* dwarf2-frame.c (dwarf2_frame_cache, dwarf2_frame_this_id)
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright 2004, 2005, 2007 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23
24 #include <stdarg.h>
25
26 #if defined (HAVE_STRING_H)
27 #include <string.h>
28 #endif
29
30 #include "gdb_assert.h"
31 #include "elf-bfd.h"
32 #include "elf/m32c.h"
33 #include "gdb/sim-m32c.h"
34 #include "dis-asm.h"
35 #include "gdbtypes.h"
36 #include "regcache.h"
37 #include "arch-utils.h"
38 #include "frame.h"
39 #include "frame-unwind.h"
40 #include "dwarf2-frame.h"
41 #include "dwarf2expr.h"
42 #include "symtab.h"
43 #include "gdbcore.h"
44 #include "value.h"
45 #include "reggroups.h"
46 #include "prologue-value.h"
47 #include "target.h"
48
49 \f
50 /* The m32c tdep structure. */
51
52 static struct reggroup *m32c_dma_reggroup;
53
54 struct m32c_reg;
55
56 /* The type of a function that moves the value of REG between CACHE or
57 BUF --- in either direction. */
58 typedef void (m32c_move_reg_t) (struct m32c_reg *reg,
59 struct regcache *cache,
60 void *buf);
61
62 struct m32c_reg
63 {
64 /* The name of this register. */
65 const char *name;
66
67 /* Its type. */
68 struct type *type;
69
70 /* The architecture this register belongs to. */
71 struct gdbarch *arch;
72
73 /* Its GDB register number. */
74 int num;
75
76 /* Its sim register number. */
77 int sim_num;
78
79 /* Its DWARF register number, or -1 if it doesn't have one. */
80 int dwarf_num;
81
82 /* Register group memberships. */
83 unsigned int general_p : 1;
84 unsigned int dma_p : 1;
85 unsigned int system_p : 1;
86 unsigned int save_restore_p : 1;
87
88 /* Functions to read its value from a regcache, and write its value
89 to a regcache. */
90 m32c_move_reg_t *read, *write;
91
92 /* Data for READ and WRITE functions. The exact meaning depends on
93 the specific functions selected; see the comments for those
94 functions. */
95 struct m32c_reg *rx, *ry;
96 int n;
97 };
98
99
100 /* An overestimate of the number of raw and pseudoregisters we will
101 have. The exact answer depends on the variant of the architecture
102 at hand, but we can use this to declare statically allocated
103 arrays, and bump it up when needed. */
104 #define M32C_MAX_NUM_REGS (75)
105
106 /* The largest assigned DWARF register number. */
107 #define M32C_MAX_DWARF_REGNUM (40)
108
109
110 struct gdbarch_tdep
111 {
112 /* All the registers for this variant, indexed by GDB register
113 number, and the number of registers present. */
114 struct m32c_reg regs[M32C_MAX_NUM_REGS];
115
116 /* The number of valid registers. */
117 int num_regs;
118
119 /* Interesting registers. These are pointers into REGS. */
120 struct m32c_reg *pc, *flg;
121 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
122 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
123 struct m32c_reg *sb, *fb, *sp;
124
125 /* A table indexed by DWARF register numbers, pointing into
126 REGS. */
127 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
128
129 /* Types for this architecture. We can't use the builtin_type_foo
130 types, because they're not initialized when building a gdbarch
131 structure. */
132 struct type *voyd, *ptr_voyd, *func_voyd;
133 struct type *uint8, *uint16;
134 struct type *int8, *int16, *int32, *int64;
135
136 /* The types for data address and code address registers. */
137 struct type *data_addr_reg_type, *code_addr_reg_type;
138
139 /* The number of bytes a return address pushed by a 'jsr' instruction
140 occupies on the stack. */
141 int ret_addr_bytes;
142
143 /* The number of bytes an address register occupies on the stack
144 when saved by an 'enter' or 'pushm' instruction. */
145 int push_addr_bytes;
146 };
147
148 \f
149 /* Types. */
150
151 static void
152 make_types (struct gdbarch *arch)
153 {
154 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
155 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
156 int data_addr_reg_bits, code_addr_reg_bits;
157 char type_name[50];
158
159 #if 0
160 /* This is used to clip CORE_ADDR values, so this value is
161 appropriate both on the m32c, where pointers are 32 bits long,
162 and on the m16c, where pointers are sixteen bits long, but there
163 may be code above the 64k boundary. */
164 set_gdbarch_addr_bit (arch, 24);
165 #else
166 /* GCC uses 32 bits for addrs in the dwarf info, even though
167 only 16/24 bits are used. Setting addr_bit to 24 causes
168 errors in reading the dwarf addresses. */
169 set_gdbarch_addr_bit (arch, 32);
170 #endif
171
172 set_gdbarch_int_bit (arch, 16);
173 switch (mach)
174 {
175 case bfd_mach_m16c:
176 data_addr_reg_bits = 16;
177 code_addr_reg_bits = 24;
178 set_gdbarch_ptr_bit (arch, 16);
179 tdep->ret_addr_bytes = 3;
180 tdep->push_addr_bytes = 2;
181 break;
182
183 case bfd_mach_m32c:
184 data_addr_reg_bits = 24;
185 code_addr_reg_bits = 24;
186 set_gdbarch_ptr_bit (arch, 32);
187 tdep->ret_addr_bytes = 4;
188 tdep->push_addr_bytes = 4;
189 break;
190
191 default:
192 gdb_assert (0);
193 }
194
195 /* The builtin_type_mumble variables are sometimes uninitialized when
196 this is called, so we avoid using them. */
197 tdep->voyd = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
198 tdep->ptr_voyd = init_type (TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / 8,
199 TYPE_FLAG_UNSIGNED, NULL, NULL);
200 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
201 tdep->func_voyd = lookup_function_type (tdep->voyd);
202
203 sprintf (type_name, "%s_data_addr_t",
204 gdbarch_bfd_arch_info (arch)->printable_name);
205 tdep->data_addr_reg_type
206 = init_type (TYPE_CODE_PTR, data_addr_reg_bits / 8,
207 TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
208 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
209
210 sprintf (type_name, "%s_code_addr_t",
211 gdbarch_bfd_arch_info (arch)->printable_name);
212 tdep->code_addr_reg_type
213 = init_type (TYPE_CODE_PTR, code_addr_reg_bits / 8,
214 TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
215 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
216
217 tdep->uint8 = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
218 "uint8_t", NULL);
219 tdep->uint16 = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
220 "uint16_t", NULL);
221 tdep->int8 = init_type (TYPE_CODE_INT, 1, 0, "int8_t", NULL);
222 tdep->int16 = init_type (TYPE_CODE_INT, 2, 0, "int16_t", NULL);
223 tdep->int32 = init_type (TYPE_CODE_INT, 4, 0, "int32_t", NULL);
224 tdep->int64 = init_type (TYPE_CODE_INT, 8, 0, "int64_t", NULL);
225 }
226
227
228 \f
229 /* Register set. */
230
231 static const char *
232 m32c_register_name (int num)
233 {
234 return gdbarch_tdep (current_gdbarch)->regs[num].name;
235 }
236
237
238 static struct type *
239 m32c_register_type (struct gdbarch *arch, int reg_nr)
240 {
241 return gdbarch_tdep (arch)->regs[reg_nr].type;
242 }
243
244
245 static int
246 m32c_register_sim_regno (int reg_nr)
247 {
248 return gdbarch_tdep (current_gdbarch)->regs[reg_nr].sim_num;
249 }
250
251
252 static int
253 m32c_debug_info_reg_to_regnum (int reg_nr)
254 {
255 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
256 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
257 && tdep->dwarf_regs[reg_nr])
258 return tdep->dwarf_regs[reg_nr]->num;
259 else
260 /* The DWARF CFI code expects to see -1 for invalid register
261 numbers. */
262 return -1;
263 }
264
265
266 int
267 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
268 struct reggroup *group)
269 {
270 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
271 struct m32c_reg *reg = &tdep->regs[regnum];
272
273 /* The anonymous raw registers aren't in any groups. */
274 if (! reg->name)
275 return 0;
276
277 if (group == all_reggroup)
278 return 1;
279
280 if (group == general_reggroup
281 && reg->general_p)
282 return 1;
283
284 if (group == m32c_dma_reggroup
285 && reg->dma_p)
286 return 1;
287
288 if (group == system_reggroup
289 && reg->system_p)
290 return 1;
291
292 /* Since the m32c DWARF register numbers refer to cooked registers, not
293 raw registers, and frame_pop depends on the save and restore groups
294 containing registers the DWARF CFI will actually mention, our save
295 and restore groups are cooked registers, not raw registers. (This is
296 why we can't use the default reggroup function.) */
297 if ((group == save_reggroup
298 || group == restore_reggroup)
299 && reg->save_restore_p)
300 return 1;
301
302 return 0;
303 }
304
305
306 /* Register move functions. We declare them here using
307 m32c_move_reg_t to check the types. */
308 static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
309 static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
310 static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
311 static m32c_move_reg_t m32c_part_read, m32c_part_write;
312 static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
313 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
314
315
316 /* Copy the value of the raw register REG from CACHE to BUF. */
317 static void
318 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
319 {
320 regcache_raw_read (cache, reg->num, buf);
321 }
322
323
324 /* Copy the value of the raw register REG from BUF to CACHE. */
325 static void
326 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
327 {
328 regcache_raw_write (cache, reg->num, (const void *) buf);
329 }
330
331
332 /* Return the value of the 'flg' register in CACHE. */
333 static int
334 m32c_read_flg (struct regcache *cache)
335 {
336 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
337 ULONGEST flg;
338 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
339 return flg & 0xffff;
340 }
341
342
343 /* Evaluate the real register number of a banked register. */
344 static struct m32c_reg *
345 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
346 {
347 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
348 }
349
350
351 /* Move the value of a banked register from CACHE to BUF.
352 If the value of the 'flg' register in CACHE has any of the bits
353 masked in REG->n set, then read REG->ry. Otherwise, read
354 REG->rx. */
355 static void
356 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
357 {
358 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
359 regcache_raw_read (cache, bank_reg->num, buf);
360 }
361
362
363 /* Move the value of a banked register from BUF to CACHE.
364 If the value of the 'flg' register in CACHE has any of the bits
365 masked in REG->n set, then write REG->ry. Otherwise, write
366 REG->rx. */
367 static void
368 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
369 {
370 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
371 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
372 }
373
374
375 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
376 banked register; on bfd_mach_m16c, it's not. */
377 static void
378 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
379 {
380 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
381 m32c_raw_read (reg->rx, cache, buf);
382 else
383 m32c_banked_read (reg, cache, buf);
384 }
385
386
387 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
388 banked register; on bfd_mach_m16c, it's not. */
389 static void
390 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
391 {
392 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
393 m32c_raw_write (reg->rx, cache, buf);
394 else
395 m32c_banked_write (reg, cache, buf);
396 }
397
398
399 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
400 and *LEN_P to the offset and length, in bytes, of the part REG
401 occupies in its underlying register. The offset is from the
402 lower-addressed end, regardless of the architecture's endianness.
403 (The M32C family is always little-endian, but let's keep those
404 assumptions out of here.) */
405 static void
406 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
407 {
408 /* The length of the containing register, of which REG is one part. */
409 int containing_len = TYPE_LENGTH (reg->rx->type);
410
411 /* The length of one "element" in our imaginary array. */
412 int elt_len = TYPE_LENGTH (reg->type);
413
414 /* The offset of REG's "element" from the least significant end of
415 the containing register. */
416 int elt_offset = reg->n * elt_len;
417
418 /* If we extend off the end, trim the length of the element. */
419 if (elt_offset + elt_len > containing_len)
420 {
421 elt_len = containing_len - elt_offset;
422 /* We shouldn't be declaring partial registers that go off the
423 end of their containing registers. */
424 gdb_assert (elt_len > 0);
425 }
426
427 /* Flip the offset around if we're big-endian. */
428 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
429 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
430
431 *offset_p = elt_offset;
432 *len_p = elt_len;
433 }
434
435
436 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
437 to BUF. Treating the value of the register REG->rx as an array of
438 REG->type values, where higher indices refer to more significant
439 bits, read the value of the REG->n'th element. */
440 static void
441 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
442 {
443 int offset, len;
444 memset (buf, 0, TYPE_LENGTH (reg->type));
445 m32c_find_part (reg, &offset, &len);
446 regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
447 }
448
449
450 /* Move the value of a banked register from BUF to CACHE.
451 Treating the value of the register REG->rx as an array of REG->type
452 values, where higher indices refer to more significant bits, write
453 the value of the REG->n'th element. */
454 static void
455 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
456 {
457 int offset, len;
458 m32c_find_part (reg, &offset, &len);
459 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
460 }
461
462
463 /* Move the value of REG from CACHE to BUF. REG's value is the
464 concatenation of the values of the registers REG->rx and REG->ry,
465 with REG->rx contributing the more significant bits. */
466 static void
467 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
468 {
469 int high_bytes = TYPE_LENGTH (reg->rx->type);
470 int low_bytes = TYPE_LENGTH (reg->ry->type);
471 /* For address arithmetic. */
472 unsigned char *cbuf = buf;
473
474 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
475
476 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
477 {
478 regcache_cooked_read (cache, reg->rx->num, cbuf);
479 regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
480 }
481 else
482 {
483 regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
484 regcache_cooked_read (cache, reg->ry->num, cbuf);
485 }
486 }
487
488
489 /* Move the value of REG from CACHE to BUF. REG's value is the
490 concatenation of the values of the registers REG->rx and REG->ry,
491 with REG->rx contributing the more significant bits. */
492 static void
493 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
494 {
495 int high_bytes = TYPE_LENGTH (reg->rx->type);
496 int low_bytes = TYPE_LENGTH (reg->ry->type);
497 /* For address arithmetic. */
498 unsigned char *cbuf = buf;
499
500 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
501
502 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
503 {
504 regcache_cooked_write (cache, reg->rx->num, cbuf);
505 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
506 }
507 else
508 {
509 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
510 regcache_cooked_write (cache, reg->ry->num, cbuf);
511 }
512 }
513
514
515 /* Copy the value of the raw register REG from CACHE to BUF. REG is
516 the concatenation (from most significant to least) of r3, r2, r1,
517 and r0. */
518 static void
519 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
520 {
521 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
522 int len = TYPE_LENGTH (tdep->r0->type);
523
524 /* For address arithmetic. */
525 unsigned char *cbuf = buf;
526
527 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
528 {
529 regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
530 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
531 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
532 regcache_cooked_read (cache, tdep->r3->num, cbuf);
533 }
534 else
535 {
536 regcache_cooked_read (cache, tdep->r0->num, cbuf);
537 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
538 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
539 regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
540 }
541 }
542
543
544 /* Copy the value of the raw register REG from BUF to CACHE. REG is
545 the concatenation (from most significant to least) of r3, r2, r1,
546 and r0. */
547 static void
548 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
549 {
550 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
551 int len = TYPE_LENGTH (tdep->r0->type);
552
553 /* For address arithmetic. */
554 unsigned char *cbuf = buf;
555
556 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
557 {
558 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
559 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
560 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
561 regcache_cooked_write (cache, tdep->r3->num, cbuf);
562 }
563 else
564 {
565 regcache_cooked_write (cache, tdep->r0->num, cbuf);
566 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
567 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
568 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
569 }
570 }
571
572
573 static void
574 m32c_pseudo_register_read (struct gdbarch *arch,
575 struct regcache *cache,
576 int cookednum,
577 gdb_byte *buf)
578 {
579 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
580 struct m32c_reg *reg;
581
582 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
583 gdb_assert (arch == get_regcache_arch (cache));
584 gdb_assert (arch == tdep->regs[cookednum].arch);
585 reg = &tdep->regs[cookednum];
586
587 reg->read (reg, cache, buf);
588 }
589
590
591 static void
592 m32c_pseudo_register_write (struct gdbarch *arch,
593 struct regcache *cache,
594 int cookednum,
595 const gdb_byte *buf)
596 {
597 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
598 struct m32c_reg *reg;
599
600 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
601 gdb_assert (arch == get_regcache_arch (cache));
602 gdb_assert (arch == tdep->regs[cookednum].arch);
603 reg = &tdep->regs[cookednum];
604
605 reg->write (reg, cache, (void *) buf);
606 }
607
608
609 /* Add a register with the given fields to the end of ARCH's table.
610 Return a pointer to the newly added register. */
611 static struct m32c_reg *
612 add_reg (struct gdbarch *arch,
613 const char *name,
614 struct type *type,
615 int sim_num,
616 m32c_move_reg_t *read,
617 m32c_move_reg_t *write,
618 struct m32c_reg *rx,
619 struct m32c_reg *ry,
620 int n)
621 {
622 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
623 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
624
625 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
626
627 r->name = name;
628 r->type = type;
629 r->arch = arch;
630 r->num = tdep->num_regs;
631 r->sim_num = sim_num;
632 r->dwarf_num = -1;
633 r->general_p = 0;
634 r->dma_p = 0;
635 r->system_p = 0;
636 r->save_restore_p = 0;
637 r->read = read;
638 r->write = write;
639 r->rx = rx;
640 r->ry = ry;
641 r->n = n;
642
643 tdep->num_regs++;
644
645 return r;
646 }
647
648
649 /* Record NUM as REG's DWARF register number. */
650 static void
651 set_dwarf_regnum (struct m32c_reg *reg, int num)
652 {
653 gdb_assert (num < M32C_MAX_NUM_REGS);
654
655 /* Update the reg->DWARF mapping. Only count the first number
656 assigned to this register. */
657 if (reg->dwarf_num == -1)
658 reg->dwarf_num = num;
659
660 /* Update the DWARF->reg mapping. */
661 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
662 }
663
664
665 /* Mark REG as a general-purpose register, and return it. */
666 static struct m32c_reg *
667 mark_general (struct m32c_reg *reg)
668 {
669 reg->general_p = 1;
670 return reg;
671 }
672
673
674 /* Mark REG as a DMA register, and return it. */
675 static struct m32c_reg *
676 mark_dma (struct m32c_reg *reg)
677 {
678 reg->dma_p = 1;
679 return reg;
680 }
681
682
683 /* Mark REG as a SYSTEM register, and return it. */
684 static struct m32c_reg *
685 mark_system (struct m32c_reg *reg)
686 {
687 reg->system_p = 1;
688 return reg;
689 }
690
691
692 /* Mark REG as a save-restore register, and return it. */
693 static struct m32c_reg *
694 mark_save_restore (struct m32c_reg *reg)
695 {
696 reg->save_restore_p = 1;
697 return reg;
698 }
699
700
701 #define FLAGBIT_B 0x0010
702 #define FLAGBIT_U 0x0080
703
704 /* Handy macros for declaring registers. These all evaluate to
705 pointers to the register declared. Macros that define two
706 registers evaluate to a pointer to the first. */
707
708 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
709 #define R(name, type, sim_num) \
710 (add_reg (arch, (name), (type), (sim_num), \
711 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
712
713 /* The simulator register number for a raw register named NAME. */
714 #define SIM(name) (m32c_sim_reg_ ## name)
715
716 /* A raw unsigned 16-bit data register named NAME.
717 NAME should be an identifier, not a string. */
718 #define R16U(name) \
719 (R(#name, tdep->uint16, SIM (name)))
720
721 /* A raw data address register named NAME.
722 NAME should be an identifier, not a string. */
723 #define RA(name) \
724 (R(#name, tdep->data_addr_reg_type, SIM (name)))
725
726 /* A raw code address register named NAME. NAME should
727 be an identifier, not a string. */
728 #define RC(name) \
729 (R(#name, tdep->code_addr_reg_type, SIM (name)))
730
731 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
732 NAME should be an identifier, not a string. */
733 #define RP(name, type) \
734 (R(#name "0", (type), SIM (name ## 0)), \
735 R(#name "1", (type), SIM (name ## 1)) - 1)
736
737 /* A raw banked general-purpose data register named NAME.
738 NAME should be an identifier, not a string. */
739 #define RBD(name) \
740 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
741 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
742
743 /* A raw banked data address register named NAME.
744 NAME should be an identifier, not a string. */
745 #define RBA(name) \
746 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
747 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
748
749 /* A cooked register named NAME referring to a raw banked register
750 from the bank selected by the current value of FLG. RAW_PAIR
751 should be a pointer to the first register in the banked pair.
752 NAME must be an identifier, not a string. */
753 #define CB(name, raw_pair) \
754 (add_reg (arch, #name, (raw_pair)->type, 0, \
755 m32c_banked_read, m32c_banked_write, \
756 (raw_pair), (raw_pair + 1), FLAGBIT_B))
757
758 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
759 access the top and bottom halves of the register pointed to by
760 NAME. NAME should be an identifier. */
761 #define CHL(name, type) \
762 (add_reg (arch, #name "h", (type), 0, \
763 m32c_part_read, m32c_part_write, name, NULL, 1), \
764 add_reg (arch, #name "l", (type), 0, \
765 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
766
767 /* A register constructed by concatenating the two registers HIGH and
768 LOW, whose name is HIGHLOW and whose type is TYPE. */
769 #define CCAT(high, low, type) \
770 (add_reg (arch, #high #low, (type), 0, \
771 m32c_cat_read, m32c_cat_write, (high), (low), 0))
772
773 /* Abbreviations for marking register group membership. */
774 #define G(reg) (mark_general (reg))
775 #define S(reg) (mark_system (reg))
776 #define DMA(reg) (mark_dma (reg))
777
778
779 /* Construct the register set for ARCH. */
780 static void
781 make_regs (struct gdbarch *arch)
782 {
783 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
784 int mach = gdbarch_bfd_arch_info (arch)->mach;
785 int num_raw_regs;
786 int num_cooked_regs;
787
788 struct m32c_reg *r0;
789 struct m32c_reg *r1;
790 struct m32c_reg *r2;
791 struct m32c_reg *r3;
792 struct m32c_reg *a0;
793 struct m32c_reg *a1;
794 struct m32c_reg *fb;
795 struct m32c_reg *sb;
796 struct m32c_reg *sp;
797 struct m32c_reg *r0hl;
798 struct m32c_reg *r1hl;
799 struct m32c_reg *r2hl;
800 struct m32c_reg *r3hl;
801 struct m32c_reg *intbhl;
802 struct m32c_reg *r2r0;
803 struct m32c_reg *r3r1;
804 struct m32c_reg *r3r1r2r0;
805 struct m32c_reg *r3r2r1r0;
806 struct m32c_reg *a1a0;
807
808 struct m32c_reg *raw_r0_pair = RBD (r0);
809 struct m32c_reg *raw_r1_pair = RBD (r1);
810 struct m32c_reg *raw_r2_pair = RBD (r2);
811 struct m32c_reg *raw_r3_pair = RBD (r3);
812 struct m32c_reg *raw_a0_pair = RBA (a0);
813 struct m32c_reg *raw_a1_pair = RBA (a1);
814 struct m32c_reg *raw_fb_pair = RBA (fb);
815
816 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
817 We always declare both raw registers, and deal with the distinction
818 in the pseudoregister. */
819 struct m32c_reg *raw_sb_pair = RBA (sb);
820
821 struct m32c_reg *usp = S (RA (usp));
822 struct m32c_reg *isp = S (RA (isp));
823 struct m32c_reg *intb = S (RC (intb));
824 struct m32c_reg *pc = G (RC (pc));
825 struct m32c_reg *flg = G (R16U (flg));
826
827 if (mach == bfd_mach_m32c)
828 {
829 struct m32c_reg *svf = S (R16U (svf));
830 struct m32c_reg *svp = S (RC (svp));
831 struct m32c_reg *vct = S (RC (vct));
832
833 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
834 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
835 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
836 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
837 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
838 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
839 }
840
841 num_raw_regs = tdep->num_regs;
842
843 r0 = G (CB (r0, raw_r0_pair));
844 r1 = G (CB (r1, raw_r1_pair));
845 r2 = G (CB (r2, raw_r2_pair));
846 r3 = G (CB (r3, raw_r3_pair));
847 a0 = G (CB (a0, raw_a0_pair));
848 a1 = G (CB (a1, raw_a1_pair));
849 fb = G (CB (fb, raw_fb_pair));
850
851 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
852 Specify custom read/write functions that do the right thing. */
853 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
854 m32c_sb_read, m32c_sb_write,
855 raw_sb_pair, raw_sb_pair + 1, 0));
856
857 /* The current sp is either usp or isp, depending on the value of
858 the FLG register's U bit. */
859 sp = G (add_reg (arch, "sp", usp->type, 0,
860 m32c_banked_read, m32c_banked_write,
861 isp, usp, FLAGBIT_U));
862
863 r0hl = CHL (r0, tdep->int8);
864 r1hl = CHL (r1, tdep->int8);
865 r2hl = CHL (r2, tdep->int8);
866 r3hl = CHL (r3, tdep->int8);
867 intbhl = CHL (intb, tdep->int16);
868
869 r2r0 = CCAT (r2, r0, tdep->int32);
870 r3r1 = CCAT (r3, r1, tdep->int32);
871 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
872
873 r3r2r1r0
874 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
875 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
876
877 if (mach == bfd_mach_m16c)
878 a1a0 = CCAT (a1, a0, tdep->int32);
879 else
880 a1a0 = NULL;
881
882 num_cooked_regs = tdep->num_regs - num_raw_regs;
883
884 tdep->pc = pc;
885 tdep->flg = flg;
886 tdep->r0 = r0;
887 tdep->r1 = r1;
888 tdep->r2 = r2;
889 tdep->r3 = r3;
890 tdep->r2r0 = r2r0;
891 tdep->r3r2r1r0 = r3r2r1r0;
892 tdep->r3r1r2r0 = r3r1r2r0;
893 tdep->a0 = a0;
894 tdep->a1 = a1;
895 tdep->sb = sb;
896 tdep->fb = fb;
897 tdep->sp = sp;
898
899 /* Set up the DWARF register table. */
900 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
901 set_dwarf_regnum (r0hl + 1, 0x01);
902 set_dwarf_regnum (r0hl + 0, 0x02);
903 set_dwarf_regnum (r1hl + 1, 0x03);
904 set_dwarf_regnum (r1hl + 0, 0x04);
905 set_dwarf_regnum (r0, 0x05);
906 set_dwarf_regnum (r1, 0x06);
907 set_dwarf_regnum (r2, 0x07);
908 set_dwarf_regnum (r3, 0x08);
909 set_dwarf_regnum (a0, 0x09);
910 set_dwarf_regnum (a1, 0x0a);
911 set_dwarf_regnum (fb, 0x0b);
912 set_dwarf_regnum (sp, 0x0c);
913 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
914 set_dwarf_regnum (sb, 0x13);
915 set_dwarf_regnum (r2r0, 0x15);
916 set_dwarf_regnum (r3r1, 0x16);
917 if (a1a0)
918 set_dwarf_regnum (a1a0, 0x17);
919
920 /* Enumerate the save/restore register group.
921
922 The regcache_save and regcache_restore functions apply their read
923 function to each register in this group.
924
925 Since frame_pop supplies frame_unwind_register as its read
926 function, the registers meaningful to the Dwarf unwinder need to
927 be in this group.
928
929 On the other hand, when we make inferior calls, save_inferior_status
930 and restore_inferior_status use them to preserve the current register
931 values across the inferior call. For this, you'd kind of like to
932 preserve all the raw registers, to protect the interrupted code from
933 any sort of bank switching the callee might have done. But we handle
934 those cases so badly anyway --- for example, it matters whether we
935 restore FLG before or after we restore the general-purpose registers,
936 but there's no way to express that --- that it isn't worth worrying
937 about.
938
939 We omit control registers like inthl: if you call a function that
940 changes those, it's probably because you wanted that change to be
941 visible to the interrupted code. */
942 mark_save_restore (r0);
943 mark_save_restore (r1);
944 mark_save_restore (r2);
945 mark_save_restore (r3);
946 mark_save_restore (a0);
947 mark_save_restore (a1);
948 mark_save_restore (sb);
949 mark_save_restore (fb);
950 mark_save_restore (sp);
951 mark_save_restore (pc);
952 mark_save_restore (flg);
953
954 set_gdbarch_num_regs (arch, num_raw_regs);
955 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
956 set_gdbarch_pc_regnum (arch, pc->num);
957 set_gdbarch_sp_regnum (arch, sp->num);
958 set_gdbarch_register_name (arch, m32c_register_name);
959 set_gdbarch_register_type (arch, m32c_register_type);
960 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
961 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
962 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
963 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
964 set_gdbarch_dwarf_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
965 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
966 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
967
968 reggroup_add (arch, general_reggroup);
969 reggroup_add (arch, all_reggroup);
970 reggroup_add (arch, save_reggroup);
971 reggroup_add (arch, restore_reggroup);
972 reggroup_add (arch, system_reggroup);
973 reggroup_add (arch, m32c_dma_reggroup);
974 }
975
976
977 \f
978 /* Breakpoints. */
979
980 static const unsigned char *
981 m32c_breakpoint_from_pc (CORE_ADDR *pc, int *len)
982 {
983 static unsigned char break_insn[] = { 0x00 }; /* brk */
984
985 *len = sizeof (break_insn);
986 return break_insn;
987 }
988
989
990 \f
991 /* Prologue analysis. */
992
993 struct m32c_prologue
994 {
995 /* For consistency with the DWARF 2 .debug_frame info generated by
996 GCC, a frame's CFA is the address immediately after the saved
997 return address. */
998
999 /* The architecture for which we generated this prologue info. */
1000 struct gdbarch *arch;
1001
1002 enum {
1003 /* This function uses a frame pointer. */
1004 prologue_with_frame_ptr,
1005
1006 /* This function has no frame pointer. */
1007 prologue_sans_frame_ptr,
1008
1009 /* This function sets up the stack, so its frame is the first
1010 frame on the stack. */
1011 prologue_first_frame
1012
1013 } kind;
1014
1015 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1016 CFA to where the frame pointer points. This is always zero or
1017 negative. */
1018 LONGEST frame_ptr_offset;
1019
1020 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1021 the stack pointer --- always zero or negative.
1022
1023 Calling this a "size" is a bit misleading, but given that the
1024 stack grows downwards, using offsets for everything keeps one
1025 from going completely sign-crazy: you never change anything's
1026 sign for an ADD instruction; always change the second operand's
1027 sign for a SUB instruction; and everything takes care of
1028 itself.
1029
1030 Functions that use alloca don't have a constant frame size. But
1031 they always have frame pointers, so we must use that to find the
1032 CFA (and perhaps to unwind the stack pointer). */
1033 LONGEST frame_size;
1034
1035 /* The address of the first instruction at which the frame has been
1036 set up and the arguments are where the debug info says they are
1037 --- as best as we can tell. */
1038 CORE_ADDR prologue_end;
1039
1040 /* reg_offset[R] is the offset from the CFA at which register R is
1041 saved, or 1 if register R has not been saved. (Real values are
1042 always zero or negative.) */
1043 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1044 };
1045
1046
1047 /* The longest I've seen, anyway. */
1048 #define M32C_MAX_INSN_LEN (9)
1049
1050 /* Processor state, for the prologue analyzer. */
1051 struct m32c_pv_state
1052 {
1053 struct gdbarch *arch;
1054 pv_t r0, r1, r2, r3;
1055 pv_t a0, a1;
1056 pv_t sb, fb, sp;
1057 pv_t pc;
1058 struct pv_area *stack;
1059
1060 /* Bytes from the current PC, the address they were read from,
1061 and the address of the next unconsumed byte. */
1062 gdb_byte insn[M32C_MAX_INSN_LEN];
1063 CORE_ADDR scan_pc, next_addr;
1064 };
1065
1066
1067 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1068 all went well, or non-zero if simulating the action would trash our
1069 state. */
1070 static int
1071 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1072 {
1073 if (pv_area_store_would_trash (state->stack, state->sp))
1074 return 1;
1075
1076 state->sp = pv_add_constant (state->sp, -size);
1077 pv_area_store (state->stack, state->sp, size, value);
1078
1079 return 0;
1080 }
1081
1082
1083 /* A source or destination location for an m16c or m32c
1084 instruction. */
1085 struct srcdest
1086 {
1087 /* If srcdest_reg, the location is a register pointed to by REG.
1088 If srcdest_partial_reg, the location is part of a register pointed
1089 to by REG. We don't try to handle this too well.
1090 If srcdest_mem, the location is memory whose address is ADDR. */
1091 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1092 pv_t *reg, addr;
1093 };
1094
1095
1096 /* Return the SIZE-byte value at LOC in STATE. */
1097 static pv_t
1098 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1099 {
1100 if (loc.kind == srcdest_mem)
1101 return pv_area_fetch (state->stack, loc.addr, size);
1102 else if (loc.kind == srcdest_partial_reg)
1103 return pv_unknown ();
1104 else
1105 return *loc.reg;
1106 }
1107
1108
1109 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1110 all went well, or non-zero if simulating the store would trash our
1111 state. */
1112 static int
1113 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1114 pv_t value, int size)
1115 {
1116 if (loc.kind == srcdest_mem)
1117 {
1118 if (pv_area_store_would_trash (state->stack, loc.addr))
1119 return 1;
1120 pv_area_store (state->stack, loc.addr, size, value);
1121 }
1122 else if (loc.kind == srcdest_partial_reg)
1123 *loc.reg = pv_unknown ();
1124 else
1125 *loc.reg = value;
1126
1127 return 0;
1128 }
1129
1130
1131 static int
1132 m32c_sign_ext (int v, int bits)
1133 {
1134 int mask = 1 << (bits - 1);
1135 return (v ^ mask) - mask;
1136 }
1137
1138 static unsigned int
1139 m32c_next_byte (struct m32c_pv_state *st)
1140 {
1141 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1142 return st->insn[st->next_addr++ - st->scan_pc];
1143 }
1144
1145 static int
1146 m32c_udisp8 (struct m32c_pv_state *st)
1147 {
1148 return m32c_next_byte (st);
1149 }
1150
1151
1152 static int
1153 m32c_sdisp8 (struct m32c_pv_state *st)
1154 {
1155 return m32c_sign_ext (m32c_next_byte (st), 8);
1156 }
1157
1158
1159 static int
1160 m32c_udisp16 (struct m32c_pv_state *st)
1161 {
1162 int low = m32c_next_byte (st);
1163 int high = m32c_next_byte (st);
1164
1165 return low + (high << 8);
1166 }
1167
1168
1169 static int
1170 m32c_sdisp16 (struct m32c_pv_state *st)
1171 {
1172 int low = m32c_next_byte (st);
1173 int high = m32c_next_byte (st);
1174
1175 return m32c_sign_ext (low + (high << 8), 16);
1176 }
1177
1178
1179 static int
1180 m32c_udisp24 (struct m32c_pv_state *st)
1181 {
1182 int low = m32c_next_byte (st);
1183 int mid = m32c_next_byte (st);
1184 int high = m32c_next_byte (st);
1185
1186 return low + (mid << 8) + (high << 16);
1187 }
1188
1189
1190 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1191 static int
1192 m32c_get_src23 (unsigned char *i)
1193 {
1194 return (((i[0] & 0x70) >> 2)
1195 | ((i[1] & 0x30) >> 4));
1196 }
1197
1198
1199 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1200 static int
1201 m32c_get_dest23 (unsigned char *i)
1202 {
1203 return (((i[0] & 0x0e) << 1)
1204 | ((i[1] & 0xc0) >> 6));
1205 }
1206
1207
1208 static struct srcdest
1209 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1210 int code, int size)
1211 {
1212 struct srcdest sd;
1213
1214 if (code < 6)
1215 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1216 else
1217 sd.kind = srcdest_mem;
1218
1219 sd.addr = pv_unknown ();
1220 sd.reg = 0;
1221
1222 switch (code)
1223 {
1224 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1225 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1226 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1227 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1228
1229 case 0x4: sd.reg = &st->a0; break;
1230 case 0x5: sd.reg = &st->a1; break;
1231
1232 case 0x6: sd.addr = st->a0; break;
1233 case 0x7: sd.addr = st->a1; break;
1234
1235 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1236 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1237 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1238 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1239
1240 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1241 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1242 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1243 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1244
1245 default:
1246 gdb_assert (0);
1247 }
1248
1249 return sd;
1250 }
1251
1252
1253 static struct srcdest
1254 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1255 {
1256 struct srcdest sd;
1257
1258 sd.addr = pv_unknown ();
1259 sd.reg = 0;
1260
1261 switch (code)
1262 {
1263 case 0x12:
1264 case 0x13:
1265 case 0x10:
1266 case 0x11:
1267 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1268 break;
1269
1270 case 0x02:
1271 case 0x03:
1272 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1273 break;
1274
1275 default:
1276 sd.kind = srcdest_mem;
1277 break;
1278
1279 }
1280
1281 switch (code)
1282 {
1283 case 0x12: sd.reg = &st->r0; break;
1284 case 0x13: sd.reg = &st->r1; break;
1285 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1286 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1287 case 0x02: sd.reg = &st->a0; break;
1288 case 0x03: sd.reg = &st->a1; break;
1289
1290 case 0x00: sd.addr = st->a0; break;
1291 case 0x01: sd.addr = st->a1; break;
1292 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1293 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1294 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1295 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1296 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1297 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1298 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1299 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1300 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1301 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1302 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1303 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1304 default:
1305 gdb_assert (0);
1306 }
1307
1308 if (ind)
1309 {
1310 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1311 sd.kind = srcdest_mem;
1312 }
1313
1314 return sd;
1315 }
1316
1317
1318 /* The r16c and r32c machines have instructions with similar
1319 semantics, but completely different machine language encodings. So
1320 we break out the semantics into their own functions, and leave
1321 machine-specific decoding in m32c_analyze_prologue.
1322
1323 The following functions all expect their arguments already decoded,
1324 and they all return zero if analysis should continue past this
1325 instruction, or non-zero if analysis should stop. */
1326
1327
1328 /* Simulate an 'enter SIZE' instruction in STATE. */
1329 static int
1330 m32c_pv_enter (struct m32c_pv_state *state, int size)
1331 {
1332 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1333
1334 /* If simulating this store would require us to forget
1335 everything we know about the stack frame in the name of
1336 accuracy, it would be better to just quit now. */
1337 if (pv_area_store_would_trash (state->stack, state->sp))
1338 return 1;
1339
1340 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1341 return 1;
1342 state->fb = state->sp;
1343 state->sp = pv_add_constant (state->sp, -size);
1344
1345 return 0;
1346 }
1347
1348
1349 static int
1350 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1351 int bit, int src, int size)
1352 {
1353 if (bit & src)
1354 {
1355 if (m32c_pv_push (state, reg, size))
1356 return 1;
1357 }
1358
1359 return 0;
1360 }
1361
1362
1363 /* Simulate a 'pushm SRC' instruction in STATE. */
1364 static int
1365 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1366 {
1367 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1368
1369 /* The bits in SRC indicating which registers to save are:
1370 r0 r1 r2 r3 a0 a1 sb fb */
1371 return
1372 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1373 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1374 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1375 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1376 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1377 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1378 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1379 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1380 }
1381
1382 /* Return non-zero if VALUE is the first incoming argument register. */
1383
1384 static int
1385 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1386 {
1387 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1388 return (value.kind == pvk_register
1389 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1390 ? (value.reg == tdep->r1->num)
1391 : (value.reg == tdep->r0->num))
1392 && value.k == 0);
1393 }
1394
1395 /* Return non-zero if VALUE is an incoming argument register. */
1396
1397 static int
1398 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1399 {
1400 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1401 return (value.kind == pvk_register
1402 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1403 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1404 : (value.reg == tdep->r0->num))
1405 && value.k == 0);
1406 }
1407
1408 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1409 argument register to its stack slot in STATE. Such instructions
1410 should be included in the prologue, if possible.
1411
1412 The store is a spill if:
1413 - the value being stored is the original value of an argument register;
1414 - the value has not already been stored somewhere in STACK; and
1415 - LOC is a stack slot (e.g., a memory location whose address is
1416 relative to the original value of the SP). */
1417
1418 static int
1419 m32c_is_arg_spill (struct m32c_pv_state *st,
1420 struct srcdest loc,
1421 pv_t value)
1422 {
1423 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1424
1425 return (m32c_is_arg_reg (st, value)
1426 && loc.kind == srcdest_mem
1427 && pv_is_register (loc.addr, tdep->sp->num)
1428 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1429 }
1430
1431 /* Return non-zero if a store of VALUE to LOC is probably
1432 copying the struct return address into an address register
1433 for immediate use. This is basically a "spill" into the
1434 address register, instead of onto the stack.
1435
1436 The prerequisites are:
1437 - value being stored is original value of the FIRST arg register;
1438 - value has not already been stored on stack; and
1439 - LOC is an address register (a0 or a1). */
1440
1441 static int
1442 m32c_is_struct_return (struct m32c_pv_state *st,
1443 struct srcdest loc,
1444 pv_t value)
1445 {
1446 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1447
1448 return (m32c_is_1st_arg_reg (st, value)
1449 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1450 && loc.kind == srcdest_reg
1451 && (pv_is_register (*loc.reg, tdep->a0->num)
1452 || pv_is_register (*loc.reg, tdep->a1->num)));
1453 }
1454
1455 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1456 was a register save:
1457 - all the named registers should have their original values, and
1458 - the stack pointer should be at a constant offset from the
1459 original stack pointer. */
1460 static int
1461 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1462 {
1463 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1464 /* The bits in SRC indicating which registers to save are:
1465 r0 r1 r2 r3 a0 a1 sb fb */
1466 return
1467 (pv_is_register (st->sp, tdep->sp->num)
1468 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1469 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1470 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1471 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1472 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1473 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1474 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1475 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1476 }
1477
1478
1479 /* Function for finding saved registers in a 'struct pv_area'; we pass
1480 this to pv_area_scan.
1481
1482 If VALUE is a saved register, ADDR says it was saved at a constant
1483 offset from the frame base, and SIZE indicates that the whole
1484 register was saved, record its offset in RESULT_UNTYPED. */
1485 static void
1486 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1487 {
1488 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1489 struct gdbarch *arch = prologue->arch;
1490 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1491
1492 /* Is this the unchanged value of some register being saved on the
1493 stack? */
1494 if (value.kind == pvk_register
1495 && value.k == 0
1496 && pv_is_register (addr, tdep->sp->num))
1497 {
1498 /* Some registers require special handling: they're saved as a
1499 larger value than the register itself. */
1500 CORE_ADDR saved_size = register_size (arch, value.reg);
1501
1502 if (value.reg == tdep->pc->num)
1503 saved_size = tdep->ret_addr_bytes;
1504 else if (register_type (arch, value.reg)
1505 == tdep->data_addr_reg_type)
1506 saved_size = tdep->push_addr_bytes;
1507
1508 if (size == saved_size)
1509 {
1510 /* Find which end of the saved value corresponds to our
1511 register. */
1512 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1513 prologue->reg_offset[value.reg]
1514 = (addr.k + saved_size - register_size (arch, value.reg));
1515 else
1516 prologue->reg_offset[value.reg] = addr.k;
1517 }
1518 }
1519 }
1520
1521
1522 /* Analyze the function prologue for ARCH at START, going no further
1523 than LIMIT, and place a description of what we found in
1524 PROLOGUE. */
1525 void
1526 m32c_analyze_prologue (struct gdbarch *arch,
1527 CORE_ADDR start, CORE_ADDR limit,
1528 struct m32c_prologue *prologue)
1529 {
1530 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1531 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1532 CORE_ADDR after_last_frame_related_insn;
1533 struct cleanup *back_to;
1534 struct m32c_pv_state st;
1535
1536 st.arch = arch;
1537 st.r0 = pv_register (tdep->r0->num, 0);
1538 st.r1 = pv_register (tdep->r1->num, 0);
1539 st.r2 = pv_register (tdep->r2->num, 0);
1540 st.r3 = pv_register (tdep->r3->num, 0);
1541 st.a0 = pv_register (tdep->a0->num, 0);
1542 st.a1 = pv_register (tdep->a1->num, 0);
1543 st.sb = pv_register (tdep->sb->num, 0);
1544 st.fb = pv_register (tdep->fb->num, 0);
1545 st.sp = pv_register (tdep->sp->num, 0);
1546 st.pc = pv_register (tdep->pc->num, 0);
1547 st.stack = make_pv_area (tdep->sp->num);
1548 back_to = make_cleanup_free_pv_area (st.stack);
1549
1550 /* Record that the call instruction has saved the return address on
1551 the stack. */
1552 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1553
1554 memset (prologue, 0, sizeof (*prologue));
1555 prologue->arch = arch;
1556 {
1557 int i;
1558 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1559 prologue->reg_offset[i] = 1;
1560 }
1561
1562 st.scan_pc = after_last_frame_related_insn = start;
1563
1564 while (st.scan_pc < limit)
1565 {
1566 pv_t pre_insn_fb = st.fb;
1567 pv_t pre_insn_sp = st.sp;
1568
1569 /* In theory we could get in trouble by trying to read ahead
1570 here, when we only know we're expecting one byte. In
1571 practice I doubt anyone will care, and it makes the rest of
1572 the code easier. */
1573 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1574 /* If we can't fetch the instruction from memory, stop here
1575 and hope for the best. */
1576 break;
1577 st.next_addr = st.scan_pc;
1578
1579 /* The assembly instructions are written as they appear in the
1580 section of the processor manuals that describe the
1581 instruction encodings.
1582
1583 When a single assembly language instruction has several
1584 different machine-language encodings, the manual
1585 distinguishes them by a number in parens, before the
1586 mnemonic. Those numbers are included, as well.
1587
1588 The srcdest decoding instructions have the same names as the
1589 analogous functions in the simulator. */
1590 if (mach == bfd_mach_m16c)
1591 {
1592 /* (1) ENTER #imm8 */
1593 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1594 {
1595 if (m32c_pv_enter (&st, st.insn[2]))
1596 break;
1597 st.next_addr += 3;
1598 }
1599 /* (1) PUSHM src */
1600 else if (st.insn[0] == 0xec)
1601 {
1602 int src = st.insn[1];
1603 if (m32c_pv_pushm (&st, src))
1604 break;
1605 st.next_addr += 2;
1606
1607 if (m32c_pushm_is_reg_save (&st, src))
1608 after_last_frame_related_insn = st.next_addr;
1609 }
1610
1611 /* (6) MOV.size:G src, dest */
1612 else if ((st.insn[0] & 0xfe) == 0x72)
1613 {
1614 int size = (st.insn[0] & 0x01) ? 2 : 1;
1615 struct srcdest src;
1616 struct srcdest dest;
1617 pv_t src_value;
1618 st.next_addr += 2;
1619
1620 src
1621 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1622 dest
1623 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1624 src_value = m32c_srcdest_fetch (&st, src, size);
1625
1626 if (m32c_is_arg_spill (&st, dest, src_value))
1627 after_last_frame_related_insn = st.next_addr;
1628 else if (m32c_is_struct_return (&st, dest, src_value))
1629 after_last_frame_related_insn = st.next_addr;
1630
1631 if (m32c_srcdest_store (&st, dest, src_value, size))
1632 break;
1633 }
1634
1635 /* (1) LDC #IMM16, sp */
1636 else if (st.insn[0] == 0xeb
1637 && st.insn[1] == 0x50)
1638 {
1639 st.next_addr += 2;
1640 st.sp = pv_constant (m32c_udisp16 (&st));
1641 }
1642
1643 else
1644 /* We've hit some instruction we don't know how to simulate.
1645 Strictly speaking, we should set every value we're
1646 tracking to "unknown". But we'll be optimistic, assume
1647 that we have enough information already, and stop
1648 analysis here. */
1649 break;
1650 }
1651 else
1652 {
1653 int src_indirect = 0;
1654 int dest_indirect = 0;
1655 int i = 0;
1656
1657 gdb_assert (mach == bfd_mach_m32c);
1658
1659 /* Check for prefix bytes indicating indirect addressing. */
1660 if (st.insn[0] == 0x41)
1661 {
1662 src_indirect = 1;
1663 i++;
1664 }
1665 else if (st.insn[0] == 0x09)
1666 {
1667 dest_indirect = 1;
1668 i++;
1669 }
1670 else if (st.insn[0] == 0x49)
1671 {
1672 src_indirect = dest_indirect = 1;
1673 i++;
1674 }
1675
1676 /* (1) ENTER #imm8 */
1677 if (st.insn[i] == 0xec)
1678 {
1679 if (m32c_pv_enter (&st, st.insn[i + 1]))
1680 break;
1681 st.next_addr += 2;
1682 }
1683
1684 /* (1) PUSHM src */
1685 else if (st.insn[i] == 0x8f)
1686 {
1687 int src = st.insn[i + 1];
1688 if (m32c_pv_pushm (&st, src))
1689 break;
1690 st.next_addr += 2;
1691
1692 if (m32c_pushm_is_reg_save (&st, src))
1693 after_last_frame_related_insn = st.next_addr;
1694 }
1695
1696 /* (7) MOV.size:G src, dest */
1697 else if ((st.insn[i] & 0x80) == 0x80
1698 && (st.insn[i + 1] & 0x0f) == 0x0b
1699 && m32c_get_src23 (&st.insn[i]) < 20
1700 && m32c_get_dest23 (&st.insn[i]) < 20)
1701 {
1702 struct srcdest src;
1703 struct srcdest dest;
1704 pv_t src_value;
1705 int bw = st.insn[i] & 0x01;
1706 int size = bw ? 2 : 1;
1707 st.next_addr += 2;
1708
1709 src
1710 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1711 size, src_indirect);
1712 dest
1713 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1714 size, dest_indirect);
1715 src_value = m32c_srcdest_fetch (&st, src, size);
1716
1717 if (m32c_is_arg_spill (&st, dest, src_value))
1718 after_last_frame_related_insn = st.next_addr;
1719
1720 if (m32c_srcdest_store (&st, dest, src_value, size))
1721 break;
1722 }
1723 /* (2) LDC #IMM24, sp */
1724 else if (st.insn[i] == 0xd5
1725 && st.insn[i + 1] == 0x29)
1726 {
1727 st.next_addr += 2;
1728 st.sp = pv_constant (m32c_udisp24 (&st));
1729 }
1730 else
1731 /* We've hit some instruction we don't know how to simulate.
1732 Strictly speaking, we should set every value we're
1733 tracking to "unknown". But we'll be optimistic, assume
1734 that we have enough information already, and stop
1735 analysis here. */
1736 break;
1737 }
1738
1739 /* If this instruction changed the FB or decreased the SP (i.e.,
1740 allocated more stack space), then this may be a good place to
1741 declare the prologue finished. However, there are some
1742 exceptions:
1743
1744 - If the instruction just changed the FB back to its original
1745 value, then that's probably a restore instruction. The
1746 prologue should definitely end before that.
1747
1748 - If the instruction increased the value of the SP (that is,
1749 shrunk the frame), then it's probably part of a frame
1750 teardown sequence, and the prologue should end before
1751 that. */
1752
1753 if (! pv_is_identical (st.fb, pre_insn_fb))
1754 {
1755 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1756 after_last_frame_related_insn = st.next_addr;
1757 }
1758 else if (! pv_is_identical (st.sp, pre_insn_sp))
1759 {
1760 /* The comparison of the constants looks odd, there, because
1761 .k is unsigned. All it really means is that the SP is
1762 lower than it was before the instruction. */
1763 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1764 && pv_is_register (st.sp, tdep->sp->num)
1765 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1766 after_last_frame_related_insn = st.next_addr;
1767 }
1768
1769 st.scan_pc = st.next_addr;
1770 }
1771
1772 /* Did we load a constant value into the stack pointer? */
1773 if (pv_is_constant (st.sp))
1774 prologue->kind = prologue_first_frame;
1775
1776 /* Alternatively, did we initialize the frame pointer? Remember
1777 that the CFA is the address after the return address. */
1778 if (pv_is_register (st.fb, tdep->sp->num))
1779 {
1780 prologue->kind = prologue_with_frame_ptr;
1781 prologue->frame_ptr_offset = st.fb.k;
1782 }
1783
1784 /* Is the frame size a known constant? Remember that frame_size is
1785 actually the offset from the CFA to the SP (i.e., a negative
1786 value). */
1787 else if (pv_is_register (st.sp, tdep->sp->num))
1788 {
1789 prologue->kind = prologue_sans_frame_ptr;
1790 prologue->frame_size = st.sp.k;
1791 }
1792
1793 /* We haven't been able to make sense of this function's frame. Treat
1794 it as the first frame. */
1795 else
1796 prologue->kind = prologue_first_frame;
1797
1798 /* Record where all the registers were saved. */
1799 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1800
1801 prologue->prologue_end = after_last_frame_related_insn;
1802
1803 do_cleanups (back_to);
1804 }
1805
1806
1807 static CORE_ADDR
1808 m32c_skip_prologue (CORE_ADDR ip)
1809 {
1810 char *name;
1811 CORE_ADDR func_addr, func_end, sal_end;
1812 struct m32c_prologue p;
1813
1814 /* Try to find the extent of the function that contains IP. */
1815 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1816 return ip;
1817
1818 /* Find end by prologue analysis. */
1819 m32c_analyze_prologue (current_gdbarch, ip, func_end, &p);
1820 /* Find end by line info. */
1821 sal_end = skip_prologue_using_sal (ip);
1822 /* Return whichever is lower. */
1823 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1824 return sal_end;
1825 else
1826 return p.prologue_end;
1827 }
1828
1829
1830 \f
1831 /* Stack unwinding. */
1832
1833 static struct m32c_prologue *
1834 m32c_analyze_frame_prologue (struct frame_info *next_frame,
1835 void **this_prologue_cache)
1836 {
1837 if (! *this_prologue_cache)
1838 {
1839 CORE_ADDR func_start = frame_func_unwind (next_frame, NORMAL_FRAME);
1840 CORE_ADDR stop_addr = frame_pc_unwind (next_frame);
1841
1842 /* If we couldn't find any function containing the PC, then
1843 just initialize the prologue cache, but don't do anything. */
1844 if (! func_start)
1845 stop_addr = func_start;
1846
1847 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1848 m32c_analyze_prologue (get_frame_arch (next_frame),
1849 func_start, stop_addr, *this_prologue_cache);
1850 }
1851
1852 return *this_prologue_cache;
1853 }
1854
1855
1856 static CORE_ADDR
1857 m32c_frame_base (struct frame_info *next_frame,
1858 void **this_prologue_cache)
1859 {
1860 struct m32c_prologue *p
1861 = m32c_analyze_frame_prologue (next_frame, this_prologue_cache);
1862 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1863
1864 /* In functions that use alloca, the distance between the stack
1865 pointer and the frame base varies dynamically, so we can't use
1866 the SP plus static information like prologue analysis to find the
1867 frame base. However, such functions must have a frame pointer,
1868 to be able to restore the SP on exit. So whenever we do have a
1869 frame pointer, use that to find the base. */
1870 switch (p->kind)
1871 {
1872 case prologue_with_frame_ptr:
1873 {
1874 CORE_ADDR fb
1875 = frame_unwind_register_unsigned (next_frame, tdep->fb->num);
1876 return fb - p->frame_ptr_offset;
1877 }
1878
1879 case prologue_sans_frame_ptr:
1880 {
1881 CORE_ADDR sp
1882 = frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1883 return sp - p->frame_size;
1884 }
1885
1886 case prologue_first_frame:
1887 return 0;
1888
1889 default:
1890 gdb_assert (0);
1891 }
1892 }
1893
1894
1895 static void
1896 m32c_this_id (struct frame_info *next_frame,
1897 void **this_prologue_cache,
1898 struct frame_id *this_id)
1899 {
1900 CORE_ADDR base = m32c_frame_base (next_frame, this_prologue_cache);
1901
1902 if (base)
1903 *this_id = frame_id_build (base,
1904 frame_func_unwind (next_frame, NORMAL_FRAME));
1905 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1906 }
1907
1908
1909 static void
1910 m32c_prev_register (struct frame_info *next_frame,
1911 void **this_prologue_cache,
1912 int regnum, int *optimizedp,
1913 enum lval_type *lvalp, CORE_ADDR *addrp,
1914 int *realnump, gdb_byte *bufferp)
1915 {
1916 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1917 struct m32c_prologue *p
1918 = m32c_analyze_frame_prologue (next_frame, this_prologue_cache);
1919 CORE_ADDR frame_base = m32c_frame_base (next_frame, this_prologue_cache);
1920 int reg_size = register_size (get_frame_arch (next_frame), regnum);
1921
1922 if (regnum == tdep->sp->num)
1923 {
1924 *optimizedp = 0;
1925 *lvalp = not_lval;
1926 *addrp = 0;
1927 *realnump = -1;
1928 if (bufferp)
1929 store_unsigned_integer (bufferp, reg_size, frame_base);
1930 }
1931
1932 /* If prologue analysis says we saved this register somewhere,
1933 return a description of the stack slot holding it. */
1934 else if (p->reg_offset[regnum] != 1)
1935 {
1936 *optimizedp = 0;
1937 *lvalp = lval_memory;
1938 *addrp = frame_base + p->reg_offset[regnum];
1939 *realnump = -1;
1940 if (bufferp)
1941 get_frame_memory (next_frame, *addrp, bufferp, reg_size);
1942 }
1943
1944 /* Otherwise, presume we haven't changed the value of this
1945 register, and get it from the next frame. */
1946 else
1947 {
1948 *optimizedp = 0;
1949 *lvalp = lval_register;
1950 *addrp = 0;
1951 *realnump = regnum;
1952 if (bufferp)
1953 frame_unwind_register (next_frame, *realnump, bufferp);
1954 }
1955 }
1956
1957
1958 static const struct frame_unwind m32c_unwind = {
1959 NORMAL_FRAME,
1960 m32c_this_id,
1961 m32c_prev_register
1962 };
1963
1964
1965 static const struct frame_unwind *
1966 m32c_frame_sniffer (struct frame_info *next_frame)
1967 {
1968 return &m32c_unwind;
1969 }
1970
1971
1972 static CORE_ADDR
1973 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1974 {
1975 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1976 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1977 }
1978
1979
1980 static CORE_ADDR
1981 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1982 {
1983 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1984 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1985 }
1986
1987 \f
1988 /* Inferior calls. */
1989
1990 /* The calling conventions, according to GCC:
1991
1992 r8c, m16c
1993 ---------
1994 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1995 HImode), (2) is named, and (3) is an integer or pointer type (no
1996 structs, floats, etc). Otherwise, it's passed on the stack.
1997
1998 Second arg may be passed in r2, same restrictions (but not QImode),
1999 even if the first arg is passed on the stack.
2000
2001 Third and further args are passed on the stack. No padding is
2002 used, stack "alignment" is 8 bits.
2003
2004 m32cm, m32c
2005 -----------
2006
2007 First arg may be passed in r0l or r0, same restrictions as above.
2008
2009 Second and further args are passed on the stack. Padding is used
2010 after QImode parameters (i.e. lower-addressed byte is the value,
2011 higher-addressed byte is the padding), stack "alignment" is 16
2012 bits. */
2013
2014
2015 /* Return true if TYPE is a type that can be passed in registers. (We
2016 ignore the size, and pay attention only to the type code;
2017 acceptable sizes depends on which register is being considered to
2018 hold it.) */
2019 static int
2020 m32c_reg_arg_type (struct type *type)
2021 {
2022 enum type_code code = TYPE_CODE (type);
2023
2024 return (code == TYPE_CODE_INT
2025 || code == TYPE_CODE_ENUM
2026 || code == TYPE_CODE_PTR
2027 || code == TYPE_CODE_REF
2028 || code == TYPE_CODE_BOOL
2029 || code == TYPE_CODE_CHAR);
2030 }
2031
2032
2033 static CORE_ADDR
2034 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2035 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2036 struct value **args, CORE_ADDR sp, int struct_return,
2037 CORE_ADDR struct_addr)
2038 {
2039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2040 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2041 CORE_ADDR cfa;
2042 int i;
2043
2044 /* The number of arguments given in this function's prototype, or
2045 zero if it has a non-prototyped function type. The m32c ABI
2046 passes arguments mentioned in the prototype differently from
2047 those in the ellipsis of a varargs function, or from those passed
2048 to a non-prototyped function. */
2049 int num_prototyped_args = 0;
2050
2051 {
2052 struct type *func_type = value_type (function);
2053
2054 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2055 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2056
2057 #if 0
2058 /* The ABI description in gcc/config/m32c/m32c.abi says that
2059 we need to handle prototyped and non-prototyped functions
2060 separately, but the code in GCC doesn't actually do so. */
2061 if (TYPE_PROTOTYPED (func_type))
2062 #endif
2063 num_prototyped_args = TYPE_NFIELDS (func_type);
2064 }
2065
2066 /* First, if the function returns an aggregate by value, push a
2067 pointer to a buffer for it. This doesn't affect the way
2068 subsequent arguments are allocated to registers. */
2069 if (struct_return)
2070 {
2071 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2072 sp -= ptr_len;
2073 write_memory_unsigned_integer (sp, ptr_len, struct_addr);
2074 }
2075
2076 /* Push the arguments. */
2077 for (i = nargs - 1; i >= 0; i--)
2078 {
2079 struct value *arg = args[i];
2080 const gdb_byte *arg_bits = value_contents (arg);
2081 struct type *arg_type = value_type (arg);
2082 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2083
2084 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2085 if (i == 0
2086 && arg_size <= 2
2087 && i < num_prototyped_args
2088 && m32c_reg_arg_type (arg_type))
2089 {
2090 /* Extract and re-store as an integer as a terse way to make
2091 sure it ends up in the least significant end of r1. (GDB
2092 should avoid assuming endianness, even on uni-endian
2093 processors.) */
2094 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size);
2095 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2096 regcache_cooked_write_unsigned (regcache, reg->num, u);
2097 }
2098
2099 /* Can it go in r2? */
2100 else if (mach == bfd_mach_m16c
2101 && i == 1
2102 && arg_size == 2
2103 && i < num_prototyped_args
2104 && m32c_reg_arg_type (arg_type))
2105 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2106
2107 /* Everything else goes on the stack. */
2108 else
2109 {
2110 sp -= arg_size;
2111
2112 /* Align the stack. */
2113 if (mach == bfd_mach_m32c)
2114 sp &= ~1;
2115
2116 write_memory (sp, arg_bits, arg_size);
2117 }
2118 }
2119
2120 /* This is the CFA we use to identify the dummy frame. */
2121 cfa = sp;
2122
2123 /* Push the return address. */
2124 sp -= tdep->ret_addr_bytes;
2125 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, bp_addr);
2126
2127 /* Update the stack pointer. */
2128 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2129
2130 /* We need to borrow an odd trick from the i386 target here.
2131
2132 The value we return from this function gets used as the stack
2133 address (the CFA) for the dummy frame's ID. The obvious thing is
2134 to return the new TOS. However, that points at the return
2135 address, saved on the stack, which is inconsistent with the CFA's
2136 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2137 .debug_frame info uses the address immediately after the saved
2138 return address. So you end up with a dummy frame whose CFA
2139 points at the return address, but the frame for the function
2140 being called has a CFA pointing after the return address: the
2141 younger CFA is *greater than* the older CFA. The sanity checks
2142 in frame.c don't like that.
2143
2144 So we try to be consistent with the CFA's used by DWARF 2.
2145 Having a dummy frame and a real frame with the *same* CFA is
2146 tolerable. */
2147 return cfa;
2148 }
2149
2150
2151 static struct frame_id
2152 m32c_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2153 {
2154 /* This needs to return a frame ID whose PC is the return address
2155 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2156 m32c_push_dummy_call returned.
2157
2158 m32c_unwind_sp gives us the CFA, which is the value the SP had
2159 before the return address was pushed. */
2160 return frame_id_build (m32c_unwind_sp (gdbarch, next_frame),
2161 frame_pc_unwind (next_frame));
2162 }
2163
2164
2165 \f
2166 /* Return values. */
2167
2168 /* Return value conventions, according to GCC:
2169
2170 r8c, m16c
2171 ---------
2172
2173 QImode in r0l
2174 HImode in r0
2175 SImode in r2r0
2176 near pointer in r0
2177 far pointer in r2r0
2178
2179 Aggregate values (regardless of size) are returned by pushing a
2180 pointer to a temporary area on the stack after the args are pushed.
2181 The function fills in this area with the value. Note that this
2182 pointer on the stack does not affect how register arguments, if any,
2183 are configured.
2184
2185 m32cm, m32c
2186 -----------
2187 Same. */
2188
2189 /* Return non-zero if values of type TYPE are returned by storing them
2190 in a buffer whose address is passed on the stack, ahead of the
2191 other arguments. */
2192 static int
2193 m32c_return_by_passed_buf (struct type *type)
2194 {
2195 enum type_code code = TYPE_CODE (type);
2196
2197 return (code == TYPE_CODE_STRUCT
2198 || code == TYPE_CODE_UNION);
2199 }
2200
2201 static enum return_value_convention
2202 m32c_return_value (struct gdbarch *gdbarch,
2203 struct type *valtype,
2204 struct regcache *regcache,
2205 gdb_byte *readbuf,
2206 const gdb_byte *writebuf)
2207 {
2208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2209 enum return_value_convention conv;
2210 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2211
2212 if (m32c_return_by_passed_buf (valtype))
2213 conv = RETURN_VALUE_STRUCT_CONVENTION;
2214 else
2215 conv = RETURN_VALUE_REGISTER_CONVENTION;
2216
2217 if (readbuf)
2218 {
2219 /* We should never be called to find values being returned by
2220 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2221 unless we made the call ourselves. */
2222 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2223
2224 gdb_assert (valtype_len <= 8);
2225
2226 /* Anything that fits in r0 is returned there. */
2227 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2228 {
2229 ULONGEST u;
2230 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2231 store_unsigned_integer (readbuf, valtype_len, u);
2232 }
2233 else
2234 {
2235 /* Everything else is passed in mem0, using as many bytes as
2236 needed. This is not what the Renesas tools do, but it's
2237 what GCC does at the moment. */
2238 struct minimal_symbol *mem0
2239 = lookup_minimal_symbol ("mem0", NULL, NULL);
2240
2241 if (! mem0)
2242 error ("The return value is stored in memory at 'mem0', "
2243 "but GDB cannot find\n"
2244 "its address.");
2245 read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2246 }
2247 }
2248
2249 if (writebuf)
2250 {
2251 /* We should never be called to store values to be returned
2252 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2253 finding the buffer, unless we made the call ourselves. */
2254 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2255
2256 gdb_assert (valtype_len <= 8);
2257
2258 /* Anything that fits in r0 is returned there. */
2259 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2260 {
2261 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len);
2262 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2263 }
2264 else
2265 {
2266 /* Everything else is passed in mem0, using as many bytes as
2267 needed. This is not what the Renesas tools do, but it's
2268 what GCC does at the moment. */
2269 struct minimal_symbol *mem0
2270 = lookup_minimal_symbol ("mem0", NULL, NULL);
2271
2272 if (! mem0)
2273 error ("The return value is stored in memory at 'mem0', "
2274 "but GDB cannot find\n"
2275 " its address.");
2276 write_memory (SYMBOL_VALUE_ADDRESS (mem0),
2277 (char *) writebuf, valtype_len);
2278 }
2279 }
2280
2281 return conv;
2282 }
2283
2284
2285 \f
2286 /* Trampolines. */
2287
2288 /* The m16c and m32c use a trampoline function for indirect function
2289 calls. An indirect call looks like this:
2290
2291 ... push arguments ...
2292 ... push target function address ...
2293 jsr.a m32c_jsri16
2294
2295 The code for m32c_jsri16 looks like this:
2296
2297 m32c_jsri16:
2298
2299 # Save return address.
2300 pop.w m32c_jsri_ret
2301 pop.b m32c_jsri_ret+2
2302
2303 # Store target function address.
2304 pop.w m32c_jsri_addr
2305
2306 # Re-push return address.
2307 push.b m32c_jsri_ret+2
2308 push.w m32c_jsri_ret
2309
2310 # Call the target function.
2311 jmpi.a m32c_jsri_addr
2312
2313 Without further information, GDB will treat calls to m32c_jsri16
2314 like calls to any other function. Since m32c_jsri16 doesn't have
2315 debugging information, that normally means that GDB sets a step-
2316 resume breakpoint and lets the program continue --- which is not
2317 what the user wanted. (Giving the trampoline debugging info
2318 doesn't help: the user expects the program to stop in the function
2319 their program is calling, not in some trampoline code they've never
2320 seen before.)
2321
2322 The SKIP_TRAMPOLINE_CODE gdbarch method tells GDB how to step
2323 through such trampoline functions transparently to the user. When
2324 given the address of a trampoline function's first instruction,
2325 SKIP_TRAMPOLINE_CODE should return the address of the first
2326 instruction of the function really being called. If GDB decides it
2327 wants to step into that function, it will set a breakpoint there
2328 and silently continue to it.
2329
2330 We recognize the trampoline by name, and extract the target address
2331 directly from the stack. This isn't great, but recognizing by its
2332 code sequence seems more fragile. */
2333
2334 static CORE_ADDR
2335 m32c_skip_trampoline_code (CORE_ADDR stop_pc)
2336 {
2337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2338
2339 /* It would be nicer to simply look up the addresses of known
2340 trampolines once, and then compare stop_pc with them. However,
2341 we'd need to ensure that that cached address got invalidated when
2342 someone loaded a new executable, and I'm not quite sure of the
2343 best way to do that. find_pc_partial_function does do some
2344 caching, so we'll see how this goes. */
2345 char *name;
2346 CORE_ADDR start, end;
2347
2348 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2349 {
2350 /* Are we stopped at the beginning of the trampoline function? */
2351 if (strcmp (name, "m32c_jsri16") == 0
2352 && stop_pc == start)
2353 {
2354 /* Get the stack pointer. The return address is at the top,
2355 and the target function's address is just below that. We
2356 know it's a two-byte address, since the trampoline is
2357 m32c_jsri*16*. */
2358 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2359 CORE_ADDR target
2360 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes, 2);
2361
2362 /* What we have now is the address of a jump instruction.
2363 What we need is the destination of that jump.
2364 The opcode is 1 byte, and the destination is the next 3 bytes.
2365 */
2366 target = read_memory_unsigned_integer (target + 1, 3);
2367 return target;
2368 }
2369 }
2370
2371 return 0;
2372 }
2373
2374
2375 /* Address/pointer conversions. */
2376
2377 /* On the m16c, there is a 24-bit address space, but only a very few
2378 instructions can generate addresses larger than 0xffff: jumps,
2379 jumps to subroutines, and the lde/std (load/store extended)
2380 instructions.
2381
2382 Since GCC can only support one size of pointer, we can't have
2383 distinct 'near' and 'far' pointer types; we have to pick one size
2384 for everything. If we wanted to use 24-bit pointers, then GCC
2385 would have to use lde and ste for all memory references, which
2386 would be terrible for performance and code size. So the GNU
2387 toolchain uses 16-bit pointers for everything, and gives up the
2388 ability to have pointers point outside the first 64k of memory.
2389
2390 However, as a special hack, we let the linker place functions at
2391 addresses above 0xffff, as long as it also places a trampoline in
2392 the low 64k for every function whose address is taken. Each
2393 trampoline consists of a single jmp.a instruction that jumps to the
2394 function's real entry point. Pointers to functions can be 16 bits
2395 long, even though the functions themselves are at higher addresses:
2396 the pointers refer to the trampolines, not the functions.
2397
2398 This complicates things for GDB, however: given the address of a
2399 function (from debug info or linker symbols, say) which could be
2400 anywhere in the 24-bit address space, how can we find an
2401 appropriate 16-bit value to use as a pointer to it?
2402
2403 If the linker has not generated a trampoline for the function,
2404 we're out of luck. Well, I guess we could malloc some space and
2405 write a jmp.a instruction to it, but I'm not going to get into that
2406 at the moment.
2407
2408 If the linker has generated a trampoline for the function, then it
2409 also emitted a symbol for the trampoline: if the function's linker
2410 symbol is named NAME, then the function's trampoline's linker
2411 symbol is named NAME.plt.
2412
2413 So, given a code address:
2414 - We try to find a linker symbol at that address.
2415 - If we find such a symbol named NAME, we look for a linker symbol
2416 named NAME.plt.
2417 - If we find such a symbol, we assume it is a trampoline, and use
2418 its address as the pointer value.
2419
2420 And, given a function pointer:
2421 - We try to find a linker symbol at that address named NAME.plt.
2422 - If we find such a symbol, we look for a linker symbol named NAME.
2423 - If we find that, we provide that as the function's address.
2424 - If any of the above steps fail, we return the original address
2425 unchanged; it might really be a function in the low 64k.
2426
2427 See? You *knew* there was a reason you wanted to be a computer
2428 programmer! :) */
2429
2430 static void
2431 m32c_m16c_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
2432 {
2433 enum type_code target_code;
2434 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2435 TYPE_CODE (type) == TYPE_CODE_REF);
2436
2437 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2438
2439 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2440 {
2441 char *func_name;
2442 char *tramp_name;
2443 struct minimal_symbol *tramp_msym;
2444
2445 /* Try to find a linker symbol at this address. */
2446 struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
2447
2448 if (! func_msym)
2449 error ("Cannot convert code address %s to function pointer:\n"
2450 "couldn't find a symbol at that address, to find trampoline.",
2451 paddr_nz (addr));
2452
2453 func_name = SYMBOL_LINKAGE_NAME (func_msym);
2454 tramp_name = xmalloc (strlen (func_name) + 5);
2455 strcpy (tramp_name, func_name);
2456 strcat (tramp_name, ".plt");
2457
2458 /* Try to find a linker symbol for the trampoline. */
2459 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2460
2461 /* We've either got another copy of the name now, or don't need
2462 the name any more. */
2463 xfree (tramp_name);
2464
2465 if (! tramp_msym)
2466 error ("Cannot convert code address %s to function pointer:\n"
2467 "couldn't find trampoline named '%s.plt'.",
2468 paddr_nz (addr), func_name);
2469
2470 /* The trampoline's address is our pointer. */
2471 addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2472 }
2473
2474 store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
2475 }
2476
2477
2478 static CORE_ADDR
2479 m32c_m16c_pointer_to_address (struct type *type, const gdb_byte *buf)
2480 {
2481 CORE_ADDR ptr;
2482 enum type_code target_code;
2483
2484 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2485 TYPE_CODE (type) == TYPE_CODE_REF);
2486
2487 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
2488
2489 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2490
2491 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2492 {
2493 /* See if there is a minimal symbol at that address whose name is
2494 "NAME.plt". */
2495 struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2496
2497 if (ptr_msym)
2498 {
2499 char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
2500 int len = strlen (ptr_msym_name);
2501
2502 if (len > 4
2503 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2504 {
2505 struct minimal_symbol *func_msym;
2506 /* We have a .plt symbol; try to find the symbol for the
2507 corresponding function.
2508
2509 Since the trampoline contains a jump instruction, we
2510 could also just extract the jump's target address. I
2511 don't see much advantage one way or the other. */
2512 char *func_name = xmalloc (len - 4 + 1);
2513 memcpy (func_name, ptr_msym_name, len - 4);
2514 func_name[len - 4] = '\0';
2515 func_msym
2516 = lookup_minimal_symbol (func_name, NULL, NULL);
2517
2518 /* If we do have such a symbol, return its value as the
2519 function's true address. */
2520 if (func_msym)
2521 ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2522 }
2523 }
2524 }
2525
2526 return ptr;
2527 }
2528
2529 void
2530 m32c_virtual_frame_pointer (CORE_ADDR pc,
2531 int *frame_regnum,
2532 LONGEST *frame_offset)
2533 {
2534 char *name;
2535 CORE_ADDR func_addr, func_end, sal_end;
2536 struct m32c_prologue p;
2537
2538 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2539
2540 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2541 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2542
2543 m32c_analyze_prologue (current_gdbarch, func_addr, pc, &p);
2544 switch (p.kind)
2545 {
2546 case prologue_with_frame_ptr:
2547 *frame_regnum = m32c_banked_register (tdep->fb, current_regcache)->num;
2548 *frame_offset = p.frame_ptr_offset;
2549 break;
2550 case prologue_sans_frame_ptr:
2551 *frame_regnum = m32c_banked_register (tdep->sp, current_regcache)->num;
2552 *frame_offset = p.frame_size;
2553 break;
2554 default:
2555 *frame_regnum = m32c_banked_register (tdep->sp, current_regcache)->num;
2556 *frame_offset = 0;
2557 break;
2558 }
2559 /* Sanity check */
2560 if (*frame_regnum > NUM_REGS)
2561 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2562 }
2563
2564 \f
2565 /* Initialization. */
2566
2567 static struct gdbarch *
2568 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2569 {
2570 struct gdbarch *arch;
2571 struct gdbarch_tdep *tdep;
2572 unsigned long mach = info.bfd_arch_info->mach;
2573
2574 /* Find a candidate among the list of architectures we've created
2575 already. */
2576 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2577 arches != NULL;
2578 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2579 return arches->gdbarch;
2580
2581 tdep = xcalloc (1, sizeof (*tdep));
2582 arch = gdbarch_alloc (&info, tdep);
2583
2584 /* Essential types. */
2585 make_types (arch);
2586
2587 /* Address/pointer conversions. */
2588 if (mach == bfd_mach_m16c)
2589 {
2590 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2591 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2592 }
2593
2594 /* Register set. */
2595 make_regs (arch);
2596
2597 /* Disassembly. */
2598 set_gdbarch_print_insn (arch, print_insn_m32c);
2599
2600 /* Breakpoints. */
2601 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2602
2603 /* Prologue analysis and unwinding. */
2604 set_gdbarch_inner_than (arch, core_addr_lessthan);
2605 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2606 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2607 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2608 #if 0
2609 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2610 They may be in the dwarf2 cfi code in GDB, or they may be in
2611 the debug info emitted by the upstream toolchain. I don't
2612 know which, but I do know that the prologue analyzer works better.
2613 MVS 04/13/06
2614 */
2615 frame_unwind_append_sniffer (arch, dwarf2_frame_sniffer);
2616 #endif
2617 frame_unwind_append_sniffer (arch, m32c_frame_sniffer);
2618
2619 /* Inferior calls. */
2620 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2621 set_gdbarch_return_value (arch, m32c_return_value);
2622 set_gdbarch_unwind_dummy_id (arch, m32c_unwind_dummy_id);
2623
2624 /* Trampolines. */
2625 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2626
2627 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2628
2629 return arch;
2630 }
2631
2632
2633 void
2634 _initialize_m32c_tdep (void)
2635 {
2636 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2637
2638 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2639 }
This page took 0.130973 seconds and 5 git commands to generate.