG->rx. */
346 static enum register_status
347 m32c_banked_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
348 {
349 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
350 return cache->raw_read (bank_reg->num, buf);
351 }
352
353
354 /* Move the value of a banked register from BUF to CACHE.
355 If the value of the 'flg' register in CACHE has any of the bits
356 masked in REG->n set, then write REG->ry. Otherwise, write
357 REG->rx. */
358 static enum register_status
359 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
360 const gdb_byte *buf)
361 {
362 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
363 cache->raw_write (bank_reg->num, buf);
364
365 return REG_VALID;
366 }
367
368
369 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
370 banked register; on bfd_mach_m16c, it's not. */
371 static enum register_status
372 m32c_sb_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
373 {
374 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
375 return m32c_raw_read (reg->rx, cache, buf);
376 else
377 return m32c_banked_read (reg, cache, buf);
378 }
379
380
381 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
382 banked register; on bfd_mach_m16c, it's not. */
383 static enum register_status
384 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
385 {
386 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
387 m32c_raw_write (reg->rx, cache, buf);
388 else
389 m32c_banked_write (reg, cache, buf);
390
391 return REG_VALID;
392 }
393
394
395 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
396 and *LEN_P to the offset and length, in bytes, of the part REG
397 occupies in its underlying register. The offset is from the
398 lower-addressed end, regardless of the architecture's endianness.
399 (The M32C family is always little-endian, but let's keep those
400 assumptions out of here.) */
401 static void
402 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
403 {
404 /* The length of the containing register, of which REG is one part. */
405 int containing_len = TYPE_LENGTH (reg->rx->type);
406
407 /* The length of one "element" in our imaginary array. */
408 int elt_len = TYPE_LENGTH (reg->type);
409
410 /* The offset of REG's "element" from the least significant end of
411 the containing register. */
412 int elt_offset = reg->n * elt_len;
413
414 /* If we extend off the end, trim the length of the element. */
415 if (elt_offset + elt_len > containing_len)
416 {
417 elt_len = containing_len - elt_offset;
418 /* We shouldn't be declaring partial registers that go off the
419 end of their containing registers. */
420 gdb_assert (elt_len > 0);
421 }
422
423 /* Flip the offset around if we're big-endian. */
424 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
425 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
426
427 *offset_p = elt_offset;
428 *len_p = elt_len;
429 }
430
431
432 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
433 to BUF. Treating the value of the register REG->rx as an array of
434 REG->type values, where higher indices refer to more significant
435 bits, read the value of the REG->n'th element. */
436 static enum register_status
437 m32c_part_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
438 {
439 int offset, len;
440
441 memset (buf, 0, TYPE_LENGTH (reg->type));
442 m32c_find_part (reg, &offset, &len);
443 return cache->cooked_read_part (reg->rx->num, offset, len, buf);
444 }
445
446
447 /* Move the value of a banked register from BUF to CACHE.
448 Treating the value of the register REG->rx as an array of REG->type
449 values, where higher indices refer to more significant bits, write
450 the value of the REG->n'th element. */
451 static enum register_status
452 m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
453 const gdb_byte *buf)
454 {
455 int offset, len;
456
457 m32c_find_part (reg, &offset, &len);
458 cache->cooked_write_part (reg->rx->num, offset, len, buf);
459
460 return REG_VALID;
461 }
462
463
464 /* Move the value of REG from CACHE to BUF. REG's value is the
465 concatenation of the values of the registers REG->rx and REG->ry,
466 with REG->rx contributing the more significant bits. */
467 static enum register_status
468 m32c_cat_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
469 {
470 int high_bytes = TYPE_LENGTH (reg->rx->type);
471 int low_bytes = TYPE_LENGTH (reg->ry->type);
472 enum register_status status;
473
474 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
475
476 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
477 {
478 status = cache->cooked_read (reg->rx->num, buf);
479 if (status == REG_VALID)
480 status = cache->cooked_read (reg->ry->num, buf + high_bytes);
481 }
482 else
483 {
484 status = cache->cooked_read (reg->rx->num, buf + low_bytes);
485 if (status == REG_VALID)
486 status = cache->cooked_read (reg->ry->num, buf);
487 }
488 return status;
489 }
490
491
492 /* Move the value of REG from CACHE to BUF. REG's value is the
493 concatenation of the values of the registers REG->rx and REG->ry,
494 with REG->rx contributing the more significant bits. */
495 static enum register_status
496 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
497 const gdb_byte *buf)
498 {
499 int high_bytes = TYPE_LENGTH (reg->rx->type);
500 int low_bytes = TYPE_LENGTH (reg->ry->type);
501
502 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
503
504 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
505 {
506 cache->cooked_write (reg->rx->num, buf);
507 cache->cooked_write (reg->ry->num, buf + high_bytes);
508 }
509 else
510 {
511 cache->cooked_write (reg->rx->num, buf + low_bytes);
512 cache->cooked_write (reg->ry->num, buf);
513 }
514
515 return REG_VALID;
516 }
517
518
519 /* Copy the value of the raw register REG from CACHE to BUF. REG is
520 the concatenation (from most significant to least) of r3, r2, r1,
521 and r0. */
522 static enum register_status
523 m32c_r3r2r1r0_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
524 {
525 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
526 int len = TYPE_LENGTH (tdep->r0->type);
527 enum register_status status;
528
529 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
530 {
531 status = cache->cooked_read (tdep->r0->num, buf + len * 3);
532 if (status == REG_VALID)
533 status = cache->cooked_read (tdep->r1->num, buf + len * 2);
534 if (status == REG_VALID)
535 status = cache->cooked_read (tdep->r2->num, buf + len * 1);
536 if (status == REG_VALID)
537 status = cache->cooked_read (tdep->r3->num, buf);
538 }
539 else
540 {
541 status = cache->cooked_read (tdep->r0->num, buf);
542 if (status == REG_VALID)
543 status = cache->cooked_read (tdep->r1->num, buf + len * 1);
544 if (status == REG_VALID)
545 status = cache->cooked_read (tdep->r2->num, buf + len * 2);
546 if (status == REG_VALID)
547 status = cache->cooked_read (tdep->r3->num, buf + len * 3);
548 }
549
550 return status;
551 }
552
553
554 /* Copy the value of the raw register REG from BUF to CACHE. REG is
555 the concatenation (from most significant to least) of r3, r2, r1,
556 and r0. */
557 static enum register_status
558 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
559 const gdb_byte *buf)
560 {
561 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
562 int len = TYPE_LENGTH (tdep->r0->type);
563
564 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
565 {
566 cache->cooked_write (tdep->r0->num, buf + len * 3);
567 cache->cooked_write (tdep->r1->num, buf + len * 2);
568 cache->cooked_write (tdep->r2->num, buf + len * 1);
569 cache->cooked_write (tdep->r3->num, buf);
570 }
571 else
572 {
573 cache->cooked_write (tdep->r0->num, buf);
574 cache->cooked_write (tdep->r1->num, buf + len * 1);
575 cache->cooked_write (tdep->r2->num, buf + len * 2);
576 cache->cooked_write (tdep->r3->num, buf + len * 3);
577 }
578
579 return REG_VALID;
580 }
581
582
583 static enum register_status
584 m32c_pseudo_register_read (struct gdbarch *arch,
585 readable_regcache *cache,
586 int cookednum,
587 gdb_byte *buf)
588 {
589 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
590 struct m32c_reg *reg;
591
592 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
593 gdb_assert (arch == cache->arch ());
594 gdb_assert (arch == tdep->regs[cookednum].arch);
595 reg = &tdep->regs[cookednum];
596
597 return reg->read (reg, cache, buf);
598 }
599
600
601 static void
602 m32c_pseudo_register_write (struct gdbarch *arch,
603 struct regcache *cache,
604 int cookednum,
605 const gdb_byte *buf)
606 {
607 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
608 struct m32c_reg *reg;
609
610 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
611 gdb_assert (arch == cache->arch ());
612 gdb_assert (arch == tdep->regs[cookednum].arch);
613 reg = &tdep->regs[cookednum];
614
615 reg->write (reg, cache, buf);
616 }
617
618
619 /* Add a register with the given fields to the end of ARCH's table.
620 Return a pointer to the newly added register. */
621 static struct m32c_reg *
622 add_reg (struct gdbarch *arch,
623 const char *name,
624 struct type *type,
625 int sim_num,
626 m32c_read_reg_t *read,
627 m32c_write_reg_t *write,
628 struct m32c_reg *rx,
629 struct m32c_reg *ry,
630 int n)
631 {
632 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
633 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
634
635 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
636
637 r->name = name;
638 r->type = type;
639 r->arch = arch;
640 r->num = tdep->num_regs;
641 r->sim_num = sim_num;
642 r->dwarf_num = -1;
643 r->general_p = 0;
644 r->dma_p = 0;
645 r->system_p = 0;
646 r->save_restore_p = 0;
647 r->read = read;
648 r->write = write;
649 r->rx = rx;
650 r->ry = ry;
651 r->n = n;
652
653 tdep->num_regs++;
654
655 return r;
656 }
657
658
659 /* Record NUM as REG's DWARF register number. */
660 static void
661 set_dwarf_regnum (struct m32c_reg *reg, int num)
662 {
663 gdb_assert (num < M32C_MAX_NUM_REGS);
664
665 /* Update the reg->DWARF mapping. Only count the first number
666 assigned to this register. */
667 if (reg->dwarf_num == -1)
668 reg->dwarf_num = num;
669
670 /* Update the DWARF->reg mapping. */
671 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
672 }
673
674
675 /* Mark REG as a general-purpose register, and return it. */
676 static struct m32c_reg *
677 mark_general (struct m32c_reg *reg)
678 {
679 reg->general_p = 1;
680 return reg;
681 }
682
683
684 /* Mark REG as a DMA register. */
685 static void
686 mark_dma (struct m32c_reg *reg)
687 {
688 reg->dma_p = 1;
689 }
690
691
692 /* Mark REG as a SYSTEM register, and return it. */
693 static struct m32c_reg *
694 mark_system (struct m32c_reg *reg)
695 {
696 reg->system_p = 1;
697 return reg;
698 }
699
700
701 /* Mark REG as a save-restore register, and return it. */
702 static struct m32c_reg *
703 mark_save_restore (struct m32c_reg *reg)
704 {
705 reg->save_restore_p = 1;
706 return reg;
707 }
708
709
710 #define FLAGBIT_B 0x0010
711 #define FLAGBIT_U 0x0080
712
713 /* Handy macros for declaring registers. These all evaluate to
714 pointers to the register declared. Macros that define two
715 registers evaluate to a pointer to the first. */
716
717 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
718 #define R(name, type, sim_num) \
719 (add_reg (arch, (name), (type), (sim_num), \
720 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
721
722 /* The simulator register number for a raw register named NAME. */
723 #define SIM(name) (m32c_sim_reg_ ## name)
724
725 /* A raw unsigned 16-bit data register named NAME.
726 NAME should be an identifier, not a string. */
727 #define R16U(name) \
728 (R(#name, tdep->uint16, SIM (name)))
729
730 /* A raw data address register named NAME.
731 NAME should be an identifier, not a string. */
732 #define RA(name) \
733 (R(#name, tdep->data_addr_reg_type, SIM (name)))
734
735 /* A raw code address register named NAME. NAME should
736 be an identifier, not a string. */
737 #define RC(name) \
738 (R(#name, tdep->code_addr_reg_type, SIM (name)))
739
740 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
741 NAME should be an identifier, not a string. */
742 #define RP(name, type) \
743 (R(#name "0", (type), SIM (name ## 0)), \
744 R(#name "1", (type), SIM (name ## 1)) - 1)
745
746 /* A raw banked general-purpose data register named NAME.
747 NAME should be an identifier, not a string. */
748 #define RBD(name) \
749 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
750 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
751
752 /* A raw banked data address register named NAME.
753 NAME should be an identifier, not a string. */
754 #define RBA(name) \
755 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
756 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
757
758 /* A cooked register named NAME referring to a raw banked register
759 from the bank selected by the current value of FLG. RAW_PAIR
760 should be a pointer to the first register in the banked pair.
761 NAME must be an identifier, not a string. */
762 #define CB(name, raw_pair) \
763 (add_reg (arch, #name, (raw_pair)->type, 0, \
764 m32c_banked_read, m32c_banked_write, \
765 (raw_pair), (raw_pair + 1), FLAGBIT_B))
766
767 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
768 access the top and bottom halves of the register pointed to by
769 NAME. NAME should be an identifier. */
770 #define CHL(name, type) \
771 (add_reg (arch, #name "h", (type), 0, \
772 m32c_part_read, m32c_part_write, name, NULL, 1), \
773 add_reg (arch, #name "l", (type), 0, \
774 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
775
776 /* A register constructed by concatenating the two registers HIGH and
777 LOW, whose name is HIGHLOW and whose type is TYPE. */
778 #define CCAT(high, low, type) \
779 (add_reg (arch, #high #low, (type), 0, \
780 m32c_cat_read, m32c_cat_write, (high), (low), 0))
781
782 /* Abbreviations for marking register group membership. */
783 #define G(reg) (mark_general (reg))
784 #define S(reg) (mark_system (reg))
785 #define DMA(reg) (mark_dma (reg))
786
787
788 /* Construct the register set for ARCH. */
789 static void
790 make_regs (struct gdbarch *arch)
791 {
792 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
793 int mach = gdbarch_bfd_arch_info (arch)->mach;
794 int num_raw_regs;
795 int num_cooked_regs;
796
797 struct m32c_reg *r0;
798 struct m32c_reg *r1;
799 struct m32c_reg *r2;
800 struct m32c_reg *r3;
801 struct m32c_reg *a0;
802 struct m32c_reg *a1;
803 struct m32c_reg *fb;
804 struct m32c_reg *sb;
805 struct m32c_reg *sp;
806 struct m32c_reg *r0hl;
807 struct m32c_reg *r1hl;
808 struct m32c_reg *r2r0;
809 struct m32c_reg *r3r1;
810 struct m32c_reg *r3r1r2r0;
811 struct m32c_reg *r3r2r1r0;
812 struct m32c_reg *a1a0;
813
814 struct m32c_reg *raw_r0_pair = RBD (r0);
815 struct m32c_reg *raw_r1_pair = RBD (r1);
816 struct m32c_reg *raw_r2_pair = RBD (r2);
817 struct m32c_reg *raw_r3_pair = RBD (r3);
818 struct m32c_reg *raw_a0_pair = RBA (a0);
819 struct m32c_reg *raw_a1_pair = RBA (a1);
820 struct m32c_reg *raw_fb_pair = RBA (fb);
821
822 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
823 We always declare both raw registers, and deal with the distinction
824 in the pseudoregister. */
825 struct m32c_reg *raw_sb_pair = RBA (sb);
826
827 struct m32c_reg *usp = S (RA (usp));
828 struct m32c_reg *isp = S (RA (isp));
829 struct m32c_reg *intb = S (RC (intb));
830 struct m32c_reg *pc = G (RC (pc));
831 struct m32c_reg *flg = G (R16U (flg));
832
833 if (mach == bfd_mach_m32c)
834 {
835 S (R16U (svf));
836 S (RC (svp));
837 S (RC (vct));
838
839 DMA (RP (dmd, tdep->uint8));
840 DMA (RP (dct, tdep->uint16));
841 DMA (RP (drc, tdep->uint16));
842 DMA (RP (dma, tdep->data_addr_reg_type));
843 DMA (RP (dsa, tdep->data_addr_reg_type));
844 DMA (RP (dra, tdep->data_addr_reg_type));
845 }
846
847 num_raw_regs = tdep->num_regs;
848
849 r0 = G (CB (r0, raw_r0_pair));
850 r1 = G (CB (r1, raw_r1_pair));
851 r2 = G (CB (r2, raw_r2_pair));
852 r3 = G (CB (r3, raw_r3_pair));
853 a0 = G (CB (a0, raw_a0_pair));
854 a1 = G (CB (a1, raw_a1_pair));
855 fb = G (CB (fb, raw_fb_pair));
856
857 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
858 Specify custom read/write functions that do the right thing. */
859 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
860 m32c_sb_read, m32c_sb_write,
861 raw_sb_pair, raw_sb_pair + 1, 0));
862
863 /* The current sp is either usp or isp, depending on the value of
864 the FLG register's U bit. */
865 sp = G (add_reg (arch, "sp", usp->type, 0,
866 m32c_banked_read, m32c_banked_write,
867 isp, usp, FLAGBIT_U));
868
869 r0hl = CHL (r0, tdep->int8);
870 r1hl = CHL (r1, tdep->int8);
871 CHL (r2, tdep->int8);
872 CHL (r3, tdep->int8);
873 CHL (intb, tdep->int16);
874
875 r2r0 = CCAT (r2, r0, tdep->int32);
876 r3r1 = CCAT (r3, r1, tdep->int32);
877 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
878
879 r3r2r1r0
880 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
881 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
882
883 if (mach == bfd_mach_m16c)
884 a1a0 = CCAT (a1, a0, tdep->int32);
885 else
886 a1a0 = NULL;
887
888 num_cooked_regs = tdep->num_regs - num_raw_regs;
889
890 tdep->pc = pc;
891 tdep->flg = flg;
892 tdep->r0 = r0;
893 tdep->r1 = r1;
894 tdep->r2 = r2;
895 tdep->r3 = r3;
896 tdep->r2r0 = r2r0;
897 tdep->r3r2r1r0 = r3r2r1r0;
898 tdep->r3r1r2r0 = r3r1r2r0;
899 tdep->a0 = a0;
900 tdep->a1 = a1;
901 tdep->sb = sb;
902 tdep->fb = fb;
903 tdep->sp = sp;
904
905 /* Set up the DWARF register table. */
906 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
907 set_dwarf_regnum (r0hl + 1, 0x01);
908 set_dwarf_regnum (r0hl + 0, 0x02);
909 set_dwarf_regnum (r1hl + 1, 0x03);
910 set_dwarf_regnum (r1hl + 0, 0x04);
911 set_dwarf_regnum (r0, 0x05);
912 set_dwarf_regnum (r1, 0x06);
913 set_dwarf_regnum (r2, 0x07);
914 set_dwarf_regnum (r3, 0x08);
915 set_dwarf_regnum (a0, 0x09);
916 set_dwarf_regnum (a1, 0x0a);
917 set_dwarf_regnum (fb, 0x0b);
918 set_dwarf_regnum (sp, 0x0c);
919 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
920 set_dwarf_regnum (sb, 0x13);
921 set_dwarf_regnum (r2r0, 0x15);
922 set_dwarf_regnum (r3r1, 0x16);
923 if (a1a0)
924 set_dwarf_regnum (a1a0, 0x17);
925
926 /* Enumerate the save/restore register group.
927
928 The regcache_save and regcache_restore functions apply their read
929 function to each register in this group.
930
931 Since frame_pop supplies frame_unwind_register as its read
932 function, the registers meaningful to the Dwarf unwinder need to
933 be in this group.
934
935 On the other hand, when we make inferior calls, save_inferior_status
936 and restore_inferior_status use them to preserve the current register
937 values across the inferior call. For this, you'd kind of like to
938 preserve all the raw registers, to protect the interrupted code from
939 any sort of bank switching the callee might have done. But we handle
940 those cases so badly anyway --- for example, it matters whether we
941 restore FLG before or after we restore the general-purpose registers,
942 but there's no way to express that --- that it isn't worth worrying
943 about.
944
945 We omit control registers like inthl: if you call a function that
946 changes those, it's probably because you wanted that change to be
947 visible to the interrupted code. */
948 mark_save_restore (r0);
949 mark_save_restore (r1);
950 mark_save_restore (r2);
951 mark_save_restore (r3);
952 mark_save_restore (a0);
953 mark_save_restore (a1);
954 mark_save_restore (sb);
955 mark_save_restore (fb);
956 mark_save_restore (sp);
957 mark_save_restore (pc);
958 mark_save_restore (flg);
959
960 set_gdbarch_num_regs (arch, num_raw_regs);
961 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
962 set_gdbarch_pc_regnum (arch, pc->num);
963 set_gdbarch_sp_regnum (arch, sp->num);
964 set_gdbarch_register_name (arch, m32c_register_name);
965 set_gdbarch_register_type (arch, m32c_register_type);
966 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
967 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
968 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
969 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
970 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
971 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
972
973 reggroup_add (arch, general_reggroup);
974 reggroup_add (arch, all_reggroup);
975 reggroup_add (arch, save_reggroup);
976 reggroup_add (arch, restore_reggroup);
977 reggroup_add (arch, system_reggroup);
978 reggroup_add (arch, m32c_dma_reggroup);
979 }
980
981
982 \f
983 /* Breakpoints. */
984 constexpr gdb_byte m32c_break_insn[] = { 0x00 }; /* brk */
985
986 typedef BP_MANIPULATION (m32c_break_insn) m32c_breakpoint;
987
988 \f
989 /* Prologue analysis. */
990
991 enum m32c_prologue_kind
992 {
993 /* This function uses a frame pointer. */
994 prologue_with_frame_ptr,
995
996 /* This function has no frame pointer. */
997 prologue_sans_frame_ptr,
998
999 /* This function sets up the stack, so its frame is the first
1000 frame on the stack. */
1001 prologue_first_frame
1002 };
1003
1004 struct m32c_prologue
1005 {
1006 /* For consistency with the DWARF 2 .debug_frame info generated by
1007 GCC, a frame's CFA is the address immediately after the saved
1008 return address. */
1009
1010 /* The architecture for which we generated this prologue info. */
1011 struct gdbarch *arch;
1012
1013 enum m32c_prologue_kind kind;
1014
1015 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1016 CFA to where the frame pointer points. This is always zero or
1017 negative. */
1018 LONGEST frame_ptr_offset;
1019
1020 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1021 the stack pointer --- always zero or negative.
1022
1023 Calling this a "size" is a bit misleading, but given that the
1024 stack grows downwards, using offsets for everything keeps one
1025 from going completely sign-crazy: you never change anything's
1026 sign for an ADD instruction; always change the second operand's
1027 sign for a SUB instruction; and everything takes care of
1028 itself.
1029
1030 Functions that use alloca don't have a constant frame size. But
1031 they always have frame pointers, so we must use that to find the
1032 CFA (and perhaps to unwind the stack pointer). */
1033 LONGEST frame_size;
1034
1035 /* The address of the first instruction at which the frame has been
1036 set up and the arguments are where the debug info says they are
1037 --- as best as we can tell. */
1038 CORE_ADDR prologue_end;
1039
1040 /* reg_offset[R] is the offset from the CFA at which register R is
1041 saved, or 1 if register R has not been saved. (Real values are
1042 always zero or negative.) */
1043 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1044 };
1045
1046
1047 /* The longest I've seen, anyway. */
1048 #define M32C_MAX_INSN_LEN (9)
1049
1050 /* Processor state, for the prologue analyzer. */
1051 struct m32c_pv_state
1052 {
1053 struct gdbarch *arch;
1054 pv_t r0, r1, r2, r3;
1055 pv_t a0, a1;
1056 pv_t sb, fb, sp;
1057 pv_t pc;
1058 struct pv_area *stack;
1059
1060 /* Bytes from the current PC, the address they were read from,
1061 and the address of the next unconsumed byte. */
1062 gdb_byte insn[M32C_MAX_INSN_LEN];
1063 CORE_ADDR scan_pc, next_addr;
1064 };
1065
1066
1067 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1068 all went well, or non-zero if simulating the action would trash our
1069 state. */
1070 static int
1071 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1072 {
1073 if (state->stack->store_would_trash (state->sp))
1074 return 1;
1075
1076 state->sp = pv_add_constant (state->sp, -size);
1077 state->stack->store (state->sp, size, value);
1078
1079 return 0;
1080 }
1081
1082
1083 enum srcdest_kind
1084 {
1085 srcdest_reg,
1086 srcdest_partial_reg,
1087 srcdest_mem
1088 };
1089
1090 /* A source or destination location for an m16c or m32c
1091 instruction. */
1092 struct srcdest
1093 {
1094 /* If srcdest_reg, the location is a register pointed to by REG.
1095 If srcdest_partial_reg, the location is part of a register pointed
1096 to by REG. We don't try to handle this too well.
1097 If srcdest_mem, the location is memory whose address is ADDR. */
1098 enum srcdest_kind kind;
1099 pv_t *reg, addr;
1100 };
1101
1102
1103 /* Return the SIZE-byte value at LOC in STATE. */
1104 static pv_t
1105 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1106 {
1107 if (loc.kind == srcdest_mem)
1108 return state->stack->fetch (loc.addr, size);
1109 else if (loc.kind == srcdest_partial_reg)
1110 return pv_unknown ();
1111 else
1112 return *loc.reg;
1113 }
1114
1115
1116 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1117 all went well, or non-zero if simulating the store would trash our
1118 state. */
1119 static int
1120 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1121 pv_t value, int size)
1122 {
1123 if (loc.kind == srcdest_mem)
1124 {
1125 if (state->stack->store_would_trash (loc.addr))
1126 return 1;
1127 state->stack->store (loc.addr, size, value);
1128 }
1129 else if (loc.kind == srcdest_partial_reg)
1130 *loc.reg = pv_unknown ();
1131 else
1132 *loc.reg = value;
1133
1134 return 0;
1135 }
1136
1137
1138 static int
1139 m32c_sign_ext (int v, int bits)
1140 {
1141 int mask = 1 << (bits - 1);
1142 return (v ^ mask) - mask;
1143 }
1144
1145 static unsigned int
1146 m32c_next_byte (struct m32c_pv_state *st)
1147 {
1148 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1149 return st->insn[st->next_addr++ - st->scan_pc];
1150 }
1151
1152 static int
1153 m32c_udisp8 (struct m32c_pv_state *st)
1154 {
1155 return m32c_next_byte (st);
1156 }
1157
1158
1159 static int
1160 m32c_sdisp8 (struct m32c_pv_state *st)
1161 {
1162 return m32c_sign_ext (m32c_next_byte (st), 8);
1163 }
1164
1165
1166 static int
1167 m32c_udisp16 (struct m32c_pv_state *st)
1168 {
1169 int low = m32c_next_byte (st);
1170 int high = m32c_next_byte (st);
1171
1172 return low + (high << 8);
1173 }
1174
1175
1176 static int
1177 m32c_sdisp16 (struct m32c_pv_state *st)
1178 {
1179 int low = m32c_next_byte (st);
1180 int high = m32c_next_byte (st);
1181
1182 return m32c_sign_ext (low + (high << 8), 16);
1183 }
1184
1185
1186 static int
1187 m32c_udisp24 (struct m32c_pv_state *st)
1188 {
1189 int low = m32c_next_byte (st);
1190 int mid = m32c_next_byte (st);
1191 int high = m32c_next_byte (st);
1192
1193 return low + (mid << 8) + (high << 16);
1194 }
1195
1196
1197 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1198 static int
1199 m32c_get_src23 (unsigned char *i)
1200 {
1201 return (((i[0] & 0x70) >> 2)
1202 | ((i[1] & 0x30) >> 4));
1203 }
1204
1205
1206 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1207 static int
1208 m32c_get_dest23 (unsigned char *i)
1209 {
1210 return (((i[0] & 0x0e) << 1)
1211 | ((i[1] & 0xc0) >> 6));
1212 }
1213
1214
1215 static struct srcdest
1216 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1217 int code, int size)
1218 {
1219 struct srcdest sd;
1220
1221 if (code < 6)
1222 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1223 else
1224 sd.kind = srcdest_mem;
1225
1226 sd.addr = pv_unknown ();
1227 sd.reg = 0;
1228
1229 switch (code)
1230 {
1231 case 0x0: sd.reg = &st->r0; break;
1232 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1233 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1234 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1235
1236 case 0x4: sd.reg = &st->a0; break;
1237 case 0x5: sd.reg = &st->a1; break;
1238
1239 case 0x6: sd.addr = st->a0; break;
1240 case 0x7: sd.addr = st->a1; break;
1241
1242 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1243 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1244 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1245 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1246
1247 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1248 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1249 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1250 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1251
1252 default:
1253 gdb_assert_not_reached ("unexpected srcdest4");
1254 }
1255
1256 return sd;
1257 }
1258
1259
1260 static struct srcdest
1261 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1262 {
1263 struct srcdest sd;
1264
1265 sd.addr = pv_unknown ();
1266 sd.reg = 0;
1267
1268 switch (code)
1269 {
1270 case 0x12:
1271 case 0x13:
1272 case 0x10:
1273 case 0x11:
1274 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1275 break;
1276
1277 case 0x02:
1278 case 0x03:
1279 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1280 break;
1281
1282 default:
1283 sd.kind = srcdest_mem;
1284 break;
1285
1286 }
1287
1288 switch (code)
1289 {
1290 case 0x12: sd.reg = &st->r0; break;
1291 case 0x13: sd.reg = &st->r1; break;
1292 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1293 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1294 case 0x02: sd.reg = &st->a0; break;
1295 case 0x03: sd.reg = &st->a1; break;
1296
1297 case 0x00: sd.addr = st->a0; break;
1298 case 0x01: sd.addr = st->a1; break;
1299 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1300 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1301 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1302 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1303 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1304 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1305 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1306 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1307 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1308 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1309 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1310 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1311 default:
1312 gdb_assert_not_reached ("unexpected sd23");
1313 }
1314
1315 if (ind)
1316 {
1317 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1318 sd.kind = srcdest_mem;
1319 }
1320
1321 return sd;
1322 }
1323
1324
1325 /* The r16c and r32c machines have instructions with similar
1326 semantics, but completely different machine language encodings. So
1327 we break out the semantics into their own functions, and leave
1328 machine-specific decoding in m32c_analyze_prologue.
1329
1330 The following functions all expect their arguments already decoded,
1331 and they all return zero if analysis should continue past this
1332 instruction, or non-zero if analysis should stop. */
1333
1334
1335 /* Simulate an 'enter SIZE' instruction in STATE. */
1336 static int
1337 m32c_pv_enter (struct m32c_pv_state *state, int size)
1338 {
1339 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1340
1341 /* If simulating this store would require us to forget
1342 everything we know about the stack frame in the name of
1343 accuracy, it would be better to just quit now. */
1344 if (state->stack->store_would_trash (state->sp))
1345 return 1;
1346
1347 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1348 return 1;
1349 state->fb = state->sp;
1350 state->sp = pv_add_constant (state->sp, -size);
1351
1352 return 0;
1353 }
1354
1355
1356 static int
1357 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1358 int bit, int src, int size)
1359 {
1360 if (bit & src)
1361 {
1362 if (m32c_pv_push (state, reg, size))
1363 return 1;
1364 }
1365
1366 return 0;
1367 }
1368
1369
1370 /* Simulate a 'pushm SRC' instruction in STATE. */
1371 static int
1372 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1373 {
1374 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1375
1376 /* The bits in SRC indicating which registers to save are:
1377 r0 r1 r2 r3 a0 a1 sb fb */
1378 return
1379 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1380 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1381 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1382 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1383 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1384 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1385 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1386 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1387 }
1388
1389 /* Return non-zero if VALUE is the first incoming argument register. */
1390
1391 static int
1392 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1393 {
1394 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1395 return (value.kind == pvk_register
1396 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1397 ? (value.reg == tdep->r1->num)
1398 : (value.reg == tdep->r0->num))
1399 && value.k == 0);
1400 }
1401
1402 /* Return non-zero if VALUE is an incoming argument register. */
1403
1404 static int
1405 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1406 {
1407 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1408 return (value.kind == pvk_register
1409 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1410 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1411 : (value.reg == tdep->r0->num))
1412 && value.k == 0);
1413 }
1414
1415 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1416 argument register to its stack slot in STATE. Such instructions
1417 should be included in the prologue, if possible.
1418
1419 The store is a spill if:
1420 - the value being stored is the original value of an argument register;
1421 - the value has not already been stored somewhere in STACK; and
1422 - LOC is a stack slot (e.g., a memory location whose address is
1423 relative to the original value of the SP). */
1424
1425 static int
1426 m32c_is_arg_spill (struct m32c_pv_state *st,
1427 struct srcdest loc,
1428 pv_t value)
1429 {
1430 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1431
1432 return (m32c_is_arg_reg (st, value)
1433 && loc.kind == srcdest_mem
1434 && pv_is_register (loc.addr, tdep->sp->num)
1435 && ! st->stack->find_reg (st->arch, value.reg, 0));
1436 }
1437
1438 /* Return non-zero if a store of VALUE to LOC is probably
1439 copying the struct return address into an address register
1440 for immediate use. This is basically a "spill" into the
1441 address register, instead of onto the stack.
1442
1443 The prerequisites are:
1444 - value being stored is original value of the FIRST arg register;
1445 - value has not already been stored on stack; and
1446 - LOC is an address register (a0 or a1). */
1447
1448 static int
1449 m32c_is_struct_return (struct m32c_pv_state *st,
1450 struct srcdest loc,
1451 pv_t value)
1452 {
1453 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1454
1455 return (m32c_is_1st_arg_reg (st, value)
1456 && !st->stack->find_reg (st->arch, value.reg, 0)
1457 && loc.kind == srcdest_reg
1458 && (pv_is_register (*loc.reg, tdep->a0->num)
1459 || pv_is_register (*loc.reg, tdep->a1->num)));
1460 }
1461
1462 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1463 was a register save:
1464 - all the named registers should have their original values, and
1465 - the stack pointer should be at a constant offset from the
1466 original stack pointer. */
1467 static int
1468 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1469 {
1470 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1471 /* The bits in SRC indicating which registers to save are:
1472 r0 r1 r2 r3 a0 a1 sb fb */
1473 return
1474 (pv_is_register (st->sp, tdep->sp->num)
1475 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1476 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1477 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1478 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1479 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1480 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1481 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1482 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1483 }
1484
1485
1486 /* Function for finding saved registers in a 'struct pv_area'; we pass
1487 this to pv_area::scan.
1488
1489 If VALUE is a saved register, ADDR says it was saved at a constant
1490 offset from the frame base, and SIZE indicates that the whole
1491 register was saved, record its offset in RESULT_UNTYPED. */
1492 static void
1493 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1494 {
1495 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1496 struct gdbarch *arch = prologue->arch;
1497 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1498
1499 /* Is this the unchanged value of some register being saved on the
1500 stack? */
1501 if (value.kind == pvk_register
1502 && value.k == 0
1503 && pv_is_register (addr, tdep->sp->num))
1504 {
1505 /* Some registers require special handling: they're saved as a
1506 larger value than the register itself. */
1507 CORE_ADDR saved_size = register_size (arch, value.reg);
1508
1509 if (value.reg == tdep->pc->num)
1510 saved_size = tdep->ret_addr_bytes;
1511 else if (register_type (arch, value.reg)
1512 == tdep->data_addr_reg_type)
1513 saved_size = tdep->push_addr_bytes;
1514
1515 if (size == saved_size)
1516 {
1517 /* Find which end of the saved value corresponds to our
1518 register. */
1519 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1520 prologue->reg_offset[value.reg]
1521 = (addr.k + saved_size - register_size (arch, value.reg));
1522 else
1523 prologue->reg_offset[value.reg] = addr.k;
1524 }
1525 }
1526 }
1527
1528
1529 /* Analyze the function prologue for ARCH at START, going no further
1530 than LIMIT, and place a description of what we found in
1531 PROLOGUE. */
1532 static void
1533 m32c_analyze_prologue (struct gdbarch *arch,
1534 CORE_ADDR start, CORE_ADDR limit,
1535 struct m32c_prologue *prologue)
1536 {
1537 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1538 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1539 CORE_ADDR after_last_frame_related_insn;
1540 struct m32c_pv_state st;
1541
1542 st.arch = arch;
1543 st.r0 = pv_register (tdep->r0->num, 0);
1544 st.r1 = pv_register (tdep->r1->num, 0);
1545 st.r2 = pv_register (tdep->r2->num, 0);
1546 st.r3 = pv_register (tdep->r3->num, 0);
1547 st.a0 = pv_register (tdep->a0->num, 0);
1548 st.a1 = pv_register (tdep->a1->num, 0);
1549 st.sb = pv_register (tdep->sb->num, 0);
1550 st.fb = pv_register (tdep->fb->num, 0);
1551 st.sp = pv_register (tdep->sp->num, 0);
1552 st.pc = pv_register (tdep->pc->num, 0);
1553 pv_area stack (tdep->sp->num, gdbarch_addr_bit (arch));
1554 st.stack = &stack;
1555
1556 /* Record that the call instruction has saved the return address on
1557 the stack. */
1558 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1559
1560 memset (prologue, 0, sizeof (*prologue));
1561 prologue->arch = arch;
1562 {
1563 int i;
1564 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1565 prologue->reg_offset[i] = 1;
1566 }
1567
1568 st.scan_pc = after_last_frame_related_insn = start;
1569
1570 while (st.scan_pc < limit)
1571 {
1572 pv_t pre_insn_fb = st.fb;
1573 pv_t pre_insn_sp = st.sp;
1574
1575 /* In theory we could get in trouble by trying to read ahead
1576 here, when we only know we're expecting one byte. In
1577 practice I doubt anyone will care, and it makes the rest of
1578 the code easier. */
1579 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1580 /* If we can't fetch the instruction from memory, stop here
1581 and hope for the best. */
1582 break;
1583 st.next_addr = st.scan_pc;
1584
1585 /* The assembly instructions are written as they appear in the
1586 section of the processor manuals that describe the
1587 instruction encodings.
1588
1589 When a single assembly language instruction has several
1590 different machine-language encodings, the manual
1591 distinguishes them by a number in parens, before the
1592 mnemonic. Those numbers are included, as well.
1593
1594 The srcdest decoding instructions have the same names as the
1595 analogous functions in the simulator. */
1596 if (mach == bfd_mach_m16c)
1597 {
1598 /* (1) ENTER #imm8 */
1599 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1600 {
1601 if (m32c_pv_enter (&st, st.insn[2]))
1602 break;
1603 st.next_addr += 3;
1604 }
1605 /* (1) PUSHM src */
1606 else if (st.insn[0] == 0xec)
1607 {
1608 int src = st.insn[1];
1609 if (m32c_pv_pushm (&st, src))
1610 break;
1611 st.next_addr += 2;
1612
1613 if (m32c_pushm_is_reg_save (&st, src))
1614 after_last_frame_related_insn = st.next_addr;
1615 }
1616
1617 /* (6) MOV.size:G src, dest */
1618 else if ((st.insn[0] & 0xfe) == 0x72)
1619 {
1620 int size = (st.insn[0] & 0x01) ? 2 : 1;
1621 struct srcdest src;
1622 struct srcdest dest;
1623 pv_t src_value;
1624 st.next_addr += 2;
1625
1626 src
1627 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1628 dest
1629 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1630 src_value = m32c_srcdest_fetch (&st, src, size);
1631
1632 if (m32c_is_arg_spill (&st, dest, src_value))
1633 after_last_frame_related_insn = st.next_addr;
1634 else if (m32c_is_struct_return (&st, dest, src_value))
1635 after_last_frame_related_insn = st.next_addr;
1636
1637 if (m32c_srcdest_store (&st, dest, src_value, size))
1638 break;
1639 }
1640
1641 /* (1) LDC #IMM16, sp */
1642 else if (st.insn[0] == 0xeb
1643 && st.insn[1] == 0x50)
1644 {
1645 st.next_addr += 2;
1646 st.sp = pv_constant (m32c_udisp16 (&st));
1647 }
1648
1649 else
1650 /* We've hit some instruction we don't know how to simulate.
1651 Strictly speaking, we should set every value we're
1652 tracking to "unknown". But we'll be optimistic, assume
1653 that we have enough information already, and stop
1654 analysis here. */
1655 break;
1656 }
1657 else
1658 {
1659 int src_indirect = 0;
1660 int dest_indirect = 0;
1661 int i = 0;
1662
1663 gdb_assert (mach == bfd_mach_m32c);
1664
1665 /* Check for prefix bytes indicating indirect addressing. */
1666 if (st.insn[0] == 0x41)
1667 {
1668 src_indirect = 1;
1669 i++;
1670 }
1671 else if (st.insn[0] == 0x09)
1672 {
1673 dest_indirect = 1;
1674 i++;
1675 }
1676 else if (st.insn[0] == 0x49)
1677 {
1678 src_indirect = dest_indirect = 1;
1679 i++;
1680 }
1681
1682 /* (1) ENTER #imm8 */
1683 if (st.insn[i] == 0xec)
1684 {
1685 if (m32c_pv_enter (&st, st.insn[i + 1]))
1686 break;
1687 st.next_addr += 2;
1688 }
1689
1690 /* (1) PUSHM src */
1691 else if (st.insn[i] == 0x8f)
1692 {
1693 int src = st.insn[i + 1];
1694 if (m32c_pv_pushm (&st, src))
1695 break;
1696 st.next_addr += 2;
1697
1698 if (m32c_pushm_is_reg_save (&st, src))
1699 after_last_frame_related_insn = st.next_addr;
1700 }
1701
1702 /* (7) MOV.size:G src, dest */
1703 else if ((st.insn[i] & 0x80) == 0x80
1704 && (st.insn[i + 1] & 0x0f) == 0x0b
1705 && m32c_get_src23 (&st.insn[i]) < 20
1706 && m32c_get_dest23 (&st.insn[i]) < 20)
1707 {
1708 struct srcdest src;
1709 struct srcdest dest;
1710 pv_t src_value;
1711 int bw = st.insn[i] & 0x01;
1712 int size = bw ? 2 : 1;
1713 st.next_addr += 2;
1714
1715 src
1716 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1717 size, src_indirect);
1718 dest
1719 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1720 size, dest_indirect);
1721 src_value = m32c_srcdest_fetch (&st, src, size);
1722
1723 if (m32c_is_arg_spill (&st, dest, src_value))
1724 after_last_frame_related_insn = st.next_addr;
1725
1726 if (m32c_srcdest_store (&st, dest, src_value, size))
1727 break;
1728 }
1729 /* (2) LDC #IMM24, sp */
1730 else if (st.insn[i] == 0xd5
1731 && st.insn[i + 1] == 0x29)
1732 {
1733 st.next_addr += 2;
1734 st.sp = pv_constant (m32c_udisp24 (&st));
1735 }
1736 else
1737 /* We've hit some instruction we don't know how to simulate.
1738 Strictly speaking, we should set every value we're
1739 tracking to "unknown". But we'll be optimistic, assume
1740 that we have enough information already, and stop
1741 analysis here. */
1742 break;
1743 }
1744
1745 /* If this instruction changed the FB or decreased the SP (i.e.,
1746 allocated more stack space), then this may be a good place to
1747 declare the prologue finished. However, there are some
1748 exceptions:
1749
1750 - If the instruction just changed the FB back to its original
1751 value, then that's probably a restore instruction. The
1752 prologue should definitely end before that.
1753
1754 - If the instruction increased the value of the SP (that is,
1755 shrunk the frame), then it's probably part of a frame
1756 teardown sequence, and the prologue should end before
1757 that. */
1758
1759 if (! pv_is_identical (st.fb, pre_insn_fb))
1760 {
1761 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1762 after_last_frame_related_insn = st.next_addr;
1763 }
1764 else if (! pv_is_identical (st.sp, pre_insn_sp))
1765 {
1766 /* The comparison of the constants looks odd, there, because
1767 .k is unsigned. All it really means is that the SP is
1768 lower than it was before the instruction. */
1769 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1770 && pv_is_register (st.sp, tdep->sp->num)
1771 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1772 after_last_frame_related_insn = st.next_addr;
1773 }
1774
1775 st.scan_pc = st.next_addr;
1776 }
1777
1778 /* Did we load a constant value into the stack pointer? */
1779 if (pv_is_constant (st.sp))
1780 prologue->kind = prologue_first_frame;
1781
1782 /* Alternatively, did we initialize the frame pointer? Remember
1783 that the CFA is the address after the return address. */
1784 if (pv_is_register (st.fb, tdep->sp->num))
1785 {
1786 prologue->kind = prologue_with_frame_ptr;
1787 prologue->frame_ptr_offset = st.fb.k;
1788 }
1789
1790 /* Is the frame size a known constant? Remember that frame_size is
1791 actually the offset from the CFA to the SP (i.e., a negative
1792 value). */
1793 else if (pv_is_register (st.sp, tdep->sp->num))
1794 {
1795 prologue->kind = prologue_sans_frame_ptr;
1796 prologue->frame_size = st.sp.k;
1797 }
1798
1799 /* We haven't been able to make sense of this function's frame. Treat
1800 it as the first frame. */
1801 else
1802 prologue->kind = prologue_first_frame;
1803
1804 /* Record where all the registers were saved. */
1805 st.stack->scan (check_for_saved, (void *) prologue);
1806
1807 prologue->prologue_end = after_last_frame_related_insn;
1808 }
1809
1810
1811 static CORE_ADDR
1812 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1813 {
1814 const char *name;
1815 CORE_ADDR func_addr, func_end, sal_end;
1816 struct m32c_prologue p;
1817
1818 /* Try to find the extent of the function that contains IP. */
1819 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1820 return ip;
1821
1822 /* Find end by prologue analysis. */
1823 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1824 /* Find end by line info. */
1825 sal_end = skip_prologue_using_sal (gdbarch, ip);
1826 /* Return whichever is lower. */
1827 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1828 return sal_end;
1829 else
1830 return p.prologue_end;
1831 }
1832
1833
1834 \f
1835 /* Stack unwinding. */
1836
1837 static struct m32c_prologue *
1838 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1839 void **this_prologue_cache)
1840 {
1841 if (! *this_prologue_cache)
1842 {
1843 CORE_ADDR func_start = get_frame_func (this_frame);
1844 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1845
1846 /* If we couldn't find any function containing the PC, then
1847 just initialize the prologue cache, but don't do anything. */
1848 if (! func_start)
1849 stop_addr = func_start;
1850
1851 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1852 m32c_analyze_prologue (get_frame_arch (this_frame),
1853 func_start, stop_addr,
1854 (struct m32c_prologue *) *this_prologue_cache);
1855 }
1856
1857 return (struct m32c_prologue *) *this_prologue_cache;
1858 }
1859
1860
1861 static CORE_ADDR
1862 m32c_frame_base (struct frame_info *this_frame,
1863 void **this_prologue_cache)
1864 {
1865 struct m32c_prologue *p
1866 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1867 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1868
1869 /* In functions that use alloca, the distance between the stack
1870 pointer and the frame base varies dynamically, so we can't use
1871 the SP plus static information like prologue analysis to find the
1872 frame base. However, such functions must have a frame pointer,
1873 to be able to restore the SP on exit. So whenever we do have a
1874 frame pointer, use that to find the base. */
1875 switch (p->kind)
1876 {
1877 case prologue_with_frame_ptr:
1878 {
1879 CORE_ADDR fb
1880 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1881 return fb - p->frame_ptr_offset;
1882 }
1883
1884 case prologue_sans_frame_ptr:
1885 {
1886 CORE_ADDR sp
1887 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1888 return sp - p->frame_size;
1889 }
1890
1891 case prologue_first_frame:
1892 return 0;
1893
1894 default:
1895 gdb_assert_not_reached ("unexpected prologue kind");
1896 }
1897 }
1898
1899
1900 static void
1901 m32c_this_id (struct frame_info *this_frame,
1902 void **this_prologue_cache,
1903 struct frame_id *this_id)
1904 {
1905 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1906
1907 if (base)
1908 *this_id = frame_id_build (base, get_frame_func (this_frame));
1909 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1910 }
1911
1912
1913 static struct value *
1914 m32c_prev_register (struct frame_info *this_frame,
1915 void **this_prologue_cache, int regnum)
1916 {
1917 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1918 struct m32c_prologue *p
1919 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1920 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1921
1922 if (regnum == tdep->sp->num)
1923 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1924
1925 /* If prologue analysis says we saved this register somewhere,
1926 return a description of the stack slot holding it. */
1927 if (p->reg_offset[regnum] != 1)
1928 return frame_unwind_got_memory (this_frame, regnum,
1929 frame_base + p->reg_offset[regnum]);
1930
1931 /* Otherwise, presume we haven't changed the value of this
1932 register, and get it from the next frame. */
1933 return frame_unwind_got_register (this_frame, regnum, regnum);
1934 }
1935
1936
1937 static const struct frame_unwind m32c_unwind = {
1938 NORMAL_FRAME,
1939 default_frame_unwind_stop_reason,
1940 m32c_this_id,
1941 m32c_prev_register,
1942 NULL,
1943 default_frame_sniffer
1944 };
1945
1946 \f
1947 /* Inferior calls. */
1948
1949 /* The calling conventions, according to GCC:
1950
1951 r8c, m16c
1952 ---------
1953 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1954 HImode), (2) is named, and (3) is an integer or pointer type (no
1955 structs, floats, etc). Otherwise, it's passed on the stack.
1956
1957 Second arg may be passed in r2, same restrictions (but not QImode),
1958 even if the first arg is passed on the stack.
1959
1960 Third and further args are passed on the stack. No padding is
1961 used, stack "alignment" is 8 bits.
1962
1963 m32cm, m32c
1964 -----------
1965
1966 First arg may be passed in r0l or r0, same restrictions as above.
1967
1968 Second and further args are passed on the stack. Padding is used
1969 after QImode parameters (i.e. lower-addressed byte is the value,
1970 higher-addressed byte is the padding), stack "alignment" is 16
1971 bits. */
1972
1973
1974 /* Return true if TYPE is a type that can be passed in registers. (We
1975 ignore the size, and pay attention only to the type code;
1976 acceptable sizes depends on which register is being considered to
1977 hold it.) */
1978 static int
1979 m32c_reg_arg_type (struct type *type)
1980 {
1981 enum type_code code = type->code ();
1982
1983 return (code == TYPE_CODE_INT
1984 || code == TYPE_CODE_ENUM
1985 || code == TYPE_CODE_PTR
1986 || TYPE_IS_REFERENCE (type)
1987 || code == TYPE_CODE_BOOL
1988 || code == TYPE_CODE_CHAR);
1989 }
1990
1991
1992 static CORE_ADDR
1993 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1994 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1995 struct value **args, CORE_ADDR sp,
1996 function_call_return_method return_method,
1997 CORE_ADDR struct_addr)
1998 {
1999 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2000 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2001 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2002 CORE_ADDR cfa;
2003 int i;
2004
2005 /* The number of arguments given in this function's prototype, or
2006 zero if it has a non-prototyped function type. The m32c ABI
2007 passes arguments mentioned in the prototype differently from
2008 those in the ellipsis of a varargs function, or from those passed
2009 to a non-prototyped function. */
2010 int num_prototyped_args = 0;
2011
2012 {
2013 struct type *func_type = value_type (function);
2014
2015 /* Dereference function pointer types. */
2016 if (func_type->code () == TYPE_CODE_PTR)
2017 func_type = TYPE_TARGET_TYPE (func_type);
2018
2019 gdb_assert (func_type->code () == TYPE_CODE_FUNC ||
2020 func_type->code () == TYPE_CODE_METHOD);
2021
2022 #if 0
2023 /* The ABI description in gcc/config/m32c/m32c.abi says that
2024 we need to handle prototyped and non-prototyped functions
2025 separately, but the code in GCC doesn't actually do so. */
2026 if (TYPE_PROTOTYPED (func_type))
2027 #endif
2028 num_prototyped_args = func_type->num_fields ();
2029 }
2030
2031 /* First, if the function returns an aggregate by value, push a
2032 pointer to a buffer for it. This doesn't affect the way
2033 subsequent arguments are allocated to registers. */
2034 if (return_method == return_method_struct)
2035 {
2036 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2037 sp -= ptr_len;
2038 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2039 }
2040
2041 /* Push the arguments. */
2042 for (i = nargs - 1; i >= 0; i--)
2043 {
2044 struct value *arg = args[i];
2045 const gdb_byte *arg_bits = value_contents (arg);
2046 struct type *arg_type = value_type (arg);
2047 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2048
2049 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2050 if (i == 0
2051 && arg_size <= 2
2052 && i < num_prototyped_args
2053 && m32c_reg_arg_type (arg_type))
2054 {
2055 /* Extract and re-store as an integer as a terse way to make
2056 sure it ends up in the least significant end of r1. (GDB
2057 should avoid assuming endianness, even on uni-endian
2058 processors.) */
2059 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2060 byte_order);
2061 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2062 regcache_cooked_write_unsigned (regcache, reg->num, u);
2063 }
2064
2065 /* Can it go in r2? */
2066 else if (mach == bfd_mach_m16c
2067 && i == 1
2068 && arg_size == 2
2069 && i < num_prototyped_args
2070 && m32c_reg_arg_type (arg_type))
2071 regcache->cooked_write (tdep->r2->num, arg_bits);
2072
2073 /* Everything else goes on the stack. */
2074 else
2075 {
2076 sp -= arg_size;
2077
2078 /* Align the stack. */
2079 if (mach == bfd_mach_m32c)
2080 sp &= ~1;
2081
2082 write_memory (sp, arg_bits, arg_size);
2083 }
2084 }
2085
2086 /* This is the CFA we use to identify the dummy frame. */
2087 cfa = sp;
2088
2089 /* Push the return address. */
2090 sp -= tdep->ret_addr_bytes;
2091 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2092 bp_addr);
2093
2094 /* Update the stack pointer. */
2095 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2096
2097 /* We need to borrow an odd trick from the i386 target here.
2098
2099 The value we return from this function gets used as the stack
2100 address (the CFA) for the dummy frame's ID. The obvious thing is
2101 to return the new TOS. However, that points at the return
2102 address, saved on the stack, which is inconsistent with the CFA's
2103 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2104 .debug_frame info uses the address immediately after the saved
2105 return address. So you end up with a dummy frame whose CFA
2106 points at the return address, but the frame for the function
2107 being called has a CFA pointing after the return address: the
2108 younger CFA is *greater than* the older CFA. The sanity checks
2109 in frame.c don't like that.
2110
2111 So we try to be consistent with the CFA's used by DWARF 2.
2112 Having a dummy frame and a real frame with the *same* CFA is
2113 tolerable. */
2114 return cfa;
2115 }
2116
2117
2118 \f
2119 /* Return values. */
2120
2121 /* Return value conventions, according to GCC:
2122
2123 r8c, m16c
2124 ---------
2125
2126 QImode in r0l
2127 HImode in r0
2128 SImode in r2r0
2129 near pointer in r0
2130 far pointer in r2r0
2131
2132 Aggregate values (regardless of size) are returned by pushing a
2133 pointer to a temporary area on the stack after the args are pushed.
2134 The function fills in this area with the value. Note that this
2135 pointer on the stack does not affect how register arguments, if any,
2136 are configured.
2137
2138 m32cm, m32c
2139 -----------
2140 Same. */
2141
2142 /* Return non-zero if values of type TYPE are returned by storing them
2143 in a buffer whose address is passed on the stack, ahead of the
2144 other arguments. */
2145 static int
2146 m32c_return_by_passed_buf (struct type *type)
2147 {
2148 enum type_code code = type->code ();
2149
2150 return (code == TYPE_CODE_STRUCT
2151 || code == TYPE_CODE_UNION);
2152 }
2153
2154 static enum return_value_convention
2155 m32c_return_value (struct gdbarch *gdbarch,
2156 struct value *function,
2157 struct type *valtype,
2158 struct regcache *regcache,
2159 gdb_byte *readbuf,
2160 const gdb_byte *writebuf)
2161 {
2162 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2163 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2164 enum return_value_convention conv;
2165 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2166
2167 if (m32c_return_by_passed_buf (valtype))
2168 conv = RETURN_VALUE_STRUCT_CONVENTION;
2169 else
2170 conv = RETURN_VALUE_REGISTER_CONVENTION;
2171
2172 if (readbuf)
2173 {
2174 /* We should never be called to find values being returned by
2175 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2176 unless we made the call ourselves. */
2177 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2178
2179 gdb_assert (valtype_len <= 8);
2180
2181 /* Anything that fits in r0 is returned there. */
2182 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2183 {
2184 ULONGEST u;
2185 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2186 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2187 }
2188 else
2189 {
2190 /* Everything else is passed in mem0, using as many bytes as
2191 needed. This is not what the Renesas tools do, but it's
2192 what GCC does at the moment. */
2193 struct bound_minimal_symbol mem0
2194 = lookup_minimal_symbol ("mem0", NULL, NULL);
2195
2196 if (! mem0.minsym)
2197 error (_("The return value is stored in memory at 'mem0', "
2198 "but GDB cannot find\n"
2199 "its address."));
2200 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2201 }
2202 }
2203
2204 if (writebuf)
2205 {
2206 /* We should never be called to store values to be returned
2207 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2208 finding the buffer, unless we made the call ourselves. */
2209 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2210
2211 gdb_assert (valtype_len <= 8);
2212
2213 /* Anything that fits in r0 is returned there. */
2214 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2215 {
2216 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2217 byte_order);
2218 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2219 }
2220 else
2221 {
2222 /* Everything else is passed in mem0, using as many bytes as
2223 needed. This is not what the Renesas tools do, but it's
2224 what GCC does at the moment. */
2225 struct bound_minimal_symbol mem0
2226 = lookup_minimal_symbol ("mem0", NULL, NULL);
2227
2228 if (! mem0.minsym)
2229 error (_("The return value is stored in memory at 'mem0', "
2230 "but GDB cannot find\n"
2231 " its address."));
2232 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2233 }
2234 }
2235
2236 return conv;
2237 }
2238
2239
2240 \f
2241 /* Trampolines. */
2242
2243 /* The m16c and m32c use a trampoline function for indirect function
2244 calls. An indirect call looks like this:
2245
2246 ... push arguments ...
2247 ... push target function address ...
2248 jsr.a m32c_jsri16
2249
2250 The code for m32c_jsri16 looks like this:
2251
2252 m32c_jsri16:
2253
2254 # Save return address.
2255 pop.w m32c_jsri_ret
2256 pop.b m32c_jsri_ret+2
2257
2258 # Store target function address.
2259 pop.w m32c_jsri_addr
2260
2261 # Re-push return address.
2262 push.b m32c_jsri_ret+2
2263 push.w m32c_jsri_ret
2264
2265 # Call the target function.
2266 jmpi.a m32c_jsri_addr
2267
2268 Without further information, GDB will treat calls to m32c_jsri16
2269 like calls to any other function. Since m32c_jsri16 doesn't have
2270 debugging information, that normally means that GDB sets a step-
2271 resume breakpoint and lets the program continue --- which is not
2272 what the user wanted. (Giving the trampoline debugging info
2273 doesn't help: the user expects the program to stop in the function
2274 their program is calling, not in some trampoline code they've never
2275 seen before.)
2276
2277 The gdbarch_skip_trampoline_code method tells GDB how to step
2278 through such trampoline functions transparently to the user. When
2279 given the address of a trampoline function's first instruction,
2280 gdbarch_skip_trampoline_code should return the address of the first
2281 instruction of the function really being called. If GDB decides it
2282 wants to step into that function, it will set a breakpoint there
2283 and silently continue to it.
2284
2285 We recognize the trampoline by name, and extract the target address
2286 directly from the stack. This isn't great, but recognizing by its
2287 code sequence seems more fragile. */
2288
2289 static CORE_ADDR
2290 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2291 {
2292 struct gdbarch *gdbarch = get_frame_arch (frame);
2293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2295
2296 /* It would be nicer to simply look up the addresses of known
2297 trampolines once, and then compare stop_pc with them. However,
2298 we'd need to ensure that that cached address got invalidated when
2299 someone loaded a new executable, and I'm not quite sure of the
2300 best way to do that. find_pc_partial_function does do some
2301 caching, so we'll see how this goes. */
2302 const char *name;
2303 CORE_ADDR start, end;
2304
2305 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2306 {
2307 /* Are we stopped at the beginning of the trampoline function? */
2308 if (strcmp (name, "m32c_jsri16") == 0
2309 && stop_pc == start)
2310 {
2311 /* Get the stack pointer. The return address is at the top,
2312 and the target function's address is just below that. We
2313 know it's a two-byte address, since the trampoline is
2314 m32c_jsri*16*. */
2315 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2316 CORE_ADDR target
2317 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2318 2, byte_order);
2319
2320 /* What we have now is the address of a jump instruction.
2321 What we need is the destination of that jump.
2322 The opcode is 1 byte, and the destination is the next 3 bytes. */
2323
2324 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2325 return target;
2326 }
2327 }
2328
2329 return 0;
2330 }
2331
2332
2333 /* Address/pointer conversions. */
2334
2335 /* On the m16c, there is a 24-bit address space, but only a very few
2336 instructions can generate addresses larger than 0xffff: jumps,
2337 jumps to subroutines, and the lde/std (load/store extended)
2338 instructions.
2339
2340 Since GCC can only support one size of pointer, we can't have
2341 distinct 'near' and 'far' pointer types; we have to pick one size
2342 for everything. If we wanted to use 24-bit pointers, then GCC
2343 would have to use lde and ste for all memory references, which
2344 would be terrible for performance and code size. So the GNU
2345 toolchain uses 16-bit pointers for everything, and gives up the
2346 ability to have pointers point outside the first 64k of memory.
2347
2348 However, as a special hack, we let the linker place functions at
2349 addresses above 0xffff, as long as it also places a trampoline in
2350 the low 64k for every function whose address is taken. Each
2351 trampoline consists of a single jmp.a instruction that jumps to the
2352 function's real entry point. Pointers to functions can be 16 bits
2353 long, even though the functions themselves are at higher addresses:
2354 the pointers refer to the trampolines, not the functions.
2355
2356 This complicates things for GDB, however: given the address of a
2357 function (from debug info or linker symbols, say) which could be
2358 anywhere in the 24-bit address space, how can we find an
2359 appropriate 16-bit value to use as a pointer to it?
2360
2361 If the linker has not generated a trampoline for the function,
2362 we're out of luck. Well, I guess we could malloc some space and
2363 write a jmp.a instruction to it, but I'm not going to get into that
2364 at the moment.
2365
2366 If the linker has generated a trampoline for the function, then it
2367 also emitted a symbol for the trampoline: if the function's linker
2368 symbol is named NAME, then the function's trampoline's linker
2369 symbol is named NAME.plt.
2370
2371 So, given a code address:
2372 - We try to find a linker symbol at that address.
2373 - If we find such a symbol named NAME, we look for a linker symbol
2374 named NAME.plt.
2375 - If we find such a symbol, we assume it is a trampoline, and use
2376 its address as the pointer value.
2377
2378 And, given a function pointer:
2379 - We try to find a linker symbol at that address named NAME.plt.
2380 - If we find such a symbol, we look for a linker symbol named NAME.
2381 - If we find that, we provide that as the function's address.
2382 - If any of the above steps fail, we return the original address
2383 unchanged; it might really be a function in the low 64k.
2384
2385 See? You *knew* there was a reason you wanted to be a computer
2386 programmer! :) */
2387
2388 static void
2389 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2390 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2391 {
2392 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2393 enum type_code target_code;
2394 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2395
2396 target_code = TYPE_TARGET_TYPE (type)->code ();
2397
2398 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2399 {
2400 const char *func_name;
2401 char *tramp_name;
2402 struct bound_minimal_symbol tramp_msym;
2403
2404 /* Try to find a linker symbol at this address. */
2405 struct bound_minimal_symbol func_msym
2406 = lookup_minimal_symbol_by_pc (addr);
2407
2408 if (! func_msym.minsym)
2409 error (_("Cannot convert code address %s to function pointer:\n"
2410 "couldn't find a symbol at that address, to find trampoline."),
2411 paddress (gdbarch, addr));
2412
2413 func_name = func_msym.minsym->linkage_name ();
2414 tramp_name = (char *) xmalloc (strlen (func_name) + 5);
2415 strcpy (tramp_name, func_name);
2416 strcat (tramp_name, ".plt");
2417
2418 /* Try to find a linker symbol for the trampoline. */
2419 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2420
2421 /* We've either got another copy of the name now, or don't need
2422 the name any more. */
2423 xfree (tramp_name);
2424
2425 if (! tramp_msym.minsym)
2426 {
2427 CORE_ADDR ptrval;
2428
2429 /* No PLT entry found. Mask off the upper bits of the address
2430 to make a pointer. As noted in the warning to the user
2431 below, this value might be useful if converted back into
2432 an address by GDB, but will otherwise, almost certainly,
2433 be garbage.
2434
2435 Using this masked result does seem to be useful
2436 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2437 PASSes. These results appear to be correct as well.
2438
2439 We print a warning here so that the user can make a
2440 determination about whether the result is useful or not. */
2441 ptrval = addr & 0xffff;
2442
2443 warning (_("Cannot convert code address %s to function pointer:\n"
2444 "couldn't find trampoline named '%s.plt'.\n"
2445 "Returning pointer value %s instead; this may produce\n"
2446 "a useful result if converted back into an address by GDB,\n"
2447 "but will most likely not be useful otherwise."),
2448 paddress (gdbarch, addr), func_name,
2449 paddress (gdbarch, ptrval));
2450
2451 addr = ptrval;
2452
2453 }
2454 else
2455 {
2456 /* The trampoline's address is our pointer. */
2457 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2458 }
2459 }
2460
2461 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2462 }
2463
2464
2465 static CORE_ADDR
2466 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2467 struct type *type, const gdb_byte *buf)
2468 {
2469 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2470 CORE_ADDR ptr;
2471 enum type_code target_code;
2472
2473 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2474
2475 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2476
2477 target_code = TYPE_TARGET_TYPE (type)->code ();
2478
2479 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2480 {
2481 /* See if there is a minimal symbol at that address whose name is
2482 "NAME.plt". */
2483 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2484
2485 if (ptr_msym.minsym)
2486 {
2487 const char *ptr_msym_name = ptr_msym.minsym->linkage_name ();
2488 int len = strlen (ptr_msym_name);
2489
2490 if (len > 4
2491 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2492 {
2493 struct bound_minimal_symbol func_msym;
2494 /* We have a .plt symbol; try to find the symbol for the
2495 corresponding function.
2496
2497 Since the trampoline contains a jump instruction, we
2498 could also just extract the jump's target address. I
2499 don't see much advantage one way or the other. */
2500 char *func_name = (char *) xmalloc (len - 4 + 1);
2501 memcpy (func_name, ptr_msym_name, len - 4);
2502 func_name[len - 4] = '\0';
2503 func_msym
2504 = lookup_minimal_symbol (func_name, NULL, NULL);
2505
2506 /* If we do have such a symbol, return its value as the
2507 function's true address. */
2508 if (func_msym.minsym)
2509 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2510 }
2511 }
2512 else
2513 {
2514 int aspace;
2515
2516 for (aspace = 1; aspace <= 15; aspace++)
2517 {
2518 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2519
2520 if (ptr_msym.minsym)
2521 ptr |= aspace << 16;
2522 }
2523 }
2524 }
2525
2526 return ptr;
2527 }
2528
2529 static void
2530 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2531 int *frame_regnum,
2532 LONGEST *frame_offset)
2533 {
2534 const char *name;
2535 CORE_ADDR func_addr, func_end;
2536 struct m32c_prologue p;
2537
2538 struct regcache *regcache = get_current_regcache ();
2539 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2540
2541 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2542 internal_error (__FILE__, __LINE__,
2543 _("No virtual frame pointer available"));
2544
2545 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2546 switch (p.kind)
2547 {
2548 case prologue_with_frame_ptr:
2549 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2550 *frame_offset = p.frame_ptr_offset;
2551 break;
2552 case prologue_sans_frame_ptr:
2553 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2554 *frame_offset = p.frame_size;
2555 break;
2556 default:
2557 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2558 *frame_offset = 0;
2559 break;
2560 }
2561 /* Sanity check */
2562 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2563 internal_error (__FILE__, __LINE__,
2564 _("No virtual frame pointer available"));
2565 }
2566
2567 \f
2568 /* Initialization. */
2569
2570 static struct gdbarch *
2571 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2572 {
2573 struct gdbarch *gdbarch;
2574 struct gdbarch_tdep *tdep;
2575 unsigned long mach = info.bfd_arch_info->mach;
2576
2577 /* Find a candidate among the list of architectures we've created
2578 already. */
2579 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2580 arches != NULL;
2581 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2582 return arches->gdbarch;
2583
2584 tdep = XCNEW (struct gdbarch_tdep);
2585 gdbarch = gdbarch_alloc (&info, tdep);
2586
2587 /* Essential types. */
2588 make_types (gdbarch);
2589
2590 /* Address/pointer conversions. */
2591 if (mach == bfd_mach_m16c)
2592 {
2593 set_gdbarch_address_to_pointer (gdbarch, m32c_m16c_address_to_pointer);
2594 set_gdbarch_pointer_to_address (gdbarch, m32c_m16c_pointer_to_address);
2595 }
2596
2597 /* Register set. */
2598 make_regs (gdbarch);
2599
2600 /* Breakpoints. */
2601 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32c_breakpoint::kind_from_pc);
2602 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32c_breakpoint::bp_from_kind);
2603
2604 /* Prologue analysis and unwinding. */
2605 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2606 set_gdbarch_skip_prologue (gdbarch, m32c_skip_prologue);
2607 #if 0
2608 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2609 They may be in the dwarf2 cfi code in GDB, or they may be in
2610 the debug info emitted by the upstream toolchain. I don't
2611 know which, but I do know that the prologue analyzer works better.
2612 MVS 04/13/06 */
2613 dwarf2_append_sniffers (gdbarch);
2614 #endif
2615 frame_unwind_append_unwinder (gdbarch, &m32c_unwind);
2616
2617 /* Inferior calls. */
2618 set_gdbarch_push_dummy_call (gdbarch, m32c_push_dummy_call);
2619 set_gdbarch_return_value (gdbarch, m32c_return_value);
2620
2621 /* Trampolines. */
2622 set_gdbarch_skip_trampoline_code (gdbarch, m32c_skip_trampoline_code);
2623
2624 set_gdbarch_virtual_frame_pointer (gdbarch, m32c_virtual_frame_pointer);
2625
2626 /* m32c function boundary addresses are not necessarily even.
2627 Therefore, the `vbit', which indicates a pointer to a virtual
2628 member function, is stored in the delta field, rather than as
2629 the low bit of a function pointer address.
2630
2631 In order to verify this, see the definition of
2632 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2633 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2634 set_gdbarch_vbit_in_delta (gdbarch, 1);
2635
2636 return gdbarch;
2637 }
2638
2639 void _initialize_m32c_tdep ();
2640 void
2641 _initialize_m32c_tdep ()
2642 {
2643 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2644
2645 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2646 }
This page took 0.083709 seconds and 4 git commands to generate.