2004-04-22 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "gdb_string.h"
32 #include "value.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "language.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "trad-frame.h"
40 #include "dis-asm.h"
41
42 #include "gdb_assert.h"
43
44 struct gdbarch_tdep
45 {
46 /* gdbarch target dependent data here. Currently unused for M32R. */
47 };
48
49 /* m32r register names. */
50
51 enum
52 {
53 R0_REGNUM = 0,
54 R3_REGNUM = 3,
55 M32R_FP_REGNUM = 13,
56 LR_REGNUM = 14,
57 M32R_SP_REGNUM = 15,
58 PSW_REGNUM = 16,
59 M32R_PC_REGNUM = 21,
60 /* m32r calling convention. */
61 ARG1_REGNUM = R0_REGNUM,
62 ARGN_REGNUM = R3_REGNUM,
63 RET1_REGNUM = R0_REGNUM,
64 };
65
66 /* Local functions */
67
68 extern void _initialize_m32r_tdep (void);
69
70 static CORE_ADDR
71 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
72 {
73 /* Align to the size of an instruction (so that they can safely be
74 pushed onto the stack. */
75 return sp & ~3;
76 }
77
78 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
79 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
80 is the type (which is known to be struct, union or array).
81
82 The m32r returns anything less than 8 bytes in size in
83 registers. */
84
85 static int
86 m32r_use_struct_convention (int gcc_p, struct type *type)
87 {
88 return (TYPE_LENGTH (type) > 8);
89 }
90
91
92 /* BREAKPOINT */
93 #define M32R_BE_BREAKPOINT32 {0x10, 0xf1, 0x70, 0x00}
94 #define M32R_LE_BREAKPOINT32 {0xf1, 0x10, 0x00, 0x70}
95 #define M32R_BE_BREAKPOINT16 {0x10, 0xf1}
96 #define M32R_LE_BREAKPOINT16 {0xf1, 0x10}
97
98 static int
99 m32r_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
100 {
101 int val;
102 unsigned char *bp;
103 int bplen;
104
105 bplen = (addr & 3) ? 2 : 4;
106
107 /* Save the memory contents. */
108 val = target_read_memory (addr, contents_cache, bplen);
109 if (val != 0)
110 return val; /* return error */
111
112 /* Determine appropriate breakpoint contents and size for this address. */
113 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
114 {
115 if (((addr & 3) == 0)
116 && ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
117 {
118 static unsigned char insn[] = M32R_BE_BREAKPOINT32;
119 bp = insn;
120 bplen = sizeof (insn);
121 }
122 else
123 {
124 static unsigned char insn[] = M32R_BE_BREAKPOINT16;
125 bp = insn;
126 bplen = sizeof (insn);
127 }
128 }
129 else
130 { /* little-endian */
131 if (((addr & 3) == 0)
132 && ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
133 {
134 static unsigned char insn[] = M32R_LE_BREAKPOINT32;
135 bp = insn;
136 bplen = sizeof (insn);
137 }
138 else
139 {
140 static unsigned char insn[] = M32R_LE_BREAKPOINT16;
141 bp = insn;
142 bplen = sizeof (insn);
143 }
144 }
145
146 /* Write the breakpoint. */
147 val = target_write_memory (addr, (char *) bp, bplen);
148 return val;
149 }
150
151 static int
152 m32r_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
153 {
154 int val;
155 int bplen;
156
157 /* Determine appropriate breakpoint contents and size for this address. */
158 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
159 {
160 if (((addr & 3) == 0)
161 && ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
162 {
163 static unsigned char insn[] = M32R_BE_BREAKPOINT32;
164 bplen = sizeof (insn);
165 }
166 else
167 {
168 static unsigned char insn[] = M32R_BE_BREAKPOINT16;
169 bplen = sizeof (insn);
170 }
171 }
172 else
173 {
174 /* little-endian */
175 if (((addr & 3) == 0)
176 && ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
177 {
178 static unsigned char insn[] = M32R_BE_BREAKPOINT32;
179 bplen = sizeof (insn);
180 }
181 else
182 {
183 static unsigned char insn[] = M32R_BE_BREAKPOINT16;
184 bplen = sizeof (insn);
185 }
186 }
187
188 /* Write contents. */
189 val = target_write_memory (addr, contents_cache, bplen);
190 return val;
191 }
192
193 static const unsigned char *
194 m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
195 {
196 unsigned char *bp;
197
198 /* Determine appropriate breakpoint. */
199 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
200 {
201 if ((*pcptr & 3) == 0)
202 {
203 static unsigned char insn[] = M32R_BE_BREAKPOINT32;
204 bp = insn;
205 *lenptr = sizeof (insn);
206 }
207 else
208 {
209 static unsigned char insn[] = M32R_BE_BREAKPOINT16;
210 bp = insn;
211 *lenptr = sizeof (insn);
212 }
213 }
214 else
215 {
216 if ((*pcptr & 3) == 0)
217 {
218 static unsigned char insn[] = M32R_LE_BREAKPOINT32;
219 bp = insn;
220 *lenptr = sizeof (insn);
221 }
222 else
223 {
224 static unsigned char insn[] = M32R_LE_BREAKPOINT16;
225 bp = insn;
226 *lenptr = sizeof (insn);
227 }
228 }
229
230 return bp;
231 }
232
233
234 char *m32r_register_names[] = {
235 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
236 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
237 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
238 "evb"
239 };
240
241 static int
242 m32r_num_regs (void)
243 {
244 return (sizeof (m32r_register_names) / sizeof (m32r_register_names[0]));
245 }
246
247 static const char *
248 m32r_register_name (int reg_nr)
249 {
250 if (reg_nr < 0)
251 return NULL;
252 if (reg_nr >= m32r_num_regs ())
253 return NULL;
254 return m32r_register_names[reg_nr];
255 }
256
257
258 /* Return the GDB type object for the "standard" data type
259 of data in register N. */
260
261 static struct type *
262 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
263 {
264 if (reg_nr == M32R_PC_REGNUM)
265 return builtin_type_void_func_ptr;
266 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
267 return builtin_type_void_data_ptr;
268 else
269 return builtin_type_int32;
270 }
271
272
273 /* Write into appropriate registers a function return value
274 of type TYPE, given in virtual format.
275
276 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
277
278 static void
279 m32r_store_return_value (struct type *type, struct regcache *regcache,
280 const void *valbuf)
281 {
282 CORE_ADDR regval;
283 int len = TYPE_LENGTH (type);
284
285 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
286 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
287
288 if (len > 4)
289 {
290 regval = extract_unsigned_integer ((char *) valbuf + 4, len - 4);
291 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
292 }
293 }
294
295 /* Extract from an array REGBUF containing the (raw) register state
296 the address in which a function should return its structure value,
297 as a CORE_ADDR (or an expression that can be used as one). */
298
299 static CORE_ADDR
300 m32r_extract_struct_value_address (struct regcache *regcache)
301 {
302 ULONGEST addr;
303 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
304 return addr;
305 }
306
307
308 /* This is required by skip_prologue. The results of decoding a prologue
309 should be cached because this thrashing is getting nuts. */
310
311 static void
312 decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
313 CORE_ADDR *pl_endptr)
314 {
315 unsigned long framesize;
316 int insn;
317 int op1;
318 int maybe_one_more = 0;
319 CORE_ADDR after_prologue = 0;
320 CORE_ADDR after_stack_adjust = 0;
321 CORE_ADDR current_pc;
322
323 framesize = 0;
324 after_prologue = 0;
325
326 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
327 {
328 insn = read_memory_unsigned_integer (current_pc, 2);
329
330 /* If this is a 32 bit instruction, we dont want to examine its
331 immediate data as though it were an instruction */
332 if (current_pc & 0x02)
333 {
334 /* Clear the parallel execution bit from 16 bit instruction */
335 if (maybe_one_more)
336 {
337 /* The last instruction was a branch, usually terminates
338 the series, but if this is a parallel instruction,
339 it may be a stack framing instruction */
340 if (!(insn & 0x8000))
341 {
342 /* nope, we are really done */
343 break;
344 }
345 }
346 /* decode this instruction further */
347 insn &= 0x7fff;
348 }
349 else
350 {
351 if (maybe_one_more)
352 break; /* This isnt the one more */
353 if (insn & 0x8000)
354 {
355 if (current_pc == scan_limit)
356 scan_limit += 2; /* extend the search */
357 current_pc += 2; /* skip the immediate data */
358 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
359 /* add 16 bit sign-extended offset */
360 {
361 framesize +=
362 -((short) read_memory_unsigned_integer (current_pc, 2));
363 }
364 else
365 {
366 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
367 && read_memory_unsigned_integer (current_pc + 2,
368 2) == 0x0f24)
369 /* subtract 24 bit sign-extended negative-offset */
370 {
371 insn = read_memory_unsigned_integer (current_pc - 2, 4);
372 if (insn & 0x00800000) /* sign extend */
373 insn |= 0xff000000; /* negative */
374 else
375 insn &= 0x00ffffff; /* positive */
376 framesize += insn;
377 }
378 }
379 after_prologue = current_pc;
380 continue;
381 }
382 }
383 op1 = insn & 0xf000; /* isolate just the first nibble */
384
385 if ((insn & 0xf0ff) == 0x207f)
386 { /* st reg, @-sp */
387 int regno;
388 framesize += 4;
389 regno = ((insn >> 8) & 0xf);
390 after_prologue = 0;
391 continue;
392 }
393 if ((insn >> 8) == 0x4f) /* addi sp, xx */
394 /* add 8 bit sign-extended offset */
395 {
396 int stack_adjust = (char) (insn & 0xff);
397
398 /* there are probably two of these stack adjustments:
399 1) A negative one in the prologue, and
400 2) A positive one in the epilogue.
401 We are only interested in the first one. */
402
403 if (stack_adjust < 0)
404 {
405 framesize -= stack_adjust;
406 after_prologue = 0;
407 /* A frameless function may have no "mv fp, sp".
408 In that case, this is the end of the prologue. */
409 after_stack_adjust = current_pc + 2;
410 }
411 continue;
412 }
413 if (insn == 0x1d8f)
414 { /* mv fp, sp */
415 after_prologue = current_pc + 2;
416 break; /* end of stack adjustments */
417 }
418 /* Nop looks like a branch, continue explicitly */
419 if (insn == 0x7000)
420 {
421 after_prologue = current_pc + 2;
422 continue; /* nop occurs between pushes */
423 }
424 /* End of prolog if any of these are branch instructions */
425 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
426 {
427 after_prologue = current_pc;
428 maybe_one_more = 1;
429 continue;
430 }
431 /* Some of the branch instructions are mixed with other types */
432 if (op1 == 0x1000)
433 {
434 int subop = insn & 0x0ff0;
435 if ((subop == 0x0ec0) || (subop == 0x0fc0))
436 {
437 after_prologue = current_pc;
438 maybe_one_more = 1;
439 continue; /* jmp , jl */
440 }
441 }
442 }
443
444 if (current_pc >= scan_limit)
445 {
446 if (pl_endptr)
447 {
448 if (after_stack_adjust != 0)
449 /* We did not find a "mv fp,sp", but we DID find
450 a stack_adjust. Is it safe to use that as the
451 end of the prologue? I just don't know. */
452 {
453 *pl_endptr = after_stack_adjust;
454 }
455 else
456 /* We reached the end of the loop without finding the end
457 of the prologue. No way to win -- we should report failure.
458 The way we do that is to return the original start_pc.
459 GDB will set a breakpoint at the start of the function (etc.) */
460 *pl_endptr = start_pc;
461 }
462 return;
463 }
464 if (after_prologue == 0)
465 after_prologue = current_pc;
466
467 if (pl_endptr)
468 *pl_endptr = after_prologue;
469 } /* decode_prologue */
470
471 /* Function: skip_prologue
472 Find end of function prologue */
473
474 #define DEFAULT_SEARCH_LIMIT 44
475
476 CORE_ADDR
477 m32r_skip_prologue (CORE_ADDR pc)
478 {
479 CORE_ADDR func_addr, func_end;
480 struct symtab_and_line sal;
481
482 /* See what the symbol table says */
483
484 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
485 {
486 sal = find_pc_line (func_addr, 0);
487
488 if (sal.line != 0 && sal.end <= func_end)
489 {
490 func_end = sal.end;
491 }
492 else
493 /* Either there's no line info, or the line after the prologue is after
494 the end of the function. In this case, there probably isn't a
495 prologue. */
496 {
497 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
498 }
499 }
500 else
501 func_end = pc + DEFAULT_SEARCH_LIMIT;
502 decode_prologue (pc, func_end, &sal.end);
503 return sal.end;
504 }
505
506
507 struct m32r_unwind_cache
508 {
509 /* The previous frame's inner most stack address. Used as this
510 frame ID's stack_addr. */
511 CORE_ADDR prev_sp;
512 /* The frame's base, optionally used by the high-level debug info. */
513 CORE_ADDR base;
514 int size;
515 /* How far the SP and r13 (FP) have been offset from the start of
516 the stack frame (as defined by the previous frame's stack
517 pointer). */
518 LONGEST sp_offset;
519 LONGEST r13_offset;
520 int uses_frame;
521 /* Table indicating the location of each and every register. */
522 struct trad_frame_saved_reg *saved_regs;
523 };
524
525 /* Put here the code to store, into fi->saved_regs, the addresses of
526 the saved registers of frame described by FRAME_INFO. This
527 includes special registers such as pc and fp saved in special ways
528 in the stack frame. sp is even more special: the address we return
529 for it IS the sp for the next frame. */
530
531 static struct m32r_unwind_cache *
532 m32r_frame_unwind_cache (struct frame_info *next_frame,
533 void **this_prologue_cache)
534 {
535 CORE_ADDR pc;
536 ULONGEST prev_sp;
537 ULONGEST this_base;
538 unsigned long op;
539 int i;
540 struct m32r_unwind_cache *info;
541
542 if ((*this_prologue_cache))
543 return (*this_prologue_cache);
544
545 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
546 (*this_prologue_cache) = info;
547 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
548
549 info->size = 0;
550 info->sp_offset = 0;
551
552 info->uses_frame = 0;
553 for (pc = frame_func_unwind (next_frame);
554 pc > 0 && pc < frame_pc_unwind (next_frame); pc += 2)
555 {
556 if ((pc & 2) == 0)
557 {
558 op = get_frame_memory_unsigned (next_frame, pc, 4);
559 if ((op & 0x80000000) == 0x80000000)
560 {
561 /* 32-bit instruction */
562 if ((op & 0xffff0000) == 0x8faf0000)
563 {
564 /* add3 sp,sp,xxxx */
565 short n = op & 0xffff;
566 info->sp_offset += n;
567 }
568 else if (((op >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
569 && get_frame_memory_unsigned (next_frame, pc + 4,
570 2) == 0x0f24)
571 {
572 unsigned long n = op & 0xffffff;
573 info->sp_offset += n;
574 pc += 2;
575 }
576 else
577 break;
578
579 pc += 2;
580 continue;
581 }
582 }
583
584 /* 16-bit instructions */
585 op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
586 if ((op & 0xf0ff) == 0x207f)
587 {
588 /* st rn, @-sp */
589 int regno = ((op >> 8) & 0xf);
590 info->sp_offset -= 4;
591 info->saved_regs[regno].addr = info->sp_offset;
592 }
593 else if ((op & 0xff00) == 0x4f00)
594 {
595 /* addi sp, xx */
596 int n = (char) (op & 0xff);
597 info->sp_offset += n;
598 }
599 else if (op == 0x1d8f)
600 {
601 /* mv fp, sp */
602 info->uses_frame = 1;
603 info->r13_offset = info->sp_offset;
604 }
605 else if (op == 0x7000)
606 /* nop */
607 continue;
608 else
609 break;
610 }
611
612 info->size = -info->sp_offset;
613
614 /* Compute the previous frame's stack pointer (which is also the
615 frame's ID's stack address), and this frame's base pointer. */
616 if (info->uses_frame)
617 {
618 /* The SP was moved to the FP. This indicates that a new frame
619 was created. Get THIS frame's FP value by unwinding it from
620 the next frame. */
621 this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM);
622 /* The FP points at the last saved register. Adjust the FP back
623 to before the first saved register giving the SP. */
624 prev_sp = this_base + info->size;
625 }
626 else
627 {
628 /* Assume that the FP is this frame's SP but with that pushed
629 stack space added back. */
630 this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
631 prev_sp = this_base + info->size;
632 }
633
634 /* Convert that SP/BASE into real addresses. */
635 info->prev_sp = prev_sp;
636 info->base = this_base;
637
638 /* Adjust all the saved registers so that they contain addresses and
639 not offsets. */
640 for (i = 0; i < NUM_REGS - 1; i++)
641 if (trad_frame_addr_p (info->saved_regs, i))
642 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
643
644 /* The call instruction moves the caller's PC in the callee's LR.
645 Since this is an unwind, do the reverse. Copy the location of LR
646 into PC (the address / regnum) so that a request for PC will be
647 converted into a request for the LR. */
648 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
649
650 /* The previous frame's SP needed to be computed. Save the computed
651 value. */
652 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
653
654 return info;
655 }
656
657 static CORE_ADDR
658 m32r_read_pc (ptid_t ptid)
659 {
660 ptid_t save_ptid;
661 ULONGEST pc;
662
663 save_ptid = inferior_ptid;
664 inferior_ptid = ptid;
665 regcache_cooked_read_unsigned (current_regcache, M32R_PC_REGNUM, &pc);
666 inferior_ptid = save_ptid;
667 return pc;
668 }
669
670 static void
671 m32r_write_pc (CORE_ADDR val, ptid_t ptid)
672 {
673 ptid_t save_ptid;
674
675 save_ptid = inferior_ptid;
676 inferior_ptid = ptid;
677 write_register (M32R_PC_REGNUM, val);
678 inferior_ptid = save_ptid;
679 }
680
681 static CORE_ADDR
682 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
683 {
684 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
685 }
686
687
688 static CORE_ADDR
689 m32r_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
690 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
691 struct value **args, CORE_ADDR sp, int struct_return,
692 CORE_ADDR struct_addr)
693 {
694 int stack_offset, stack_alloc;
695 int argreg = ARG1_REGNUM;
696 int argnum;
697 struct type *type;
698 enum type_code typecode;
699 CORE_ADDR regval;
700 char *val;
701 char valbuf[MAX_REGISTER_SIZE];
702 int len;
703 int odd_sized_struct;
704
705 /* first force sp to a 4-byte alignment */
706 sp = sp & ~3;
707
708 /* Set the return address. For the m32r, the return breakpoint is
709 always at BP_ADDR. */
710 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
711
712 /* If STRUCT_RETURN is true, then the struct return address (in
713 STRUCT_ADDR) will consume the first argument-passing register.
714 Both adjust the register count and store that value. */
715 if (struct_return)
716 {
717 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
718 argreg++;
719 }
720
721 /* Now make sure there's space on the stack */
722 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
723 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
724 sp -= stack_alloc; /* make room on stack for args */
725
726 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
727 {
728 type = VALUE_TYPE (args[argnum]);
729 typecode = TYPE_CODE (type);
730 len = TYPE_LENGTH (type);
731
732 memset (valbuf, 0, sizeof (valbuf));
733
734 /* Passes structures that do not fit in 2 registers by reference. */
735 if (len > 8
736 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
737 {
738 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
739 typecode = TYPE_CODE_PTR;
740 len = 4;
741 val = valbuf;
742 }
743 else if (len < 4)
744 {
745 /* value gets right-justified in the register or stack word */
746 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
747 (char *) VALUE_CONTENTS (args[argnum]), len);
748 val = valbuf;
749 }
750 else
751 val = (char *) VALUE_CONTENTS (args[argnum]);
752
753 while (len > 0)
754 {
755 if (argreg > ARGN_REGNUM)
756 {
757 /* must go on the stack */
758 write_memory (sp + stack_offset, val, 4);
759 stack_offset += 4;
760 }
761 else if (argreg <= ARGN_REGNUM)
762 {
763 /* there's room in a register */
764 regval =
765 extract_unsigned_integer (val,
766 register_size (gdbarch, argreg));
767 regcache_cooked_write_unsigned (regcache, argreg++, regval);
768 }
769
770 /* Store the value 4 bytes at a time. This means that things
771 larger than 4 bytes may go partly in registers and partly
772 on the stack. */
773 len -= register_size (gdbarch, argreg);
774 val += register_size (gdbarch, argreg);
775 }
776 }
777
778 /* Finally, update the SP register. */
779 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
780
781 return sp;
782 }
783
784
785 /* Given a return value in `regbuf' with a type `valtype',
786 extract and copy its value into `valbuf'. */
787
788 static void
789 m32r_extract_return_value (struct type *type, struct regcache *regcache,
790 void *dst)
791 {
792 bfd_byte *valbuf = dst;
793 int len = TYPE_LENGTH (type);
794 ULONGEST tmp;
795
796 /* By using store_unsigned_integer we avoid having to do
797 anything special for small big-endian values. */
798 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
799 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
800
801 /* Ignore return values more than 8 bytes in size because the m32r
802 returns anything more than 8 bytes in the stack. */
803 if (len > 4)
804 {
805 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
806 store_unsigned_integer (valbuf + len - 4, 4, tmp);
807 }
808 }
809
810
811 static CORE_ADDR
812 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
813 {
814 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
815 }
816
817 /* Given a GDB frame, determine the address of the calling function's
818 frame. This will be used to create a new GDB frame struct. */
819
820 static void
821 m32r_frame_this_id (struct frame_info *next_frame,
822 void **this_prologue_cache, struct frame_id *this_id)
823 {
824 struct m32r_unwind_cache *info
825 = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
826 CORE_ADDR base;
827 CORE_ADDR func;
828 struct minimal_symbol *msym_stack;
829 struct frame_id id;
830
831 /* The FUNC is easy. */
832 func = frame_func_unwind (next_frame);
833
834 /* Check if the stack is empty. */
835 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
836 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
837 return;
838
839 /* Hopefully the prologue analysis either correctly determined the
840 frame's base (which is the SP from the previous frame), or set
841 that base to "NULL". */
842 base = info->prev_sp;
843 if (base == 0)
844 return;
845
846 id = frame_id_build (base, func);
847 (*this_id) = id;
848 }
849
850 static void
851 m32r_frame_prev_register (struct frame_info *next_frame,
852 void **this_prologue_cache,
853 int regnum, int *optimizedp,
854 enum lval_type *lvalp, CORE_ADDR *addrp,
855 int *realnump, void *bufferp)
856 {
857 struct m32r_unwind_cache *info
858 = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
859 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
860 optimizedp, lvalp, addrp, realnump, bufferp);
861 }
862
863 static const struct frame_unwind m32r_frame_unwind = {
864 NORMAL_FRAME,
865 m32r_frame_this_id,
866 m32r_frame_prev_register
867 };
868
869 static const struct frame_unwind *
870 m32r_frame_sniffer (struct frame_info *next_frame)
871 {
872 return &m32r_frame_unwind;
873 }
874
875 static CORE_ADDR
876 m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
877 {
878 struct m32r_unwind_cache *info
879 = m32r_frame_unwind_cache (next_frame, this_cache);
880 return info->base;
881 }
882
883 static const struct frame_base m32r_frame_base = {
884 &m32r_frame_unwind,
885 m32r_frame_base_address,
886 m32r_frame_base_address,
887 m32r_frame_base_address
888 };
889
890 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
891 dummy frame. The frame ID's base needs to match the TOS value
892 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
893 breakpoint. */
894
895 static struct frame_id
896 m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
897 {
898 return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
899 frame_pc_unwind (next_frame));
900 }
901
902
903 static gdbarch_init_ftype m32r_gdbarch_init;
904
905 static struct gdbarch *
906 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
907 {
908 struct gdbarch *gdbarch;
909 struct gdbarch_tdep *tdep;
910
911 /* If there is already a candidate, use it. */
912 arches = gdbarch_list_lookup_by_info (arches, &info);
913 if (arches != NULL)
914 return arches->gdbarch;
915
916 /* Allocate space for the new architecture. */
917 tdep = XMALLOC (struct gdbarch_tdep);
918 gdbarch = gdbarch_alloc (&info, tdep);
919
920 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
921 set_gdbarch_write_pc (gdbarch, m32r_write_pc);
922 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
923
924 set_gdbarch_num_regs (gdbarch, m32r_num_regs ());
925 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
926 set_gdbarch_register_name (gdbarch, m32r_register_name);
927 set_gdbarch_register_type (gdbarch, m32r_register_type);
928
929 set_gdbarch_extract_return_value (gdbarch, m32r_extract_return_value);
930 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
931 set_gdbarch_store_return_value (gdbarch, m32r_store_return_value);
932 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, m32r_extract_struct_value_address);
933 set_gdbarch_use_struct_convention (gdbarch, m32r_use_struct_convention);
934
935 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
936 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
937 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
938 set_gdbarch_memory_insert_breakpoint (gdbarch,
939 m32r_memory_insert_breakpoint);
940 set_gdbarch_memory_remove_breakpoint (gdbarch,
941 m32r_memory_remove_breakpoint);
942
943 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, legacy_frameless_look_for_prologue);
944
945 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
946
947 frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer);
948 frame_base_set_default (gdbarch, &m32r_frame_base);
949
950 /* Methods for saving / extracting a dummy frame's ID. The ID's
951 stack address must match the SP value returned by
952 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
953 set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
954
955 /* Return the unwound PC value. */
956 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
957
958 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
959
960 return gdbarch;
961 }
962
963 void
964 _initialize_m32r_tdep (void)
965 {
966 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
967 }
This page took 0.068698 seconds and 5 git commands to generate.