Add M32R_ARG_REGISTER_SIZE
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright (C) 1996-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "osabi.h"
33 #include "language.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "m32r-tdep.h"
40 #include <algorithm>
41
42 /* The size of the argument registers (r0 - r3) in bytes. */
43 #define M32R_ARG_REGISTER_SIZE 4
44
45 /* Local functions */
46
47 extern void _initialize_m32r_tdep (void);
48
49 static CORE_ADDR
50 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
51 {
52 /* Align to the size of an instruction (so that they can safely be
53 pushed onto the stack. */
54 return sp & ~3;
55 }
56
57
58 /* Breakpoints
59
60 The little endian mode of M32R is unique. In most of architectures,
61 two 16-bit instructions, A and B, are placed as the following:
62
63 Big endian:
64 A0 A1 B0 B1
65
66 Little endian:
67 A1 A0 B1 B0
68
69 In M32R, they are placed like this:
70
71 Big endian:
72 A0 A1 B0 B1
73
74 Little endian:
75 B1 B0 A1 A0
76
77 This is because M32R always fetches instructions in 32-bit.
78
79 The following functions take care of this behavior. */
80
81 static int
82 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
83 struct bp_target_info *bp_tgt)
84 {
85 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
86 int val;
87 gdb_byte buf[4];
88 gdb_byte contents_cache[4];
89 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
90
91 /* Save the memory contents. */
92 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
93 if (val != 0)
94 return val; /* return error */
95
96 memcpy (bp_tgt->shadow_contents, contents_cache, 4);
97 bp_tgt->shadow_len = 4;
98
99 /* Determine appropriate breakpoint contents and size for this address. */
100 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
101 {
102 if ((addr & 3) == 0)
103 {
104 buf[0] = bp_entry[0];
105 buf[1] = bp_entry[1];
106 buf[2] = contents_cache[2] & 0x7f;
107 buf[3] = contents_cache[3];
108 }
109 else
110 {
111 buf[0] = contents_cache[0];
112 buf[1] = contents_cache[1];
113 buf[2] = bp_entry[0];
114 buf[3] = bp_entry[1];
115 }
116 }
117 else /* little-endian */
118 {
119 if ((addr & 3) == 0)
120 {
121 buf[0] = contents_cache[0];
122 buf[1] = contents_cache[1] & 0x7f;
123 buf[2] = bp_entry[1];
124 buf[3] = bp_entry[0];
125 }
126 else
127 {
128 buf[0] = bp_entry[1];
129 buf[1] = bp_entry[0];
130 buf[2] = contents_cache[2];
131 buf[3] = contents_cache[3];
132 }
133 }
134
135 /* Write the breakpoint. */
136 val = target_write_memory (addr & 0xfffffffc, buf, 4);
137 return val;
138 }
139
140 static int
141 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
142 struct bp_target_info *bp_tgt)
143 {
144 CORE_ADDR addr = bp_tgt->placed_address;
145 int val;
146 gdb_byte buf[4];
147 gdb_byte *contents_cache = bp_tgt->shadow_contents;
148
149 buf[0] = contents_cache[0];
150 buf[1] = contents_cache[1];
151 buf[2] = contents_cache[2];
152 buf[3] = contents_cache[3];
153
154 /* Remove parallel bit. */
155 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
156 {
157 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
158 buf[2] &= 0x7f;
159 }
160 else /* little-endian */
161 {
162 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
163 buf[1] &= 0x7f;
164 }
165
166 /* Write contents. */
167 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
168 return val;
169 }
170
171 /* Implement the breakpoint_kind_from_pc gdbarch method. */
172
173 static int
174 m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
175 {
176 if ((*pcptr & 3) == 0)
177 return 4;
178 else
179 return 2;
180 }
181
182 /* Implement the sw_breakpoint_from_kind gdbarch method. */
183
184 static const gdb_byte *
185 m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
186 {
187 static gdb_byte be_bp_entry[] = {
188 0x10, 0xf1, 0x70, 0x00
189 }; /* dpt -> nop */
190 static gdb_byte le_bp_entry[] = {
191 0x00, 0x70, 0xf1, 0x10
192 }; /* dpt -> nop */
193
194 *size = kind;
195
196 /* Determine appropriate breakpoint. */
197 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
198 return be_bp_entry;
199 else
200 {
201 if (kind == 4)
202 return le_bp_entry;
203 else
204 return le_bp_entry + 2;
205 }
206 }
207
208 static const char *m32r_register_names[] = {
209 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
210 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
211 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
212 "evb"
213 };
214
215 static const char *
216 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
217 {
218 if (reg_nr < 0)
219 return NULL;
220 if (reg_nr >= M32R_NUM_REGS)
221 return NULL;
222 return m32r_register_names[reg_nr];
223 }
224
225
226 /* Return the GDB type object for the "standard" data type
227 of data in register N. */
228
229 static struct type *
230 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
231 {
232 if (reg_nr == M32R_PC_REGNUM)
233 return builtin_type (gdbarch)->builtin_func_ptr;
234 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
235 return builtin_type (gdbarch)->builtin_data_ptr;
236 else
237 return builtin_type (gdbarch)->builtin_int32;
238 }
239
240
241 /* Write into appropriate registers a function return value
242 of type TYPE, given in virtual format.
243
244 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
245
246 static void
247 m32r_store_return_value (struct type *type, struct regcache *regcache,
248 const gdb_byte *valbuf)
249 {
250 struct gdbarch *gdbarch = get_regcache_arch (regcache);
251 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
252 CORE_ADDR regval;
253 int len = TYPE_LENGTH (type);
254
255 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
256 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
257
258 if (len > 4)
259 {
260 regval = extract_unsigned_integer (valbuf + 4,
261 len - 4, byte_order);
262 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
263 }
264 }
265
266 /* This is required by skip_prologue. The results of decoding a prologue
267 should be cached because this thrashing is getting nuts. */
268
269 static int
270 decode_prologue (struct gdbarch *gdbarch,
271 CORE_ADDR start_pc, CORE_ADDR scan_limit,
272 CORE_ADDR *pl_endptr, unsigned long *framelength)
273 {
274 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
275 unsigned long framesize;
276 int insn;
277 int op1;
278 CORE_ADDR after_prologue = 0;
279 CORE_ADDR after_push = 0;
280 CORE_ADDR after_stack_adjust = 0;
281 CORE_ADDR current_pc;
282 LONGEST return_value;
283
284 framesize = 0;
285 after_prologue = 0;
286
287 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
288 {
289 /* Check if current pc's location is readable. */
290 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
291 return -1;
292
293 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
294
295 if (insn == 0x0000)
296 break;
297
298 /* If this is a 32 bit instruction, we dont want to examine its
299 immediate data as though it were an instruction. */
300 if (current_pc & 0x02)
301 {
302 /* Decode this instruction further. */
303 insn &= 0x7fff;
304 }
305 else
306 {
307 if (insn & 0x8000)
308 {
309 if (current_pc == scan_limit)
310 scan_limit += 2; /* extend the search */
311
312 current_pc += 2; /* skip the immediate data */
313
314 /* Check if current pc's location is readable. */
315 if (!safe_read_memory_integer (current_pc, 2, byte_order,
316 &return_value))
317 return -1;
318
319 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
320 /* add 16 bit sign-extended offset */
321 {
322 framesize +=
323 -((short) read_memory_unsigned_integer (current_pc,
324 2, byte_order));
325 }
326 else
327 {
328 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
329 && safe_read_memory_integer (current_pc + 2,
330 2, byte_order,
331 &return_value)
332 && read_memory_unsigned_integer (current_pc + 2,
333 2, byte_order)
334 == 0x0f24)
335 {
336 /* Subtract 24 bit sign-extended negative-offset. */
337 insn = read_memory_unsigned_integer (current_pc - 2,
338 4, byte_order);
339 if (insn & 0x00800000) /* sign extend */
340 insn |= 0xff000000; /* negative */
341 else
342 insn &= 0x00ffffff; /* positive */
343 framesize += insn;
344 }
345 }
346 after_push = current_pc + 2;
347 continue;
348 }
349 }
350 op1 = insn & 0xf000; /* Isolate just the first nibble. */
351
352 if ((insn & 0xf0ff) == 0x207f)
353 { /* st reg, @-sp */
354 framesize += 4;
355 after_prologue = 0;
356 continue;
357 }
358 if ((insn >> 8) == 0x4f) /* addi sp, xx */
359 /* Add 8 bit sign-extended offset. */
360 {
361 int stack_adjust = (signed char) (insn & 0xff);
362
363 /* there are probably two of these stack adjustments:
364 1) A negative one in the prologue, and
365 2) A positive one in the epilogue.
366 We are only interested in the first one. */
367
368 if (stack_adjust < 0)
369 {
370 framesize -= stack_adjust;
371 after_prologue = 0;
372 /* A frameless function may have no "mv fp, sp".
373 In that case, this is the end of the prologue. */
374 after_stack_adjust = current_pc + 2;
375 }
376 continue;
377 }
378 if (insn == 0x1d8f)
379 { /* mv fp, sp */
380 after_prologue = current_pc + 2;
381 break; /* end of stack adjustments */
382 }
383
384 /* Nop looks like a branch, continue explicitly. */
385 if (insn == 0x7000)
386 {
387 after_prologue = current_pc + 2;
388 continue; /* nop occurs between pushes. */
389 }
390 /* End of prolog if any of these are trap instructions. */
391 if ((insn & 0xfff0) == 0x10f0)
392 {
393 after_prologue = current_pc;
394 break;
395 }
396 /* End of prolog if any of these are branch instructions. */
397 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
398 {
399 after_prologue = current_pc;
400 continue;
401 }
402 /* Some of the branch instructions are mixed with other types. */
403 if (op1 == 0x1000)
404 {
405 int subop = insn & 0x0ff0;
406 if ((subop == 0x0ec0) || (subop == 0x0fc0))
407 {
408 after_prologue = current_pc;
409 continue; /* jmp , jl */
410 }
411 }
412 }
413
414 if (framelength)
415 *framelength = framesize;
416
417 if (current_pc >= scan_limit)
418 {
419 if (pl_endptr)
420 {
421 if (after_stack_adjust != 0)
422 /* We did not find a "mv fp,sp", but we DID find
423 a stack_adjust. Is it safe to use that as the
424 end of the prologue? I just don't know. */
425 {
426 *pl_endptr = after_stack_adjust;
427 }
428 else if (after_push != 0)
429 /* We did not find a "mv fp,sp", but we DID find
430 a push. Is it safe to use that as the
431 end of the prologue? I just don't know. */
432 {
433 *pl_endptr = after_push;
434 }
435 else
436 /* We reached the end of the loop without finding the end
437 of the prologue. No way to win -- we should report
438 failure. The way we do that is to return the original
439 start_pc. GDB will set a breakpoint at the start of
440 the function (etc.) */
441 *pl_endptr = start_pc;
442 }
443 return 0;
444 }
445
446 if (after_prologue == 0)
447 after_prologue = current_pc;
448
449 if (pl_endptr)
450 *pl_endptr = after_prologue;
451
452 return 0;
453 } /* decode_prologue */
454
455 /* Function: skip_prologue
456 Find end of function prologue. */
457
458 #define DEFAULT_SEARCH_LIMIT 128
459
460 static CORE_ADDR
461 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
462 {
463 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
464 CORE_ADDR func_addr, func_end;
465 struct symtab_and_line sal;
466 LONGEST return_value;
467
468 /* See what the symbol table says. */
469
470 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
471 {
472 sal = find_pc_line (func_addr, 0);
473
474 if (sal.line != 0 && sal.end <= func_end)
475 {
476 func_end = sal.end;
477 }
478 else
479 /* Either there's no line info, or the line after the prologue is after
480 the end of the function. In this case, there probably isn't a
481 prologue. */
482 {
483 func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
484 }
485 }
486 else
487 func_end = pc + DEFAULT_SEARCH_LIMIT;
488
489 /* If pc's location is not readable, just quit. */
490 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
491 return pc;
492
493 /* Find the end of prologue. */
494 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
495 return pc;
496
497 return sal.end;
498 }
499
500 struct m32r_unwind_cache
501 {
502 /* The previous frame's inner most stack address. Used as this
503 frame ID's stack_addr. */
504 CORE_ADDR prev_sp;
505 /* The frame's base, optionally used by the high-level debug info. */
506 CORE_ADDR base;
507 int size;
508 /* How far the SP and r13 (FP) have been offset from the start of
509 the stack frame (as defined by the previous frame's stack
510 pointer). */
511 LONGEST sp_offset;
512 LONGEST r13_offset;
513 int uses_frame;
514 /* Table indicating the location of each and every register. */
515 struct trad_frame_saved_reg *saved_regs;
516 };
517
518 /* Put here the code to store, into fi->saved_regs, the addresses of
519 the saved registers of frame described by FRAME_INFO. This
520 includes special registers such as pc and fp saved in special ways
521 in the stack frame. sp is even more special: the address we return
522 for it IS the sp for the next frame. */
523
524 static struct m32r_unwind_cache *
525 m32r_frame_unwind_cache (struct frame_info *this_frame,
526 void **this_prologue_cache)
527 {
528 CORE_ADDR pc, scan_limit;
529 ULONGEST prev_sp;
530 ULONGEST this_base;
531 unsigned long op;
532 int i;
533 struct m32r_unwind_cache *info;
534
535
536 if ((*this_prologue_cache))
537 return (struct m32r_unwind_cache *) (*this_prologue_cache);
538
539 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
540 (*this_prologue_cache) = info;
541 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
542
543 info->size = 0;
544 info->sp_offset = 0;
545 info->uses_frame = 0;
546
547 scan_limit = get_frame_pc (this_frame);
548 for (pc = get_frame_func (this_frame);
549 pc > 0 && pc < scan_limit; pc += 2)
550 {
551 if ((pc & 2) == 0)
552 {
553 op = get_frame_memory_unsigned (this_frame, pc, 4);
554 if ((op & 0x80000000) == 0x80000000)
555 {
556 /* 32-bit instruction */
557 if ((op & 0xffff0000) == 0x8faf0000)
558 {
559 /* add3 sp,sp,xxxx */
560 short n = op & 0xffff;
561 info->sp_offset += n;
562 }
563 else if (((op >> 8) == 0xe4)
564 && get_frame_memory_unsigned (this_frame, pc + 2,
565 2) == 0x0f24)
566 {
567 /* ld24 r4, xxxxxx; sub sp, r4 */
568 unsigned long n = op & 0xffffff;
569 info->sp_offset += n;
570 pc += 2; /* skip sub instruction */
571 }
572
573 if (pc == scan_limit)
574 scan_limit += 2; /* extend the search */
575 pc += 2; /* skip the immediate data */
576 continue;
577 }
578 }
579
580 /* 16-bit instructions */
581 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
582 if ((op & 0xf0ff) == 0x207f)
583 {
584 /* st rn, @-sp */
585 int regno = ((op >> 8) & 0xf);
586 info->sp_offset -= 4;
587 info->saved_regs[regno].addr = info->sp_offset;
588 }
589 else if ((op & 0xff00) == 0x4f00)
590 {
591 /* addi sp, xx */
592 int n = (signed char) (op & 0xff);
593 info->sp_offset += n;
594 }
595 else if (op == 0x1d8f)
596 {
597 /* mv fp, sp */
598 info->uses_frame = 1;
599 info->r13_offset = info->sp_offset;
600 break; /* end of stack adjustments */
601 }
602 else if ((op & 0xfff0) == 0x10f0)
603 {
604 /* End of prologue if this is a trap instruction. */
605 break; /* End of stack adjustments. */
606 }
607 }
608
609 info->size = -info->sp_offset;
610
611 /* Compute the previous frame's stack pointer (which is also the
612 frame's ID's stack address), and this frame's base pointer. */
613 if (info->uses_frame)
614 {
615 /* The SP was moved to the FP. This indicates that a new frame
616 was created. Get THIS frame's FP value by unwinding it from
617 the next frame. */
618 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
619 /* The FP points at the last saved register. Adjust the FP back
620 to before the first saved register giving the SP. */
621 prev_sp = this_base + info->size;
622 }
623 else
624 {
625 /* Assume that the FP is this frame's SP but with that pushed
626 stack space added back. */
627 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
628 prev_sp = this_base + info->size;
629 }
630
631 /* Convert that SP/BASE into real addresses. */
632 info->prev_sp = prev_sp;
633 info->base = this_base;
634
635 /* Adjust all the saved registers so that they contain addresses and
636 not offsets. */
637 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
638 if (trad_frame_addr_p (info->saved_regs, i))
639 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
640
641 /* The call instruction moves the caller's PC in the callee's LR.
642 Since this is an unwind, do the reverse. Copy the location of LR
643 into PC (the address / regnum) so that a request for PC will be
644 converted into a request for the LR. */
645 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
646
647 /* The previous frame's SP needed to be computed. Save the computed
648 value. */
649 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
650
651 return info;
652 }
653
654 static CORE_ADDR
655 m32r_read_pc (struct regcache *regcache)
656 {
657 ULONGEST pc;
658 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
659 return pc;
660 }
661
662 static CORE_ADDR
663 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
664 {
665 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
666 }
667
668
669 static CORE_ADDR
670 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
671 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
672 struct value **args, CORE_ADDR sp, int struct_return,
673 CORE_ADDR struct_addr)
674 {
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
676 int stack_offset, stack_alloc;
677 int argreg = ARG1_REGNUM;
678 int argnum;
679 struct type *type;
680 enum type_code typecode;
681 CORE_ADDR regval;
682 gdb_byte *val;
683 gdb_byte valbuf[M32R_ARG_REGISTER_SIZE];
684 int len;
685
686 /* First force sp to a 4-byte alignment. */
687 sp = sp & ~3;
688
689 /* Set the return address. For the m32r, the return breakpoint is
690 always at BP_ADDR. */
691 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
692
693 /* If STRUCT_RETURN is true, then the struct return address (in
694 STRUCT_ADDR) will consume the first argument-passing register.
695 Both adjust the register count and store that value. */
696 if (struct_return)
697 {
698 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
699 argreg++;
700 }
701
702 /* Now make sure there's space on the stack. */
703 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
704 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
705 sp -= stack_alloc; /* Make room on stack for args. */
706
707 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
708 {
709 type = value_type (args[argnum]);
710 typecode = TYPE_CODE (type);
711 len = TYPE_LENGTH (type);
712
713 memset (valbuf, 0, sizeof (valbuf));
714
715 /* Passes structures that do not fit in 2 registers by reference. */
716 if (len > 8
717 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
718 {
719 store_unsigned_integer (valbuf, 4, byte_order,
720 value_address (args[argnum]));
721 typecode = TYPE_CODE_PTR;
722 len = 4;
723 val = valbuf;
724 }
725 else if (len < 4)
726 {
727 /* Value gets right-justified in the register or stack word. */
728 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
729 (gdb_byte *) value_contents (args[argnum]), len);
730 val = valbuf;
731 }
732 else
733 val = (gdb_byte *) value_contents (args[argnum]);
734
735 while (len > 0)
736 {
737 if (argreg > ARGN_REGNUM)
738 {
739 /* Must go on the stack. */
740 write_memory (sp + stack_offset, val, 4);
741 stack_offset += 4;
742 }
743 else if (argreg <= ARGN_REGNUM)
744 {
745 /* There's room in a register. */
746 regval =
747 extract_unsigned_integer (val,
748 register_size (gdbarch, argreg),
749 byte_order);
750 regcache_cooked_write_unsigned (regcache, argreg++, regval);
751 }
752
753 /* Store the value 4 bytes at a time. This means that things
754 larger than 4 bytes may go partly in registers and partly
755 on the stack. */
756 len -= register_size (gdbarch, argreg);
757 val += register_size (gdbarch, argreg);
758 }
759 }
760
761 /* Finally, update the SP register. */
762 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
763
764 return sp;
765 }
766
767
768 /* Given a return value in `regbuf' with a type `valtype',
769 extract and copy its value into `valbuf'. */
770
771 static void
772 m32r_extract_return_value (struct type *type, struct regcache *regcache,
773 gdb_byte *dst)
774 {
775 struct gdbarch *gdbarch = get_regcache_arch (regcache);
776 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
777 int len = TYPE_LENGTH (type);
778 ULONGEST tmp;
779
780 /* By using store_unsigned_integer we avoid having to do
781 anything special for small big-endian values. */
782 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
783 store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp);
784
785 /* Ignore return values more than 8 bytes in size because the m32r
786 returns anything more than 8 bytes in the stack. */
787 if (len > 4)
788 {
789 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
790 store_unsigned_integer (dst + len - 4, 4, byte_order, tmp);
791 }
792 }
793
794 static enum return_value_convention
795 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
796 struct type *valtype, struct regcache *regcache,
797 gdb_byte *readbuf, const gdb_byte *writebuf)
798 {
799 if (TYPE_LENGTH (valtype) > 8)
800 return RETURN_VALUE_STRUCT_CONVENTION;
801 else
802 {
803 if (readbuf != NULL)
804 m32r_extract_return_value (valtype, regcache, readbuf);
805 if (writebuf != NULL)
806 m32r_store_return_value (valtype, regcache, writebuf);
807 return RETURN_VALUE_REGISTER_CONVENTION;
808 }
809 }
810
811
812
813 static CORE_ADDR
814 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
815 {
816 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
817 }
818
819 /* Given a GDB frame, determine the address of the calling function's
820 frame. This will be used to create a new GDB frame struct. */
821
822 static void
823 m32r_frame_this_id (struct frame_info *this_frame,
824 void **this_prologue_cache, struct frame_id *this_id)
825 {
826 struct m32r_unwind_cache *info
827 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
828 CORE_ADDR base;
829 CORE_ADDR func;
830 struct bound_minimal_symbol msym_stack;
831 struct frame_id id;
832
833 /* The FUNC is easy. */
834 func = get_frame_func (this_frame);
835
836 /* Check if the stack is empty. */
837 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
838 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
839 return;
840
841 /* Hopefully the prologue analysis either correctly determined the
842 frame's base (which is the SP from the previous frame), or set
843 that base to "NULL". */
844 base = info->prev_sp;
845 if (base == 0)
846 return;
847
848 id = frame_id_build (base, func);
849 (*this_id) = id;
850 }
851
852 static struct value *
853 m32r_frame_prev_register (struct frame_info *this_frame,
854 void **this_prologue_cache, int regnum)
855 {
856 struct m32r_unwind_cache *info
857 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
858 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
859 }
860
861 static const struct frame_unwind m32r_frame_unwind = {
862 NORMAL_FRAME,
863 default_frame_unwind_stop_reason,
864 m32r_frame_this_id,
865 m32r_frame_prev_register,
866 NULL,
867 default_frame_sniffer
868 };
869
870 static CORE_ADDR
871 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
872 {
873 struct m32r_unwind_cache *info
874 = m32r_frame_unwind_cache (this_frame, this_cache);
875 return info->base;
876 }
877
878 static const struct frame_base m32r_frame_base = {
879 &m32r_frame_unwind,
880 m32r_frame_base_address,
881 m32r_frame_base_address,
882 m32r_frame_base_address
883 };
884
885 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
886 frame. The frame ID's base needs to match the TOS value saved by
887 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
888
889 static struct frame_id
890 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
891 {
892 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
893 return frame_id_build (sp, get_frame_pc (this_frame));
894 }
895
896
897 static gdbarch_init_ftype m32r_gdbarch_init;
898
899 static struct gdbarch *
900 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
901 {
902 struct gdbarch *gdbarch;
903 struct gdbarch_tdep *tdep;
904
905 /* If there is already a candidate, use it. */
906 arches = gdbarch_list_lookup_by_info (arches, &info);
907 if (arches != NULL)
908 return arches->gdbarch;
909
910 /* Allocate space for the new architecture. */
911 tdep = XNEW (struct gdbarch_tdep);
912 gdbarch = gdbarch_alloc (&info, tdep);
913
914 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
915 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
916
917 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
918 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM);
919 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
920 set_gdbarch_register_name (gdbarch, m32r_register_name);
921 set_gdbarch_register_type (gdbarch, m32r_register_type);
922
923 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
924 set_gdbarch_return_value (gdbarch, m32r_return_value);
925
926 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
927 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
928 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32r_breakpoint_kind_from_pc);
929 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32r_sw_breakpoint_from_kind);
930 set_gdbarch_memory_insert_breakpoint (gdbarch,
931 m32r_memory_insert_breakpoint);
932 set_gdbarch_memory_remove_breakpoint (gdbarch,
933 m32r_memory_remove_breakpoint);
934
935 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
936
937 frame_base_set_default (gdbarch, &m32r_frame_base);
938
939 /* Methods for saving / extracting a dummy frame's ID. The ID's
940 stack address must match the SP value returned by
941 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
942 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
943
944 /* Return the unwound PC value. */
945 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
946
947 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
948
949 /* Hook in ABI-specific overrides, if they have been registered. */
950 gdbarch_init_osabi (info, gdbarch);
951
952 /* Hook in the default unwinders. */
953 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
954
955 /* Support simple overlay manager. */
956 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
957
958 return gdbarch;
959 }
960
961 void
962 _initialize_m32r_tdep (void)
963 {
964 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
965 }
This page took 0.074642 seconds and 5 git commands to generate.