* blockframe.c (find_pc_partial_function_gnu_ifunc): Change type of
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright 2004-2005, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <stdarg.h>
23
24 #if defined (HAVE_STRING_H)
25 #include <string.h>
26 #endif
27
28 #include "gdb_assert.h"
29 #include "elf-bfd.h"
30 #include "elf/m32c.h"
31 #include "gdb/sim-m32c.h"
32 #include "dis-asm.h"
33 #include "gdbtypes.h"
34 #include "regcache.h"
35 #include "arch-utils.h"
36 #include "frame.h"
37 #include "frame-unwind.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2expr.h"
40 #include "symtab.h"
41 #include "gdbcore.h"
42 #include "value.h"
43 #include "reggroups.h"
44 #include "prologue-value.h"
45 #include "target.h"
46
47 \f
48 /* The m32c tdep structure. */
49
50 static struct reggroup *m32c_dma_reggroup;
51
52 struct m32c_reg;
53
54 /* The type of a function that moves the value of REG between CACHE or
55 BUF --- in either direction. */
56 typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
57 struct regcache *cache,
58 void *buf);
59
60 struct m32c_reg
61 {
62 /* The name of this register. */
63 const char *name;
64
65 /* Its type. */
66 struct type *type;
67
68 /* The architecture this register belongs to. */
69 struct gdbarch *arch;
70
71 /* Its GDB register number. */
72 int num;
73
74 /* Its sim register number. */
75 int sim_num;
76
77 /* Its DWARF register number, or -1 if it doesn't have one. */
78 int dwarf_num;
79
80 /* Register group memberships. */
81 unsigned int general_p : 1;
82 unsigned int dma_p : 1;
83 unsigned int system_p : 1;
84 unsigned int save_restore_p : 1;
85
86 /* Functions to read its value from a regcache, and write its value
87 to a regcache. */
88 m32c_move_reg_t *read, *write;
89
90 /* Data for READ and WRITE functions. The exact meaning depends on
91 the specific functions selected; see the comments for those
92 functions. */
93 struct m32c_reg *rx, *ry;
94 int n;
95 };
96
97
98 /* An overestimate of the number of raw and pseudoregisters we will
99 have. The exact answer depends on the variant of the architecture
100 at hand, but we can use this to declare statically allocated
101 arrays, and bump it up when needed. */
102 #define M32C_MAX_NUM_REGS (75)
103
104 /* The largest assigned DWARF register number. */
105 #define M32C_MAX_DWARF_REGNUM (40)
106
107
108 struct gdbarch_tdep
109 {
110 /* All the registers for this variant, indexed by GDB register
111 number, and the number of registers present. */
112 struct m32c_reg regs[M32C_MAX_NUM_REGS];
113
114 /* The number of valid registers. */
115 int num_regs;
116
117 /* Interesting registers. These are pointers into REGS. */
118 struct m32c_reg *pc, *flg;
119 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
120 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
121 struct m32c_reg *sb, *fb, *sp;
122
123 /* A table indexed by DWARF register numbers, pointing into
124 REGS. */
125 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
126
127 /* Types for this architecture. We can't use the builtin_type_foo
128 types, because they're not initialized when building a gdbarch
129 structure. */
130 struct type *voyd, *ptr_voyd, *func_voyd;
131 struct type *uint8, *uint16;
132 struct type *int8, *int16, *int32, *int64;
133
134 /* The types for data address and code address registers. */
135 struct type *data_addr_reg_type, *code_addr_reg_type;
136
137 /* The number of bytes a return address pushed by a 'jsr' instruction
138 occupies on the stack. */
139 int ret_addr_bytes;
140
141 /* The number of bytes an address register occupies on the stack
142 when saved by an 'enter' or 'pushm' instruction. */
143 int push_addr_bytes;
144 };
145
146 \f
147 /* Types. */
148
149 static void
150 make_types (struct gdbarch *arch)
151 {
152 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
153 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
154 int data_addr_reg_bits, code_addr_reg_bits;
155 char type_name[50];
156
157 #if 0
158 /* This is used to clip CORE_ADDR values, so this value is
159 appropriate both on the m32c, where pointers are 32 bits long,
160 and on the m16c, where pointers are sixteen bits long, but there
161 may be code above the 64k boundary. */
162 set_gdbarch_addr_bit (arch, 24);
163 #else
164 /* GCC uses 32 bits for addrs in the dwarf info, even though
165 only 16/24 bits are used. Setting addr_bit to 24 causes
166 errors in reading the dwarf addresses. */
167 set_gdbarch_addr_bit (arch, 32);
168 #endif
169
170 set_gdbarch_int_bit (arch, 16);
171 switch (mach)
172 {
173 case bfd_mach_m16c:
174 data_addr_reg_bits = 16;
175 code_addr_reg_bits = 24;
176 set_gdbarch_ptr_bit (arch, 16);
177 tdep->ret_addr_bytes = 3;
178 tdep->push_addr_bytes = 2;
179 break;
180
181 case bfd_mach_m32c:
182 data_addr_reg_bits = 24;
183 code_addr_reg_bits = 24;
184 set_gdbarch_ptr_bit (arch, 32);
185 tdep->ret_addr_bytes = 4;
186 tdep->push_addr_bytes = 4;
187 break;
188
189 default:
190 gdb_assert_not_reached ("unexpected mach");
191 }
192
193 /* The builtin_type_mumble variables are sometimes uninitialized when
194 this is called, so we avoid using them. */
195 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
196 tdep->ptr_voyd
197 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
198 NULL);
199 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
200 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
201 tdep->func_voyd = lookup_function_type (tdep->voyd);
202
203 sprintf (type_name, "%s_data_addr_t",
204 gdbarch_bfd_arch_info (arch)->printable_name);
205 tdep->data_addr_reg_type
206 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
207 xstrdup (type_name));
208 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
209 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
210
211 sprintf (type_name, "%s_code_addr_t",
212 gdbarch_bfd_arch_info (arch)->printable_name);
213 tdep->code_addr_reg_type
214 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
215 xstrdup (type_name));
216 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
217 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
218
219 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
220 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
221 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
222 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
223 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
224 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
225 }
226
227
228 \f
229 /* Register set. */
230
231 static const char *
232 m32c_register_name (struct gdbarch *gdbarch, int num)
233 {
234 return gdbarch_tdep (gdbarch)->regs[num].name;
235 }
236
237
238 static struct type *
239 m32c_register_type (struct gdbarch *arch, int reg_nr)
240 {
241 return gdbarch_tdep (arch)->regs[reg_nr].type;
242 }
243
244
245 static int
246 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
247 {
248 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
249 }
250
251
252 static int
253 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
254 {
255 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
256 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
257 && tdep->dwarf_regs[reg_nr])
258 return tdep->dwarf_regs[reg_nr]->num;
259 else
260 /* The DWARF CFI code expects to see -1 for invalid register
261 numbers. */
262 return -1;
263 }
264
265
266 static int
267 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
268 struct reggroup *group)
269 {
270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
271 struct m32c_reg *reg = &tdep->regs[regnum];
272
273 /* The anonymous raw registers aren't in any groups. */
274 if (! reg->name)
275 return 0;
276
277 if (group == all_reggroup)
278 return 1;
279
280 if (group == general_reggroup
281 && reg->general_p)
282 return 1;
283
284 if (group == m32c_dma_reggroup
285 && reg->dma_p)
286 return 1;
287
288 if (group == system_reggroup
289 && reg->system_p)
290 return 1;
291
292 /* Since the m32c DWARF register numbers refer to cooked registers, not
293 raw registers, and frame_pop depends on the save and restore groups
294 containing registers the DWARF CFI will actually mention, our save
295 and restore groups are cooked registers, not raw registers. (This is
296 why we can't use the default reggroup function.) */
297 if ((group == save_reggroup
298 || group == restore_reggroup)
299 && reg->save_restore_p)
300 return 1;
301
302 return 0;
303 }
304
305
306 /* Register move functions. We declare them here using
307 m32c_move_reg_t to check the types. */
308 static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
309 static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
310 static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
311 static m32c_move_reg_t m32c_part_read, m32c_part_write;
312 static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
313 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
314
315
316 /* Copy the value of the raw register REG from CACHE to BUF. */
317 static enum register_status
318 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
319 {
320 return regcache_raw_read (cache, reg->num, buf);
321 }
322
323
324 /* Copy the value of the raw register REG from BUF to CACHE. */
325 static enum register_status
326 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
327 {
328 regcache_raw_write (cache, reg->num, (const void *) buf);
329
330 return REG_VALID;
331 }
332
333
334 /* Return the value of the 'flg' register in CACHE. */
335 static int
336 m32c_read_flg (struct regcache *cache)
337 {
338 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
339 ULONGEST flg;
340 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
341 return flg & 0xffff;
342 }
343
344
345 /* Evaluate the real register number of a banked register. */
346 static struct m32c_reg *
347 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
348 {
349 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
350 }
351
352
353 /* Move the value of a banked register from CACHE to BUF.
354 If the value of the 'flg' register in CACHE has any of the bits
355 masked in REG->n set, then read REG->ry. Otherwise, read
356 REG->rx. */
357 static enum register_status
358 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
359 {
360 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
361 return regcache_raw_read (cache, bank_reg->num, buf);
362 }
363
364
365 /* Move the value of a banked register from BUF to CACHE.
366 If the value of the 'flg' register in CACHE has any of the bits
367 masked in REG->n set, then write REG->ry. Otherwise, write
368 REG->rx. */
369 static enum register_status
370 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
371 {
372 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
373 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
374
375 return REG_VALID;
376 }
377
378
379 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
380 banked register; on bfd_mach_m16c, it's not. */
381 static enum register_status
382 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
383 {
384 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
385 return m32c_raw_read (reg->rx, cache, buf);
386 else
387 return m32c_banked_read (reg, cache, buf);
388 }
389
390
391 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
392 banked register; on bfd_mach_m16c, it's not. */
393 static enum register_status
394 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
395 {
396 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
397 m32c_raw_write (reg->rx, cache, buf);
398 else
399 m32c_banked_write (reg, cache, buf);
400
401 return REG_VALID;
402 }
403
404
405 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
406 and *LEN_P to the offset and length, in bytes, of the part REG
407 occupies in its underlying register. The offset is from the
408 lower-addressed end, regardless of the architecture's endianness.
409 (The M32C family is always little-endian, but let's keep those
410 assumptions out of here.) */
411 static void
412 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
413 {
414 /* The length of the containing register, of which REG is one part. */
415 int containing_len = TYPE_LENGTH (reg->rx->type);
416
417 /* The length of one "element" in our imaginary array. */
418 int elt_len = TYPE_LENGTH (reg->type);
419
420 /* The offset of REG's "element" from the least significant end of
421 the containing register. */
422 int elt_offset = reg->n * elt_len;
423
424 /* If we extend off the end, trim the length of the element. */
425 if (elt_offset + elt_len > containing_len)
426 {
427 elt_len = containing_len - elt_offset;
428 /* We shouldn't be declaring partial registers that go off the
429 end of their containing registers. */
430 gdb_assert (elt_len > 0);
431 }
432
433 /* Flip the offset around if we're big-endian. */
434 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
435 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
436
437 *offset_p = elt_offset;
438 *len_p = elt_len;
439 }
440
441
442 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
443 to BUF. Treating the value of the register REG->rx as an array of
444 REG->type values, where higher indices refer to more significant
445 bits, read the value of the REG->n'th element. */
446 static enum register_status
447 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
448 {
449 int offset, len;
450
451 memset (buf, 0, TYPE_LENGTH (reg->type));
452 m32c_find_part (reg, &offset, &len);
453 return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
454 }
455
456
457 /* Move the value of a banked register from BUF to CACHE.
458 Treating the value of the register REG->rx as an array of REG->type
459 values, where higher indices refer to more significant bits, write
460 the value of the REG->n'th element. */
461 static enum register_status
462 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
463 {
464 int offset, len;
465
466 m32c_find_part (reg, &offset, &len);
467 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
468
469 return REG_VALID;
470 }
471
472
473 /* Move the value of REG from CACHE to BUF. REG's value is the
474 concatenation of the values of the registers REG->rx and REG->ry,
475 with REG->rx contributing the more significant bits. */
476 static enum register_status
477 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
478 {
479 int high_bytes = TYPE_LENGTH (reg->rx->type);
480 int low_bytes = TYPE_LENGTH (reg->ry->type);
481 /* For address arithmetic. */
482 unsigned char *cbuf = buf;
483 enum register_status status;
484
485 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
486
487 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
488 {
489 status = regcache_cooked_read (cache, reg->rx->num, cbuf);
490 if (status == REG_VALID)
491 status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
492 }
493 else
494 {
495 status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
496 if (status == REG_VALID)
497 status = regcache_cooked_read (cache, reg->ry->num, cbuf);
498 }
499
500 return status;
501 }
502
503
504 /* Move the value of REG from CACHE to BUF. REG's value is the
505 concatenation of the values of the registers REG->rx and REG->ry,
506 with REG->rx contributing the more significant bits. */
507 static enum register_status
508 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
509 {
510 int high_bytes = TYPE_LENGTH (reg->rx->type);
511 int low_bytes = TYPE_LENGTH (reg->ry->type);
512 /* For address arithmetic. */
513 unsigned char *cbuf = buf;
514
515 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
516
517 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
518 {
519 regcache_cooked_write (cache, reg->rx->num, cbuf);
520 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
521 }
522 else
523 {
524 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
525 regcache_cooked_write (cache, reg->ry->num, cbuf);
526 }
527
528 return REG_VALID;
529 }
530
531
532 /* Copy the value of the raw register REG from CACHE to BUF. REG is
533 the concatenation (from most significant to least) of r3, r2, r1,
534 and r0. */
535 static enum register_status
536 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
537 {
538 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
539 int len = TYPE_LENGTH (tdep->r0->type);
540 enum register_status status;
541
542 /* For address arithmetic. */
543 unsigned char *cbuf = buf;
544
545 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
546 {
547 status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
548 if (status == REG_VALID)
549 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
550 if (status == REG_VALID)
551 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
552 if (status == REG_VALID)
553 status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
554 }
555 else
556 {
557 status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
558 if (status == REG_VALID)
559 status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
560 if (status == REG_VALID)
561 status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
562 if (status == REG_VALID)
563 status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
564 }
565
566 return status;
567 }
568
569
570 /* Copy the value of the raw register REG from BUF to CACHE. REG is
571 the concatenation (from most significant to least) of r3, r2, r1,
572 and r0. */
573 static enum register_status
574 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
575 {
576 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
577 int len = TYPE_LENGTH (tdep->r0->type);
578
579 /* For address arithmetic. */
580 unsigned char *cbuf = buf;
581
582 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
583 {
584 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
585 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
586 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
587 regcache_cooked_write (cache, tdep->r3->num, cbuf);
588 }
589 else
590 {
591 regcache_cooked_write (cache, tdep->r0->num, cbuf);
592 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
593 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
594 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
595 }
596
597 return REG_VALID;
598 }
599
600
601 static enum register_status
602 m32c_pseudo_register_read (struct gdbarch *arch,
603 struct regcache *cache,
604 int cookednum,
605 gdb_byte *buf)
606 {
607 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
608 struct m32c_reg *reg;
609
610 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
611 gdb_assert (arch == get_regcache_arch (cache));
612 gdb_assert (arch == tdep->regs[cookednum].arch);
613 reg = &tdep->regs[cookednum];
614
615 return reg->read (reg, cache, buf);
616 }
617
618
619 static void
620 m32c_pseudo_register_write (struct gdbarch *arch,
621 struct regcache *cache,
622 int cookednum,
623 const gdb_byte *buf)
624 {
625 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
626 struct m32c_reg *reg;
627
628 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
629 gdb_assert (arch == get_regcache_arch (cache));
630 gdb_assert (arch == tdep->regs[cookednum].arch);
631 reg = &tdep->regs[cookednum];
632
633 reg->write (reg, cache, (void *) buf);
634 }
635
636
637 /* Add a register with the given fields to the end of ARCH's table.
638 Return a pointer to the newly added register. */
639 static struct m32c_reg *
640 add_reg (struct gdbarch *arch,
641 const char *name,
642 struct type *type,
643 int sim_num,
644 m32c_move_reg_t *read,
645 m32c_move_reg_t *write,
646 struct m32c_reg *rx,
647 struct m32c_reg *ry,
648 int n)
649 {
650 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
651 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
652
653 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
654
655 r->name = name;
656 r->type = type;
657 r->arch = arch;
658 r->num = tdep->num_regs;
659 r->sim_num = sim_num;
660 r->dwarf_num = -1;
661 r->general_p = 0;
662 r->dma_p = 0;
663 r->system_p = 0;
664 r->save_restore_p = 0;
665 r->read = read;
666 r->write = write;
667 r->rx = rx;
668 r->ry = ry;
669 r->n = n;
670
671 tdep->num_regs++;
672
673 return r;
674 }
675
676
677 /* Record NUM as REG's DWARF register number. */
678 static void
679 set_dwarf_regnum (struct m32c_reg *reg, int num)
680 {
681 gdb_assert (num < M32C_MAX_NUM_REGS);
682
683 /* Update the reg->DWARF mapping. Only count the first number
684 assigned to this register. */
685 if (reg->dwarf_num == -1)
686 reg->dwarf_num = num;
687
688 /* Update the DWARF->reg mapping. */
689 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
690 }
691
692
693 /* Mark REG as a general-purpose register, and return it. */
694 static struct m32c_reg *
695 mark_general (struct m32c_reg *reg)
696 {
697 reg->general_p = 1;
698 return reg;
699 }
700
701
702 /* Mark REG as a DMA register, and return it. */
703 static struct m32c_reg *
704 mark_dma (struct m32c_reg *reg)
705 {
706 reg->dma_p = 1;
707 return reg;
708 }
709
710
711 /* Mark REG as a SYSTEM register, and return it. */
712 static struct m32c_reg *
713 mark_system (struct m32c_reg *reg)
714 {
715 reg->system_p = 1;
716 return reg;
717 }
718
719
720 /* Mark REG as a save-restore register, and return it. */
721 static struct m32c_reg *
722 mark_save_restore (struct m32c_reg *reg)
723 {
724 reg->save_restore_p = 1;
725 return reg;
726 }
727
728
729 #define FLAGBIT_B 0x0010
730 #define FLAGBIT_U 0x0080
731
732 /* Handy macros for declaring registers. These all evaluate to
733 pointers to the register declared. Macros that define two
734 registers evaluate to a pointer to the first. */
735
736 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
737 #define R(name, type, sim_num) \
738 (add_reg (arch, (name), (type), (sim_num), \
739 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
740
741 /* The simulator register number for a raw register named NAME. */
742 #define SIM(name) (m32c_sim_reg_ ## name)
743
744 /* A raw unsigned 16-bit data register named NAME.
745 NAME should be an identifier, not a string. */
746 #define R16U(name) \
747 (R(#name, tdep->uint16, SIM (name)))
748
749 /* A raw data address register named NAME.
750 NAME should be an identifier, not a string. */
751 #define RA(name) \
752 (R(#name, tdep->data_addr_reg_type, SIM (name)))
753
754 /* A raw code address register named NAME. NAME should
755 be an identifier, not a string. */
756 #define RC(name) \
757 (R(#name, tdep->code_addr_reg_type, SIM (name)))
758
759 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
760 NAME should be an identifier, not a string. */
761 #define RP(name, type) \
762 (R(#name "0", (type), SIM (name ## 0)), \
763 R(#name "1", (type), SIM (name ## 1)) - 1)
764
765 /* A raw banked general-purpose data register named NAME.
766 NAME should be an identifier, not a string. */
767 #define RBD(name) \
768 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
769 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
770
771 /* A raw banked data address register named NAME.
772 NAME should be an identifier, not a string. */
773 #define RBA(name) \
774 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
775 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
776
777 /* A cooked register named NAME referring to a raw banked register
778 from the bank selected by the current value of FLG. RAW_PAIR
779 should be a pointer to the first register in the banked pair.
780 NAME must be an identifier, not a string. */
781 #define CB(name, raw_pair) \
782 (add_reg (arch, #name, (raw_pair)->type, 0, \
783 m32c_banked_read, m32c_banked_write, \
784 (raw_pair), (raw_pair + 1), FLAGBIT_B))
785
786 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
787 access the top and bottom halves of the register pointed to by
788 NAME. NAME should be an identifier. */
789 #define CHL(name, type) \
790 (add_reg (arch, #name "h", (type), 0, \
791 m32c_part_read, m32c_part_write, name, NULL, 1), \
792 add_reg (arch, #name "l", (type), 0, \
793 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
794
795 /* A register constructed by concatenating the two registers HIGH and
796 LOW, whose name is HIGHLOW and whose type is TYPE. */
797 #define CCAT(high, low, type) \
798 (add_reg (arch, #high #low, (type), 0, \
799 m32c_cat_read, m32c_cat_write, (high), (low), 0))
800
801 /* Abbreviations for marking register group membership. */
802 #define G(reg) (mark_general (reg))
803 #define S(reg) (mark_system (reg))
804 #define DMA(reg) (mark_dma (reg))
805
806
807 /* Construct the register set for ARCH. */
808 static void
809 make_regs (struct gdbarch *arch)
810 {
811 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
812 int mach = gdbarch_bfd_arch_info (arch)->mach;
813 int num_raw_regs;
814 int num_cooked_regs;
815
816 struct m32c_reg *r0;
817 struct m32c_reg *r1;
818 struct m32c_reg *r2;
819 struct m32c_reg *r3;
820 struct m32c_reg *a0;
821 struct m32c_reg *a1;
822 struct m32c_reg *fb;
823 struct m32c_reg *sb;
824 struct m32c_reg *sp;
825 struct m32c_reg *r0hl;
826 struct m32c_reg *r1hl;
827 struct m32c_reg *r2hl;
828 struct m32c_reg *r3hl;
829 struct m32c_reg *intbhl;
830 struct m32c_reg *r2r0;
831 struct m32c_reg *r3r1;
832 struct m32c_reg *r3r1r2r0;
833 struct m32c_reg *r3r2r1r0;
834 struct m32c_reg *a1a0;
835
836 struct m32c_reg *raw_r0_pair = RBD (r0);
837 struct m32c_reg *raw_r1_pair = RBD (r1);
838 struct m32c_reg *raw_r2_pair = RBD (r2);
839 struct m32c_reg *raw_r3_pair = RBD (r3);
840 struct m32c_reg *raw_a0_pair = RBA (a0);
841 struct m32c_reg *raw_a1_pair = RBA (a1);
842 struct m32c_reg *raw_fb_pair = RBA (fb);
843
844 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
845 We always declare both raw registers, and deal with the distinction
846 in the pseudoregister. */
847 struct m32c_reg *raw_sb_pair = RBA (sb);
848
849 struct m32c_reg *usp = S (RA (usp));
850 struct m32c_reg *isp = S (RA (isp));
851 struct m32c_reg *intb = S (RC (intb));
852 struct m32c_reg *pc = G (RC (pc));
853 struct m32c_reg *flg = G (R16U (flg));
854
855 if (mach == bfd_mach_m32c)
856 {
857 struct m32c_reg *svf = S (R16U (svf));
858 struct m32c_reg *svp = S (RC (svp));
859 struct m32c_reg *vct = S (RC (vct));
860
861 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
862 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
863 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
864 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
865 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
866 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
867 }
868
869 num_raw_regs = tdep->num_regs;
870
871 r0 = G (CB (r0, raw_r0_pair));
872 r1 = G (CB (r1, raw_r1_pair));
873 r2 = G (CB (r2, raw_r2_pair));
874 r3 = G (CB (r3, raw_r3_pair));
875 a0 = G (CB (a0, raw_a0_pair));
876 a1 = G (CB (a1, raw_a1_pair));
877 fb = G (CB (fb, raw_fb_pair));
878
879 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
880 Specify custom read/write functions that do the right thing. */
881 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
882 m32c_sb_read, m32c_sb_write,
883 raw_sb_pair, raw_sb_pair + 1, 0));
884
885 /* The current sp is either usp or isp, depending on the value of
886 the FLG register's U bit. */
887 sp = G (add_reg (arch, "sp", usp->type, 0,
888 m32c_banked_read, m32c_banked_write,
889 isp, usp, FLAGBIT_U));
890
891 r0hl = CHL (r0, tdep->int8);
892 r1hl = CHL (r1, tdep->int8);
893 r2hl = CHL (r2, tdep->int8);
894 r3hl = CHL (r3, tdep->int8);
895 intbhl = CHL (intb, tdep->int16);
896
897 r2r0 = CCAT (r2, r0, tdep->int32);
898 r3r1 = CCAT (r3, r1, tdep->int32);
899 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
900
901 r3r2r1r0
902 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
903 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
904
905 if (mach == bfd_mach_m16c)
906 a1a0 = CCAT (a1, a0, tdep->int32);
907 else
908 a1a0 = NULL;
909
910 num_cooked_regs = tdep->num_regs - num_raw_regs;
911
912 tdep->pc = pc;
913 tdep->flg = flg;
914 tdep->r0 = r0;
915 tdep->r1 = r1;
916 tdep->r2 = r2;
917 tdep->r3 = r3;
918 tdep->r2r0 = r2r0;
919 tdep->r3r2r1r0 = r3r2r1r0;
920 tdep->r3r1r2r0 = r3r1r2r0;
921 tdep->a0 = a0;
922 tdep->a1 = a1;
923 tdep->sb = sb;
924 tdep->fb = fb;
925 tdep->sp = sp;
926
927 /* Set up the DWARF register table. */
928 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
929 set_dwarf_regnum (r0hl + 1, 0x01);
930 set_dwarf_regnum (r0hl + 0, 0x02);
931 set_dwarf_regnum (r1hl + 1, 0x03);
932 set_dwarf_regnum (r1hl + 0, 0x04);
933 set_dwarf_regnum (r0, 0x05);
934 set_dwarf_regnum (r1, 0x06);
935 set_dwarf_regnum (r2, 0x07);
936 set_dwarf_regnum (r3, 0x08);
937 set_dwarf_regnum (a0, 0x09);
938 set_dwarf_regnum (a1, 0x0a);
939 set_dwarf_regnum (fb, 0x0b);
940 set_dwarf_regnum (sp, 0x0c);
941 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
942 set_dwarf_regnum (sb, 0x13);
943 set_dwarf_regnum (r2r0, 0x15);
944 set_dwarf_regnum (r3r1, 0x16);
945 if (a1a0)
946 set_dwarf_regnum (a1a0, 0x17);
947
948 /* Enumerate the save/restore register group.
949
950 The regcache_save and regcache_restore functions apply their read
951 function to each register in this group.
952
953 Since frame_pop supplies frame_unwind_register as its read
954 function, the registers meaningful to the Dwarf unwinder need to
955 be in this group.
956
957 On the other hand, when we make inferior calls, save_inferior_status
958 and restore_inferior_status use them to preserve the current register
959 values across the inferior call. For this, you'd kind of like to
960 preserve all the raw registers, to protect the interrupted code from
961 any sort of bank switching the callee might have done. But we handle
962 those cases so badly anyway --- for example, it matters whether we
963 restore FLG before or after we restore the general-purpose registers,
964 but there's no way to express that --- that it isn't worth worrying
965 about.
966
967 We omit control registers like inthl: if you call a function that
968 changes those, it's probably because you wanted that change to be
969 visible to the interrupted code. */
970 mark_save_restore (r0);
971 mark_save_restore (r1);
972 mark_save_restore (r2);
973 mark_save_restore (r3);
974 mark_save_restore (a0);
975 mark_save_restore (a1);
976 mark_save_restore (sb);
977 mark_save_restore (fb);
978 mark_save_restore (sp);
979 mark_save_restore (pc);
980 mark_save_restore (flg);
981
982 set_gdbarch_num_regs (arch, num_raw_regs);
983 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
984 set_gdbarch_pc_regnum (arch, pc->num);
985 set_gdbarch_sp_regnum (arch, sp->num);
986 set_gdbarch_register_name (arch, m32c_register_name);
987 set_gdbarch_register_type (arch, m32c_register_type);
988 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
989 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
990 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
991 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
992 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
993 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
994
995 reggroup_add (arch, general_reggroup);
996 reggroup_add (arch, all_reggroup);
997 reggroup_add (arch, save_reggroup);
998 reggroup_add (arch, restore_reggroup);
999 reggroup_add (arch, system_reggroup);
1000 reggroup_add (arch, m32c_dma_reggroup);
1001 }
1002
1003
1004 \f
1005 /* Breakpoints. */
1006
1007 static const unsigned char *
1008 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
1009 {
1010 static unsigned char break_insn[] = { 0x00 }; /* brk */
1011
1012 *len = sizeof (break_insn);
1013 return break_insn;
1014 }
1015
1016
1017 \f
1018 /* Prologue analysis. */
1019
1020 struct m32c_prologue
1021 {
1022 /* For consistency with the DWARF 2 .debug_frame info generated by
1023 GCC, a frame's CFA is the address immediately after the saved
1024 return address. */
1025
1026 /* The architecture for which we generated this prologue info. */
1027 struct gdbarch *arch;
1028
1029 enum {
1030 /* This function uses a frame pointer. */
1031 prologue_with_frame_ptr,
1032
1033 /* This function has no frame pointer. */
1034 prologue_sans_frame_ptr,
1035
1036 /* This function sets up the stack, so its frame is the first
1037 frame on the stack. */
1038 prologue_first_frame
1039
1040 } kind;
1041
1042 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1043 CFA to where the frame pointer points. This is always zero or
1044 negative. */
1045 LONGEST frame_ptr_offset;
1046
1047 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1048 the stack pointer --- always zero or negative.
1049
1050 Calling this a "size" is a bit misleading, but given that the
1051 stack grows downwards, using offsets for everything keeps one
1052 from going completely sign-crazy: you never change anything's
1053 sign for an ADD instruction; always change the second operand's
1054 sign for a SUB instruction; and everything takes care of
1055 itself.
1056
1057 Functions that use alloca don't have a constant frame size. But
1058 they always have frame pointers, so we must use that to find the
1059 CFA (and perhaps to unwind the stack pointer). */
1060 LONGEST frame_size;
1061
1062 /* The address of the first instruction at which the frame has been
1063 set up and the arguments are where the debug info says they are
1064 --- as best as we can tell. */
1065 CORE_ADDR prologue_end;
1066
1067 /* reg_offset[R] is the offset from the CFA at which register R is
1068 saved, or 1 if register R has not been saved. (Real values are
1069 always zero or negative.) */
1070 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1071 };
1072
1073
1074 /* The longest I've seen, anyway. */
1075 #define M32C_MAX_INSN_LEN (9)
1076
1077 /* Processor state, for the prologue analyzer. */
1078 struct m32c_pv_state
1079 {
1080 struct gdbarch *arch;
1081 pv_t r0, r1, r2, r3;
1082 pv_t a0, a1;
1083 pv_t sb, fb, sp;
1084 pv_t pc;
1085 struct pv_area *stack;
1086
1087 /* Bytes from the current PC, the address they were read from,
1088 and the address of the next unconsumed byte. */
1089 gdb_byte insn[M32C_MAX_INSN_LEN];
1090 CORE_ADDR scan_pc, next_addr;
1091 };
1092
1093
1094 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1095 all went well, or non-zero if simulating the action would trash our
1096 state. */
1097 static int
1098 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1099 {
1100 if (pv_area_store_would_trash (state->stack, state->sp))
1101 return 1;
1102
1103 state->sp = pv_add_constant (state->sp, -size);
1104 pv_area_store (state->stack, state->sp, size, value);
1105
1106 return 0;
1107 }
1108
1109
1110 /* A source or destination location for an m16c or m32c
1111 instruction. */
1112 struct srcdest
1113 {
1114 /* If srcdest_reg, the location is a register pointed to by REG.
1115 If srcdest_partial_reg, the location is part of a register pointed
1116 to by REG. We don't try to handle this too well.
1117 If srcdest_mem, the location is memory whose address is ADDR. */
1118 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1119 pv_t *reg, addr;
1120 };
1121
1122
1123 /* Return the SIZE-byte value at LOC in STATE. */
1124 static pv_t
1125 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1126 {
1127 if (loc.kind == srcdest_mem)
1128 return pv_area_fetch (state->stack, loc.addr, size);
1129 else if (loc.kind == srcdest_partial_reg)
1130 return pv_unknown ();
1131 else
1132 return *loc.reg;
1133 }
1134
1135
1136 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1137 all went well, or non-zero if simulating the store would trash our
1138 state. */
1139 static int
1140 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1141 pv_t value, int size)
1142 {
1143 if (loc.kind == srcdest_mem)
1144 {
1145 if (pv_area_store_would_trash (state->stack, loc.addr))
1146 return 1;
1147 pv_area_store (state->stack, loc.addr, size, value);
1148 }
1149 else if (loc.kind == srcdest_partial_reg)
1150 *loc.reg = pv_unknown ();
1151 else
1152 *loc.reg = value;
1153
1154 return 0;
1155 }
1156
1157
1158 static int
1159 m32c_sign_ext (int v, int bits)
1160 {
1161 int mask = 1 << (bits - 1);
1162 return (v ^ mask) - mask;
1163 }
1164
1165 static unsigned int
1166 m32c_next_byte (struct m32c_pv_state *st)
1167 {
1168 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1169 return st->insn[st->next_addr++ - st->scan_pc];
1170 }
1171
1172 static int
1173 m32c_udisp8 (struct m32c_pv_state *st)
1174 {
1175 return m32c_next_byte (st);
1176 }
1177
1178
1179 static int
1180 m32c_sdisp8 (struct m32c_pv_state *st)
1181 {
1182 return m32c_sign_ext (m32c_next_byte (st), 8);
1183 }
1184
1185
1186 static int
1187 m32c_udisp16 (struct m32c_pv_state *st)
1188 {
1189 int low = m32c_next_byte (st);
1190 int high = m32c_next_byte (st);
1191
1192 return low + (high << 8);
1193 }
1194
1195
1196 static int
1197 m32c_sdisp16 (struct m32c_pv_state *st)
1198 {
1199 int low = m32c_next_byte (st);
1200 int high = m32c_next_byte (st);
1201
1202 return m32c_sign_ext (low + (high << 8), 16);
1203 }
1204
1205
1206 static int
1207 m32c_udisp24 (struct m32c_pv_state *st)
1208 {
1209 int low = m32c_next_byte (st);
1210 int mid = m32c_next_byte (st);
1211 int high = m32c_next_byte (st);
1212
1213 return low + (mid << 8) + (high << 16);
1214 }
1215
1216
1217 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1218 static int
1219 m32c_get_src23 (unsigned char *i)
1220 {
1221 return (((i[0] & 0x70) >> 2)
1222 | ((i[1] & 0x30) >> 4));
1223 }
1224
1225
1226 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1227 static int
1228 m32c_get_dest23 (unsigned char *i)
1229 {
1230 return (((i[0] & 0x0e) << 1)
1231 | ((i[1] & 0xc0) >> 6));
1232 }
1233
1234
1235 static struct srcdest
1236 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1237 int code, int size)
1238 {
1239 struct srcdest sd;
1240
1241 if (code < 6)
1242 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1243 else
1244 sd.kind = srcdest_mem;
1245
1246 sd.addr = pv_unknown ();
1247 sd.reg = 0;
1248
1249 switch (code)
1250 {
1251 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1252 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1253 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1254 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1255
1256 case 0x4: sd.reg = &st->a0; break;
1257 case 0x5: sd.reg = &st->a1; break;
1258
1259 case 0x6: sd.addr = st->a0; break;
1260 case 0x7: sd.addr = st->a1; break;
1261
1262 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1263 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1264 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1265 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1266
1267 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1268 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1269 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1270 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1271
1272 default:
1273 gdb_assert_not_reached ("unexpected srcdest4");
1274 }
1275
1276 return sd;
1277 }
1278
1279
1280 static struct srcdest
1281 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1282 {
1283 struct srcdest sd;
1284
1285 sd.addr = pv_unknown ();
1286 sd.reg = 0;
1287
1288 switch (code)
1289 {
1290 case 0x12:
1291 case 0x13:
1292 case 0x10:
1293 case 0x11:
1294 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1295 break;
1296
1297 case 0x02:
1298 case 0x03:
1299 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1300 break;
1301
1302 default:
1303 sd.kind = srcdest_mem;
1304 break;
1305
1306 }
1307
1308 switch (code)
1309 {
1310 case 0x12: sd.reg = &st->r0; break;
1311 case 0x13: sd.reg = &st->r1; break;
1312 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1313 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1314 case 0x02: sd.reg = &st->a0; break;
1315 case 0x03: sd.reg = &st->a1; break;
1316
1317 case 0x00: sd.addr = st->a0; break;
1318 case 0x01: sd.addr = st->a1; break;
1319 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1320 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1321 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1322 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1323 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1324 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1325 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1326 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1327 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1328 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1329 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1330 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1331 default:
1332 gdb_assert_not_reached ("unexpected sd23");
1333 }
1334
1335 if (ind)
1336 {
1337 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1338 sd.kind = srcdest_mem;
1339 }
1340
1341 return sd;
1342 }
1343
1344
1345 /* The r16c and r32c machines have instructions with similar
1346 semantics, but completely different machine language encodings. So
1347 we break out the semantics into their own functions, and leave
1348 machine-specific decoding in m32c_analyze_prologue.
1349
1350 The following functions all expect their arguments already decoded,
1351 and they all return zero if analysis should continue past this
1352 instruction, or non-zero if analysis should stop. */
1353
1354
1355 /* Simulate an 'enter SIZE' instruction in STATE. */
1356 static int
1357 m32c_pv_enter (struct m32c_pv_state *state, int size)
1358 {
1359 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1360
1361 /* If simulating this store would require us to forget
1362 everything we know about the stack frame in the name of
1363 accuracy, it would be better to just quit now. */
1364 if (pv_area_store_would_trash (state->stack, state->sp))
1365 return 1;
1366
1367 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1368 return 1;
1369 state->fb = state->sp;
1370 state->sp = pv_add_constant (state->sp, -size);
1371
1372 return 0;
1373 }
1374
1375
1376 static int
1377 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1378 int bit, int src, int size)
1379 {
1380 if (bit & src)
1381 {
1382 if (m32c_pv_push (state, reg, size))
1383 return 1;
1384 }
1385
1386 return 0;
1387 }
1388
1389
1390 /* Simulate a 'pushm SRC' instruction in STATE. */
1391 static int
1392 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1393 {
1394 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1395
1396 /* The bits in SRC indicating which registers to save are:
1397 r0 r1 r2 r3 a0 a1 sb fb */
1398 return
1399 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1400 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1401 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1402 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1403 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1404 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1405 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1406 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1407 }
1408
1409 /* Return non-zero if VALUE is the first incoming argument register. */
1410
1411 static int
1412 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1413 {
1414 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1415 return (value.kind == pvk_register
1416 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1417 ? (value.reg == tdep->r1->num)
1418 : (value.reg == tdep->r0->num))
1419 && value.k == 0);
1420 }
1421
1422 /* Return non-zero if VALUE is an incoming argument register. */
1423
1424 static int
1425 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1426 {
1427 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1428 return (value.kind == pvk_register
1429 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1430 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1431 : (value.reg == tdep->r0->num))
1432 && value.k == 0);
1433 }
1434
1435 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1436 argument register to its stack slot in STATE. Such instructions
1437 should be included in the prologue, if possible.
1438
1439 The store is a spill if:
1440 - the value being stored is the original value of an argument register;
1441 - the value has not already been stored somewhere in STACK; and
1442 - LOC is a stack slot (e.g., a memory location whose address is
1443 relative to the original value of the SP). */
1444
1445 static int
1446 m32c_is_arg_spill (struct m32c_pv_state *st,
1447 struct srcdest loc,
1448 pv_t value)
1449 {
1450 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1451
1452 return (m32c_is_arg_reg (st, value)
1453 && loc.kind == srcdest_mem
1454 && pv_is_register (loc.addr, tdep->sp->num)
1455 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1456 }
1457
1458 /* Return non-zero if a store of VALUE to LOC is probably
1459 copying the struct return address into an address register
1460 for immediate use. This is basically a "spill" into the
1461 address register, instead of onto the stack.
1462
1463 The prerequisites are:
1464 - value being stored is original value of the FIRST arg register;
1465 - value has not already been stored on stack; and
1466 - LOC is an address register (a0 or a1). */
1467
1468 static int
1469 m32c_is_struct_return (struct m32c_pv_state *st,
1470 struct srcdest loc,
1471 pv_t value)
1472 {
1473 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1474
1475 return (m32c_is_1st_arg_reg (st, value)
1476 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1477 && loc.kind == srcdest_reg
1478 && (pv_is_register (*loc.reg, tdep->a0->num)
1479 || pv_is_register (*loc.reg, tdep->a1->num)));
1480 }
1481
1482 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1483 was a register save:
1484 - all the named registers should have their original values, and
1485 - the stack pointer should be at a constant offset from the
1486 original stack pointer. */
1487 static int
1488 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1489 {
1490 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1491 /* The bits in SRC indicating which registers to save are:
1492 r0 r1 r2 r3 a0 a1 sb fb */
1493 return
1494 (pv_is_register (st->sp, tdep->sp->num)
1495 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1496 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1497 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1498 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1499 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1500 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1501 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1502 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1503 }
1504
1505
1506 /* Function for finding saved registers in a 'struct pv_area'; we pass
1507 this to pv_area_scan.
1508
1509 If VALUE is a saved register, ADDR says it was saved at a constant
1510 offset from the frame base, and SIZE indicates that the whole
1511 register was saved, record its offset in RESULT_UNTYPED. */
1512 static void
1513 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1514 {
1515 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1516 struct gdbarch *arch = prologue->arch;
1517 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1518
1519 /* Is this the unchanged value of some register being saved on the
1520 stack? */
1521 if (value.kind == pvk_register
1522 && value.k == 0
1523 && pv_is_register (addr, tdep->sp->num))
1524 {
1525 /* Some registers require special handling: they're saved as a
1526 larger value than the register itself. */
1527 CORE_ADDR saved_size = register_size (arch, value.reg);
1528
1529 if (value.reg == tdep->pc->num)
1530 saved_size = tdep->ret_addr_bytes;
1531 else if (register_type (arch, value.reg)
1532 == tdep->data_addr_reg_type)
1533 saved_size = tdep->push_addr_bytes;
1534
1535 if (size == saved_size)
1536 {
1537 /* Find which end of the saved value corresponds to our
1538 register. */
1539 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1540 prologue->reg_offset[value.reg]
1541 = (addr.k + saved_size - register_size (arch, value.reg));
1542 else
1543 prologue->reg_offset[value.reg] = addr.k;
1544 }
1545 }
1546 }
1547
1548
1549 /* Analyze the function prologue for ARCH at START, going no further
1550 than LIMIT, and place a description of what we found in
1551 PROLOGUE. */
1552 static void
1553 m32c_analyze_prologue (struct gdbarch *arch,
1554 CORE_ADDR start, CORE_ADDR limit,
1555 struct m32c_prologue *prologue)
1556 {
1557 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1558 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1559 CORE_ADDR after_last_frame_related_insn;
1560 struct cleanup *back_to;
1561 struct m32c_pv_state st;
1562
1563 st.arch = arch;
1564 st.r0 = pv_register (tdep->r0->num, 0);
1565 st.r1 = pv_register (tdep->r1->num, 0);
1566 st.r2 = pv_register (tdep->r2->num, 0);
1567 st.r3 = pv_register (tdep->r3->num, 0);
1568 st.a0 = pv_register (tdep->a0->num, 0);
1569 st.a1 = pv_register (tdep->a1->num, 0);
1570 st.sb = pv_register (tdep->sb->num, 0);
1571 st.fb = pv_register (tdep->fb->num, 0);
1572 st.sp = pv_register (tdep->sp->num, 0);
1573 st.pc = pv_register (tdep->pc->num, 0);
1574 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1575 back_to = make_cleanup_free_pv_area (st.stack);
1576
1577 /* Record that the call instruction has saved the return address on
1578 the stack. */
1579 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1580
1581 memset (prologue, 0, sizeof (*prologue));
1582 prologue->arch = arch;
1583 {
1584 int i;
1585 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1586 prologue->reg_offset[i] = 1;
1587 }
1588
1589 st.scan_pc = after_last_frame_related_insn = start;
1590
1591 while (st.scan_pc < limit)
1592 {
1593 pv_t pre_insn_fb = st.fb;
1594 pv_t pre_insn_sp = st.sp;
1595
1596 /* In theory we could get in trouble by trying to read ahead
1597 here, when we only know we're expecting one byte. In
1598 practice I doubt anyone will care, and it makes the rest of
1599 the code easier. */
1600 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1601 /* If we can't fetch the instruction from memory, stop here
1602 and hope for the best. */
1603 break;
1604 st.next_addr = st.scan_pc;
1605
1606 /* The assembly instructions are written as they appear in the
1607 section of the processor manuals that describe the
1608 instruction encodings.
1609
1610 When a single assembly language instruction has several
1611 different machine-language encodings, the manual
1612 distinguishes them by a number in parens, before the
1613 mnemonic. Those numbers are included, as well.
1614
1615 The srcdest decoding instructions have the same names as the
1616 analogous functions in the simulator. */
1617 if (mach == bfd_mach_m16c)
1618 {
1619 /* (1) ENTER #imm8 */
1620 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1621 {
1622 if (m32c_pv_enter (&st, st.insn[2]))
1623 break;
1624 st.next_addr += 3;
1625 }
1626 /* (1) PUSHM src */
1627 else if (st.insn[0] == 0xec)
1628 {
1629 int src = st.insn[1];
1630 if (m32c_pv_pushm (&st, src))
1631 break;
1632 st.next_addr += 2;
1633
1634 if (m32c_pushm_is_reg_save (&st, src))
1635 after_last_frame_related_insn = st.next_addr;
1636 }
1637
1638 /* (6) MOV.size:G src, dest */
1639 else if ((st.insn[0] & 0xfe) == 0x72)
1640 {
1641 int size = (st.insn[0] & 0x01) ? 2 : 1;
1642 struct srcdest src;
1643 struct srcdest dest;
1644 pv_t src_value;
1645 st.next_addr += 2;
1646
1647 src
1648 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1649 dest
1650 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1651 src_value = m32c_srcdest_fetch (&st, src, size);
1652
1653 if (m32c_is_arg_spill (&st, dest, src_value))
1654 after_last_frame_related_insn = st.next_addr;
1655 else if (m32c_is_struct_return (&st, dest, src_value))
1656 after_last_frame_related_insn = st.next_addr;
1657
1658 if (m32c_srcdest_store (&st, dest, src_value, size))
1659 break;
1660 }
1661
1662 /* (1) LDC #IMM16, sp */
1663 else if (st.insn[0] == 0xeb
1664 && st.insn[1] == 0x50)
1665 {
1666 st.next_addr += 2;
1667 st.sp = pv_constant (m32c_udisp16 (&st));
1668 }
1669
1670 else
1671 /* We've hit some instruction we don't know how to simulate.
1672 Strictly speaking, we should set every value we're
1673 tracking to "unknown". But we'll be optimistic, assume
1674 that we have enough information already, and stop
1675 analysis here. */
1676 break;
1677 }
1678 else
1679 {
1680 int src_indirect = 0;
1681 int dest_indirect = 0;
1682 int i = 0;
1683
1684 gdb_assert (mach == bfd_mach_m32c);
1685
1686 /* Check for prefix bytes indicating indirect addressing. */
1687 if (st.insn[0] == 0x41)
1688 {
1689 src_indirect = 1;
1690 i++;
1691 }
1692 else if (st.insn[0] == 0x09)
1693 {
1694 dest_indirect = 1;
1695 i++;
1696 }
1697 else if (st.insn[0] == 0x49)
1698 {
1699 src_indirect = dest_indirect = 1;
1700 i++;
1701 }
1702
1703 /* (1) ENTER #imm8 */
1704 if (st.insn[i] == 0xec)
1705 {
1706 if (m32c_pv_enter (&st, st.insn[i + 1]))
1707 break;
1708 st.next_addr += 2;
1709 }
1710
1711 /* (1) PUSHM src */
1712 else if (st.insn[i] == 0x8f)
1713 {
1714 int src = st.insn[i + 1];
1715 if (m32c_pv_pushm (&st, src))
1716 break;
1717 st.next_addr += 2;
1718
1719 if (m32c_pushm_is_reg_save (&st, src))
1720 after_last_frame_related_insn = st.next_addr;
1721 }
1722
1723 /* (7) MOV.size:G src, dest */
1724 else if ((st.insn[i] & 0x80) == 0x80
1725 && (st.insn[i + 1] & 0x0f) == 0x0b
1726 && m32c_get_src23 (&st.insn[i]) < 20
1727 && m32c_get_dest23 (&st.insn[i]) < 20)
1728 {
1729 struct srcdest src;
1730 struct srcdest dest;
1731 pv_t src_value;
1732 int bw = st.insn[i] & 0x01;
1733 int size = bw ? 2 : 1;
1734 st.next_addr += 2;
1735
1736 src
1737 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1738 size, src_indirect);
1739 dest
1740 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1741 size, dest_indirect);
1742 src_value = m32c_srcdest_fetch (&st, src, size);
1743
1744 if (m32c_is_arg_spill (&st, dest, src_value))
1745 after_last_frame_related_insn = st.next_addr;
1746
1747 if (m32c_srcdest_store (&st, dest, src_value, size))
1748 break;
1749 }
1750 /* (2) LDC #IMM24, sp */
1751 else if (st.insn[i] == 0xd5
1752 && st.insn[i + 1] == 0x29)
1753 {
1754 st.next_addr += 2;
1755 st.sp = pv_constant (m32c_udisp24 (&st));
1756 }
1757 else
1758 /* We've hit some instruction we don't know how to simulate.
1759 Strictly speaking, we should set every value we're
1760 tracking to "unknown". But we'll be optimistic, assume
1761 that we have enough information already, and stop
1762 analysis here. */
1763 break;
1764 }
1765
1766 /* If this instruction changed the FB or decreased the SP (i.e.,
1767 allocated more stack space), then this may be a good place to
1768 declare the prologue finished. However, there are some
1769 exceptions:
1770
1771 - If the instruction just changed the FB back to its original
1772 value, then that's probably a restore instruction. The
1773 prologue should definitely end before that.
1774
1775 - If the instruction increased the value of the SP (that is,
1776 shrunk the frame), then it's probably part of a frame
1777 teardown sequence, and the prologue should end before
1778 that. */
1779
1780 if (! pv_is_identical (st.fb, pre_insn_fb))
1781 {
1782 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1783 after_last_frame_related_insn = st.next_addr;
1784 }
1785 else if (! pv_is_identical (st.sp, pre_insn_sp))
1786 {
1787 /* The comparison of the constants looks odd, there, because
1788 .k is unsigned. All it really means is that the SP is
1789 lower than it was before the instruction. */
1790 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1791 && pv_is_register (st.sp, tdep->sp->num)
1792 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1793 after_last_frame_related_insn = st.next_addr;
1794 }
1795
1796 st.scan_pc = st.next_addr;
1797 }
1798
1799 /* Did we load a constant value into the stack pointer? */
1800 if (pv_is_constant (st.sp))
1801 prologue->kind = prologue_first_frame;
1802
1803 /* Alternatively, did we initialize the frame pointer? Remember
1804 that the CFA is the address after the return address. */
1805 if (pv_is_register (st.fb, tdep->sp->num))
1806 {
1807 prologue->kind = prologue_with_frame_ptr;
1808 prologue->frame_ptr_offset = st.fb.k;
1809 }
1810
1811 /* Is the frame size a known constant? Remember that frame_size is
1812 actually the offset from the CFA to the SP (i.e., a negative
1813 value). */
1814 else if (pv_is_register (st.sp, tdep->sp->num))
1815 {
1816 prologue->kind = prologue_sans_frame_ptr;
1817 prologue->frame_size = st.sp.k;
1818 }
1819
1820 /* We haven't been able to make sense of this function's frame. Treat
1821 it as the first frame. */
1822 else
1823 prologue->kind = prologue_first_frame;
1824
1825 /* Record where all the registers were saved. */
1826 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1827
1828 prologue->prologue_end = after_last_frame_related_insn;
1829
1830 do_cleanups (back_to);
1831 }
1832
1833
1834 static CORE_ADDR
1835 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1836 {
1837 const char *name;
1838 CORE_ADDR func_addr, func_end, sal_end;
1839 struct m32c_prologue p;
1840
1841 /* Try to find the extent of the function that contains IP. */
1842 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1843 return ip;
1844
1845 /* Find end by prologue analysis. */
1846 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1847 /* Find end by line info. */
1848 sal_end = skip_prologue_using_sal (gdbarch, ip);
1849 /* Return whichever is lower. */
1850 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1851 return sal_end;
1852 else
1853 return p.prologue_end;
1854 }
1855
1856
1857 \f
1858 /* Stack unwinding. */
1859
1860 static struct m32c_prologue *
1861 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1862 void **this_prologue_cache)
1863 {
1864 if (! *this_prologue_cache)
1865 {
1866 CORE_ADDR func_start = get_frame_func (this_frame);
1867 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1868
1869 /* If we couldn't find any function containing the PC, then
1870 just initialize the prologue cache, but don't do anything. */
1871 if (! func_start)
1872 stop_addr = func_start;
1873
1874 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1875 m32c_analyze_prologue (get_frame_arch (this_frame),
1876 func_start, stop_addr, *this_prologue_cache);
1877 }
1878
1879 return *this_prologue_cache;
1880 }
1881
1882
1883 static CORE_ADDR
1884 m32c_frame_base (struct frame_info *this_frame,
1885 void **this_prologue_cache)
1886 {
1887 struct m32c_prologue *p
1888 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1889 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1890
1891 /* In functions that use alloca, the distance between the stack
1892 pointer and the frame base varies dynamically, so we can't use
1893 the SP plus static information like prologue analysis to find the
1894 frame base. However, such functions must have a frame pointer,
1895 to be able to restore the SP on exit. So whenever we do have a
1896 frame pointer, use that to find the base. */
1897 switch (p->kind)
1898 {
1899 case prologue_with_frame_ptr:
1900 {
1901 CORE_ADDR fb
1902 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1903 return fb - p->frame_ptr_offset;
1904 }
1905
1906 case prologue_sans_frame_ptr:
1907 {
1908 CORE_ADDR sp
1909 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1910 return sp - p->frame_size;
1911 }
1912
1913 case prologue_first_frame:
1914 return 0;
1915
1916 default:
1917 gdb_assert_not_reached ("unexpected prologue kind");
1918 }
1919 }
1920
1921
1922 static void
1923 m32c_this_id (struct frame_info *this_frame,
1924 void **this_prologue_cache,
1925 struct frame_id *this_id)
1926 {
1927 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1928
1929 if (base)
1930 *this_id = frame_id_build (base, get_frame_func (this_frame));
1931 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1932 }
1933
1934
1935 static struct value *
1936 m32c_prev_register (struct frame_info *this_frame,
1937 void **this_prologue_cache, int regnum)
1938 {
1939 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1940 struct m32c_prologue *p
1941 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1942 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1943 int reg_size = register_size (get_frame_arch (this_frame), regnum);
1944
1945 if (regnum == tdep->sp->num)
1946 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1947
1948 /* If prologue analysis says we saved this register somewhere,
1949 return a description of the stack slot holding it. */
1950 if (p->reg_offset[regnum] != 1)
1951 return frame_unwind_got_memory (this_frame, regnum,
1952 frame_base + p->reg_offset[regnum]);
1953
1954 /* Otherwise, presume we haven't changed the value of this
1955 register, and get it from the next frame. */
1956 return frame_unwind_got_register (this_frame, regnum, regnum);
1957 }
1958
1959
1960 static const struct frame_unwind m32c_unwind = {
1961 NORMAL_FRAME,
1962 default_frame_unwind_stop_reason,
1963 m32c_this_id,
1964 m32c_prev_register,
1965 NULL,
1966 default_frame_sniffer
1967 };
1968
1969
1970 static CORE_ADDR
1971 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1972 {
1973 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1974 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1975 }
1976
1977
1978 static CORE_ADDR
1979 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1980 {
1981 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1982 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1983 }
1984
1985 \f
1986 /* Inferior calls. */
1987
1988 /* The calling conventions, according to GCC:
1989
1990 r8c, m16c
1991 ---------
1992 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1993 HImode), (2) is named, and (3) is an integer or pointer type (no
1994 structs, floats, etc). Otherwise, it's passed on the stack.
1995
1996 Second arg may be passed in r2, same restrictions (but not QImode),
1997 even if the first arg is passed on the stack.
1998
1999 Third and further args are passed on the stack. No padding is
2000 used, stack "alignment" is 8 bits.
2001
2002 m32cm, m32c
2003 -----------
2004
2005 First arg may be passed in r0l or r0, same restrictions as above.
2006
2007 Second and further args are passed on the stack. Padding is used
2008 after QImode parameters (i.e. lower-addressed byte is the value,
2009 higher-addressed byte is the padding), stack "alignment" is 16
2010 bits. */
2011
2012
2013 /* Return true if TYPE is a type that can be passed in registers. (We
2014 ignore the size, and pay attention only to the type code;
2015 acceptable sizes depends on which register is being considered to
2016 hold it.) */
2017 static int
2018 m32c_reg_arg_type (struct type *type)
2019 {
2020 enum type_code code = TYPE_CODE (type);
2021
2022 return (code == TYPE_CODE_INT
2023 || code == TYPE_CODE_ENUM
2024 || code == TYPE_CODE_PTR
2025 || code == TYPE_CODE_REF
2026 || code == TYPE_CODE_BOOL
2027 || code == TYPE_CODE_CHAR);
2028 }
2029
2030
2031 static CORE_ADDR
2032 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2033 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2034 struct value **args, CORE_ADDR sp, int struct_return,
2035 CORE_ADDR struct_addr)
2036 {
2037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2038 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2039 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2040 CORE_ADDR cfa;
2041 int i;
2042
2043 /* The number of arguments given in this function's prototype, or
2044 zero if it has a non-prototyped function type. The m32c ABI
2045 passes arguments mentioned in the prototype differently from
2046 those in the ellipsis of a varargs function, or from those passed
2047 to a non-prototyped function. */
2048 int num_prototyped_args = 0;
2049
2050 {
2051 struct type *func_type = value_type (function);
2052
2053 /* Dereference function pointer types. */
2054 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2055 func_type = TYPE_TARGET_TYPE (func_type);
2056
2057 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2058 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2059
2060 #if 0
2061 /* The ABI description in gcc/config/m32c/m32c.abi says that
2062 we need to handle prototyped and non-prototyped functions
2063 separately, but the code in GCC doesn't actually do so. */
2064 if (TYPE_PROTOTYPED (func_type))
2065 #endif
2066 num_prototyped_args = TYPE_NFIELDS (func_type);
2067 }
2068
2069 /* First, if the function returns an aggregate by value, push a
2070 pointer to a buffer for it. This doesn't affect the way
2071 subsequent arguments are allocated to registers. */
2072 if (struct_return)
2073 {
2074 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2075 sp -= ptr_len;
2076 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2077 }
2078
2079 /* Push the arguments. */
2080 for (i = nargs - 1; i >= 0; i--)
2081 {
2082 struct value *arg = args[i];
2083 const gdb_byte *arg_bits = value_contents (arg);
2084 struct type *arg_type = value_type (arg);
2085 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2086
2087 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2088 if (i == 0
2089 && arg_size <= 2
2090 && i < num_prototyped_args
2091 && m32c_reg_arg_type (arg_type))
2092 {
2093 /* Extract and re-store as an integer as a terse way to make
2094 sure it ends up in the least significant end of r1. (GDB
2095 should avoid assuming endianness, even on uni-endian
2096 processors.) */
2097 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2098 byte_order);
2099 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2100 regcache_cooked_write_unsigned (regcache, reg->num, u);
2101 }
2102
2103 /* Can it go in r2? */
2104 else if (mach == bfd_mach_m16c
2105 && i == 1
2106 && arg_size == 2
2107 && i < num_prototyped_args
2108 && m32c_reg_arg_type (arg_type))
2109 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2110
2111 /* Everything else goes on the stack. */
2112 else
2113 {
2114 sp -= arg_size;
2115
2116 /* Align the stack. */
2117 if (mach == bfd_mach_m32c)
2118 sp &= ~1;
2119
2120 write_memory (sp, arg_bits, arg_size);
2121 }
2122 }
2123
2124 /* This is the CFA we use to identify the dummy frame. */
2125 cfa = sp;
2126
2127 /* Push the return address. */
2128 sp -= tdep->ret_addr_bytes;
2129 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2130 bp_addr);
2131
2132 /* Update the stack pointer. */
2133 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2134
2135 /* We need to borrow an odd trick from the i386 target here.
2136
2137 The value we return from this function gets used as the stack
2138 address (the CFA) for the dummy frame's ID. The obvious thing is
2139 to return the new TOS. However, that points at the return
2140 address, saved on the stack, which is inconsistent with the CFA's
2141 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2142 .debug_frame info uses the address immediately after the saved
2143 return address. So you end up with a dummy frame whose CFA
2144 points at the return address, but the frame for the function
2145 being called has a CFA pointing after the return address: the
2146 younger CFA is *greater than* the older CFA. The sanity checks
2147 in frame.c don't like that.
2148
2149 So we try to be consistent with the CFA's used by DWARF 2.
2150 Having a dummy frame and a real frame with the *same* CFA is
2151 tolerable. */
2152 return cfa;
2153 }
2154
2155
2156 static struct frame_id
2157 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2158 {
2159 /* This needs to return a frame ID whose PC is the return address
2160 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2161 m32c_push_dummy_call returned.
2162
2163 m32c_unwind_sp gives us the CFA, which is the value the SP had
2164 before the return address was pushed. */
2165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2166 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2167 return frame_id_build (sp, get_frame_pc (this_frame));
2168 }
2169
2170
2171 \f
2172 /* Return values. */
2173
2174 /* Return value conventions, according to GCC:
2175
2176 r8c, m16c
2177 ---------
2178
2179 QImode in r0l
2180 HImode in r0
2181 SImode in r2r0
2182 near pointer in r0
2183 far pointer in r2r0
2184
2185 Aggregate values (regardless of size) are returned by pushing a
2186 pointer to a temporary area on the stack after the args are pushed.
2187 The function fills in this area with the value. Note that this
2188 pointer on the stack does not affect how register arguments, if any,
2189 are configured.
2190
2191 m32cm, m32c
2192 -----------
2193 Same. */
2194
2195 /* Return non-zero if values of type TYPE are returned by storing them
2196 in a buffer whose address is passed on the stack, ahead of the
2197 other arguments. */
2198 static int
2199 m32c_return_by_passed_buf (struct type *type)
2200 {
2201 enum type_code code = TYPE_CODE (type);
2202
2203 return (code == TYPE_CODE_STRUCT
2204 || code == TYPE_CODE_UNION);
2205 }
2206
2207 static enum return_value_convention
2208 m32c_return_value (struct gdbarch *gdbarch,
2209 struct type *func_type,
2210 struct type *valtype,
2211 struct regcache *regcache,
2212 gdb_byte *readbuf,
2213 const gdb_byte *writebuf)
2214 {
2215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2216 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2217 enum return_value_convention conv;
2218 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2219
2220 if (m32c_return_by_passed_buf (valtype))
2221 conv = RETURN_VALUE_STRUCT_CONVENTION;
2222 else
2223 conv = RETURN_VALUE_REGISTER_CONVENTION;
2224
2225 if (readbuf)
2226 {
2227 /* We should never be called to find values being returned by
2228 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2229 unless we made the call ourselves. */
2230 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2231
2232 gdb_assert (valtype_len <= 8);
2233
2234 /* Anything that fits in r0 is returned there. */
2235 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2236 {
2237 ULONGEST u;
2238 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2239 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2240 }
2241 else
2242 {
2243 /* Everything else is passed in mem0, using as many bytes as
2244 needed. This is not what the Renesas tools do, but it's
2245 what GCC does at the moment. */
2246 struct minimal_symbol *mem0
2247 = lookup_minimal_symbol ("mem0", NULL, NULL);
2248
2249 if (! mem0)
2250 error (_("The return value is stored in memory at 'mem0', "
2251 "but GDB cannot find\n"
2252 "its address."));
2253 read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2254 }
2255 }
2256
2257 if (writebuf)
2258 {
2259 /* We should never be called to store values to be returned
2260 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2261 finding the buffer, unless we made the call ourselves. */
2262 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2263
2264 gdb_assert (valtype_len <= 8);
2265
2266 /* Anything that fits in r0 is returned there. */
2267 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2268 {
2269 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2270 byte_order);
2271 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2272 }
2273 else
2274 {
2275 /* Everything else is passed in mem0, using as many bytes as
2276 needed. This is not what the Renesas tools do, but it's
2277 what GCC does at the moment. */
2278 struct minimal_symbol *mem0
2279 = lookup_minimal_symbol ("mem0", NULL, NULL);
2280
2281 if (! mem0)
2282 error (_("The return value is stored in memory at 'mem0', "
2283 "but GDB cannot find\n"
2284 " its address."));
2285 write_memory (SYMBOL_VALUE_ADDRESS (mem0),
2286 (char *) writebuf, valtype_len);
2287 }
2288 }
2289
2290 return conv;
2291 }
2292
2293
2294 \f
2295 /* Trampolines. */
2296
2297 /* The m16c and m32c use a trampoline function for indirect function
2298 calls. An indirect call looks like this:
2299
2300 ... push arguments ...
2301 ... push target function address ...
2302 jsr.a m32c_jsri16
2303
2304 The code for m32c_jsri16 looks like this:
2305
2306 m32c_jsri16:
2307
2308 # Save return address.
2309 pop.w m32c_jsri_ret
2310 pop.b m32c_jsri_ret+2
2311
2312 # Store target function address.
2313 pop.w m32c_jsri_addr
2314
2315 # Re-push return address.
2316 push.b m32c_jsri_ret+2
2317 push.w m32c_jsri_ret
2318
2319 # Call the target function.
2320 jmpi.a m32c_jsri_addr
2321
2322 Without further information, GDB will treat calls to m32c_jsri16
2323 like calls to any other function. Since m32c_jsri16 doesn't have
2324 debugging information, that normally means that GDB sets a step-
2325 resume breakpoint and lets the program continue --- which is not
2326 what the user wanted. (Giving the trampoline debugging info
2327 doesn't help: the user expects the program to stop in the function
2328 their program is calling, not in some trampoline code they've never
2329 seen before.)
2330
2331 The gdbarch_skip_trampoline_code method tells GDB how to step
2332 through such trampoline functions transparently to the user. When
2333 given the address of a trampoline function's first instruction,
2334 gdbarch_skip_trampoline_code should return the address of the first
2335 instruction of the function really being called. If GDB decides it
2336 wants to step into that function, it will set a breakpoint there
2337 and silently continue to it.
2338
2339 We recognize the trampoline by name, and extract the target address
2340 directly from the stack. This isn't great, but recognizing by its
2341 code sequence seems more fragile. */
2342
2343 static CORE_ADDR
2344 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2345 {
2346 struct gdbarch *gdbarch = get_frame_arch (frame);
2347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2348 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2349
2350 /* It would be nicer to simply look up the addresses of known
2351 trampolines once, and then compare stop_pc with them. However,
2352 we'd need to ensure that that cached address got invalidated when
2353 someone loaded a new executable, and I'm not quite sure of the
2354 best way to do that. find_pc_partial_function does do some
2355 caching, so we'll see how this goes. */
2356 const char *name;
2357 CORE_ADDR start, end;
2358
2359 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2360 {
2361 /* Are we stopped at the beginning of the trampoline function? */
2362 if (strcmp (name, "m32c_jsri16") == 0
2363 && stop_pc == start)
2364 {
2365 /* Get the stack pointer. The return address is at the top,
2366 and the target function's address is just below that. We
2367 know it's a two-byte address, since the trampoline is
2368 m32c_jsri*16*. */
2369 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2370 CORE_ADDR target
2371 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2372 2, byte_order);
2373
2374 /* What we have now is the address of a jump instruction.
2375 What we need is the destination of that jump.
2376 The opcode is 1 byte, and the destination is the next 3 bytes. */
2377
2378 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2379 return target;
2380 }
2381 }
2382
2383 return 0;
2384 }
2385
2386
2387 /* Address/pointer conversions. */
2388
2389 /* On the m16c, there is a 24-bit address space, but only a very few
2390 instructions can generate addresses larger than 0xffff: jumps,
2391 jumps to subroutines, and the lde/std (load/store extended)
2392 instructions.
2393
2394 Since GCC can only support one size of pointer, we can't have
2395 distinct 'near' and 'far' pointer types; we have to pick one size
2396 for everything. If we wanted to use 24-bit pointers, then GCC
2397 would have to use lde and ste for all memory references, which
2398 would be terrible for performance and code size. So the GNU
2399 toolchain uses 16-bit pointers for everything, and gives up the
2400 ability to have pointers point outside the first 64k of memory.
2401
2402 However, as a special hack, we let the linker place functions at
2403 addresses above 0xffff, as long as it also places a trampoline in
2404 the low 64k for every function whose address is taken. Each
2405 trampoline consists of a single jmp.a instruction that jumps to the
2406 function's real entry point. Pointers to functions can be 16 bits
2407 long, even though the functions themselves are at higher addresses:
2408 the pointers refer to the trampolines, not the functions.
2409
2410 This complicates things for GDB, however: given the address of a
2411 function (from debug info or linker symbols, say) which could be
2412 anywhere in the 24-bit address space, how can we find an
2413 appropriate 16-bit value to use as a pointer to it?
2414
2415 If the linker has not generated a trampoline for the function,
2416 we're out of luck. Well, I guess we could malloc some space and
2417 write a jmp.a instruction to it, but I'm not going to get into that
2418 at the moment.
2419
2420 If the linker has generated a trampoline for the function, then it
2421 also emitted a symbol for the trampoline: if the function's linker
2422 symbol is named NAME, then the function's trampoline's linker
2423 symbol is named NAME.plt.
2424
2425 So, given a code address:
2426 - We try to find a linker symbol at that address.
2427 - If we find such a symbol named NAME, we look for a linker symbol
2428 named NAME.plt.
2429 - If we find such a symbol, we assume it is a trampoline, and use
2430 its address as the pointer value.
2431
2432 And, given a function pointer:
2433 - We try to find a linker symbol at that address named NAME.plt.
2434 - If we find such a symbol, we look for a linker symbol named NAME.
2435 - If we find that, we provide that as the function's address.
2436 - If any of the above steps fail, we return the original address
2437 unchanged; it might really be a function in the low 64k.
2438
2439 See? You *knew* there was a reason you wanted to be a computer
2440 programmer! :) */
2441
2442 static void
2443 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2444 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2445 {
2446 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2447 enum type_code target_code;
2448 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2449 TYPE_CODE (type) == TYPE_CODE_REF);
2450
2451 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2452
2453 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2454 {
2455 char *func_name;
2456 char *tramp_name;
2457 struct minimal_symbol *tramp_msym;
2458
2459 /* Try to find a linker symbol at this address. */
2460 struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
2461
2462 if (! func_msym)
2463 error (_("Cannot convert code address %s to function pointer:\n"
2464 "couldn't find a symbol at that address, to find trampoline."),
2465 paddress (gdbarch, addr));
2466
2467 func_name = SYMBOL_LINKAGE_NAME (func_msym);
2468 tramp_name = xmalloc (strlen (func_name) + 5);
2469 strcpy (tramp_name, func_name);
2470 strcat (tramp_name, ".plt");
2471
2472 /* Try to find a linker symbol for the trampoline. */
2473 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2474
2475 /* We've either got another copy of the name now, or don't need
2476 the name any more. */
2477 xfree (tramp_name);
2478
2479 if (! tramp_msym)
2480 {
2481 CORE_ADDR ptrval;
2482
2483 /* No PLT entry found. Mask off the upper bits of the address
2484 to make a pointer. As noted in the warning to the user
2485 below, this value might be useful if converted back into
2486 an address by GDB, but will otherwise, almost certainly,
2487 be garbage.
2488
2489 Using this masked result does seem to be useful
2490 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2491 PASSes. These results appear to be correct as well.
2492
2493 We print a warning here so that the user can make a
2494 determination about whether the result is useful or not. */
2495 ptrval = addr & 0xffff;
2496
2497 warning (_("Cannot convert code address %s to function pointer:\n"
2498 "couldn't find trampoline named '%s.plt'.\n"
2499 "Returning pointer value %s instead; this may produce\n"
2500 "a useful result if converted back into an address by GDB,\n"
2501 "but will most likely not be useful otherwise.\n"),
2502 paddress (gdbarch, addr), func_name,
2503 paddress (gdbarch, ptrval));
2504
2505 addr = ptrval;
2506
2507 }
2508 else
2509 {
2510 /* The trampoline's address is our pointer. */
2511 addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2512 }
2513 }
2514
2515 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2516 }
2517
2518
2519 static CORE_ADDR
2520 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2521 struct type *type, const gdb_byte *buf)
2522 {
2523 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2524 CORE_ADDR ptr;
2525 enum type_code target_code;
2526
2527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2528 TYPE_CODE (type) == TYPE_CODE_REF);
2529
2530 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2531
2532 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2533
2534 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2535 {
2536 /* See if there is a minimal symbol at that address whose name is
2537 "NAME.plt". */
2538 struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2539
2540 if (ptr_msym)
2541 {
2542 char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
2543 int len = strlen (ptr_msym_name);
2544
2545 if (len > 4
2546 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2547 {
2548 struct minimal_symbol *func_msym;
2549 /* We have a .plt symbol; try to find the symbol for the
2550 corresponding function.
2551
2552 Since the trampoline contains a jump instruction, we
2553 could also just extract the jump's target address. I
2554 don't see much advantage one way or the other. */
2555 char *func_name = xmalloc (len - 4 + 1);
2556 memcpy (func_name, ptr_msym_name, len - 4);
2557 func_name[len - 4] = '\0';
2558 func_msym
2559 = lookup_minimal_symbol (func_name, NULL, NULL);
2560
2561 /* If we do have such a symbol, return its value as the
2562 function's true address. */
2563 if (func_msym)
2564 ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2565 }
2566 }
2567 else
2568 {
2569 int aspace;
2570
2571 for (aspace = 1; aspace <= 15; aspace++)
2572 {
2573 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2574
2575 if (ptr_msym)
2576 ptr |= aspace << 16;
2577 }
2578 }
2579 }
2580
2581 return ptr;
2582 }
2583
2584 static void
2585 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2586 int *frame_regnum,
2587 LONGEST *frame_offset)
2588 {
2589 const char *name;
2590 CORE_ADDR func_addr, func_end, sal_end;
2591 struct m32c_prologue p;
2592
2593 struct regcache *regcache = get_current_regcache ();
2594 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2595
2596 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2597 internal_error (__FILE__, __LINE__,
2598 _("No virtual frame pointer available"));
2599
2600 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2601 switch (p.kind)
2602 {
2603 case prologue_with_frame_ptr:
2604 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2605 *frame_offset = p.frame_ptr_offset;
2606 break;
2607 case prologue_sans_frame_ptr:
2608 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2609 *frame_offset = p.frame_size;
2610 break;
2611 default:
2612 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2613 *frame_offset = 0;
2614 break;
2615 }
2616 /* Sanity check */
2617 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2618 internal_error (__FILE__, __LINE__,
2619 _("No virtual frame pointer available"));
2620 }
2621
2622 \f
2623 /* Initialization. */
2624
2625 static struct gdbarch *
2626 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2627 {
2628 struct gdbarch *arch;
2629 struct gdbarch_tdep *tdep;
2630 unsigned long mach = info.bfd_arch_info->mach;
2631
2632 /* Find a candidate among the list of architectures we've created
2633 already. */
2634 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2635 arches != NULL;
2636 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2637 return arches->gdbarch;
2638
2639 tdep = xcalloc (1, sizeof (*tdep));
2640 arch = gdbarch_alloc (&info, tdep);
2641
2642 /* Essential types. */
2643 make_types (arch);
2644
2645 /* Address/pointer conversions. */
2646 if (mach == bfd_mach_m16c)
2647 {
2648 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2649 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2650 }
2651
2652 /* Register set. */
2653 make_regs (arch);
2654
2655 /* Disassembly. */
2656 set_gdbarch_print_insn (arch, print_insn_m32c);
2657
2658 /* Breakpoints. */
2659 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2660
2661 /* Prologue analysis and unwinding. */
2662 set_gdbarch_inner_than (arch, core_addr_lessthan);
2663 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2664 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2665 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2666 #if 0
2667 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2668 They may be in the dwarf2 cfi code in GDB, or they may be in
2669 the debug info emitted by the upstream toolchain. I don't
2670 know which, but I do know that the prologue analyzer works better.
2671 MVS 04/13/06 */
2672 dwarf2_append_sniffers (arch);
2673 #endif
2674 frame_unwind_append_unwinder (arch, &m32c_unwind);
2675
2676 /* Inferior calls. */
2677 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2678 set_gdbarch_return_value (arch, m32c_return_value);
2679 set_gdbarch_dummy_id (arch, m32c_dummy_id);
2680
2681 /* Trampolines. */
2682 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2683
2684 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2685
2686 /* m32c function boundary addresses are not necessarily even.
2687 Therefore, the `vbit', which indicates a pointer to a virtual
2688 member function, is stored in the delta field, rather than as
2689 the low bit of a function pointer address.
2690
2691 In order to verify this, see the definition of
2692 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2693 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2694 set_gdbarch_vbit_in_delta (arch, 1);
2695
2696 return arch;
2697 }
2698
2699 /* Provide a prototype to silence -Wmissing-prototypes. */
2700 extern initialize_file_ftype _initialize_m32c_tdep;
2701
2702 void
2703 _initialize_m32c_tdep (void)
2704 {
2705 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2706
2707 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2708 }
This page took 0.084549 seconds and 5 git commands to generate.