Include string.h in common-defs.h
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright (C) 1996-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "osabi.h"
33 #include "language.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39
40 #include "m32r-tdep.h"
41
42 /* Local functions */
43
44 extern void _initialize_m32r_tdep (void);
45
46 static CORE_ADDR
47 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
48 {
49 /* Align to the size of an instruction (so that they can safely be
50 pushed onto the stack. */
51 return sp & ~3;
52 }
53
54
55 /* Breakpoints
56
57 The little endian mode of M32R is unique. In most of architectures,
58 two 16-bit instructions, A and B, are placed as the following:
59
60 Big endian:
61 A0 A1 B0 B1
62
63 Little endian:
64 A1 A0 B1 B0
65
66 In M32R, they are placed like this:
67
68 Big endian:
69 A0 A1 B0 B1
70
71 Little endian:
72 B1 B0 A1 A0
73
74 This is because M32R always fetches instructions in 32-bit.
75
76 The following functions take care of this behavior. */
77
78 static int
79 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
80 struct bp_target_info *bp_tgt)
81 {
82 CORE_ADDR addr = bp_tgt->placed_address;
83 int val;
84 gdb_byte buf[4];
85 gdb_byte contents_cache[4];
86 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
87
88 /* Save the memory contents. */
89 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
90 if (val != 0)
91 return val; /* return error */
92
93 memcpy (bp_tgt->shadow_contents, contents_cache, 4);
94 bp_tgt->placed_size = bp_tgt->shadow_len = 4;
95
96 /* Determine appropriate breakpoint contents and size for this address. */
97 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
98 {
99 if ((addr & 3) == 0)
100 {
101 buf[0] = bp_entry[0];
102 buf[1] = bp_entry[1];
103 buf[2] = contents_cache[2] & 0x7f;
104 buf[3] = contents_cache[3];
105 }
106 else
107 {
108 buf[0] = contents_cache[0];
109 buf[1] = contents_cache[1];
110 buf[2] = bp_entry[0];
111 buf[3] = bp_entry[1];
112 }
113 }
114 else /* little-endian */
115 {
116 if ((addr & 3) == 0)
117 {
118 buf[0] = contents_cache[0];
119 buf[1] = contents_cache[1] & 0x7f;
120 buf[2] = bp_entry[1];
121 buf[3] = bp_entry[0];
122 }
123 else
124 {
125 buf[0] = bp_entry[1];
126 buf[1] = bp_entry[0];
127 buf[2] = contents_cache[2];
128 buf[3] = contents_cache[3];
129 }
130 }
131
132 /* Write the breakpoint. */
133 val = target_write_memory (addr & 0xfffffffc, buf, 4);
134 return val;
135 }
136
137 static int
138 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
139 struct bp_target_info *bp_tgt)
140 {
141 CORE_ADDR addr = bp_tgt->placed_address;
142 int val;
143 gdb_byte buf[4];
144 gdb_byte *contents_cache = bp_tgt->shadow_contents;
145
146 buf[0] = contents_cache[0];
147 buf[1] = contents_cache[1];
148 buf[2] = contents_cache[2];
149 buf[3] = contents_cache[3];
150
151 /* Remove parallel bit. */
152 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
153 {
154 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
155 buf[2] &= 0x7f;
156 }
157 else /* little-endian */
158 {
159 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
160 buf[1] &= 0x7f;
161 }
162
163 /* Write contents. */
164 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
165 return val;
166 }
167
168 static const gdb_byte *
169 m32r_breakpoint_from_pc (struct gdbarch *gdbarch,
170 CORE_ADDR *pcptr, int *lenptr)
171 {
172 static gdb_byte be_bp_entry[] = {
173 0x10, 0xf1, 0x70, 0x00
174 }; /* dpt -> nop */
175 static gdb_byte le_bp_entry[] = {
176 0x00, 0x70, 0xf1, 0x10
177 }; /* dpt -> nop */
178 gdb_byte *bp;
179
180 /* Determine appropriate breakpoint. */
181 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
182 {
183 if ((*pcptr & 3) == 0)
184 {
185 bp = be_bp_entry;
186 *lenptr = 4;
187 }
188 else
189 {
190 bp = be_bp_entry;
191 *lenptr = 2;
192 }
193 }
194 else
195 {
196 if ((*pcptr & 3) == 0)
197 {
198 bp = le_bp_entry;
199 *lenptr = 4;
200 }
201 else
202 {
203 bp = le_bp_entry + 2;
204 *lenptr = 2;
205 }
206 }
207
208 return bp;
209 }
210
211
212 char *m32r_register_names[] = {
213 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
214 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
215 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
216 "evb"
217 };
218
219 static const char *
220 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
221 {
222 if (reg_nr < 0)
223 return NULL;
224 if (reg_nr >= M32R_NUM_REGS)
225 return NULL;
226 return m32r_register_names[reg_nr];
227 }
228
229
230 /* Return the GDB type object for the "standard" data type
231 of data in register N. */
232
233 static struct type *
234 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
235 {
236 if (reg_nr == M32R_PC_REGNUM)
237 return builtin_type (gdbarch)->builtin_func_ptr;
238 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
239 return builtin_type (gdbarch)->builtin_data_ptr;
240 else
241 return builtin_type (gdbarch)->builtin_int32;
242 }
243
244
245 /* Write into appropriate registers a function return value
246 of type TYPE, given in virtual format.
247
248 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
249
250 static void
251 m32r_store_return_value (struct type *type, struct regcache *regcache,
252 const void *valbuf)
253 {
254 struct gdbarch *gdbarch = get_regcache_arch (regcache);
255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
256 CORE_ADDR regval;
257 int len = TYPE_LENGTH (type);
258
259 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
260 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
261
262 if (len > 4)
263 {
264 regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4,
265 len - 4, byte_order);
266 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
267 }
268 }
269
270 /* This is required by skip_prologue. The results of decoding a prologue
271 should be cached because this thrashing is getting nuts. */
272
273 static int
274 decode_prologue (struct gdbarch *gdbarch,
275 CORE_ADDR start_pc, CORE_ADDR scan_limit,
276 CORE_ADDR *pl_endptr, unsigned long *framelength)
277 {
278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
279 unsigned long framesize;
280 int insn;
281 int op1;
282 CORE_ADDR after_prologue = 0;
283 CORE_ADDR after_push = 0;
284 CORE_ADDR after_stack_adjust = 0;
285 CORE_ADDR current_pc;
286 LONGEST return_value;
287
288 framesize = 0;
289 after_prologue = 0;
290
291 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
292 {
293 /* Check if current pc's location is readable. */
294 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
295 return -1;
296
297 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
298
299 if (insn == 0x0000)
300 break;
301
302 /* If this is a 32 bit instruction, we dont want to examine its
303 immediate data as though it were an instruction. */
304 if (current_pc & 0x02)
305 {
306 /* Decode this instruction further. */
307 insn &= 0x7fff;
308 }
309 else
310 {
311 if (insn & 0x8000)
312 {
313 if (current_pc == scan_limit)
314 scan_limit += 2; /* extend the search */
315
316 current_pc += 2; /* skip the immediate data */
317
318 /* Check if current pc's location is readable. */
319 if (!safe_read_memory_integer (current_pc, 2, byte_order,
320 &return_value))
321 return -1;
322
323 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
324 /* add 16 bit sign-extended offset */
325 {
326 framesize +=
327 -((short) read_memory_unsigned_integer (current_pc,
328 2, byte_order));
329 }
330 else
331 {
332 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
333 && safe_read_memory_integer (current_pc + 2,
334 2, byte_order,
335 &return_value)
336 && read_memory_unsigned_integer (current_pc + 2,
337 2, byte_order)
338 == 0x0f24)
339 {
340 /* Subtract 24 bit sign-extended negative-offset. */
341 insn = read_memory_unsigned_integer (current_pc - 2,
342 4, byte_order);
343 if (insn & 0x00800000) /* sign extend */
344 insn |= 0xff000000; /* negative */
345 else
346 insn &= 0x00ffffff; /* positive */
347 framesize += insn;
348 }
349 }
350 after_push = current_pc + 2;
351 continue;
352 }
353 }
354 op1 = insn & 0xf000; /* Isolate just the first nibble. */
355
356 if ((insn & 0xf0ff) == 0x207f)
357 { /* st reg, @-sp */
358 int regno;
359 framesize += 4;
360 regno = ((insn >> 8) & 0xf);
361 after_prologue = 0;
362 continue;
363 }
364 if ((insn >> 8) == 0x4f) /* addi sp, xx */
365 /* Add 8 bit sign-extended offset. */
366 {
367 int stack_adjust = (signed char) (insn & 0xff);
368
369 /* there are probably two of these stack adjustments:
370 1) A negative one in the prologue, and
371 2) A positive one in the epilogue.
372 We are only interested in the first one. */
373
374 if (stack_adjust < 0)
375 {
376 framesize -= stack_adjust;
377 after_prologue = 0;
378 /* A frameless function may have no "mv fp, sp".
379 In that case, this is the end of the prologue. */
380 after_stack_adjust = current_pc + 2;
381 }
382 continue;
383 }
384 if (insn == 0x1d8f)
385 { /* mv fp, sp */
386 after_prologue = current_pc + 2;
387 break; /* end of stack adjustments */
388 }
389
390 /* Nop looks like a branch, continue explicitly. */
391 if (insn == 0x7000)
392 {
393 after_prologue = current_pc + 2;
394 continue; /* nop occurs between pushes. */
395 }
396 /* End of prolog if any of these are trap instructions. */
397 if ((insn & 0xfff0) == 0x10f0)
398 {
399 after_prologue = current_pc;
400 break;
401 }
402 /* End of prolog if any of these are branch instructions. */
403 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
404 {
405 after_prologue = current_pc;
406 continue;
407 }
408 /* Some of the branch instructions are mixed with other types. */
409 if (op1 == 0x1000)
410 {
411 int subop = insn & 0x0ff0;
412 if ((subop == 0x0ec0) || (subop == 0x0fc0))
413 {
414 after_prologue = current_pc;
415 continue; /* jmp , jl */
416 }
417 }
418 }
419
420 if (framelength)
421 *framelength = framesize;
422
423 if (current_pc >= scan_limit)
424 {
425 if (pl_endptr)
426 {
427 if (after_stack_adjust != 0)
428 /* We did not find a "mv fp,sp", but we DID find
429 a stack_adjust. Is it safe to use that as the
430 end of the prologue? I just don't know. */
431 {
432 *pl_endptr = after_stack_adjust;
433 }
434 else if (after_push != 0)
435 /* We did not find a "mv fp,sp", but we DID find
436 a push. Is it safe to use that as the
437 end of the prologue? I just don't know. */
438 {
439 *pl_endptr = after_push;
440 }
441 else
442 /* We reached the end of the loop without finding the end
443 of the prologue. No way to win -- we should report
444 failure. The way we do that is to return the original
445 start_pc. GDB will set a breakpoint at the start of
446 the function (etc.) */
447 *pl_endptr = start_pc;
448 }
449 return 0;
450 }
451
452 if (after_prologue == 0)
453 after_prologue = current_pc;
454
455 if (pl_endptr)
456 *pl_endptr = after_prologue;
457
458 return 0;
459 } /* decode_prologue */
460
461 /* Function: skip_prologue
462 Find end of function prologue. */
463
464 #define DEFAULT_SEARCH_LIMIT 128
465
466 static CORE_ADDR
467 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
468 {
469 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
470 CORE_ADDR func_addr, func_end;
471 struct symtab_and_line sal;
472 LONGEST return_value;
473
474 /* See what the symbol table says. */
475
476 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
477 {
478 sal = find_pc_line (func_addr, 0);
479
480 if (sal.line != 0 && sal.end <= func_end)
481 {
482 func_end = sal.end;
483 }
484 else
485 /* Either there's no line info, or the line after the prologue is after
486 the end of the function. In this case, there probably isn't a
487 prologue. */
488 {
489 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
490 }
491 }
492 else
493 func_end = pc + DEFAULT_SEARCH_LIMIT;
494
495 /* If pc's location is not readable, just quit. */
496 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
497 return pc;
498
499 /* Find the end of prologue. */
500 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
501 return pc;
502
503 return sal.end;
504 }
505
506 struct m32r_unwind_cache
507 {
508 /* The previous frame's inner most stack address. Used as this
509 frame ID's stack_addr. */
510 CORE_ADDR prev_sp;
511 /* The frame's base, optionally used by the high-level debug info. */
512 CORE_ADDR base;
513 int size;
514 /* How far the SP and r13 (FP) have been offset from the start of
515 the stack frame (as defined by the previous frame's stack
516 pointer). */
517 LONGEST sp_offset;
518 LONGEST r13_offset;
519 int uses_frame;
520 /* Table indicating the location of each and every register. */
521 struct trad_frame_saved_reg *saved_regs;
522 };
523
524 /* Put here the code to store, into fi->saved_regs, the addresses of
525 the saved registers of frame described by FRAME_INFO. This
526 includes special registers such as pc and fp saved in special ways
527 in the stack frame. sp is even more special: the address we return
528 for it IS the sp for the next frame. */
529
530 static struct m32r_unwind_cache *
531 m32r_frame_unwind_cache (struct frame_info *this_frame,
532 void **this_prologue_cache)
533 {
534 CORE_ADDR pc, scan_limit;
535 ULONGEST prev_sp;
536 ULONGEST this_base;
537 unsigned long op;
538 int i;
539 struct m32r_unwind_cache *info;
540
541
542 if ((*this_prologue_cache))
543 return (*this_prologue_cache);
544
545 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
546 (*this_prologue_cache) = info;
547 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
548
549 info->size = 0;
550 info->sp_offset = 0;
551 info->uses_frame = 0;
552
553 scan_limit = get_frame_pc (this_frame);
554 for (pc = get_frame_func (this_frame);
555 pc > 0 && pc < scan_limit; pc += 2)
556 {
557 if ((pc & 2) == 0)
558 {
559 op = get_frame_memory_unsigned (this_frame, pc, 4);
560 if ((op & 0x80000000) == 0x80000000)
561 {
562 /* 32-bit instruction */
563 if ((op & 0xffff0000) == 0x8faf0000)
564 {
565 /* add3 sp,sp,xxxx */
566 short n = op & 0xffff;
567 info->sp_offset += n;
568 }
569 else if (((op >> 8) == 0xe4)
570 && get_frame_memory_unsigned (this_frame, pc + 2,
571 2) == 0x0f24)
572 {
573 /* ld24 r4, xxxxxx; sub sp, r4 */
574 unsigned long n = op & 0xffffff;
575 info->sp_offset += n;
576 pc += 2; /* skip sub instruction */
577 }
578
579 if (pc == scan_limit)
580 scan_limit += 2; /* extend the search */
581 pc += 2; /* skip the immediate data */
582 continue;
583 }
584 }
585
586 /* 16-bit instructions */
587 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
588 if ((op & 0xf0ff) == 0x207f)
589 {
590 /* st rn, @-sp */
591 int regno = ((op >> 8) & 0xf);
592 info->sp_offset -= 4;
593 info->saved_regs[regno].addr = info->sp_offset;
594 }
595 else if ((op & 0xff00) == 0x4f00)
596 {
597 /* addi sp, xx */
598 int n = (signed char) (op & 0xff);
599 info->sp_offset += n;
600 }
601 else if (op == 0x1d8f)
602 {
603 /* mv fp, sp */
604 info->uses_frame = 1;
605 info->r13_offset = info->sp_offset;
606 break; /* end of stack adjustments */
607 }
608 else if ((op & 0xfff0) == 0x10f0)
609 {
610 /* End of prologue if this is a trap instruction. */
611 break; /* End of stack adjustments. */
612 }
613 }
614
615 info->size = -info->sp_offset;
616
617 /* Compute the previous frame's stack pointer (which is also the
618 frame's ID's stack address), and this frame's base pointer. */
619 if (info->uses_frame)
620 {
621 /* The SP was moved to the FP. This indicates that a new frame
622 was created. Get THIS frame's FP value by unwinding it from
623 the next frame. */
624 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
625 /* The FP points at the last saved register. Adjust the FP back
626 to before the first saved register giving the SP. */
627 prev_sp = this_base + info->size;
628 }
629 else
630 {
631 /* Assume that the FP is this frame's SP but with that pushed
632 stack space added back. */
633 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
634 prev_sp = this_base + info->size;
635 }
636
637 /* Convert that SP/BASE into real addresses. */
638 info->prev_sp = prev_sp;
639 info->base = this_base;
640
641 /* Adjust all the saved registers so that they contain addresses and
642 not offsets. */
643 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
644 if (trad_frame_addr_p (info->saved_regs, i))
645 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
646
647 /* The call instruction moves the caller's PC in the callee's LR.
648 Since this is an unwind, do the reverse. Copy the location of LR
649 into PC (the address / regnum) so that a request for PC will be
650 converted into a request for the LR. */
651 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
652
653 /* The previous frame's SP needed to be computed. Save the computed
654 value. */
655 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
656
657 return info;
658 }
659
660 static CORE_ADDR
661 m32r_read_pc (struct regcache *regcache)
662 {
663 ULONGEST pc;
664 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
665 return pc;
666 }
667
668 static CORE_ADDR
669 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
670 {
671 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
672 }
673
674
675 static CORE_ADDR
676 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
677 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
678 struct value **args, CORE_ADDR sp, int struct_return,
679 CORE_ADDR struct_addr)
680 {
681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
682 int stack_offset, stack_alloc;
683 int argreg = ARG1_REGNUM;
684 int argnum;
685 struct type *type;
686 enum type_code typecode;
687 CORE_ADDR regval;
688 gdb_byte *val;
689 gdb_byte valbuf[MAX_REGISTER_SIZE];
690 int len;
691
692 /* First force sp to a 4-byte alignment. */
693 sp = sp & ~3;
694
695 /* Set the return address. For the m32r, the return breakpoint is
696 always at BP_ADDR. */
697 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
698
699 /* If STRUCT_RETURN is true, then the struct return address (in
700 STRUCT_ADDR) will consume the first argument-passing register.
701 Both adjust the register count and store that value. */
702 if (struct_return)
703 {
704 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
705 argreg++;
706 }
707
708 /* Now make sure there's space on the stack. */
709 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
710 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
711 sp -= stack_alloc; /* Make room on stack for args. */
712
713 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
714 {
715 type = value_type (args[argnum]);
716 typecode = TYPE_CODE (type);
717 len = TYPE_LENGTH (type);
718
719 memset (valbuf, 0, sizeof (valbuf));
720
721 /* Passes structures that do not fit in 2 registers by reference. */
722 if (len > 8
723 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
724 {
725 store_unsigned_integer (valbuf, 4, byte_order,
726 value_address (args[argnum]));
727 typecode = TYPE_CODE_PTR;
728 len = 4;
729 val = valbuf;
730 }
731 else if (len < 4)
732 {
733 /* Value gets right-justified in the register or stack word. */
734 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
735 (gdb_byte *) value_contents (args[argnum]), len);
736 val = valbuf;
737 }
738 else
739 val = (gdb_byte *) value_contents (args[argnum]);
740
741 while (len > 0)
742 {
743 if (argreg > ARGN_REGNUM)
744 {
745 /* Must go on the stack. */
746 write_memory (sp + stack_offset, val, 4);
747 stack_offset += 4;
748 }
749 else if (argreg <= ARGN_REGNUM)
750 {
751 /* There's room in a register. */
752 regval =
753 extract_unsigned_integer (val,
754 register_size (gdbarch, argreg),
755 byte_order);
756 regcache_cooked_write_unsigned (regcache, argreg++, regval);
757 }
758
759 /* Store the value 4 bytes at a time. This means that things
760 larger than 4 bytes may go partly in registers and partly
761 on the stack. */
762 len -= register_size (gdbarch, argreg);
763 val += register_size (gdbarch, argreg);
764 }
765 }
766
767 /* Finally, update the SP register. */
768 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
769
770 return sp;
771 }
772
773
774 /* Given a return value in `regbuf' with a type `valtype',
775 extract and copy its value into `valbuf'. */
776
777 static void
778 m32r_extract_return_value (struct type *type, struct regcache *regcache,
779 void *dst)
780 {
781 struct gdbarch *gdbarch = get_regcache_arch (regcache);
782 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
783 bfd_byte *valbuf = dst;
784 int len = TYPE_LENGTH (type);
785 ULONGEST tmp;
786
787 /* By using store_unsigned_integer we avoid having to do
788 anything special for small big-endian values. */
789 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
790 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
791
792 /* Ignore return values more than 8 bytes in size because the m32r
793 returns anything more than 8 bytes in the stack. */
794 if (len > 4)
795 {
796 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
797 store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
798 }
799 }
800
801 static enum return_value_convention
802 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
803 struct type *valtype, struct regcache *regcache,
804 gdb_byte *readbuf, const gdb_byte *writebuf)
805 {
806 if (TYPE_LENGTH (valtype) > 8)
807 return RETURN_VALUE_STRUCT_CONVENTION;
808 else
809 {
810 if (readbuf != NULL)
811 m32r_extract_return_value (valtype, regcache, readbuf);
812 if (writebuf != NULL)
813 m32r_store_return_value (valtype, regcache, writebuf);
814 return RETURN_VALUE_REGISTER_CONVENTION;
815 }
816 }
817
818
819
820 static CORE_ADDR
821 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
822 {
823 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
824 }
825
826 /* Given a GDB frame, determine the address of the calling function's
827 frame. This will be used to create a new GDB frame struct. */
828
829 static void
830 m32r_frame_this_id (struct frame_info *this_frame,
831 void **this_prologue_cache, struct frame_id *this_id)
832 {
833 struct m32r_unwind_cache *info
834 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
835 CORE_ADDR base;
836 CORE_ADDR func;
837 struct bound_minimal_symbol msym_stack;
838 struct frame_id id;
839
840 /* The FUNC is easy. */
841 func = get_frame_func (this_frame);
842
843 /* Check if the stack is empty. */
844 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
845 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
846 return;
847
848 /* Hopefully the prologue analysis either correctly determined the
849 frame's base (which is the SP from the previous frame), or set
850 that base to "NULL". */
851 base = info->prev_sp;
852 if (base == 0)
853 return;
854
855 id = frame_id_build (base, func);
856 (*this_id) = id;
857 }
858
859 static struct value *
860 m32r_frame_prev_register (struct frame_info *this_frame,
861 void **this_prologue_cache, int regnum)
862 {
863 struct m32r_unwind_cache *info
864 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
865 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
866 }
867
868 static const struct frame_unwind m32r_frame_unwind = {
869 NORMAL_FRAME,
870 default_frame_unwind_stop_reason,
871 m32r_frame_this_id,
872 m32r_frame_prev_register,
873 NULL,
874 default_frame_sniffer
875 };
876
877 static CORE_ADDR
878 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
879 {
880 struct m32r_unwind_cache *info
881 = m32r_frame_unwind_cache (this_frame, this_cache);
882 return info->base;
883 }
884
885 static const struct frame_base m32r_frame_base = {
886 &m32r_frame_unwind,
887 m32r_frame_base_address,
888 m32r_frame_base_address,
889 m32r_frame_base_address
890 };
891
892 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
893 frame. The frame ID's base needs to match the TOS value saved by
894 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
895
896 static struct frame_id
897 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
898 {
899 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
900 return frame_id_build (sp, get_frame_pc (this_frame));
901 }
902
903
904 static gdbarch_init_ftype m32r_gdbarch_init;
905
906 static struct gdbarch *
907 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
908 {
909 struct gdbarch *gdbarch;
910 struct gdbarch_tdep *tdep;
911
912 /* If there is already a candidate, use it. */
913 arches = gdbarch_list_lookup_by_info (arches, &info);
914 if (arches != NULL)
915 return arches->gdbarch;
916
917 /* Allocate space for the new architecture. */
918 tdep = XNEW (struct gdbarch_tdep);
919 gdbarch = gdbarch_alloc (&info, tdep);
920
921 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
922 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
923
924 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
925 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM);
926 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
927 set_gdbarch_register_name (gdbarch, m32r_register_name);
928 set_gdbarch_register_type (gdbarch, m32r_register_type);
929
930 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
931 set_gdbarch_return_value (gdbarch, m32r_return_value);
932
933 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
934 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
935 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
936 set_gdbarch_memory_insert_breakpoint (gdbarch,
937 m32r_memory_insert_breakpoint);
938 set_gdbarch_memory_remove_breakpoint (gdbarch,
939 m32r_memory_remove_breakpoint);
940
941 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
942
943 frame_base_set_default (gdbarch, &m32r_frame_base);
944
945 /* Methods for saving / extracting a dummy frame's ID. The ID's
946 stack address must match the SP value returned by
947 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
948 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
949
950 /* Return the unwound PC value. */
951 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
952
953 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
954
955 /* Hook in ABI-specific overrides, if they have been registered. */
956 gdbarch_init_osabi (info, gdbarch);
957
958 /* Hook in the default unwinders. */
959 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
960
961 /* Support simple overlay manager. */
962 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
963
964 return gdbarch;
965 }
966
967 void
968 _initialize_m32r_tdep (void)
969 {
970 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
971 }
This page took 0.048894 seconds and 5 git commands to generate.