windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "elf-bfd.h"
22 #include "elf/m32c.h"
23 #include "gdb/sim-m32c.h"
24 #include "dis-asm.h"
25 #include "gdbtypes.h"
26 #include "regcache.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "dwarf2expr.h"
32 #include "symtab.h"
33 #include "gdbcore.h"
34 #include "value.h"
35 #include "reggroups.h"
36 #include "prologue-value.h"
37 #include "target.h"
38 #include "objfiles.h"
39
40 \f
41 /* The m32c tdep structure. */
42
43 static struct reggroup *m32c_dma_reggroup;
44
45 struct m32c_reg;
46
47 /* The type of a function that moves the value of REG between CACHE or
48 BUF --- in either direction. */
49 typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
50 struct regcache *cache,
51 void *buf);
52
53 struct m32c_reg
54 {
55 /* The name of this register. */
56 const char *name;
57
58 /* Its type. */
59 struct type *type;
60
61 /* The architecture this register belongs to. */
62 struct gdbarch *arch;
63
64 /* Its GDB register number. */
65 int num;
66
67 /* Its sim register number. */
68 int sim_num;
69
70 /* Its DWARF register number, or -1 if it doesn't have one. */
71 int dwarf_num;
72
73 /* Register group memberships. */
74 unsigned int general_p : 1;
75 unsigned int dma_p : 1;
76 unsigned int system_p : 1;
77 unsigned int save_restore_p : 1;
78
79 /* Functions to read its value from a regcache, and write its value
80 to a regcache. */
81 m32c_move_reg_t *read, *write;
82
83 /* Data for READ and WRITE functions. The exact meaning depends on
84 the specific functions selected; see the comments for those
85 functions. */
86 struct m32c_reg *rx, *ry;
87 int n;
88 };
89
90
91 /* An overestimate of the number of raw and pseudoregisters we will
92 have. The exact answer depends on the variant of the architecture
93 at hand, but we can use this to declare statically allocated
94 arrays, and bump it up when needed. */
95 #define M32C_MAX_NUM_REGS (75)
96
97 /* The largest assigned DWARF register number. */
98 #define M32C_MAX_DWARF_REGNUM (40)
99
100
101 struct gdbarch_tdep
102 {
103 /* All the registers for this variant, indexed by GDB register
104 number, and the number of registers present. */
105 struct m32c_reg regs[M32C_MAX_NUM_REGS];
106
107 /* The number of valid registers. */
108 int num_regs;
109
110 /* Interesting registers. These are pointers into REGS. */
111 struct m32c_reg *pc, *flg;
112 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
113 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
114 struct m32c_reg *sb, *fb, *sp;
115
116 /* A table indexed by DWARF register numbers, pointing into
117 REGS. */
118 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
119
120 /* Types for this architecture. We can't use the builtin_type_foo
121 types, because they're not initialized when building a gdbarch
122 structure. */
123 struct type *voyd, *ptr_voyd, *func_voyd;
124 struct type *uint8, *uint16;
125 struct type *int8, *int16, *int32, *int64;
126
127 /* The types for data address and code address registers. */
128 struct type *data_addr_reg_type, *code_addr_reg_type;
129
130 /* The number of bytes a return address pushed by a 'jsr' instruction
131 occupies on the stack. */
132 int ret_addr_bytes;
133
134 /* The number of bytes an address register occupies on the stack
135 when saved by an 'enter' or 'pushm' instruction. */
136 int push_addr_bytes;
137 };
138
139 \f
140 /* Types. */
141
142 static void
143 make_types (struct gdbarch *arch)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
146 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
147 int data_addr_reg_bits, code_addr_reg_bits;
148 char type_name[50];
149
150 #if 0
151 /* This is used to clip CORE_ADDR values, so this value is
152 appropriate both on the m32c, where pointers are 32 bits long,
153 and on the m16c, where pointers are sixteen bits long, but there
154 may be code above the 64k boundary. */
155 set_gdbarch_addr_bit (arch, 24);
156 #else
157 /* GCC uses 32 bits for addrs in the dwarf info, even though
158 only 16/24 bits are used. Setting addr_bit to 24 causes
159 errors in reading the dwarf addresses. */
160 set_gdbarch_addr_bit (arch, 32);
161 #endif
162
163 set_gdbarch_int_bit (arch, 16);
164 switch (mach)
165 {
166 case bfd_mach_m16c:
167 data_addr_reg_bits = 16;
168 code_addr_reg_bits = 24;
169 set_gdbarch_ptr_bit (arch, 16);
170 tdep->ret_addr_bytes = 3;
171 tdep->push_addr_bytes = 2;
172 break;
173
174 case bfd_mach_m32c:
175 data_addr_reg_bits = 24;
176 code_addr_reg_bits = 24;
177 set_gdbarch_ptr_bit (arch, 32);
178 tdep->ret_addr_bytes = 4;
179 tdep->push_addr_bytes = 4;
180 break;
181
182 default:
183 gdb_assert_not_reached ("unexpected mach");
184 }
185
186 /* The builtin_type_mumble variables are sometimes uninitialized when
187 this is called, so we avoid using them. */
188 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
189 tdep->ptr_voyd
190 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
191 NULL);
192 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
193 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
194 tdep->func_voyd = lookup_function_type (tdep->voyd);
195
196 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
197 gdbarch_bfd_arch_info (arch)->printable_name);
198 tdep->data_addr_reg_type
199 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
200 xstrdup (type_name));
201 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
202 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
203
204 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
205 gdbarch_bfd_arch_info (arch)->printable_name);
206 tdep->code_addr_reg_type
207 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
208 xstrdup (type_name));
209 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
210 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
211
212 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
213 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
214 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
215 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
216 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
217 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
218 }
219
220
221 \f
222 /* Register set. */
223
224 static const char *
225 m32c_register_name (struct gdbarch *gdbarch, int num)
226 {
227 return gdbarch_tdep (gdbarch)->regs[num].name;
228 }
229
230
231 static struct type *
232 m32c_register_type (struct gdbarch *arch, int reg_nr)
233 {
234 return gdbarch_tdep (arch)->regs[reg_nr].type;
235 }
236
237
238 static int
239 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
240 {
241 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
242 }
243
244
245 static int
246 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
247 {
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
250 && tdep->dwarf_regs[reg_nr])
251 return tdep->dwarf_regs[reg_nr]->num;
252 else
253 /* The DWARF CFI code expects to see -1 for invalid register
254 numbers. */
255 return -1;
256 }
257
258
259 static int
260 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
261 struct reggroup *group)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264 struct m32c_reg *reg = &tdep->regs[regnum];
265
266 /* The anonymous raw registers aren't in any groups. */
267 if (! reg->name)
268 return 0;
269
270 if (group == all_reggroup)
271 return 1;
272
273 if (group == general_reggroup
274 && reg->general_p)
275 return 1;
276
277 if (group == m32c_dma_reggroup
278 && reg->dma_p)
279 return 1;
280
281 if (group == system_reggroup
282 && reg->system_p)
283 return 1;
284
285 /* Since the m32c DWARF register numbers refer to cooked registers, not
286 raw registers, and frame_pop depends on the save and restore groups
287 containing registers the DWARF CFI will actually mention, our save
288 and restore groups are cooked registers, not raw registers. (This is
289 why we can't use the default reggroup function.) */
290 if ((group == save_reggroup
291 || group == restore_reggroup)
292 && reg->save_restore_p)
293 return 1;
294
295 return 0;
296 }
297
298
299 /* Register move functions. We declare them here using
300 m32c_move_reg_t to check the types. */
301 static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
302 static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
303 static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
304 static m32c_move_reg_t m32c_part_read, m32c_part_write;
305 static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
306 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
307
308
309 /* Copy the value of the raw register REG from CACHE to BUF. */
310 static enum register_status
311 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
312 {
313 return regcache_raw_read (cache, reg->num, buf);
314 }
315
316
317 /* Copy the value of the raw register REG from BUF to CACHE. */
318 static enum register_status
319 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
320 {
321 regcache_raw_write (cache, reg->num, (const void *) buf);
322
323 return REG_VALID;
324 }
325
326
327 /* Return the value of the 'flg' register in CACHE. */
328 static int
329 m32c_read_flg (struct regcache *cache)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
332 ULONGEST flg;
333 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
334 return flg & 0xffff;
335 }
336
337
338 /* Evaluate the real register number of a banked register. */
339 static struct m32c_reg *
340 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
341 {
342 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
343 }
344
345
346 /* Move the value of a banked register from CACHE to BUF.
347 If the value of the 'flg' register in CACHE has any of the bits
348 masked in REG->n set, then read REG->ry. Otherwise, read
349 REG->rx. */
350 static enum register_status
351 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
352 {
353 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
354 return regcache_raw_read (cache, bank_reg->num, buf);
355 }
356
357
358 /* Move the value of a banked register from BUF to CACHE.
359 If the value of the 'flg' register in CACHE has any of the bits
360 masked in REG->n set, then write REG->ry. Otherwise, write
361 REG->rx. */
362 static enum register_status
363 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
364 {
365 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
366 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
367
368 return REG_VALID;
369 }
370
371
372 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
373 banked register; on bfd_mach_m16c, it's not. */
374 static enum register_status
375 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
376 {
377 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
378 return m32c_raw_read (reg->rx, cache, buf);
379 else
380 return m32c_banked_read (reg, cache, buf);
381 }
382
383
384 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
385 banked register; on bfd_mach_m16c, it's not. */
386 static enum register_status
387 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
388 {
389 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
390 m32c_raw_write (reg->rx, cache, buf);
391 else
392 m32c_banked_write (reg, cache, buf);
393
394 return REG_VALID;
395 }
396
397
398 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
399 and *LEN_P to the offset and length, in bytes, of the part REG
400 occupies in its underlying register. The offset is from the
401 lower-addressed end, regardless of the architecture's endianness.
402 (The M32C family is always little-endian, but let's keep those
403 assumptions out of here.) */
404 static void
405 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
406 {
407 /* The length of the containing register, of which REG is one part. */
408 int containing_len = TYPE_LENGTH (reg->rx->type);
409
410 /* The length of one "element" in our imaginary array. */
411 int elt_len = TYPE_LENGTH (reg->type);
412
413 /* The offset of REG's "element" from the least significant end of
414 the containing register. */
415 int elt_offset = reg->n * elt_len;
416
417 /* If we extend off the end, trim the length of the element. */
418 if (elt_offset + elt_len > containing_len)
419 {
420 elt_len = containing_len - elt_offset;
421 /* We shouldn't be declaring partial registers that go off the
422 end of their containing registers. */
423 gdb_assert (elt_len > 0);
424 }
425
426 /* Flip the offset around if we're big-endian. */
427 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
428 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
429
430 *offset_p = elt_offset;
431 *len_p = elt_len;
432 }
433
434
435 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
436 to BUF. Treating the value of the register REG->rx as an array of
437 REG->type values, where higher indices refer to more significant
438 bits, read the value of the REG->n'th element. */
439 static enum register_status
440 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
441 {
442 int offset, len;
443
444 memset (buf, 0, TYPE_LENGTH (reg->type));
445 m32c_find_part (reg, &offset, &len);
446 return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
447 }
448
449
450 /* Move the value of a banked register from BUF to CACHE.
451 Treating the value of the register REG->rx as an array of REG->type
452 values, where higher indices refer to more significant bits, write
453 the value of the REG->n'th element. */
454 static enum register_status
455 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
456 {
457 int offset, len;
458
459 m32c_find_part (reg, &offset, &len);
460 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
461
462 return REG_VALID;
463 }
464
465
466 /* Move the value of REG from CACHE to BUF. REG's value is the
467 concatenation of the values of the registers REG->rx and REG->ry,
468 with REG->rx contributing the more significant bits. */
469 static enum register_status
470 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
471 {
472 int high_bytes = TYPE_LENGTH (reg->rx->type);
473 int low_bytes = TYPE_LENGTH (reg->ry->type);
474 /* For address arithmetic. */
475 unsigned char *cbuf = buf;
476 enum register_status status;
477
478 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
479
480 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
481 {
482 status = regcache_cooked_read (cache, reg->rx->num, cbuf);
483 if (status == REG_VALID)
484 status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
485 }
486 else
487 {
488 status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
489 if (status == REG_VALID)
490 status = regcache_cooked_read (cache, reg->ry->num, cbuf);
491 }
492
493 return status;
494 }
495
496
497 /* Move the value of REG from CACHE to BUF. REG's value is the
498 concatenation of the values of the registers REG->rx and REG->ry,
499 with REG->rx contributing the more significant bits. */
500 static enum register_status
501 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
502 {
503 int high_bytes = TYPE_LENGTH (reg->rx->type);
504 int low_bytes = TYPE_LENGTH (reg->ry->type);
505 /* For address arithmetic. */
506 unsigned char *cbuf = buf;
507
508 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
509
510 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
511 {
512 regcache_cooked_write (cache, reg->rx->num, cbuf);
513 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
514 }
515 else
516 {
517 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
518 regcache_cooked_write (cache, reg->ry->num, cbuf);
519 }
520
521 return REG_VALID;
522 }
523
524
525 /* Copy the value of the raw register REG from CACHE to BUF. REG is
526 the concatenation (from most significant to least) of r3, r2, r1,
527 and r0. */
528 static enum register_status
529 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
530 {
531 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
532 int len = TYPE_LENGTH (tdep->r0->type);
533 enum register_status status;
534
535 /* For address arithmetic. */
536 unsigned char *cbuf = buf;
537
538 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
539 {
540 status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
541 if (status == REG_VALID)
542 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
543 if (status == REG_VALID)
544 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
545 if (status == REG_VALID)
546 status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
547 }
548 else
549 {
550 status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
551 if (status == REG_VALID)
552 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
553 if (status == REG_VALID)
554 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
555 if (status == REG_VALID)
556 status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
557 }
558
559 return status;
560 }
561
562
563 /* Copy the value of the raw register REG from BUF to CACHE. REG is
564 the concatenation (from most significant to least) of r3, r2, r1,
565 and r0. */
566 static enum register_status
567 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
568 {
569 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
570 int len = TYPE_LENGTH (tdep->r0->type);
571
572 /* For address arithmetic. */
573 unsigned char *cbuf = buf;
574
575 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
576 {
577 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
578 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
579 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
580 regcache_cooked_write (cache, tdep->r3->num, cbuf);
581 }
582 else
583 {
584 regcache_cooked_write (cache, tdep->r0->num, cbuf);
585 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
586 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
587 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
588 }
589
590 return REG_VALID;
591 }
592
593
594 static enum register_status
595 m32c_pseudo_register_read (struct gdbarch *arch,
596 struct regcache *cache,
597 int cookednum,
598 gdb_byte *buf)
599 {
600 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
601 struct m32c_reg *reg;
602
603 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
604 gdb_assert (arch == get_regcache_arch (cache));
605 gdb_assert (arch == tdep->regs[cookednum].arch);
606 reg = &tdep->regs[cookednum];
607
608 return reg->read (reg, cache, buf);
609 }
610
611
612 static void
613 m32c_pseudo_register_write (struct gdbarch *arch,
614 struct regcache *cache,
615 int cookednum,
616 const gdb_byte *buf)
617 {
618 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
619 struct m32c_reg *reg;
620
621 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
622 gdb_assert (arch == get_regcache_arch (cache));
623 gdb_assert (arch == tdep->regs[cookednum].arch);
624 reg = &tdep->regs[cookednum];
625
626 reg->write (reg, cache, (void *) buf);
627 }
628
629
630 /* Add a register with the given fields to the end of ARCH's table.
631 Return a pointer to the newly added register. */
632 static struct m32c_reg *
633 add_reg (struct gdbarch *arch,
634 const char *name,
635 struct type *type,
636 int sim_num,
637 m32c_move_reg_t *read,
638 m32c_move_reg_t *write,
639 struct m32c_reg *rx,
640 struct m32c_reg *ry,
641 int n)
642 {
643 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
644 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
645
646 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
647
648 r->name = name;
649 r->type = type;
650 r->arch = arch;
651 r->num = tdep->num_regs;
652 r->sim_num = sim_num;
653 r->dwarf_num = -1;
654 r->general_p = 0;
655 r->dma_p = 0;
656 r->system_p = 0;
657 r->save_restore_p = 0;
658 r->read = read;
659 r->write = write;
660 r->rx = rx;
661 r->ry = ry;
662 r->n = n;
663
664 tdep->num_regs++;
665
666 return r;
667 }
668
669
670 /* Record NUM as REG's DWARF register number. */
671 static void
672 set_dwarf_regnum (struct m32c_reg *reg, int num)
673 {
674 gdb_assert (num < M32C_MAX_NUM_REGS);
675
676 /* Update the reg->DWARF mapping. Only count the first number
677 assigned to this register. */
678 if (reg->dwarf_num == -1)
679 reg->dwarf_num = num;
680
681 /* Update the DWARF->reg mapping. */
682 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
683 }
684
685
686 /* Mark REG as a general-purpose register, and return it. */
687 static struct m32c_reg *
688 mark_general (struct m32c_reg *reg)
689 {
690 reg->general_p = 1;
691 return reg;
692 }
693
694
695 /* Mark REG as a DMA register, and return it. */
696 static struct m32c_reg *
697 mark_dma (struct m32c_reg *reg)
698 {
699 reg->dma_p = 1;
700 return reg;
701 }
702
703
704 /* Mark REG as a SYSTEM register, and return it. */
705 static struct m32c_reg *
706 mark_system (struct m32c_reg *reg)
707 {
708 reg->system_p = 1;
709 return reg;
710 }
711
712
713 /* Mark REG as a save-restore register, and return it. */
714 static struct m32c_reg *
715 mark_save_restore (struct m32c_reg *reg)
716 {
717 reg->save_restore_p = 1;
718 return reg;
719 }
720
721
722 #define FLAGBIT_B 0x0010
723 #define FLAGBIT_U 0x0080
724
725 /* Handy macros for declaring registers. These all evaluate to
726 pointers to the register declared. Macros that define two
727 registers evaluate to a pointer to the first. */
728
729 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
730 #define R(name, type, sim_num) \
731 (add_reg (arch, (name), (type), (sim_num), \
732 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
733
734 /* The simulator register number for a raw register named NAME. */
735 #define SIM(name) (m32c_sim_reg_ ## name)
736
737 /* A raw unsigned 16-bit data register named NAME.
738 NAME should be an identifier, not a string. */
739 #define R16U(name) \
740 (R(#name, tdep->uint16, SIM (name)))
741
742 /* A raw data address register named NAME.
743 NAME should be an identifier, not a string. */
744 #define RA(name) \
745 (R(#name, tdep->data_addr_reg_type, SIM (name)))
746
747 /* A raw code address register named NAME. NAME should
748 be an identifier, not a string. */
749 #define RC(name) \
750 (R(#name, tdep->code_addr_reg_type, SIM (name)))
751
752 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
753 NAME should be an identifier, not a string. */
754 #define RP(name, type) \
755 (R(#name "0", (type), SIM (name ## 0)), \
756 R(#name "1", (type), SIM (name ## 1)) - 1)
757
758 /* A raw banked general-purpose data register named NAME.
759 NAME should be an identifier, not a string. */
760 #define RBD(name) \
761 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
762 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
763
764 /* A raw banked data address register named NAME.
765 NAME should be an identifier, not a string. */
766 #define RBA(name) \
767 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
768 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
769
770 /* A cooked register named NAME referring to a raw banked register
771 from the bank selected by the current value of FLG. RAW_PAIR
772 should be a pointer to the first register in the banked pair.
773 NAME must be an identifier, not a string. */
774 #define CB(name, raw_pair) \
775 (add_reg (arch, #name, (raw_pair)->type, 0, \
776 m32c_banked_read, m32c_banked_write, \
777 (raw_pair), (raw_pair + 1), FLAGBIT_B))
778
779 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
780 access the top and bottom halves of the register pointed to by
781 NAME. NAME should be an identifier. */
782 #define CHL(name, type) \
783 (add_reg (arch, #name "h", (type), 0, \
784 m32c_part_read, m32c_part_write, name, NULL, 1), \
785 add_reg (arch, #name "l", (type), 0, \
786 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
787
788 /* A register constructed by concatenating the two registers HIGH and
789 LOW, whose name is HIGHLOW and whose type is TYPE. */
790 #define CCAT(high, low, type) \
791 (add_reg (arch, #high #low, (type), 0, \
792 m32c_cat_read, m32c_cat_write, (high), (low), 0))
793
794 /* Abbreviations for marking register group membership. */
795 #define G(reg) (mark_general (reg))
796 #define S(reg) (mark_system (reg))
797 #define DMA(reg) (mark_dma (reg))
798
799
800 /* Construct the register set for ARCH. */
801 static void
802 make_regs (struct gdbarch *arch)
803 {
804 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
805 int mach = gdbarch_bfd_arch_info (arch)->mach;
806 int num_raw_regs;
807 int num_cooked_regs;
808
809 struct m32c_reg *r0;
810 struct m32c_reg *r1;
811 struct m32c_reg *r2;
812 struct m32c_reg *r3;
813 struct m32c_reg *a0;
814 struct m32c_reg *a1;
815 struct m32c_reg *fb;
816 struct m32c_reg *sb;
817 struct m32c_reg *sp;
818 struct m32c_reg *r0hl;
819 struct m32c_reg *r1hl;
820 struct m32c_reg *r2hl;
821 struct m32c_reg *r3hl;
822 struct m32c_reg *intbhl;
823 struct m32c_reg *r2r0;
824 struct m32c_reg *r3r1;
825 struct m32c_reg *r3r1r2r0;
826 struct m32c_reg *r3r2r1r0;
827 struct m32c_reg *a1a0;
828
829 struct m32c_reg *raw_r0_pair = RBD (r0);
830 struct m32c_reg *raw_r1_pair = RBD (r1);
831 struct m32c_reg *raw_r2_pair = RBD (r2);
832 struct m32c_reg *raw_r3_pair = RBD (r3);
833 struct m32c_reg *raw_a0_pair = RBA (a0);
834 struct m32c_reg *raw_a1_pair = RBA (a1);
835 struct m32c_reg *raw_fb_pair = RBA (fb);
836
837 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
838 We always declare both raw registers, and deal with the distinction
839 in the pseudoregister. */
840 struct m32c_reg *raw_sb_pair = RBA (sb);
841
842 struct m32c_reg *usp = S (RA (usp));
843 struct m32c_reg *isp = S (RA (isp));
844 struct m32c_reg *intb = S (RC (intb));
845 struct m32c_reg *pc = G (RC (pc));
846 struct m32c_reg *flg = G (R16U (flg));
847
848 if (mach == bfd_mach_m32c)
849 {
850 struct m32c_reg *svf = S (R16U (svf));
851 struct m32c_reg *svp = S (RC (svp));
852 struct m32c_reg *vct = S (RC (vct));
853
854 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
855 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
856 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
857 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
858 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
859 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
860 }
861
862 num_raw_regs = tdep->num_regs;
863
864 r0 = G (CB (r0, raw_r0_pair));
865 r1 = G (CB (r1, raw_r1_pair));
866 r2 = G (CB (r2, raw_r2_pair));
867 r3 = G (CB (r3, raw_r3_pair));
868 a0 = G (CB (a0, raw_a0_pair));
869 a1 = G (CB (a1, raw_a1_pair));
870 fb = G (CB (fb, raw_fb_pair));
871
872 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
873 Specify custom read/write functions that do the right thing. */
874 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
875 m32c_sb_read, m32c_sb_write,
876 raw_sb_pair, raw_sb_pair + 1, 0));
877
878 /* The current sp is either usp or isp, depending on the value of
879 the FLG register's U bit. */
880 sp = G (add_reg (arch, "sp", usp->type, 0,
881 m32c_banked_read, m32c_banked_write,
882 isp, usp, FLAGBIT_U));
883
884 r0hl = CHL (r0, tdep->int8);
885 r1hl = CHL (r1, tdep->int8);
886 r2hl = CHL (r2, tdep->int8);
887 r3hl = CHL (r3, tdep->int8);
888 intbhl = CHL (intb, tdep->int16);
889
890 r2r0 = CCAT (r2, r0, tdep->int32);
891 r3r1 = CCAT (r3, r1, tdep->int32);
892 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
893
894 r3r2r1r0
895 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
896 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
897
898 if (mach == bfd_mach_m16c)
899 a1a0 = CCAT (a1, a0, tdep->int32);
900 else
901 a1a0 = NULL;
902
903 num_cooked_regs = tdep->num_regs - num_raw_regs;
904
905 tdep->pc = pc;
906 tdep->flg = flg;
907 tdep->r0 = r0;
908 tdep->r1 = r1;
909 tdep->r2 = r2;
910 tdep->r3 = r3;
911 tdep->r2r0 = r2r0;
912 tdep->r3r2r1r0 = r3r2r1r0;
913 tdep->r3r1r2r0 = r3r1r2r0;
914 tdep->a0 = a0;
915 tdep->a1 = a1;
916 tdep->sb = sb;
917 tdep->fb = fb;
918 tdep->sp = sp;
919
920 /* Set up the DWARF register table. */
921 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
922 set_dwarf_regnum (r0hl + 1, 0x01);
923 set_dwarf_regnum (r0hl + 0, 0x02);
924 set_dwarf_regnum (r1hl + 1, 0x03);
925 set_dwarf_regnum (r1hl + 0, 0x04);
926 set_dwarf_regnum (r0, 0x05);
927 set_dwarf_regnum (r1, 0x06);
928 set_dwarf_regnum (r2, 0x07);
929 set_dwarf_regnum (r3, 0x08);
930 set_dwarf_regnum (a0, 0x09);
931 set_dwarf_regnum (a1, 0x0a);
932 set_dwarf_regnum (fb, 0x0b);
933 set_dwarf_regnum (sp, 0x0c);
934 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
935 set_dwarf_regnum (sb, 0x13);
936 set_dwarf_regnum (r2r0, 0x15);
937 set_dwarf_regnum (r3r1, 0x16);
938 if (a1a0)
939 set_dwarf_regnum (a1a0, 0x17);
940
941 /* Enumerate the save/restore register group.
942
943 The regcache_save and regcache_restore functions apply their read
944 function to each register in this group.
945
946 Since frame_pop supplies frame_unwind_register as its read
947 function, the registers meaningful to the Dwarf unwinder need to
948 be in this group.
949
950 On the other hand, when we make inferior calls, save_inferior_status
951 and restore_inferior_status use them to preserve the current register
952 values across the inferior call. For this, you'd kind of like to
953 preserve all the raw registers, to protect the interrupted code from
954 any sort of bank switching the callee might have done. But we handle
955 those cases so badly anyway --- for example, it matters whether we
956 restore FLG before or after we restore the general-purpose registers,
957 but there's no way to express that --- that it isn't worth worrying
958 about.
959
960 We omit control registers like inthl: if you call a function that
961 changes those, it's probably because you wanted that change to be
962 visible to the interrupted code. */
963 mark_save_restore (r0);
964 mark_save_restore (r1);
965 mark_save_restore (r2);
966 mark_save_restore (r3);
967 mark_save_restore (a0);
968 mark_save_restore (a1);
969 mark_save_restore (sb);
970 mark_save_restore (fb);
971 mark_save_restore (sp);
972 mark_save_restore (pc);
973 mark_save_restore (flg);
974
975 set_gdbarch_num_regs (arch, num_raw_regs);
976 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
977 set_gdbarch_pc_regnum (arch, pc->num);
978 set_gdbarch_sp_regnum (arch, sp->num);
979 set_gdbarch_register_name (arch, m32c_register_name);
980 set_gdbarch_register_type (arch, m32c_register_type);
981 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
982 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
983 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
984 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
985 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
986 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
987
988 reggroup_add (arch, general_reggroup);
989 reggroup_add (arch, all_reggroup);
990 reggroup_add (arch, save_reggroup);
991 reggroup_add (arch, restore_reggroup);
992 reggroup_add (arch, system_reggroup);
993 reggroup_add (arch, m32c_dma_reggroup);
994 }
995
996
997 \f
998 /* Breakpoints. */
999
1000 static const unsigned char *
1001 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
1002 {
1003 static unsigned char break_insn[] = { 0x00 }; /* brk */
1004
1005 *len = sizeof (break_insn);
1006 return break_insn;
1007 }
1008
1009
1010 \f
1011 /* Prologue analysis. */
1012
1013 enum m32c_prologue_kind
1014 {
1015 /* This function uses a frame pointer. */
1016 prologue_with_frame_ptr,
1017
1018 /* This function has no frame pointer. */
1019 prologue_sans_frame_ptr,
1020
1021 /* This function sets up the stack, so its frame is the first
1022 frame on the stack. */
1023 prologue_first_frame
1024 };
1025
1026 struct m32c_prologue
1027 {
1028 /* For consistency with the DWARF 2 .debug_frame info generated by
1029 GCC, a frame's CFA is the address immediately after the saved
1030 return address. */
1031
1032 /* The architecture for which we generated this prologue info. */
1033 struct gdbarch *arch;
1034
1035 enum m32c_prologue_kind kind;
1036
1037 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1038 CFA to where the frame pointer points. This is always zero or
1039 negative. */
1040 LONGEST frame_ptr_offset;
1041
1042 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1043 the stack pointer --- always zero or negative.
1044
1045 Calling this a "size" is a bit misleading, but given that the
1046 stack grows downwards, using offsets for everything keeps one
1047 from going completely sign-crazy: you never change anything's
1048 sign for an ADD instruction; always change the second operand's
1049 sign for a SUB instruction; and everything takes care of
1050 itself.
1051
1052 Functions that use alloca don't have a constant frame size. But
1053 they always have frame pointers, so we must use that to find the
1054 CFA (and perhaps to unwind the stack pointer). */
1055 LONGEST frame_size;
1056
1057 /* The address of the first instruction at which the frame has been
1058 set up and the arguments are where the debug info says they are
1059 --- as best as we can tell. */
1060 CORE_ADDR prologue_end;
1061
1062 /* reg_offset[R] is the offset from the CFA at which register R is
1063 saved, or 1 if register R has not been saved. (Real values are
1064 always zero or negative.) */
1065 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1066 };
1067
1068
1069 /* The longest I've seen, anyway. */
1070 #define M32C_MAX_INSN_LEN (9)
1071
1072 /* Processor state, for the prologue analyzer. */
1073 struct m32c_pv_state
1074 {
1075 struct gdbarch *arch;
1076 pv_t r0, r1, r2, r3;
1077 pv_t a0, a1;
1078 pv_t sb, fb, sp;
1079 pv_t pc;
1080 struct pv_area *stack;
1081
1082 /* Bytes from the current PC, the address they were read from,
1083 and the address of the next unconsumed byte. */
1084 gdb_byte insn[M32C_MAX_INSN_LEN];
1085 CORE_ADDR scan_pc, next_addr;
1086 };
1087
1088
1089 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1090 all went well, or non-zero if simulating the action would trash our
1091 state. */
1092 static int
1093 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1094 {
1095 if (pv_area_store_would_trash (state->stack, state->sp))
1096 return 1;
1097
1098 state->sp = pv_add_constant (state->sp, -size);
1099 pv_area_store (state->stack, state->sp, size, value);
1100
1101 return 0;
1102 }
1103
1104
1105 enum srcdest_kind
1106 {
1107 srcdest_reg,
1108 srcdest_partial_reg,
1109 srcdest_mem
1110 };
1111
1112 /* A source or destination location for an m16c or m32c
1113 instruction. */
1114 struct srcdest
1115 {
1116 /* If srcdest_reg, the location is a register pointed to by REG.
1117 If srcdest_partial_reg, the location is part of a register pointed
1118 to by REG. We don't try to handle this too well.
1119 If srcdest_mem, the location is memory whose address is ADDR. */
1120 enum srcdest_kind kind;
1121 pv_t *reg, addr;
1122 };
1123
1124
1125 /* Return the SIZE-byte value at LOC in STATE. */
1126 static pv_t
1127 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1128 {
1129 if (loc.kind == srcdest_mem)
1130 return pv_area_fetch (state->stack, loc.addr, size);
1131 else if (loc.kind == srcdest_partial_reg)
1132 return pv_unknown ();
1133 else
1134 return *loc.reg;
1135 }
1136
1137
1138 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1139 all went well, or non-zero if simulating the store would trash our
1140 state. */
1141 static int
1142 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1143 pv_t value, int size)
1144 {
1145 if (loc.kind == srcdest_mem)
1146 {
1147 if (pv_area_store_would_trash (state->stack, loc.addr))
1148 return 1;
1149 pv_area_store (state->stack, loc.addr, size, value);
1150 }
1151 else if (loc.kind == srcdest_partial_reg)
1152 *loc.reg = pv_unknown ();
1153 else
1154 *loc.reg = value;
1155
1156 return 0;
1157 }
1158
1159
1160 static int
1161 m32c_sign_ext (int v, int bits)
1162 {
1163 int mask = 1 << (bits - 1);
1164 return (v ^ mask) - mask;
1165 }
1166
1167 static unsigned int
1168 m32c_next_byte (struct m32c_pv_state *st)
1169 {
1170 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1171 return st->insn[st->next_addr++ - st->scan_pc];
1172 }
1173
1174 static int
1175 m32c_udisp8 (struct m32c_pv_state *st)
1176 {
1177 return m32c_next_byte (st);
1178 }
1179
1180
1181 static int
1182 m32c_sdisp8 (struct m32c_pv_state *st)
1183 {
1184 return m32c_sign_ext (m32c_next_byte (st), 8);
1185 }
1186
1187
1188 static int
1189 m32c_udisp16 (struct m32c_pv_state *st)
1190 {
1191 int low = m32c_next_byte (st);
1192 int high = m32c_next_byte (st);
1193
1194 return low + (high << 8);
1195 }
1196
1197
1198 static int
1199 m32c_sdisp16 (struct m32c_pv_state *st)
1200 {
1201 int low = m32c_next_byte (st);
1202 int high = m32c_next_byte (st);
1203
1204 return m32c_sign_ext (low + (high << 8), 16);
1205 }
1206
1207
1208 static int
1209 m32c_udisp24 (struct m32c_pv_state *st)
1210 {
1211 int low = m32c_next_byte (st);
1212 int mid = m32c_next_byte (st);
1213 int high = m32c_next_byte (st);
1214
1215 return low + (mid << 8) + (high << 16);
1216 }
1217
1218
1219 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1220 static int
1221 m32c_get_src23 (unsigned char *i)
1222 {
1223 return (((i[0] & 0x70) >> 2)
1224 | ((i[1] & 0x30) >> 4));
1225 }
1226
1227
1228 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1229 static int
1230 m32c_get_dest23 (unsigned char *i)
1231 {
1232 return (((i[0] & 0x0e) << 1)
1233 | ((i[1] & 0xc0) >> 6));
1234 }
1235
1236
1237 static struct srcdest
1238 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1239 int code, int size)
1240 {
1241 struct srcdest sd;
1242
1243 if (code < 6)
1244 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1245 else
1246 sd.kind = srcdest_mem;
1247
1248 sd.addr = pv_unknown ();
1249 sd.reg = 0;
1250
1251 switch (code)
1252 {
1253 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1254 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1255 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1256 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1257
1258 case 0x4: sd.reg = &st->a0; break;
1259 case 0x5: sd.reg = &st->a1; break;
1260
1261 case 0x6: sd.addr = st->a0; break;
1262 case 0x7: sd.addr = st->a1; break;
1263
1264 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1265 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1266 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1267 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1268
1269 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1270 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1271 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1272 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1273
1274 default:
1275 gdb_assert_not_reached ("unexpected srcdest4");
1276 }
1277
1278 return sd;
1279 }
1280
1281
1282 static struct srcdest
1283 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1284 {
1285 struct srcdest sd;
1286
1287 sd.addr = pv_unknown ();
1288 sd.reg = 0;
1289
1290 switch (code)
1291 {
1292 case 0x12:
1293 case 0x13:
1294 case 0x10:
1295 case 0x11:
1296 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1297 break;
1298
1299 case 0x02:
1300 case 0x03:
1301 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1302 break;
1303
1304 default:
1305 sd.kind = srcdest_mem;
1306 break;
1307
1308 }
1309
1310 switch (code)
1311 {
1312 case 0x12: sd.reg = &st->r0; break;
1313 case 0x13: sd.reg = &st->r1; break;
1314 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1315 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1316 case 0x02: sd.reg = &st->a0; break;
1317 case 0x03: sd.reg = &st->a1; break;
1318
1319 case 0x00: sd.addr = st->a0; break;
1320 case 0x01: sd.addr = st->a1; break;
1321 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1322 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1323 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1324 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1325 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1326 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1327 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1328 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1329 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1330 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1331 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1332 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1333 default:
1334 gdb_assert_not_reached ("unexpected sd23");
1335 }
1336
1337 if (ind)
1338 {
1339 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1340 sd.kind = srcdest_mem;
1341 }
1342
1343 return sd;
1344 }
1345
1346
1347 /* The r16c and r32c machines have instructions with similar
1348 semantics, but completely different machine language encodings. So
1349 we break out the semantics into their own functions, and leave
1350 machine-specific decoding in m32c_analyze_prologue.
1351
1352 The following functions all expect their arguments already decoded,
1353 and they all return zero if analysis should continue past this
1354 instruction, or non-zero if analysis should stop. */
1355
1356
1357 /* Simulate an 'enter SIZE' instruction in STATE. */
1358 static int
1359 m32c_pv_enter (struct m32c_pv_state *state, int size)
1360 {
1361 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1362
1363 /* If simulating this store would require us to forget
1364 everything we know about the stack frame in the name of
1365 accuracy, it would be better to just quit now. */
1366 if (pv_area_store_would_trash (state->stack, state->sp))
1367 return 1;
1368
1369 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1370 return 1;
1371 state->fb = state->sp;
1372 state->sp = pv_add_constant (state->sp, -size);
1373
1374 return 0;
1375 }
1376
1377
1378 static int
1379 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1380 int bit, int src, int size)
1381 {
1382 if (bit & src)
1383 {
1384 if (m32c_pv_push (state, reg, size))
1385 return 1;
1386 }
1387
1388 return 0;
1389 }
1390
1391
1392 /* Simulate a 'pushm SRC' instruction in STATE. */
1393 static int
1394 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1395 {
1396 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1397
1398 /* The bits in SRC indicating which registers to save are:
1399 r0 r1 r2 r3 a0 a1 sb fb */
1400 return
1401 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1402 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1403 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1404 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1405 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1406 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1407 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1408 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1409 }
1410
1411 /* Return non-zero if VALUE is the first incoming argument register. */
1412
1413 static int
1414 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1415 {
1416 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1417 return (value.kind == pvk_register
1418 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1419 ? (value.reg == tdep->r1->num)
1420 : (value.reg == tdep->r0->num))
1421 && value.k == 0);
1422 }
1423
1424 /* Return non-zero if VALUE is an incoming argument register. */
1425
1426 static int
1427 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1428 {
1429 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1430 return (value.kind == pvk_register
1431 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1432 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1433 : (value.reg == tdep->r0->num))
1434 && value.k == 0);
1435 }
1436
1437 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1438 argument register to its stack slot in STATE. Such instructions
1439 should be included in the prologue, if possible.
1440
1441 The store is a spill if:
1442 - the value being stored is the original value of an argument register;
1443 - the value has not already been stored somewhere in STACK; and
1444 - LOC is a stack slot (e.g., a memory location whose address is
1445 relative to the original value of the SP). */
1446
1447 static int
1448 m32c_is_arg_spill (struct m32c_pv_state *st,
1449 struct srcdest loc,
1450 pv_t value)
1451 {
1452 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1453
1454 return (m32c_is_arg_reg (st, value)
1455 && loc.kind == srcdest_mem
1456 && pv_is_register (loc.addr, tdep->sp->num)
1457 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1458 }
1459
1460 /* Return non-zero if a store of VALUE to LOC is probably
1461 copying the struct return address into an address register
1462 for immediate use. This is basically a "spill" into the
1463 address register, instead of onto the stack.
1464
1465 The prerequisites are:
1466 - value being stored is original value of the FIRST arg register;
1467 - value has not already been stored on stack; and
1468 - LOC is an address register (a0 or a1). */
1469
1470 static int
1471 m32c_is_struct_return (struct m32c_pv_state *st,
1472 struct srcdest loc,
1473 pv_t value)
1474 {
1475 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1476
1477 return (m32c_is_1st_arg_reg (st, value)
1478 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1479 && loc.kind == srcdest_reg
1480 && (pv_is_register (*loc.reg, tdep->a0->num)
1481 || pv_is_register (*loc.reg, tdep->a1->num)));
1482 }
1483
1484 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1485 was a register save:
1486 - all the named registers should have their original values, and
1487 - the stack pointer should be at a constant offset from the
1488 original stack pointer. */
1489 static int
1490 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1491 {
1492 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1493 /* The bits in SRC indicating which registers to save are:
1494 r0 r1 r2 r3 a0 a1 sb fb */
1495 return
1496 (pv_is_register (st->sp, tdep->sp->num)
1497 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1498 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1499 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1500 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1501 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1502 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1503 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1504 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1505 }
1506
1507
1508 /* Function for finding saved registers in a 'struct pv_area'; we pass
1509 this to pv_area_scan.
1510
1511 If VALUE is a saved register, ADDR says it was saved at a constant
1512 offset from the frame base, and SIZE indicates that the whole
1513 register was saved, record its offset in RESULT_UNTYPED. */
1514 static void
1515 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1516 {
1517 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1518 struct gdbarch *arch = prologue->arch;
1519 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1520
1521 /* Is this the unchanged value of some register being saved on the
1522 stack? */
1523 if (value.kind == pvk_register
1524 && value.k == 0
1525 && pv_is_register (addr, tdep->sp->num))
1526 {
1527 /* Some registers require special handling: they're saved as a
1528 larger value than the register itself. */
1529 CORE_ADDR saved_size = register_size (arch, value.reg);
1530
1531 if (value.reg == tdep->pc->num)
1532 saved_size = tdep->ret_addr_bytes;
1533 else if (register_type (arch, value.reg)
1534 == tdep->data_addr_reg_type)
1535 saved_size = tdep->push_addr_bytes;
1536
1537 if (size == saved_size)
1538 {
1539 /* Find which end of the saved value corresponds to our
1540 register. */
1541 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1542 prologue->reg_offset[value.reg]
1543 = (addr.k + saved_size - register_size (arch, value.reg));
1544 else
1545 prologue->reg_offset[value.reg] = addr.k;
1546 }
1547 }
1548 }
1549
1550
1551 /* Analyze the function prologue for ARCH at START, going no further
1552 than LIMIT, and place a description of what we found in
1553 PROLOGUE. */
1554 static void
1555 m32c_analyze_prologue (struct gdbarch *arch,
1556 CORE_ADDR start, CORE_ADDR limit,
1557 struct m32c_prologue *prologue)
1558 {
1559 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1560 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1561 CORE_ADDR after_last_frame_related_insn;
1562 struct cleanup *back_to;
1563 struct m32c_pv_state st;
1564
1565 st.arch = arch;
1566 st.r0 = pv_register (tdep->r0->num, 0);
1567 st.r1 = pv_register (tdep->r1->num, 0);
1568 st.r2 = pv_register (tdep->r2->num, 0);
1569 st.r3 = pv_register (tdep->r3->num, 0);
1570 st.a0 = pv_register (tdep->a0->num, 0);
1571 st.a1 = pv_register (tdep->a1->num, 0);
1572 st.sb = pv_register (tdep->sb->num, 0);
1573 st.fb = pv_register (tdep->fb->num, 0);
1574 st.sp = pv_register (tdep->sp->num, 0);
1575 st.pc = pv_register (tdep->pc->num, 0);
1576 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1577 back_to = make_cleanup_free_pv_area (st.stack);
1578
1579 /* Record that the call instruction has saved the return address on
1580 the stack. */
1581 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1582
1583 memset (prologue, 0, sizeof (*prologue));
1584 prologue->arch = arch;
1585 {
1586 int i;
1587 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1588 prologue->reg_offset[i] = 1;
1589 }
1590
1591 st.scan_pc = after_last_frame_related_insn = start;
1592
1593 while (st.scan_pc < limit)
1594 {
1595 pv_t pre_insn_fb = st.fb;
1596 pv_t pre_insn_sp = st.sp;
1597
1598 /* In theory we could get in trouble by trying to read ahead
1599 here, when we only know we're expecting one byte. In
1600 practice I doubt anyone will care, and it makes the rest of
1601 the code easier. */
1602 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1603 /* If we can't fetch the instruction from memory, stop here
1604 and hope for the best. */
1605 break;
1606 st.next_addr = st.scan_pc;
1607
1608 /* The assembly instructions are written as they appear in the
1609 section of the processor manuals that describe the
1610 instruction encodings.
1611
1612 When a single assembly language instruction has several
1613 different machine-language encodings, the manual
1614 distinguishes them by a number in parens, before the
1615 mnemonic. Those numbers are included, as well.
1616
1617 The srcdest decoding instructions have the same names as the
1618 analogous functions in the simulator. */
1619 if (mach == bfd_mach_m16c)
1620 {
1621 /* (1) ENTER #imm8 */
1622 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1623 {
1624 if (m32c_pv_enter (&st, st.insn[2]))
1625 break;
1626 st.next_addr += 3;
1627 }
1628 /* (1) PUSHM src */
1629 else if (st.insn[0] == 0xec)
1630 {
1631 int src = st.insn[1];
1632 if (m32c_pv_pushm (&st, src))
1633 break;
1634 st.next_addr += 2;
1635
1636 if (m32c_pushm_is_reg_save (&st, src))
1637 after_last_frame_related_insn = st.next_addr;
1638 }
1639
1640 /* (6) MOV.size:G src, dest */
1641 else if ((st.insn[0] & 0xfe) == 0x72)
1642 {
1643 int size = (st.insn[0] & 0x01) ? 2 : 1;
1644 struct srcdest src;
1645 struct srcdest dest;
1646 pv_t src_value;
1647 st.next_addr += 2;
1648
1649 src
1650 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1651 dest
1652 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1653 src_value = m32c_srcdest_fetch (&st, src, size);
1654
1655 if (m32c_is_arg_spill (&st, dest, src_value))
1656 after_last_frame_related_insn = st.next_addr;
1657 else if (m32c_is_struct_return (&st, dest, src_value))
1658 after_last_frame_related_insn = st.next_addr;
1659
1660 if (m32c_srcdest_store (&st, dest, src_value, size))
1661 break;
1662 }
1663
1664 /* (1) LDC #IMM16, sp */
1665 else if (st.insn[0] == 0xeb
1666 && st.insn[1] == 0x50)
1667 {
1668 st.next_addr += 2;
1669 st.sp = pv_constant (m32c_udisp16 (&st));
1670 }
1671
1672 else
1673 /* We've hit some instruction we don't know how to simulate.
1674 Strictly speaking, we should set every value we're
1675 tracking to "unknown". But we'll be optimistic, assume
1676 that we have enough information already, and stop
1677 analysis here. */
1678 break;
1679 }
1680 else
1681 {
1682 int src_indirect = 0;
1683 int dest_indirect = 0;
1684 int i = 0;
1685
1686 gdb_assert (mach == bfd_mach_m32c);
1687
1688 /* Check for prefix bytes indicating indirect addressing. */
1689 if (st.insn[0] == 0x41)
1690 {
1691 src_indirect = 1;
1692 i++;
1693 }
1694 else if (st.insn[0] == 0x09)
1695 {
1696 dest_indirect = 1;
1697 i++;
1698 }
1699 else if (st.insn[0] == 0x49)
1700 {
1701 src_indirect = dest_indirect = 1;
1702 i++;
1703 }
1704
1705 /* (1) ENTER #imm8 */
1706 if (st.insn[i] == 0xec)
1707 {
1708 if (m32c_pv_enter (&st, st.insn[i + 1]))
1709 break;
1710 st.next_addr += 2;
1711 }
1712
1713 /* (1) PUSHM src */
1714 else if (st.insn[i] == 0x8f)
1715 {
1716 int src = st.insn[i + 1];
1717 if (m32c_pv_pushm (&st, src))
1718 break;
1719 st.next_addr += 2;
1720
1721 if (m32c_pushm_is_reg_save (&st, src))
1722 after_last_frame_related_insn = st.next_addr;
1723 }
1724
1725 /* (7) MOV.size:G src, dest */
1726 else if ((st.insn[i] & 0x80) == 0x80
1727 && (st.insn[i + 1] & 0x0f) == 0x0b
1728 && m32c_get_src23 (&st.insn[i]) < 20
1729 && m32c_get_dest23 (&st.insn[i]) < 20)
1730 {
1731 struct srcdest src;
1732 struct srcdest dest;
1733 pv_t src_value;
1734 int bw = st.insn[i] & 0x01;
1735 int size = bw ? 2 : 1;
1736 st.next_addr += 2;
1737
1738 src
1739 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1740 size, src_indirect);
1741 dest
1742 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1743 size, dest_indirect);
1744 src_value = m32c_srcdest_fetch (&st, src, size);
1745
1746 if (m32c_is_arg_spill (&st, dest, src_value))
1747 after_last_frame_related_insn = st.next_addr;
1748
1749 if (m32c_srcdest_store (&st, dest, src_value, size))
1750 break;
1751 }
1752 /* (2) LDC #IMM24, sp */
1753 else if (st.insn[i] == 0xd5
1754 && st.insn[i + 1] == 0x29)
1755 {
1756 st.next_addr += 2;
1757 st.sp = pv_constant (m32c_udisp24 (&st));
1758 }
1759 else
1760 /* We've hit some instruction we don't know how to simulate.
1761 Strictly speaking, we should set every value we're
1762 tracking to "unknown". But we'll be optimistic, assume
1763 that we have enough information already, and stop
1764 analysis here. */
1765 break;
1766 }
1767
1768 /* If this instruction changed the FB or decreased the SP (i.e.,
1769 allocated more stack space), then this may be a good place to
1770 declare the prologue finished. However, there are some
1771 exceptions:
1772
1773 - If the instruction just changed the FB back to its original
1774 value, then that's probably a restore instruction. The
1775 prologue should definitely end before that.
1776
1777 - If the instruction increased the value of the SP (that is,
1778 shrunk the frame), then it's probably part of a frame
1779 teardown sequence, and the prologue should end before
1780 that. */
1781
1782 if (! pv_is_identical (st.fb, pre_insn_fb))
1783 {
1784 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1785 after_last_frame_related_insn = st.next_addr;
1786 }
1787 else if (! pv_is_identical (st.sp, pre_insn_sp))
1788 {
1789 /* The comparison of the constants looks odd, there, because
1790 .k is unsigned. All it really means is that the SP is
1791 lower than it was before the instruction. */
1792 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1793 && pv_is_register (st.sp, tdep->sp->num)
1794 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1795 after_last_frame_related_insn = st.next_addr;
1796 }
1797
1798 st.scan_pc = st.next_addr;
1799 }
1800
1801 /* Did we load a constant value into the stack pointer? */
1802 if (pv_is_constant (st.sp))
1803 prologue->kind = prologue_first_frame;
1804
1805 /* Alternatively, did we initialize the frame pointer? Remember
1806 that the CFA is the address after the return address. */
1807 if (pv_is_register (st.fb, tdep->sp->num))
1808 {
1809 prologue->kind = prologue_with_frame_ptr;
1810 prologue->frame_ptr_offset = st.fb.k;
1811 }
1812
1813 /* Is the frame size a known constant? Remember that frame_size is
1814 actually the offset from the CFA to the SP (i.e., a negative
1815 value). */
1816 else if (pv_is_register (st.sp, tdep->sp->num))
1817 {
1818 prologue->kind = prologue_sans_frame_ptr;
1819 prologue->frame_size = st.sp.k;
1820 }
1821
1822 /* We haven't been able to make sense of this function's frame. Treat
1823 it as the first frame. */
1824 else
1825 prologue->kind = prologue_first_frame;
1826
1827 /* Record where all the registers were saved. */
1828 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1829
1830 prologue->prologue_end = after_last_frame_related_insn;
1831
1832 do_cleanups (back_to);
1833 }
1834
1835
1836 static CORE_ADDR
1837 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1838 {
1839 const char *name;
1840 CORE_ADDR func_addr, func_end, sal_end;
1841 struct m32c_prologue p;
1842
1843 /* Try to find the extent of the function that contains IP. */
1844 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1845 return ip;
1846
1847 /* Find end by prologue analysis. */
1848 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1849 /* Find end by line info. */
1850 sal_end = skip_prologue_using_sal (gdbarch, ip);
1851 /* Return whichever is lower. */
1852 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1853 return sal_end;
1854 else
1855 return p.prologue_end;
1856 }
1857
1858
1859 \f
1860 /* Stack unwinding. */
1861
1862 static struct m32c_prologue *
1863 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1864 void **this_prologue_cache)
1865 {
1866 if (! *this_prologue_cache)
1867 {
1868 CORE_ADDR func_start = get_frame_func (this_frame);
1869 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1870
1871 /* If we couldn't find any function containing the PC, then
1872 just initialize the prologue cache, but don't do anything. */
1873 if (! func_start)
1874 stop_addr = func_start;
1875
1876 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1877 m32c_analyze_prologue (get_frame_arch (this_frame),
1878 func_start, stop_addr, *this_prologue_cache);
1879 }
1880
1881 return *this_prologue_cache;
1882 }
1883
1884
1885 static CORE_ADDR
1886 m32c_frame_base (struct frame_info *this_frame,
1887 void **this_prologue_cache)
1888 {
1889 struct m32c_prologue *p
1890 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1891 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1892
1893 /* In functions that use alloca, the distance between the stack
1894 pointer and the frame base varies dynamically, so we can't use
1895 the SP plus static information like prologue analysis to find the
1896 frame base. However, such functions must have a frame pointer,
1897 to be able to restore the SP on exit. So whenever we do have a
1898 frame pointer, use that to find the base. */
1899 switch (p->kind)
1900 {
1901 case prologue_with_frame_ptr:
1902 {
1903 CORE_ADDR fb
1904 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1905 return fb - p->frame_ptr_offset;
1906 }
1907
1908 case prologue_sans_frame_ptr:
1909 {
1910 CORE_ADDR sp
1911 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1912 return sp - p->frame_size;
1913 }
1914
1915 case prologue_first_frame:
1916 return 0;
1917
1918 default:
1919 gdb_assert_not_reached ("unexpected prologue kind");
1920 }
1921 }
1922
1923
1924 static void
1925 m32c_this_id (struct frame_info *this_frame,
1926 void **this_prologue_cache,
1927 struct frame_id *this_id)
1928 {
1929 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1930
1931 if (base)
1932 *this_id = frame_id_build (base, get_frame_func (this_frame));
1933 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1934 }
1935
1936
1937 static struct value *
1938 m32c_prev_register (struct frame_info *this_frame,
1939 void **this_prologue_cache, int regnum)
1940 {
1941 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1942 struct m32c_prologue *p
1943 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1944 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1945 int reg_size = register_size (get_frame_arch (this_frame), regnum);
1946
1947 if (regnum == tdep->sp->num)
1948 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1949
1950 /* If prologue analysis says we saved this register somewhere,
1951 return a description of the stack slot holding it. */
1952 if (p->reg_offset[regnum] != 1)
1953 return frame_unwind_got_memory (this_frame, regnum,
1954 frame_base + p->reg_offset[regnum]);
1955
1956 /* Otherwise, presume we haven't changed the value of this
1957 register, and get it from the next frame. */
1958 return frame_unwind_got_register (this_frame, regnum, regnum);
1959 }
1960
1961
1962 static const struct frame_unwind m32c_unwind = {
1963 NORMAL_FRAME,
1964 default_frame_unwind_stop_reason,
1965 m32c_this_id,
1966 m32c_prev_register,
1967 NULL,
1968 default_frame_sniffer
1969 };
1970
1971
1972 static CORE_ADDR
1973 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1974 {
1975 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1976 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1977 }
1978
1979
1980 static CORE_ADDR
1981 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1982 {
1983 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1984 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1985 }
1986
1987 \f
1988 /* Inferior calls. */
1989
1990 /* The calling conventions, according to GCC:
1991
1992 r8c, m16c
1993 ---------
1994 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1995 HImode), (2) is named, and (3) is an integer or pointer type (no
1996 structs, floats, etc). Otherwise, it's passed on the stack.
1997
1998 Second arg may be passed in r2, same restrictions (but not QImode),
1999 even if the first arg is passed on the stack.
2000
2001 Third and further args are passed on the stack. No padding is
2002 used, stack "alignment" is 8 bits.
2003
2004 m32cm, m32c
2005 -----------
2006
2007 First arg may be passed in r0l or r0, same restrictions as above.
2008
2009 Second and further args are passed on the stack. Padding is used
2010 after QImode parameters (i.e. lower-addressed byte is the value,
2011 higher-addressed byte is the padding), stack "alignment" is 16
2012 bits. */
2013
2014
2015 /* Return true if TYPE is a type that can be passed in registers. (We
2016 ignore the size, and pay attention only to the type code;
2017 acceptable sizes depends on which register is being considered to
2018 hold it.) */
2019 static int
2020 m32c_reg_arg_type (struct type *type)
2021 {
2022 enum type_code code = TYPE_CODE (type);
2023
2024 return (code == TYPE_CODE_INT
2025 || code == TYPE_CODE_ENUM
2026 || code == TYPE_CODE_PTR
2027 || code == TYPE_CODE_REF
2028 || code == TYPE_CODE_BOOL
2029 || code == TYPE_CODE_CHAR);
2030 }
2031
2032
2033 static CORE_ADDR
2034 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2035 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2036 struct value **args, CORE_ADDR sp, int struct_return,
2037 CORE_ADDR struct_addr)
2038 {
2039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2040 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2041 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2042 CORE_ADDR cfa;
2043 int i;
2044
2045 /* The number of arguments given in this function's prototype, or
2046 zero if it has a non-prototyped function type. The m32c ABI
2047 passes arguments mentioned in the prototype differently from
2048 those in the ellipsis of a varargs function, or from those passed
2049 to a non-prototyped function. */
2050 int num_prototyped_args = 0;
2051
2052 {
2053 struct type *func_type = value_type (function);
2054
2055 /* Dereference function pointer types. */
2056 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2057 func_type = TYPE_TARGET_TYPE (func_type);
2058
2059 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2060 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2061
2062 #if 0
2063 /* The ABI description in gcc/config/m32c/m32c.abi says that
2064 we need to handle prototyped and non-prototyped functions
2065 separately, but the code in GCC doesn't actually do so. */
2066 if (TYPE_PROTOTYPED (func_type))
2067 #endif
2068 num_prototyped_args = TYPE_NFIELDS (func_type);
2069 }
2070
2071 /* First, if the function returns an aggregate by value, push a
2072 pointer to a buffer for it. This doesn't affect the way
2073 subsequent arguments are allocated to registers. */
2074 if (struct_return)
2075 {
2076 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2077 sp -= ptr_len;
2078 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2079 }
2080
2081 /* Push the arguments. */
2082 for (i = nargs - 1; i >= 0; i--)
2083 {
2084 struct value *arg = args[i];
2085 const gdb_byte *arg_bits = value_contents (arg);
2086 struct type *arg_type = value_type (arg);
2087 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2088
2089 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2090 if (i == 0
2091 && arg_size <= 2
2092 && i < num_prototyped_args
2093 && m32c_reg_arg_type (arg_type))
2094 {
2095 /* Extract and re-store as an integer as a terse way to make
2096 sure it ends up in the least significant end of r1. (GDB
2097 should avoid assuming endianness, even on uni-endian
2098 processors.) */
2099 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2100 byte_order);
2101 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2102 regcache_cooked_write_unsigned (regcache, reg->num, u);
2103 }
2104
2105 /* Can it go in r2? */
2106 else if (mach == bfd_mach_m16c
2107 && i == 1
2108 && arg_size == 2
2109 && i < num_prototyped_args
2110 && m32c_reg_arg_type (arg_type))
2111 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2112
2113 /* Everything else goes on the stack. */
2114 else
2115 {
2116 sp -= arg_size;
2117
2118 /* Align the stack. */
2119 if (mach == bfd_mach_m32c)
2120 sp &= ~1;
2121
2122 write_memory (sp, arg_bits, arg_size);
2123 }
2124 }
2125
2126 /* This is the CFA we use to identify the dummy frame. */
2127 cfa = sp;
2128
2129 /* Push the return address. */
2130 sp -= tdep->ret_addr_bytes;
2131 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2132 bp_addr);
2133
2134 /* Update the stack pointer. */
2135 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2136
2137 /* We need to borrow an odd trick from the i386 target here.
2138
2139 The value we return from this function gets used as the stack
2140 address (the CFA) for the dummy frame's ID. The obvious thing is
2141 to return the new TOS. However, that points at the return
2142 address, saved on the stack, which is inconsistent with the CFA's
2143 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2144 .debug_frame info uses the address immediately after the saved
2145 return address. So you end up with a dummy frame whose CFA
2146 points at the return address, but the frame for the function
2147 being called has a CFA pointing after the return address: the
2148 younger CFA is *greater than* the older CFA. The sanity checks
2149 in frame.c don't like that.
2150
2151 So we try to be consistent with the CFA's used by DWARF 2.
2152 Having a dummy frame and a real frame with the *same* CFA is
2153 tolerable. */
2154 return cfa;
2155 }
2156
2157
2158 static struct frame_id
2159 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2160 {
2161 /* This needs to return a frame ID whose PC is the return address
2162 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2163 m32c_push_dummy_call returned.
2164
2165 m32c_unwind_sp gives us the CFA, which is the value the SP had
2166 before the return address was pushed. */
2167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2168 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2169 return frame_id_build (sp, get_frame_pc (this_frame));
2170 }
2171
2172
2173 \f
2174 /* Return values. */
2175
2176 /* Return value conventions, according to GCC:
2177
2178 r8c, m16c
2179 ---------
2180
2181 QImode in r0l
2182 HImode in r0
2183 SImode in r2r0
2184 near pointer in r0
2185 far pointer in r2r0
2186
2187 Aggregate values (regardless of size) are returned by pushing a
2188 pointer to a temporary area on the stack after the args are pushed.
2189 The function fills in this area with the value. Note that this
2190 pointer on the stack does not affect how register arguments, if any,
2191 are configured.
2192
2193 m32cm, m32c
2194 -----------
2195 Same. */
2196
2197 /* Return non-zero if values of type TYPE are returned by storing them
2198 in a buffer whose address is passed on the stack, ahead of the
2199 other arguments. */
2200 static int
2201 m32c_return_by_passed_buf (struct type *type)
2202 {
2203 enum type_code code = TYPE_CODE (type);
2204
2205 return (code == TYPE_CODE_STRUCT
2206 || code == TYPE_CODE_UNION);
2207 }
2208
2209 static enum return_value_convention
2210 m32c_return_value (struct gdbarch *gdbarch,
2211 struct value *function,
2212 struct type *valtype,
2213 struct regcache *regcache,
2214 gdb_byte *readbuf,
2215 const gdb_byte *writebuf)
2216 {
2217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2219 enum return_value_convention conv;
2220 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2221
2222 if (m32c_return_by_passed_buf (valtype))
2223 conv = RETURN_VALUE_STRUCT_CONVENTION;
2224 else
2225 conv = RETURN_VALUE_REGISTER_CONVENTION;
2226
2227 if (readbuf)
2228 {
2229 /* We should never be called to find values being returned by
2230 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2231 unless we made the call ourselves. */
2232 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2233
2234 gdb_assert (valtype_len <= 8);
2235
2236 /* Anything that fits in r0 is returned there. */
2237 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2238 {
2239 ULONGEST u;
2240 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2241 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2242 }
2243 else
2244 {
2245 /* Everything else is passed in mem0, using as many bytes as
2246 needed. This is not what the Renesas tools do, but it's
2247 what GCC does at the moment. */
2248 struct bound_minimal_symbol mem0
2249 = lookup_minimal_symbol ("mem0", NULL, NULL);
2250
2251 if (! mem0.minsym)
2252 error (_("The return value is stored in memory at 'mem0', "
2253 "but GDB cannot find\n"
2254 "its address."));
2255 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2256 }
2257 }
2258
2259 if (writebuf)
2260 {
2261 /* We should never be called to store values to be returned
2262 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2263 finding the buffer, unless we made the call ourselves. */
2264 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2265
2266 gdb_assert (valtype_len <= 8);
2267
2268 /* Anything that fits in r0 is returned there. */
2269 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2270 {
2271 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2272 byte_order);
2273 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2274 }
2275 else
2276 {
2277 /* Everything else is passed in mem0, using as many bytes as
2278 needed. This is not what the Renesas tools do, but it's
2279 what GCC does at the moment. */
2280 struct bound_minimal_symbol mem0
2281 = lookup_minimal_symbol ("mem0", NULL, NULL);
2282
2283 if (! mem0.minsym)
2284 error (_("The return value is stored in memory at 'mem0', "
2285 "but GDB cannot find\n"
2286 " its address."));
2287 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2288 }
2289 }
2290
2291 return conv;
2292 }
2293
2294
2295 \f
2296 /* Trampolines. */
2297
2298 /* The m16c and m32c use a trampoline function for indirect function
2299 calls. An indirect call looks like this:
2300
2301 ... push arguments ...
2302 ... push target function address ...
2303 jsr.a m32c_jsri16
2304
2305 The code for m32c_jsri16 looks like this:
2306
2307 m32c_jsri16:
2308
2309 # Save return address.
2310 pop.w m32c_jsri_ret
2311 pop.b m32c_jsri_ret+2
2312
2313 # Store target function address.
2314 pop.w m32c_jsri_addr
2315
2316 # Re-push return address.
2317 push.b m32c_jsri_ret+2
2318 push.w m32c_jsri_ret
2319
2320 # Call the target function.
2321 jmpi.a m32c_jsri_addr
2322
2323 Without further information, GDB will treat calls to m32c_jsri16
2324 like calls to any other function. Since m32c_jsri16 doesn't have
2325 debugging information, that normally means that GDB sets a step-
2326 resume breakpoint and lets the program continue --- which is not
2327 what the user wanted. (Giving the trampoline debugging info
2328 doesn't help: the user expects the program to stop in the function
2329 their program is calling, not in some trampoline code they've never
2330 seen before.)
2331
2332 The gdbarch_skip_trampoline_code method tells GDB how to step
2333 through such trampoline functions transparently to the user. When
2334 given the address of a trampoline function's first instruction,
2335 gdbarch_skip_trampoline_code should return the address of the first
2336 instruction of the function really being called. If GDB decides it
2337 wants to step into that function, it will set a breakpoint there
2338 and silently continue to it.
2339
2340 We recognize the trampoline by name, and extract the target address
2341 directly from the stack. This isn't great, but recognizing by its
2342 code sequence seems more fragile. */
2343
2344 static CORE_ADDR
2345 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2346 {
2347 struct gdbarch *gdbarch = get_frame_arch (frame);
2348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2349 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2350
2351 /* It would be nicer to simply look up the addresses of known
2352 trampolines once, and then compare stop_pc with them. However,
2353 we'd need to ensure that that cached address got invalidated when
2354 someone loaded a new executable, and I'm not quite sure of the
2355 best way to do that. find_pc_partial_function does do some
2356 caching, so we'll see how this goes. */
2357 const char *name;
2358 CORE_ADDR start, end;
2359
2360 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2361 {
2362 /* Are we stopped at the beginning of the trampoline function? */
2363 if (strcmp (name, "m32c_jsri16") == 0
2364 && stop_pc == start)
2365 {
2366 /* Get the stack pointer. The return address is at the top,
2367 and the target function's address is just below that. We
2368 know it's a two-byte address, since the trampoline is
2369 m32c_jsri*16*. */
2370 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2371 CORE_ADDR target
2372 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2373 2, byte_order);
2374
2375 /* What we have now is the address of a jump instruction.
2376 What we need is the destination of that jump.
2377 The opcode is 1 byte, and the destination is the next 3 bytes. */
2378
2379 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2380 return target;
2381 }
2382 }
2383
2384 return 0;
2385 }
2386
2387
2388 /* Address/pointer conversions. */
2389
2390 /* On the m16c, there is a 24-bit address space, but only a very few
2391 instructions can generate addresses larger than 0xffff: jumps,
2392 jumps to subroutines, and the lde/std (load/store extended)
2393 instructions.
2394
2395 Since GCC can only support one size of pointer, we can't have
2396 distinct 'near' and 'far' pointer types; we have to pick one size
2397 for everything. If we wanted to use 24-bit pointers, then GCC
2398 would have to use lde and ste for all memory references, which
2399 would be terrible for performance and code size. So the GNU
2400 toolchain uses 16-bit pointers for everything, and gives up the
2401 ability to have pointers point outside the first 64k of memory.
2402
2403 However, as a special hack, we let the linker place functions at
2404 addresses above 0xffff, as long as it also places a trampoline in
2405 the low 64k for every function whose address is taken. Each
2406 trampoline consists of a single jmp.a instruction that jumps to the
2407 function's real entry point. Pointers to functions can be 16 bits
2408 long, even though the functions themselves are at higher addresses:
2409 the pointers refer to the trampolines, not the functions.
2410
2411 This complicates things for GDB, however: given the address of a
2412 function (from debug info or linker symbols, say) which could be
2413 anywhere in the 24-bit address space, how can we find an
2414 appropriate 16-bit value to use as a pointer to it?
2415
2416 If the linker has not generated a trampoline for the function,
2417 we're out of luck. Well, I guess we could malloc some space and
2418 write a jmp.a instruction to it, but I'm not going to get into that
2419 at the moment.
2420
2421 If the linker has generated a trampoline for the function, then it
2422 also emitted a symbol for the trampoline: if the function's linker
2423 symbol is named NAME, then the function's trampoline's linker
2424 symbol is named NAME.plt.
2425
2426 So, given a code address:
2427 - We try to find a linker symbol at that address.
2428 - If we find such a symbol named NAME, we look for a linker symbol
2429 named NAME.plt.
2430 - If we find such a symbol, we assume it is a trampoline, and use
2431 its address as the pointer value.
2432
2433 And, given a function pointer:
2434 - We try to find a linker symbol at that address named NAME.plt.
2435 - If we find such a symbol, we look for a linker symbol named NAME.
2436 - If we find that, we provide that as the function's address.
2437 - If any of the above steps fail, we return the original address
2438 unchanged; it might really be a function in the low 64k.
2439
2440 See? You *knew* there was a reason you wanted to be a computer
2441 programmer! :) */
2442
2443 static void
2444 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2445 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2446 {
2447 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2448 enum type_code target_code;
2449 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2450 TYPE_CODE (type) == TYPE_CODE_REF);
2451
2452 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2453
2454 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2455 {
2456 const char *func_name;
2457 char *tramp_name;
2458 struct bound_minimal_symbol tramp_msym;
2459
2460 /* Try to find a linker symbol at this address. */
2461 struct bound_minimal_symbol func_msym
2462 = lookup_minimal_symbol_by_pc (addr);
2463
2464 if (! func_msym.minsym)
2465 error (_("Cannot convert code address %s to function pointer:\n"
2466 "couldn't find a symbol at that address, to find trampoline."),
2467 paddress (gdbarch, addr));
2468
2469 func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
2470 tramp_name = xmalloc (strlen (func_name) + 5);
2471 strcpy (tramp_name, func_name);
2472 strcat (tramp_name, ".plt");
2473
2474 /* Try to find a linker symbol for the trampoline. */
2475 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2476
2477 /* We've either got another copy of the name now, or don't need
2478 the name any more. */
2479 xfree (tramp_name);
2480
2481 if (! tramp_msym.minsym)
2482 {
2483 CORE_ADDR ptrval;
2484
2485 /* No PLT entry found. Mask off the upper bits of the address
2486 to make a pointer. As noted in the warning to the user
2487 below, this value might be useful if converted back into
2488 an address by GDB, but will otherwise, almost certainly,
2489 be garbage.
2490
2491 Using this masked result does seem to be useful
2492 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2493 PASSes. These results appear to be correct as well.
2494
2495 We print a warning here so that the user can make a
2496 determination about whether the result is useful or not. */
2497 ptrval = addr & 0xffff;
2498
2499 warning (_("Cannot convert code address %s to function pointer:\n"
2500 "couldn't find trampoline named '%s.plt'.\n"
2501 "Returning pointer value %s instead; this may produce\n"
2502 "a useful result if converted back into an address by GDB,\n"
2503 "but will most likely not be useful otherwise.\n"),
2504 paddress (gdbarch, addr), func_name,
2505 paddress (gdbarch, ptrval));
2506
2507 addr = ptrval;
2508
2509 }
2510 else
2511 {
2512 /* The trampoline's address is our pointer. */
2513 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2514 }
2515 }
2516
2517 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2518 }
2519
2520
2521 static CORE_ADDR
2522 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2523 struct type *type, const gdb_byte *buf)
2524 {
2525 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2526 CORE_ADDR ptr;
2527 enum type_code target_code;
2528
2529 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2530 TYPE_CODE (type) == TYPE_CODE_REF);
2531
2532 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2533
2534 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2535
2536 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2537 {
2538 /* See if there is a minimal symbol at that address whose name is
2539 "NAME.plt". */
2540 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2541
2542 if (ptr_msym.minsym)
2543 {
2544 const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
2545 int len = strlen (ptr_msym_name);
2546
2547 if (len > 4
2548 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2549 {
2550 struct bound_minimal_symbol func_msym;
2551 /* We have a .plt symbol; try to find the symbol for the
2552 corresponding function.
2553
2554 Since the trampoline contains a jump instruction, we
2555 could also just extract the jump's target address. I
2556 don't see much advantage one way or the other. */
2557 char *func_name = xmalloc (len - 4 + 1);
2558 memcpy (func_name, ptr_msym_name, len - 4);
2559 func_name[len - 4] = '\0';
2560 func_msym
2561 = lookup_minimal_symbol (func_name, NULL, NULL);
2562
2563 /* If we do have such a symbol, return its value as the
2564 function's true address. */
2565 if (func_msym.minsym)
2566 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2567 }
2568 }
2569 else
2570 {
2571 int aspace;
2572
2573 for (aspace = 1; aspace <= 15; aspace++)
2574 {
2575 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2576
2577 if (ptr_msym.minsym)
2578 ptr |= aspace << 16;
2579 }
2580 }
2581 }
2582
2583 return ptr;
2584 }
2585
2586 static void
2587 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2588 int *frame_regnum,
2589 LONGEST *frame_offset)
2590 {
2591 const char *name;
2592 CORE_ADDR func_addr, func_end;
2593 struct m32c_prologue p;
2594
2595 struct regcache *regcache = get_current_regcache ();
2596 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2597
2598 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2599 internal_error (__FILE__, __LINE__,
2600 _("No virtual frame pointer available"));
2601
2602 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2603 switch (p.kind)
2604 {
2605 case prologue_with_frame_ptr:
2606 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2607 *frame_offset = p.frame_ptr_offset;
2608 break;
2609 case prologue_sans_frame_ptr:
2610 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2611 *frame_offset = p.frame_size;
2612 break;
2613 default:
2614 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2615 *frame_offset = 0;
2616 break;
2617 }
2618 /* Sanity check */
2619 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2620 internal_error (__FILE__, __LINE__,
2621 _("No virtual frame pointer available"));
2622 }
2623
2624 \f
2625 /* Initialization. */
2626
2627 static struct gdbarch *
2628 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2629 {
2630 struct gdbarch *arch;
2631 struct gdbarch_tdep *tdep;
2632 unsigned long mach = info.bfd_arch_info->mach;
2633
2634 /* Find a candidate among the list of architectures we've created
2635 already. */
2636 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2637 arches != NULL;
2638 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2639 return arches->gdbarch;
2640
2641 tdep = xcalloc (1, sizeof (*tdep));
2642 arch = gdbarch_alloc (&info, tdep);
2643
2644 /* Essential types. */
2645 make_types (arch);
2646
2647 /* Address/pointer conversions. */
2648 if (mach == bfd_mach_m16c)
2649 {
2650 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2651 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2652 }
2653
2654 /* Register set. */
2655 make_regs (arch);
2656
2657 /* Disassembly. */
2658 set_gdbarch_print_insn (arch, print_insn_m32c);
2659
2660 /* Breakpoints. */
2661 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2662
2663 /* Prologue analysis and unwinding. */
2664 set_gdbarch_inner_than (arch, core_addr_lessthan);
2665 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2666 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2667 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2668 #if 0
2669 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2670 They may be in the dwarf2 cfi code in GDB, or they may be in
2671 the debug info emitted by the upstream toolchain. I don't
2672 know which, but I do know that the prologue analyzer works better.
2673 MVS 04/13/06 */
2674 dwarf2_append_sniffers (arch);
2675 #endif
2676 frame_unwind_append_unwinder (arch, &m32c_unwind);
2677
2678 /* Inferior calls. */
2679 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2680 set_gdbarch_return_value (arch, m32c_return_value);
2681 set_gdbarch_dummy_id (arch, m32c_dummy_id);
2682
2683 /* Trampolines. */
2684 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2685
2686 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2687
2688 /* m32c function boundary addresses are not necessarily even.
2689 Therefore, the `vbit', which indicates a pointer to a virtual
2690 member function, is stored in the delta field, rather than as
2691 the low bit of a function pointer address.
2692
2693 In order to verify this, see the definition of
2694 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2695 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2696 set_gdbarch_vbit_in_delta (arch, 1);
2697
2698 return arch;
2699 }
2700
2701 /* Provide a prototype to silence -Wmissing-prototypes. */
2702 extern initialize_file_ftype _initialize_m32c_tdep;
2703
2704 void
2705 _initialize_m32c_tdep (void)
2706 {
2707 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2708
2709 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2710 }
This page took 0.137248 seconds and 4 git commands to generate.