Update years in copyright notice for the GDB files.
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright (C) 1996-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "gdb_string.h"
29 #include "value.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "language.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "trad-frame.h"
38 #include "dis-asm.h"
39
40 #include "gdb_assert.h"
41
42 #include "m32r-tdep.h"
43
44 /* Local functions */
45
46 extern void _initialize_m32r_tdep (void);
47
48 static CORE_ADDR
49 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
50 {
51 /* Align to the size of an instruction (so that they can safely be
52 pushed onto the stack. */
53 return sp & ~3;
54 }
55
56
57 /* Breakpoints
58
59 The little endian mode of M32R is unique. In most of architectures,
60 two 16-bit instructions, A and B, are placed as the following:
61
62 Big endian:
63 A0 A1 B0 B1
64
65 Little endian:
66 A1 A0 B1 B0
67
68 In M32R, they are placed like this:
69
70 Big endian:
71 A0 A1 B0 B1
72
73 Little endian:
74 B1 B0 A1 A0
75
76 This is because M32R always fetches instructions in 32-bit.
77
78 The following functions take care of this behavior. */
79
80 static int
81 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
82 struct bp_target_info *bp_tgt)
83 {
84 CORE_ADDR addr = bp_tgt->placed_address;
85 int val;
86 gdb_byte buf[4];
87 gdb_byte contents_cache[4];
88 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
89
90 /* Save the memory contents. */
91 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
92 if (val != 0)
93 return val; /* return error */
94
95 memcpy (bp_tgt->shadow_contents, contents_cache, 4);
96 bp_tgt->placed_size = bp_tgt->shadow_len = 4;
97
98 /* Determine appropriate breakpoint contents and size for this address. */
99 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
100 {
101 if ((addr & 3) == 0)
102 {
103 buf[0] = bp_entry[0];
104 buf[1] = bp_entry[1];
105 buf[2] = contents_cache[2] & 0x7f;
106 buf[3] = contents_cache[3];
107 }
108 else
109 {
110 buf[0] = contents_cache[0];
111 buf[1] = contents_cache[1];
112 buf[2] = bp_entry[0];
113 buf[3] = bp_entry[1];
114 }
115 }
116 else /* little-endian */
117 {
118 if ((addr & 3) == 0)
119 {
120 buf[0] = contents_cache[0];
121 buf[1] = contents_cache[1] & 0x7f;
122 buf[2] = bp_entry[1];
123 buf[3] = bp_entry[0];
124 }
125 else
126 {
127 buf[0] = bp_entry[1];
128 buf[1] = bp_entry[0];
129 buf[2] = contents_cache[2];
130 buf[3] = contents_cache[3];
131 }
132 }
133
134 /* Write the breakpoint. */
135 val = target_write_memory (addr & 0xfffffffc, buf, 4);
136 return val;
137 }
138
139 static int
140 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
141 struct bp_target_info *bp_tgt)
142 {
143 CORE_ADDR addr = bp_tgt->placed_address;
144 int val;
145 gdb_byte buf[4];
146 gdb_byte *contents_cache = bp_tgt->shadow_contents;
147
148 buf[0] = contents_cache[0];
149 buf[1] = contents_cache[1];
150 buf[2] = contents_cache[2];
151 buf[3] = contents_cache[3];
152
153 /* Remove parallel bit. */
154 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
155 {
156 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
157 buf[2] &= 0x7f;
158 }
159 else /* little-endian */
160 {
161 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
162 buf[1] &= 0x7f;
163 }
164
165 /* Write contents. */
166 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
167 return val;
168 }
169
170 static const gdb_byte *
171 m32r_breakpoint_from_pc (struct gdbarch *gdbarch,
172 CORE_ADDR *pcptr, int *lenptr)
173 {
174 static gdb_byte be_bp_entry[] = {
175 0x10, 0xf1, 0x70, 0x00
176 }; /* dpt -> nop */
177 static gdb_byte le_bp_entry[] = {
178 0x00, 0x70, 0xf1, 0x10
179 }; /* dpt -> nop */
180 gdb_byte *bp;
181
182 /* Determine appropriate breakpoint. */
183 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
184 {
185 if ((*pcptr & 3) == 0)
186 {
187 bp = be_bp_entry;
188 *lenptr = 4;
189 }
190 else
191 {
192 bp = be_bp_entry;
193 *lenptr = 2;
194 }
195 }
196 else
197 {
198 if ((*pcptr & 3) == 0)
199 {
200 bp = le_bp_entry;
201 *lenptr = 4;
202 }
203 else
204 {
205 bp = le_bp_entry + 2;
206 *lenptr = 2;
207 }
208 }
209
210 return bp;
211 }
212
213
214 char *m32r_register_names[] = {
215 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
216 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
217 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
218 "evb"
219 };
220
221 static const char *
222 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
223 {
224 if (reg_nr < 0)
225 return NULL;
226 if (reg_nr >= M32R_NUM_REGS)
227 return NULL;
228 return m32r_register_names[reg_nr];
229 }
230
231
232 /* Return the GDB type object for the "standard" data type
233 of data in register N. */
234
235 static struct type *
236 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
237 {
238 if (reg_nr == M32R_PC_REGNUM)
239 return builtin_type (gdbarch)->builtin_func_ptr;
240 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
241 return builtin_type (gdbarch)->builtin_data_ptr;
242 else
243 return builtin_type (gdbarch)->builtin_int32;
244 }
245
246
247 /* Write into appropriate registers a function return value
248 of type TYPE, given in virtual format.
249
250 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
251
252 static void
253 m32r_store_return_value (struct type *type, struct regcache *regcache,
254 const void *valbuf)
255 {
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
258 CORE_ADDR regval;
259 int len = TYPE_LENGTH (type);
260
261 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
262 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
263
264 if (len > 4)
265 {
266 regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4,
267 len - 4, byte_order);
268 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
269 }
270 }
271
272 /* This is required by skip_prologue. The results of decoding a prologue
273 should be cached because this thrashing is getting nuts. */
274
275 static int
276 decode_prologue (struct gdbarch *gdbarch,
277 CORE_ADDR start_pc, CORE_ADDR scan_limit,
278 CORE_ADDR *pl_endptr, unsigned long *framelength)
279 {
280 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
281 unsigned long framesize;
282 int insn;
283 int op1;
284 CORE_ADDR after_prologue = 0;
285 CORE_ADDR after_push = 0;
286 CORE_ADDR after_stack_adjust = 0;
287 CORE_ADDR current_pc;
288 LONGEST return_value;
289
290 framesize = 0;
291 after_prologue = 0;
292
293 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
294 {
295 /* Check if current pc's location is readable. */
296 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
297 return -1;
298
299 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
300
301 if (insn == 0x0000)
302 break;
303
304 /* If this is a 32 bit instruction, we dont want to examine its
305 immediate data as though it were an instruction. */
306 if (current_pc & 0x02)
307 {
308 /* Decode this instruction further. */
309 insn &= 0x7fff;
310 }
311 else
312 {
313 if (insn & 0x8000)
314 {
315 if (current_pc == scan_limit)
316 scan_limit += 2; /* extend the search */
317
318 current_pc += 2; /* skip the immediate data */
319
320 /* Check if current pc's location is readable. */
321 if (!safe_read_memory_integer (current_pc, 2, byte_order,
322 &return_value))
323 return -1;
324
325 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
326 /* add 16 bit sign-extended offset */
327 {
328 framesize +=
329 -((short) read_memory_unsigned_integer (current_pc,
330 2, byte_order));
331 }
332 else
333 {
334 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
335 && safe_read_memory_integer (current_pc + 2,
336 2, byte_order,
337 &return_value)
338 && read_memory_unsigned_integer (current_pc + 2,
339 2, byte_order)
340 == 0x0f24)
341 {
342 /* Subtract 24 bit sign-extended negative-offset. */
343 insn = read_memory_unsigned_integer (current_pc - 2,
344 4, byte_order);
345 if (insn & 0x00800000) /* sign extend */
346 insn |= 0xff000000; /* negative */
347 else
348 insn &= 0x00ffffff; /* positive */
349 framesize += insn;
350 }
351 }
352 after_push = current_pc + 2;
353 continue;
354 }
355 }
356 op1 = insn & 0xf000; /* Isolate just the first nibble. */
357
358 if ((insn & 0xf0ff) == 0x207f)
359 { /* st reg, @-sp */
360 int regno;
361 framesize += 4;
362 regno = ((insn >> 8) & 0xf);
363 after_prologue = 0;
364 continue;
365 }
366 if ((insn >> 8) == 0x4f) /* addi sp, xx */
367 /* Add 8 bit sign-extended offset. */
368 {
369 int stack_adjust = (signed char) (insn & 0xff);
370
371 /* there are probably two of these stack adjustments:
372 1) A negative one in the prologue, and
373 2) A positive one in the epilogue.
374 We are only interested in the first one. */
375
376 if (stack_adjust < 0)
377 {
378 framesize -= stack_adjust;
379 after_prologue = 0;
380 /* A frameless function may have no "mv fp, sp".
381 In that case, this is the end of the prologue. */
382 after_stack_adjust = current_pc + 2;
383 }
384 continue;
385 }
386 if (insn == 0x1d8f)
387 { /* mv fp, sp */
388 after_prologue = current_pc + 2;
389 break; /* end of stack adjustments */
390 }
391
392 /* Nop looks like a branch, continue explicitly. */
393 if (insn == 0x7000)
394 {
395 after_prologue = current_pc + 2;
396 continue; /* nop occurs between pushes. */
397 }
398 /* End of prolog if any of these are trap instructions. */
399 if ((insn & 0xfff0) == 0x10f0)
400 {
401 after_prologue = current_pc;
402 break;
403 }
404 /* End of prolog if any of these are branch instructions. */
405 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
406 {
407 after_prologue = current_pc;
408 continue;
409 }
410 /* Some of the branch instructions are mixed with other types. */
411 if (op1 == 0x1000)
412 {
413 int subop = insn & 0x0ff0;
414 if ((subop == 0x0ec0) || (subop == 0x0fc0))
415 {
416 after_prologue = current_pc;
417 continue; /* jmp , jl */
418 }
419 }
420 }
421
422 if (framelength)
423 *framelength = framesize;
424
425 if (current_pc >= scan_limit)
426 {
427 if (pl_endptr)
428 {
429 if (after_stack_adjust != 0)
430 /* We did not find a "mv fp,sp", but we DID find
431 a stack_adjust. Is it safe to use that as the
432 end of the prologue? I just don't know. */
433 {
434 *pl_endptr = after_stack_adjust;
435 }
436 else if (after_push != 0)
437 /* We did not find a "mv fp,sp", but we DID find
438 a push. Is it safe to use that as the
439 end of the prologue? I just don't know. */
440 {
441 *pl_endptr = after_push;
442 }
443 else
444 /* We reached the end of the loop without finding the end
445 of the prologue. No way to win -- we should report
446 failure. The way we do that is to return the original
447 start_pc. GDB will set a breakpoint at the start of
448 the function (etc.) */
449 *pl_endptr = start_pc;
450 }
451 return 0;
452 }
453
454 if (after_prologue == 0)
455 after_prologue = current_pc;
456
457 if (pl_endptr)
458 *pl_endptr = after_prologue;
459
460 return 0;
461 } /* decode_prologue */
462
463 /* Function: skip_prologue
464 Find end of function prologue. */
465
466 #define DEFAULT_SEARCH_LIMIT 128
467
468 static CORE_ADDR
469 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
470 {
471 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
472 CORE_ADDR func_addr, func_end;
473 struct symtab_and_line sal;
474 LONGEST return_value;
475
476 /* See what the symbol table says. */
477
478 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
479 {
480 sal = find_pc_line (func_addr, 0);
481
482 if (sal.line != 0 && sal.end <= func_end)
483 {
484 func_end = sal.end;
485 }
486 else
487 /* Either there's no line info, or the line after the prologue is after
488 the end of the function. In this case, there probably isn't a
489 prologue. */
490 {
491 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
492 }
493 }
494 else
495 func_end = pc + DEFAULT_SEARCH_LIMIT;
496
497 /* If pc's location is not readable, just quit. */
498 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
499 return pc;
500
501 /* Find the end of prologue. */
502 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
503 return pc;
504
505 return sal.end;
506 }
507
508 struct m32r_unwind_cache
509 {
510 /* The previous frame's inner most stack address. Used as this
511 frame ID's stack_addr. */
512 CORE_ADDR prev_sp;
513 /* The frame's base, optionally used by the high-level debug info. */
514 CORE_ADDR base;
515 int size;
516 /* How far the SP and r13 (FP) have been offset from the start of
517 the stack frame (as defined by the previous frame's stack
518 pointer). */
519 LONGEST sp_offset;
520 LONGEST r13_offset;
521 int uses_frame;
522 /* Table indicating the location of each and every register. */
523 struct trad_frame_saved_reg *saved_regs;
524 };
525
526 /* Put here the code to store, into fi->saved_regs, the addresses of
527 the saved registers of frame described by FRAME_INFO. This
528 includes special registers such as pc and fp saved in special ways
529 in the stack frame. sp is even more special: the address we return
530 for it IS the sp for the next frame. */
531
532 static struct m32r_unwind_cache *
533 m32r_frame_unwind_cache (struct frame_info *this_frame,
534 void **this_prologue_cache)
535 {
536 CORE_ADDR pc, scan_limit;
537 ULONGEST prev_sp;
538 ULONGEST this_base;
539 unsigned long op;
540 int i;
541 struct m32r_unwind_cache *info;
542
543
544 if ((*this_prologue_cache))
545 return (*this_prologue_cache);
546
547 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
548 (*this_prologue_cache) = info;
549 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
550
551 info->size = 0;
552 info->sp_offset = 0;
553 info->uses_frame = 0;
554
555 scan_limit = get_frame_pc (this_frame);
556 for (pc = get_frame_func (this_frame);
557 pc > 0 && pc < scan_limit; pc += 2)
558 {
559 if ((pc & 2) == 0)
560 {
561 op = get_frame_memory_unsigned (this_frame, pc, 4);
562 if ((op & 0x80000000) == 0x80000000)
563 {
564 /* 32-bit instruction */
565 if ((op & 0xffff0000) == 0x8faf0000)
566 {
567 /* add3 sp,sp,xxxx */
568 short n = op & 0xffff;
569 info->sp_offset += n;
570 }
571 else if (((op >> 8) == 0xe4)
572 && get_frame_memory_unsigned (this_frame, pc + 2,
573 2) == 0x0f24)
574 {
575 /* ld24 r4, xxxxxx; sub sp, r4 */
576 unsigned long n = op & 0xffffff;
577 info->sp_offset += n;
578 pc += 2; /* skip sub instruction */
579 }
580
581 if (pc == scan_limit)
582 scan_limit += 2; /* extend the search */
583 pc += 2; /* skip the immediate data */
584 continue;
585 }
586 }
587
588 /* 16-bit instructions */
589 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
590 if ((op & 0xf0ff) == 0x207f)
591 {
592 /* st rn, @-sp */
593 int regno = ((op >> 8) & 0xf);
594 info->sp_offset -= 4;
595 info->saved_regs[regno].addr = info->sp_offset;
596 }
597 else if ((op & 0xff00) == 0x4f00)
598 {
599 /* addi sp, xx */
600 int n = (signed char) (op & 0xff);
601 info->sp_offset += n;
602 }
603 else if (op == 0x1d8f)
604 {
605 /* mv fp, sp */
606 info->uses_frame = 1;
607 info->r13_offset = info->sp_offset;
608 break; /* end of stack adjustments */
609 }
610 else if ((op & 0xfff0) == 0x10f0)
611 {
612 /* End of prologue if this is a trap instruction. */
613 break; /* End of stack adjustments. */
614 }
615 }
616
617 info->size = -info->sp_offset;
618
619 /* Compute the previous frame's stack pointer (which is also the
620 frame's ID's stack address), and this frame's base pointer. */
621 if (info->uses_frame)
622 {
623 /* The SP was moved to the FP. This indicates that a new frame
624 was created. Get THIS frame's FP value by unwinding it from
625 the next frame. */
626 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
627 /* The FP points at the last saved register. Adjust the FP back
628 to before the first saved register giving the SP. */
629 prev_sp = this_base + info->size;
630 }
631 else
632 {
633 /* Assume that the FP is this frame's SP but with that pushed
634 stack space added back. */
635 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
636 prev_sp = this_base + info->size;
637 }
638
639 /* Convert that SP/BASE into real addresses. */
640 info->prev_sp = prev_sp;
641 info->base = this_base;
642
643 /* Adjust all the saved registers so that they contain addresses and
644 not offsets. */
645 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
646 if (trad_frame_addr_p (info->saved_regs, i))
647 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
648
649 /* The call instruction moves the caller's PC in the callee's LR.
650 Since this is an unwind, do the reverse. Copy the location of LR
651 into PC (the address / regnum) so that a request for PC will be
652 converted into a request for the LR. */
653 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
654
655 /* The previous frame's SP needed to be computed. Save the computed
656 value. */
657 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
658
659 return info;
660 }
661
662 static CORE_ADDR
663 m32r_read_pc (struct regcache *regcache)
664 {
665 ULONGEST pc;
666 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
667 return pc;
668 }
669
670 static void
671 m32r_write_pc (struct regcache *regcache, CORE_ADDR val)
672 {
673 regcache_cooked_write_unsigned (regcache, M32R_PC_REGNUM, val);
674 }
675
676 static CORE_ADDR
677 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
678 {
679 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
680 }
681
682
683 static CORE_ADDR
684 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
685 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
686 struct value **args, CORE_ADDR sp, int struct_return,
687 CORE_ADDR struct_addr)
688 {
689 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
690 int stack_offset, stack_alloc;
691 int argreg = ARG1_REGNUM;
692 int argnum;
693 struct type *type;
694 enum type_code typecode;
695 CORE_ADDR regval;
696 gdb_byte *val;
697 gdb_byte valbuf[MAX_REGISTER_SIZE];
698 int len;
699
700 /* First force sp to a 4-byte alignment. */
701 sp = sp & ~3;
702
703 /* Set the return address. For the m32r, the return breakpoint is
704 always at BP_ADDR. */
705 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
706
707 /* If STRUCT_RETURN is true, then the struct return address (in
708 STRUCT_ADDR) will consume the first argument-passing register.
709 Both adjust the register count and store that value. */
710 if (struct_return)
711 {
712 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
713 argreg++;
714 }
715
716 /* Now make sure there's space on the stack. */
717 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
718 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
719 sp -= stack_alloc; /* Make room on stack for args. */
720
721 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
722 {
723 type = value_type (args[argnum]);
724 typecode = TYPE_CODE (type);
725 len = TYPE_LENGTH (type);
726
727 memset (valbuf, 0, sizeof (valbuf));
728
729 /* Passes structures that do not fit in 2 registers by reference. */
730 if (len > 8
731 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
732 {
733 store_unsigned_integer (valbuf, 4, byte_order,
734 value_address (args[argnum]));
735 typecode = TYPE_CODE_PTR;
736 len = 4;
737 val = valbuf;
738 }
739 else if (len < 4)
740 {
741 /* Value gets right-justified in the register or stack word. */
742 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
743 (gdb_byte *) value_contents (args[argnum]), len);
744 val = valbuf;
745 }
746 else
747 val = (gdb_byte *) value_contents (args[argnum]);
748
749 while (len > 0)
750 {
751 if (argreg > ARGN_REGNUM)
752 {
753 /* Must go on the stack. */
754 write_memory (sp + stack_offset, val, 4);
755 stack_offset += 4;
756 }
757 else if (argreg <= ARGN_REGNUM)
758 {
759 /* There's room in a register. */
760 regval =
761 extract_unsigned_integer (val,
762 register_size (gdbarch, argreg),
763 byte_order);
764 regcache_cooked_write_unsigned (regcache, argreg++, regval);
765 }
766
767 /* Store the value 4 bytes at a time. This means that things
768 larger than 4 bytes may go partly in registers and partly
769 on the stack. */
770 len -= register_size (gdbarch, argreg);
771 val += register_size (gdbarch, argreg);
772 }
773 }
774
775 /* Finally, update the SP register. */
776 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
777
778 return sp;
779 }
780
781
782 /* Given a return value in `regbuf' with a type `valtype',
783 extract and copy its value into `valbuf'. */
784
785 static void
786 m32r_extract_return_value (struct type *type, struct regcache *regcache,
787 void *dst)
788 {
789 struct gdbarch *gdbarch = get_regcache_arch (regcache);
790 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
791 bfd_byte *valbuf = dst;
792 int len = TYPE_LENGTH (type);
793 ULONGEST tmp;
794
795 /* By using store_unsigned_integer we avoid having to do
796 anything special for small big-endian values. */
797 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
798 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
799
800 /* Ignore return values more than 8 bytes in size because the m32r
801 returns anything more than 8 bytes in the stack. */
802 if (len > 4)
803 {
804 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
805 store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
806 }
807 }
808
809 static enum return_value_convention
810 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
811 struct type *valtype, struct regcache *regcache,
812 gdb_byte *readbuf, const gdb_byte *writebuf)
813 {
814 if (TYPE_LENGTH (valtype) > 8)
815 return RETURN_VALUE_STRUCT_CONVENTION;
816 else
817 {
818 if (readbuf != NULL)
819 m32r_extract_return_value (valtype, regcache, readbuf);
820 if (writebuf != NULL)
821 m32r_store_return_value (valtype, regcache, writebuf);
822 return RETURN_VALUE_REGISTER_CONVENTION;
823 }
824 }
825
826
827
828 static CORE_ADDR
829 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
830 {
831 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
832 }
833
834 /* Given a GDB frame, determine the address of the calling function's
835 frame. This will be used to create a new GDB frame struct. */
836
837 static void
838 m32r_frame_this_id (struct frame_info *this_frame,
839 void **this_prologue_cache, struct frame_id *this_id)
840 {
841 struct m32r_unwind_cache *info
842 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
843 CORE_ADDR base;
844 CORE_ADDR func;
845 struct minimal_symbol *msym_stack;
846 struct frame_id id;
847
848 /* The FUNC is easy. */
849 func = get_frame_func (this_frame);
850
851 /* Check if the stack is empty. */
852 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
853 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
854 return;
855
856 /* Hopefully the prologue analysis either correctly determined the
857 frame's base (which is the SP from the previous frame), or set
858 that base to "NULL". */
859 base = info->prev_sp;
860 if (base == 0)
861 return;
862
863 id = frame_id_build (base, func);
864 (*this_id) = id;
865 }
866
867 static struct value *
868 m32r_frame_prev_register (struct frame_info *this_frame,
869 void **this_prologue_cache, int regnum)
870 {
871 struct m32r_unwind_cache *info
872 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
873 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
874 }
875
876 static const struct frame_unwind m32r_frame_unwind = {
877 NORMAL_FRAME,
878 default_frame_unwind_stop_reason,
879 m32r_frame_this_id,
880 m32r_frame_prev_register,
881 NULL,
882 default_frame_sniffer
883 };
884
885 static CORE_ADDR
886 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
887 {
888 struct m32r_unwind_cache *info
889 = m32r_frame_unwind_cache (this_frame, this_cache);
890 return info->base;
891 }
892
893 static const struct frame_base m32r_frame_base = {
894 &m32r_frame_unwind,
895 m32r_frame_base_address,
896 m32r_frame_base_address,
897 m32r_frame_base_address
898 };
899
900 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
901 frame. The frame ID's base needs to match the TOS value saved by
902 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
903
904 static struct frame_id
905 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
906 {
907 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
908 return frame_id_build (sp, get_frame_pc (this_frame));
909 }
910
911
912 static gdbarch_init_ftype m32r_gdbarch_init;
913
914 static struct gdbarch *
915 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
916 {
917 struct gdbarch *gdbarch;
918 struct gdbarch_tdep *tdep;
919
920 /* If there is already a candidate, use it. */
921 arches = gdbarch_list_lookup_by_info (arches, &info);
922 if (arches != NULL)
923 return arches->gdbarch;
924
925 /* Allocate space for the new architecture. */
926 tdep = XMALLOC (struct gdbarch_tdep);
927 gdbarch = gdbarch_alloc (&info, tdep);
928
929 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
930 set_gdbarch_write_pc (gdbarch, m32r_write_pc);
931 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
932
933 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
934 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
935 set_gdbarch_register_name (gdbarch, m32r_register_name);
936 set_gdbarch_register_type (gdbarch, m32r_register_type);
937
938 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
939 set_gdbarch_return_value (gdbarch, m32r_return_value);
940
941 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
942 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
943 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
944 set_gdbarch_memory_insert_breakpoint (gdbarch,
945 m32r_memory_insert_breakpoint);
946 set_gdbarch_memory_remove_breakpoint (gdbarch,
947 m32r_memory_remove_breakpoint);
948
949 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
950
951 frame_base_set_default (gdbarch, &m32r_frame_base);
952
953 /* Methods for saving / extracting a dummy frame's ID. The ID's
954 stack address must match the SP value returned by
955 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
956 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
957
958 /* Return the unwound PC value. */
959 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
960
961 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
962
963 /* Hook in ABI-specific overrides, if they have been registered. */
964 gdbarch_init_osabi (info, gdbarch);
965
966 /* Hook in the default unwinders. */
967 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
968
969 /* Support simple overlay manager. */
970 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
971
972 return gdbarch;
973 }
974
975 void
976 _initialize_m32r_tdep (void)
977 {
978 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
979 }
This page took 0.066221 seconds and 5 git commands to generate.