2004-10-07 Kei Sakamoto <sakamoto.kei@renesas.com>
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "gdb_string.h"
32 #include "value.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "language.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "trad-frame.h"
40 #include "dis-asm.h"
41
42 #include "gdb_assert.h"
43
44 #include "m32r-tdep.h"
45
46 /* Local functions */
47
48 extern void _initialize_m32r_tdep (void);
49
50 static CORE_ADDR
51 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
52 {
53 /* Align to the size of an instruction (so that they can safely be
54 pushed onto the stack. */
55 return sp & ~3;
56 }
57
58
59 /* BREAKPOINT */
60 #define M32R_BE_BREAKPOINT32 {0x10, 0xf1, 0x70, 0x00}
61 #define M32R_LE_BREAKPOINT32 {0xf1, 0x10, 0x00, 0x70}
62 #define M32R_BE_BREAKPOINT16 {0x10, 0xf1}
63 #define M32R_LE_BREAKPOINT16 {0xf1, 0x10}
64
65 static int
66 m32r_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
67 {
68 int val;
69 unsigned char *bp;
70 int bplen;
71
72 bplen = (addr & 3) ? 2 : 4;
73
74 /* Save the memory contents. */
75 val = target_read_memory (addr, contents_cache, bplen);
76 if (val != 0)
77 return val; /* return error */
78
79 /* Determine appropriate breakpoint contents and size for this address. */
80 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
81 {
82 if (((addr & 3) == 0)
83 && ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
84 {
85 static unsigned char insn[] = M32R_BE_BREAKPOINT32;
86 bp = insn;
87 bplen = sizeof (insn);
88 }
89 else
90 {
91 static unsigned char insn[] = M32R_BE_BREAKPOINT16;
92 bp = insn;
93 bplen = sizeof (insn);
94 }
95 }
96 else
97 { /* little-endian */
98 if (((addr & 3) == 0)
99 && ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
100 {
101 static unsigned char insn[] = M32R_LE_BREAKPOINT32;
102 bp = insn;
103 bplen = sizeof (insn);
104 }
105 else
106 {
107 static unsigned char insn[] = M32R_LE_BREAKPOINT16;
108 bp = insn;
109 bplen = sizeof (insn);
110 }
111 }
112
113 /* Write the breakpoint. */
114 val = target_write_memory (addr, (char *) bp, bplen);
115 return val;
116 }
117
118 static int
119 m32r_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
120 {
121 int val;
122 int bplen;
123
124 /* Determine appropriate breakpoint contents and size for this address. */
125 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
126 {
127 if (((addr & 3) == 0)
128 && ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
129 {
130 static unsigned char insn[] = M32R_BE_BREAKPOINT32;
131 bplen = sizeof (insn);
132 }
133 else
134 {
135 static unsigned char insn[] = M32R_BE_BREAKPOINT16;
136 bplen = sizeof (insn);
137 }
138 }
139 else
140 {
141 /* little-endian */
142 if (((addr & 3) == 0)
143 && ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
144 {
145 static unsigned char insn[] = M32R_BE_BREAKPOINT32;
146 bplen = sizeof (insn);
147 }
148 else
149 {
150 static unsigned char insn[] = M32R_BE_BREAKPOINT16;
151 bplen = sizeof (insn);
152 }
153 }
154
155 /* Write contents. */
156 val = target_write_memory (addr, contents_cache, bplen);
157 return val;
158 }
159
160 static const unsigned char *
161 m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
162 {
163 unsigned char *bp;
164
165 /* Determine appropriate breakpoint. */
166 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
167 {
168 if ((*pcptr & 3) == 0)
169 {
170 static unsigned char insn[] = M32R_BE_BREAKPOINT32;
171 bp = insn;
172 *lenptr = sizeof (insn);
173 }
174 else
175 {
176 static unsigned char insn[] = M32R_BE_BREAKPOINT16;
177 bp = insn;
178 *lenptr = sizeof (insn);
179 }
180 }
181 else
182 {
183 if ((*pcptr & 3) == 0)
184 {
185 static unsigned char insn[] = M32R_LE_BREAKPOINT32;
186 bp = insn;
187 *lenptr = sizeof (insn);
188 }
189 else
190 {
191 static unsigned char insn[] = M32R_LE_BREAKPOINT16;
192 bp = insn;
193 *lenptr = sizeof (insn);
194 }
195 }
196
197 return bp;
198 }
199
200
201 char *m32r_register_names[] = {
202 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
203 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
204 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
205 "evb"
206 };
207
208 static const char *
209 m32r_register_name (int reg_nr)
210 {
211 if (reg_nr < 0)
212 return NULL;
213 if (reg_nr >= M32R_NUM_REGS)
214 return NULL;
215 return m32r_register_names[reg_nr];
216 }
217
218
219 /* Return the GDB type object for the "standard" data type
220 of data in register N. */
221
222 static struct type *
223 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
224 {
225 if (reg_nr == M32R_PC_REGNUM)
226 return builtin_type_void_func_ptr;
227 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
228 return builtin_type_void_data_ptr;
229 else
230 return builtin_type_int32;
231 }
232
233
234 /* Write into appropriate registers a function return value
235 of type TYPE, given in virtual format.
236
237 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
238
239 static void
240 m32r_store_return_value (struct type *type, struct regcache *regcache,
241 const void *valbuf)
242 {
243 CORE_ADDR regval;
244 int len = TYPE_LENGTH (type);
245
246 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
247 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
248
249 if (len > 4)
250 {
251 regval = extract_unsigned_integer ((char *) valbuf + 4, len - 4);
252 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
253 }
254 }
255
256 /* This is required by skip_prologue. The results of decoding a prologue
257 should be cached because this thrashing is getting nuts. */
258
259 static int
260 decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
261 CORE_ADDR *pl_endptr, unsigned long *framelength)
262 {
263 unsigned long framesize;
264 int insn;
265 int op1;
266 CORE_ADDR after_prologue = 0;
267 CORE_ADDR after_push = 0;
268 CORE_ADDR after_stack_adjust = 0;
269 CORE_ADDR current_pc;
270 LONGEST return_value;
271
272 framesize = 0;
273 after_prologue = 0;
274
275 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
276 {
277 /* Check if current pc's location is readable. */
278 if (!safe_read_memory_integer (current_pc, 2, &return_value))
279 return -1;
280
281 insn = read_memory_unsigned_integer (current_pc, 2);
282
283 if (insn == 0x0000)
284 break;
285
286 /* If this is a 32 bit instruction, we dont want to examine its
287 immediate data as though it were an instruction */
288 if (current_pc & 0x02)
289 {
290 /* decode this instruction further */
291 insn &= 0x7fff;
292 }
293 else
294 {
295 if (insn & 0x8000)
296 {
297 if (current_pc == scan_limit)
298 scan_limit += 2; /* extend the search */
299
300 current_pc += 2; /* skip the immediate data */
301
302 /* Check if current pc's location is readable. */
303 if (!safe_read_memory_integer (current_pc, 2, &return_value))
304 return -1;
305
306 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
307 /* add 16 bit sign-extended offset */
308 {
309 framesize +=
310 -((short) read_memory_unsigned_integer (current_pc, 2));
311 }
312 else
313 {
314 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
315 && safe_read_memory_integer (current_pc + 2, 2,
316 &return_value)
317 && read_memory_unsigned_integer (current_pc + 2,
318 2) == 0x0f24)
319 /* subtract 24 bit sign-extended negative-offset */
320 {
321 insn = read_memory_unsigned_integer (current_pc - 2, 4);
322 if (insn & 0x00800000) /* sign extend */
323 insn |= 0xff000000; /* negative */
324 else
325 insn &= 0x00ffffff; /* positive */
326 framesize += insn;
327 }
328 }
329 after_push = current_pc + 2;
330 continue;
331 }
332 }
333 op1 = insn & 0xf000; /* isolate just the first nibble */
334
335 if ((insn & 0xf0ff) == 0x207f)
336 { /* st reg, @-sp */
337 int regno;
338 framesize += 4;
339 regno = ((insn >> 8) & 0xf);
340 after_prologue = 0;
341 continue;
342 }
343 if ((insn >> 8) == 0x4f) /* addi sp, xx */
344 /* add 8 bit sign-extended offset */
345 {
346 int stack_adjust = (char) (insn & 0xff);
347
348 /* there are probably two of these stack adjustments:
349 1) A negative one in the prologue, and
350 2) A positive one in the epilogue.
351 We are only interested in the first one. */
352
353 if (stack_adjust < 0)
354 {
355 framesize -= stack_adjust;
356 after_prologue = 0;
357 /* A frameless function may have no "mv fp, sp".
358 In that case, this is the end of the prologue. */
359 after_stack_adjust = current_pc + 2;
360 }
361 continue;
362 }
363 if (insn == 0x1d8f)
364 { /* mv fp, sp */
365 after_prologue = current_pc + 2;
366 break; /* end of stack adjustments */
367 }
368
369 /* Nop looks like a branch, continue explicitly */
370 if (insn == 0x7000)
371 {
372 after_prologue = current_pc + 2;
373 continue; /* nop occurs between pushes */
374 }
375 /* End of prolog if any of these are trap instructions */
376 if ((insn & 0xfff0) == 0x10f0)
377 {
378 after_prologue = current_pc;
379 break;
380 }
381 /* End of prolog if any of these are branch instructions */
382 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
383 {
384 after_prologue = current_pc;
385 continue;
386 }
387 /* Some of the branch instructions are mixed with other types */
388 if (op1 == 0x1000)
389 {
390 int subop = insn & 0x0ff0;
391 if ((subop == 0x0ec0) || (subop == 0x0fc0))
392 {
393 after_prologue = current_pc;
394 continue; /* jmp , jl */
395 }
396 }
397 }
398
399 if (framelength)
400 *framelength = framesize;
401
402 if (current_pc >= scan_limit)
403 {
404 if (pl_endptr)
405 {
406 if (after_stack_adjust != 0)
407 /* We did not find a "mv fp,sp", but we DID find
408 a stack_adjust. Is it safe to use that as the
409 end of the prologue? I just don't know. */
410 {
411 *pl_endptr = after_stack_adjust;
412 }
413 else if (after_push != 0)
414 /* We did not find a "mv fp,sp", but we DID find
415 a push. Is it safe to use that as the
416 end of the prologue? I just don't know. */
417 {
418 *pl_endptr = after_push;
419 }
420 else
421 /* We reached the end of the loop without finding the end
422 of the prologue. No way to win -- we should report failure.
423 The way we do that is to return the original start_pc.
424 GDB will set a breakpoint at the start of the function (etc.) */
425 *pl_endptr = start_pc;
426 }
427 return 0;
428 }
429
430 if (after_prologue == 0)
431 after_prologue = current_pc;
432
433 if (pl_endptr)
434 *pl_endptr = after_prologue;
435
436 return 0;
437 } /* decode_prologue */
438
439 /* Function: skip_prologue
440 Find end of function prologue */
441
442 #define DEFAULT_SEARCH_LIMIT 128
443
444 CORE_ADDR
445 m32r_skip_prologue (CORE_ADDR pc)
446 {
447 CORE_ADDR func_addr, func_end;
448 struct symtab_and_line sal;
449 LONGEST return_value;
450
451 /* See what the symbol table says */
452
453 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
454 {
455 sal = find_pc_line (func_addr, 0);
456
457 if (sal.line != 0 && sal.end <= func_end)
458 {
459 func_end = sal.end;
460 }
461 else
462 /* Either there's no line info, or the line after the prologue is after
463 the end of the function. In this case, there probably isn't a
464 prologue. */
465 {
466 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
467 }
468 }
469 else
470 func_end = pc + DEFAULT_SEARCH_LIMIT;
471
472 /* If pc's location is not readable, just quit. */
473 if (!safe_read_memory_integer (pc, 4, &return_value))
474 return pc;
475
476 /* Find the end of prologue. */
477 if (decode_prologue (pc, func_end, &sal.end, NULL) < 0)
478 return pc;
479
480 return sal.end;
481 }
482
483 struct m32r_unwind_cache
484 {
485 /* The previous frame's inner most stack address. Used as this
486 frame ID's stack_addr. */
487 CORE_ADDR prev_sp;
488 /* The frame's base, optionally used by the high-level debug info. */
489 CORE_ADDR base;
490 int size;
491 /* How far the SP and r13 (FP) have been offset from the start of
492 the stack frame (as defined by the previous frame's stack
493 pointer). */
494 LONGEST sp_offset;
495 LONGEST r13_offset;
496 int uses_frame;
497 /* Table indicating the location of each and every register. */
498 struct trad_frame_saved_reg *saved_regs;
499 };
500
501 /* Put here the code to store, into fi->saved_regs, the addresses of
502 the saved registers of frame described by FRAME_INFO. This
503 includes special registers such as pc and fp saved in special ways
504 in the stack frame. sp is even more special: the address we return
505 for it IS the sp for the next frame. */
506
507 static struct m32r_unwind_cache *
508 m32r_frame_unwind_cache (struct frame_info *next_frame,
509 void **this_prologue_cache)
510 {
511 CORE_ADDR pc, scan_limit;
512 ULONGEST prev_sp;
513 ULONGEST this_base;
514 unsigned long op, op2;
515 int i;
516 struct m32r_unwind_cache *info;
517
518
519 if ((*this_prologue_cache))
520 return (*this_prologue_cache);
521
522 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
523 (*this_prologue_cache) = info;
524 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
525
526 info->size = 0;
527 info->sp_offset = 0;
528 info->uses_frame = 0;
529
530 scan_limit = frame_pc_unwind (next_frame);
531 for (pc = frame_func_unwind (next_frame);
532 pc > 0 && pc < scan_limit; pc += 2)
533 {
534 if ((pc & 2) == 0)
535 {
536 op = get_frame_memory_unsigned (next_frame, pc, 4);
537 if ((op & 0x80000000) == 0x80000000)
538 {
539 /* 32-bit instruction */
540 if ((op & 0xffff0000) == 0x8faf0000)
541 {
542 /* add3 sp,sp,xxxx */
543 short n = op & 0xffff;
544 info->sp_offset += n;
545 }
546 else if (((op >> 8) == 0xe4)
547 && get_frame_memory_unsigned (next_frame, pc + 2,
548 2) == 0x0f24)
549 {
550 /* ld24 r4, xxxxxx; sub sp, r4 */
551 unsigned long n = op & 0xffffff;
552 info->sp_offset += n;
553 pc += 2; /* skip sub instruction */
554 }
555
556 if (pc == scan_limit)
557 scan_limit += 2; /* extend the search */
558 pc += 2; /* skip the immediate data */
559 continue;
560 }
561 }
562
563 /* 16-bit instructions */
564 op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
565 if ((op & 0xf0ff) == 0x207f)
566 {
567 /* st rn, @-sp */
568 int regno = ((op >> 8) & 0xf);
569 info->sp_offset -= 4;
570 info->saved_regs[regno].addr = info->sp_offset;
571 }
572 else if ((op & 0xff00) == 0x4f00)
573 {
574 /* addi sp, xx */
575 int n = (char) (op & 0xff);
576 info->sp_offset += n;
577 }
578 else if (op == 0x1d8f)
579 {
580 /* mv fp, sp */
581 info->uses_frame = 1;
582 info->r13_offset = info->sp_offset;
583 break; /* end of stack adjustments */
584 }
585 else if ((op & 0xfff0) == 0x10f0)
586 {
587 /* end of prologue if this is a trap instruction */
588 break; /* end of stack adjustments */
589 }
590 }
591
592 info->size = -info->sp_offset;
593
594 /* Compute the previous frame's stack pointer (which is also the
595 frame's ID's stack address), and this frame's base pointer. */
596 if (info->uses_frame)
597 {
598 /* The SP was moved to the FP. This indicates that a new frame
599 was created. Get THIS frame's FP value by unwinding it from
600 the next frame. */
601 this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM);
602 /* The FP points at the last saved register. Adjust the FP back
603 to before the first saved register giving the SP. */
604 prev_sp = this_base + info->size;
605 }
606 else
607 {
608 /* Assume that the FP is this frame's SP but with that pushed
609 stack space added back. */
610 this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
611 prev_sp = this_base + info->size;
612 }
613
614 /* Convert that SP/BASE into real addresses. */
615 info->prev_sp = prev_sp;
616 info->base = this_base;
617
618 /* Adjust all the saved registers so that they contain addresses and
619 not offsets. */
620 for (i = 0; i < NUM_REGS - 1; i++)
621 if (trad_frame_addr_p (info->saved_regs, i))
622 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
623
624 /* The call instruction moves the caller's PC in the callee's LR.
625 Since this is an unwind, do the reverse. Copy the location of LR
626 into PC (the address / regnum) so that a request for PC will be
627 converted into a request for the LR. */
628 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
629
630 /* The previous frame's SP needed to be computed. Save the computed
631 value. */
632 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
633
634 return info;
635 }
636
637 static CORE_ADDR
638 m32r_read_pc (ptid_t ptid)
639 {
640 ptid_t save_ptid;
641 ULONGEST pc;
642
643 save_ptid = inferior_ptid;
644 inferior_ptid = ptid;
645 regcache_cooked_read_unsigned (current_regcache, M32R_PC_REGNUM, &pc);
646 inferior_ptid = save_ptid;
647 return pc;
648 }
649
650 static void
651 m32r_write_pc (CORE_ADDR val, ptid_t ptid)
652 {
653 ptid_t save_ptid;
654
655 save_ptid = inferior_ptid;
656 inferior_ptid = ptid;
657 write_register (M32R_PC_REGNUM, val);
658 inferior_ptid = save_ptid;
659 }
660
661 static CORE_ADDR
662 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
663 {
664 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
665 }
666
667
668 static CORE_ADDR
669 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
670 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
671 struct value **args, CORE_ADDR sp, int struct_return,
672 CORE_ADDR struct_addr)
673 {
674 int stack_offset, stack_alloc;
675 int argreg = ARG1_REGNUM;
676 int argnum;
677 struct type *type;
678 enum type_code typecode;
679 CORE_ADDR regval;
680 char *val;
681 char valbuf[MAX_REGISTER_SIZE];
682 int len;
683 int odd_sized_struct;
684
685 /* first force sp to a 4-byte alignment */
686 sp = sp & ~3;
687
688 /* Set the return address. For the m32r, the return breakpoint is
689 always at BP_ADDR. */
690 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
691
692 /* If STRUCT_RETURN is true, then the struct return address (in
693 STRUCT_ADDR) will consume the first argument-passing register.
694 Both adjust the register count and store that value. */
695 if (struct_return)
696 {
697 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
698 argreg++;
699 }
700
701 /* Now make sure there's space on the stack */
702 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
703 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
704 sp -= stack_alloc; /* make room on stack for args */
705
706 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
707 {
708 type = VALUE_TYPE (args[argnum]);
709 typecode = TYPE_CODE (type);
710 len = TYPE_LENGTH (type);
711
712 memset (valbuf, 0, sizeof (valbuf));
713
714 /* Passes structures that do not fit in 2 registers by reference. */
715 if (len > 8
716 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
717 {
718 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
719 typecode = TYPE_CODE_PTR;
720 len = 4;
721 val = valbuf;
722 }
723 else if (len < 4)
724 {
725 /* value gets right-justified in the register or stack word */
726 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
727 (char *) VALUE_CONTENTS (args[argnum]), len);
728 val = valbuf;
729 }
730 else
731 val = (char *) VALUE_CONTENTS (args[argnum]);
732
733 while (len > 0)
734 {
735 if (argreg > ARGN_REGNUM)
736 {
737 /* must go on the stack */
738 write_memory (sp + stack_offset, val, 4);
739 stack_offset += 4;
740 }
741 else if (argreg <= ARGN_REGNUM)
742 {
743 /* there's room in a register */
744 regval =
745 extract_unsigned_integer (val,
746 register_size (gdbarch, argreg));
747 regcache_cooked_write_unsigned (regcache, argreg++, regval);
748 }
749
750 /* Store the value 4 bytes at a time. This means that things
751 larger than 4 bytes may go partly in registers and partly
752 on the stack. */
753 len -= register_size (gdbarch, argreg);
754 val += register_size (gdbarch, argreg);
755 }
756 }
757
758 /* Finally, update the SP register. */
759 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
760
761 return sp;
762 }
763
764
765 /* Given a return value in `regbuf' with a type `valtype',
766 extract and copy its value into `valbuf'. */
767
768 static void
769 m32r_extract_return_value (struct type *type, struct regcache *regcache,
770 void *dst)
771 {
772 bfd_byte *valbuf = dst;
773 int len = TYPE_LENGTH (type);
774 ULONGEST tmp;
775
776 /* By using store_unsigned_integer we avoid having to do
777 anything special for small big-endian values. */
778 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
779 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
780
781 /* Ignore return values more than 8 bytes in size because the m32r
782 returns anything more than 8 bytes in the stack. */
783 if (len > 4)
784 {
785 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
786 store_unsigned_integer (valbuf + len - 4, 4, tmp);
787 }
788 }
789
790 enum return_value_convention
791 m32r_return_value (struct gdbarch *gdbarch, struct type *valtype,
792 struct regcache *regcache, void *readbuf,
793 const void *writebuf)
794 {
795 if (TYPE_LENGTH (valtype) > 8)
796 return RETURN_VALUE_STRUCT_CONVENTION;
797 else
798 {
799 if (readbuf != NULL)
800 m32r_extract_return_value (valtype, regcache, readbuf);
801 if (writebuf != NULL)
802 m32r_store_return_value (valtype, regcache, writebuf);
803 return RETURN_VALUE_REGISTER_CONVENTION;
804 }
805 }
806
807
808
809 static CORE_ADDR
810 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
811 {
812 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
813 }
814
815 /* Given a GDB frame, determine the address of the calling function's
816 frame. This will be used to create a new GDB frame struct. */
817
818 static void
819 m32r_frame_this_id (struct frame_info *next_frame,
820 void **this_prologue_cache, struct frame_id *this_id)
821 {
822 struct m32r_unwind_cache *info
823 = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
824 CORE_ADDR base;
825 CORE_ADDR func;
826 struct minimal_symbol *msym_stack;
827 struct frame_id id;
828
829 /* The FUNC is easy. */
830 func = frame_func_unwind (next_frame);
831
832 /* Check if the stack is empty. */
833 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
834 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
835 return;
836
837 /* Hopefully the prologue analysis either correctly determined the
838 frame's base (which is the SP from the previous frame), or set
839 that base to "NULL". */
840 base = info->prev_sp;
841 if (base == 0)
842 return;
843
844 id = frame_id_build (base, func);
845 (*this_id) = id;
846 }
847
848 static void
849 m32r_frame_prev_register (struct frame_info *next_frame,
850 void **this_prologue_cache,
851 int regnum, int *optimizedp,
852 enum lval_type *lvalp, CORE_ADDR *addrp,
853 int *realnump, void *bufferp)
854 {
855 struct m32r_unwind_cache *info
856 = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
857 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
858 optimizedp, lvalp, addrp, realnump, bufferp);
859 }
860
861 static const struct frame_unwind m32r_frame_unwind = {
862 NORMAL_FRAME,
863 m32r_frame_this_id,
864 m32r_frame_prev_register
865 };
866
867 static const struct frame_unwind *
868 m32r_frame_sniffer (struct frame_info *next_frame)
869 {
870 return &m32r_frame_unwind;
871 }
872
873 static CORE_ADDR
874 m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
875 {
876 struct m32r_unwind_cache *info
877 = m32r_frame_unwind_cache (next_frame, this_cache);
878 return info->base;
879 }
880
881 static const struct frame_base m32r_frame_base = {
882 &m32r_frame_unwind,
883 m32r_frame_base_address,
884 m32r_frame_base_address,
885 m32r_frame_base_address
886 };
887
888 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
889 dummy frame. The frame ID's base needs to match the TOS value
890 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
891 breakpoint. */
892
893 static struct frame_id
894 m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
895 {
896 return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
897 frame_pc_unwind (next_frame));
898 }
899
900
901 static gdbarch_init_ftype m32r_gdbarch_init;
902
903 static struct gdbarch *
904 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
905 {
906 struct gdbarch *gdbarch;
907 struct gdbarch_tdep *tdep;
908
909 /* If there is already a candidate, use it. */
910 arches = gdbarch_list_lookup_by_info (arches, &info);
911 if (arches != NULL)
912 return arches->gdbarch;
913
914 /* Allocate space for the new architecture. */
915 tdep = XMALLOC (struct gdbarch_tdep);
916 gdbarch = gdbarch_alloc (&info, tdep);
917
918 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
919 set_gdbarch_write_pc (gdbarch, m32r_write_pc);
920 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
921
922 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
923 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
924 set_gdbarch_register_name (gdbarch, m32r_register_name);
925 set_gdbarch_register_type (gdbarch, m32r_register_type);
926
927 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
928 set_gdbarch_return_value (gdbarch, m32r_return_value);
929
930 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
931 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
932 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
933 set_gdbarch_memory_insert_breakpoint (gdbarch,
934 m32r_memory_insert_breakpoint);
935 set_gdbarch_memory_remove_breakpoint (gdbarch,
936 m32r_memory_remove_breakpoint);
937
938 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
939
940 frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer);
941 frame_base_set_default (gdbarch, &m32r_frame_base);
942
943 /* Methods for saving / extracting a dummy frame's ID. The ID's
944 stack address must match the SP value returned by
945 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
946 set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
947
948 /* Return the unwound PC value. */
949 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
950
951 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
952
953 return gdbarch;
954 }
955
956 void
957 _initialize_m32r_tdep (void)
958 {
959 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
960 }
This page took 0.073673 seconds and 5 git commands to generate.