2003-01-06 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
2 Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "value.h"
26 #include "bfd.h"
27 #include "gdb_string.h"
28 #include "gdbcore.h"
29 #include "symfile.h"
30 #include "regcache.h"
31
32 /* Function: m32r_use_struct_convention
33 Return nonzero if call_function should allocate stack space for a
34 struct return? */
35 int
36 m32r_use_struct_convention (int gcc_p, struct type *type)
37 {
38 return (TYPE_LENGTH (type) > 8);
39 }
40
41 /* Function: frame_find_saved_regs
42 Return the frame_saved_regs structure for the frame.
43 Doesn't really work for dummy frames, but it does pass back
44 an empty frame_saved_regs, so I guess that's better than total failure */
45
46 void
47 m32r_frame_find_saved_regs (struct frame_info *fi,
48 struct frame_saved_regs *regaddr)
49 {
50 memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
51 }
52
53 /* Turn this on if you want to see just how much instruction decoding
54 if being done, its quite a lot
55 */
56 #if 0
57 static void
58 dump_insn (char *commnt, CORE_ADDR pc, int insn)
59 {
60 printf_filtered (" %s %08x %08x ",
61 commnt, (unsigned int) pc, (unsigned int) insn);
62 TARGET_PRINT_INSN (pc, &tm_print_insn_info);
63 printf_filtered ("\n");
64 }
65 #define insn_debug(args) { printf_filtered args; }
66 #else
67 #define dump_insn(a,b,c) {}
68 #define insn_debug(args) {}
69 #endif
70
71 #define DEFAULT_SEARCH_LIMIT 44
72
73 /* Function: scan_prologue
74 This function decodes the target function prologue to determine
75 1) the size of the stack frame, and 2) which registers are saved on it.
76 It saves the offsets of saved regs in the frame_saved_regs argument,
77 and returns the frame size. */
78
79 /*
80 The sequence it currently generates is:
81
82 if (varargs function) { ddi sp,#n }
83 push registers
84 if (additional stack <= 256) { addi sp,#-stack }
85 else if (additional stack < 65k) { add3 sp,sp,#-stack
86
87 } else if (additional stack) {
88 seth sp,#(stack & 0xffff0000)
89 or3 sp,sp,#(stack & 0x0000ffff)
90 sub sp,r4
91 }
92 if (frame pointer) {
93 mv sp,fp
94 }
95
96 These instructions are scheduled like everything else, so you should stop at
97 the first branch instruction.
98
99 */
100
101 /* This is required by skip prologue and by m32r_init_extra_frame_info.
102 The results of decoding a prologue should be cached because this
103 thrashing is getting nuts.
104 I am thinking of making a container class with two indexes, name and
105 address. It may be better to extend the symbol table.
106 */
107
108 static void
109 decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr, /* var parameter */
110 unsigned long *framelength, struct frame_info *fi,
111 struct frame_saved_regs *fsr)
112 {
113 unsigned long framesize;
114 int insn;
115 int op1;
116 int maybe_one_more = 0;
117 CORE_ADDR after_prologue = 0;
118 CORE_ADDR after_stack_adjust = 0;
119 CORE_ADDR current_pc;
120
121
122 framesize = 0;
123 after_prologue = 0;
124 insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
125
126 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
127 {
128
129 insn = read_memory_unsigned_integer (current_pc, 2);
130 dump_insn ("insn-1", current_pc, insn); /* MTZ */
131
132 /* If this is a 32 bit instruction, we dont want to examine its
133 immediate data as though it were an instruction */
134 if (current_pc & 0x02)
135 { /* Clear the parallel execution bit from 16 bit instruction */
136 if (maybe_one_more)
137 { /* The last instruction was a branch, usually terminates
138 the series, but if this is a parallel instruction,
139 it may be a stack framing instruction */
140 if (!(insn & 0x8000))
141 {
142 insn_debug (("Really done"));
143 break; /* nope, we are really done */
144 }
145 }
146 insn &= 0x7fff; /* decode this instruction further */
147 }
148 else
149 {
150 if (maybe_one_more)
151 break; /* This isnt the one more */
152 if (insn & 0x8000)
153 {
154 insn_debug (("32 bit insn\n"));
155 if (current_pc == scan_limit)
156 scan_limit += 2; /* extend the search */
157 current_pc += 2; /* skip the immediate data */
158 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
159 /* add 16 bit sign-extended offset */
160 {
161 insn_debug (("stack increment\n"));
162 framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
163 }
164 else
165 {
166 if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
167 read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
168 { /* subtract 24 bit sign-extended negative-offset */
169 dump_insn ("insn-2", current_pc + 2, insn);
170 insn = read_memory_unsigned_integer (current_pc - 2, 4);
171 dump_insn ("insn-3(l4)", current_pc - 2, insn);
172 if (insn & 0x00800000) /* sign extend */
173 insn |= 0xff000000; /* negative */
174 else
175 insn &= 0x00ffffff; /* positive */
176 framesize += insn;
177 }
178 }
179 after_prologue = current_pc;
180 continue;
181 }
182 }
183 op1 = insn & 0xf000; /* isolate just the first nibble */
184
185 if ((insn & 0xf0ff) == 0x207f)
186 { /* st reg, @-sp */
187 int regno;
188 insn_debug (("push\n"));
189 #if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */
190 if (((insn & 0xffff) == 0x2d7f) && fi)
191 fi->using_frame_pointer = 1;
192 #endif
193 framesize += 4;
194 #if 0
195 /* Why should we increase the scan limit, just because we did a push?
196 And if there is a reason, surely we would only want to do it if we
197 had already reached the scan limit... */
198 if (current_pc == scan_limit)
199 scan_limit += 2;
200 #endif
201 regno = ((insn >> 8) & 0xf);
202 if (fsr) /* save_regs offset */
203 fsr->regs[regno] = framesize;
204 after_prologue = 0;
205 continue;
206 }
207 if ((insn >> 8) == 0x4f) /* addi sp, xx */
208 /* add 8 bit sign-extended offset */
209 {
210 int stack_adjust = (char) (insn & 0xff);
211
212 /* there are probably two of these stack adjustments:
213 1) A negative one in the prologue, and
214 2) A positive one in the epilogue.
215 We are only interested in the first one. */
216
217 if (stack_adjust < 0)
218 {
219 framesize -= stack_adjust;
220 after_prologue = 0;
221 /* A frameless function may have no "mv fp, sp".
222 In that case, this is the end of the prologue. */
223 after_stack_adjust = current_pc + 2;
224 }
225 continue;
226 }
227 if (insn == 0x1d8f)
228 { /* mv fp, sp */
229 if (fi)
230 fi->using_frame_pointer = 1; /* fp is now valid */
231 insn_debug (("done fp found\n"));
232 after_prologue = current_pc + 2;
233 break; /* end of stack adjustments */
234 }
235 if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */
236 {
237 insn_debug (("nop\n"));
238 after_prologue = current_pc + 2;
239 continue; /* nop occurs between pushes */
240 }
241 /* End of prolog if any of these are branch instructions */
242 if ((op1 == 0x7000)
243 || (op1 == 0xb000)
244 || (op1 == 0xf000))
245 {
246 after_prologue = current_pc;
247 insn_debug (("Done: branch\n"));
248 maybe_one_more = 1;
249 continue;
250 }
251 /* Some of the branch instructions are mixed with other types */
252 if (op1 == 0x1000)
253 {
254 int subop = insn & 0x0ff0;
255 if ((subop == 0x0ec0) || (subop == 0x0fc0))
256 {
257 insn_debug (("done: jmp\n"));
258 after_prologue = current_pc;
259 maybe_one_more = 1;
260 continue; /* jmp , jl */
261 }
262 }
263 }
264
265 if (current_pc >= scan_limit)
266 {
267 if (pl_endptr)
268 {
269 #if 1
270 if (after_stack_adjust != 0)
271 /* We did not find a "mv fp,sp", but we DID find
272 a stack_adjust. Is it safe to use that as the
273 end of the prologue? I just don't know. */
274 {
275 *pl_endptr = after_stack_adjust;
276 if (framelength)
277 *framelength = framesize;
278 }
279 else
280 #endif
281 /* We reached the end of the loop without finding the end
282 of the prologue. No way to win -- we should report failure.
283 The way we do that is to return the original start_pc.
284 GDB will set a breakpoint at the start of the function (etc.) */
285 *pl_endptr = start_pc;
286 }
287 return;
288 }
289 if (after_prologue == 0)
290 after_prologue = current_pc;
291
292 insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
293 if (framelength)
294 *framelength = framesize;
295 if (pl_endptr)
296 *pl_endptr = after_prologue;
297 } /* decode_prologue */
298
299 /* Function: skip_prologue
300 Find end of function prologue */
301
302 CORE_ADDR
303 m32r_skip_prologue (CORE_ADDR pc)
304 {
305 CORE_ADDR func_addr, func_end;
306 struct symtab_and_line sal;
307
308 /* See what the symbol table says */
309
310 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
311 {
312 sal = find_pc_line (func_addr, 0);
313
314 if (sal.line != 0 && sal.end <= func_end)
315 {
316
317 insn_debug (("BP after prologue %08x\n", sal.end));
318 func_end = sal.end;
319 }
320 else
321 /* Either there's no line info, or the line after the prologue is after
322 the end of the function. In this case, there probably isn't a
323 prologue. */
324 {
325 insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
326 sal.line, sal.end, func_end));
327 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
328 }
329 }
330 else
331 func_end = pc + DEFAULT_SEARCH_LIMIT;
332 decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
333 return sal.end;
334 }
335
336 static unsigned long
337 m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
338 {
339 struct symtab_and_line sal;
340 CORE_ADDR prologue_start, prologue_end, current_pc;
341 unsigned long framesize = 0;
342
343 /* this code essentially duplicates skip_prologue,
344 but we need the start address below. */
345
346 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
347 {
348 sal = find_pc_line (prologue_start, 0);
349
350 if (sal.line == 0) /* no line info, use current PC */
351 if (prologue_start == entry_point_address ())
352 return 0;
353 }
354 else
355 {
356 prologue_start = fi->pc;
357 prologue_end = prologue_start + 48; /* We're in the boondocks:
358 allow for 16 pushes, an add,
359 and "mv fp,sp" */
360 }
361 #if 0
362 prologue_end = min (prologue_end, fi->pc);
363 #endif
364 insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
365 fi->pc, prologue_start, prologue_end));
366 prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
367 decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
368 fi, fsr);
369 return framesize;
370 }
371
372 /* Function: init_extra_frame_info
373 This function actually figures out the frame address for a given pc and
374 sp. This is tricky on the m32r because we sometimes don't use an explicit
375 frame pointer, and the previous stack pointer isn't necessarily recorded
376 on the stack. The only reliable way to get this info is to
377 examine the prologue. */
378
379 void
380 m32r_init_extra_frame_info (struct frame_info *fi)
381 {
382 int reg;
383
384 if (fi->next)
385 fi->pc = FRAME_SAVED_PC (fi->next);
386
387 memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
388
389 if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
390 {
391 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
392 by assuming it's always FP. */
393 fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame,
394 SP_REGNUM);
395 fi->framesize = 0;
396 return;
397 }
398 else
399 {
400 fi->using_frame_pointer = 0;
401 fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
402
403 if (!fi->next)
404 if (fi->using_frame_pointer)
405 {
406 fi->frame = read_register (FP_REGNUM);
407 }
408 else
409 fi->frame = read_register (SP_REGNUM);
410 else
411 /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
412 /* we have an FP */
413 if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */
414 fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
415 for (reg = 0; reg < NUM_REGS; reg++)
416 if (fi->fsr.regs[reg] != 0)
417 fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
418 }
419 }
420
421 /* Function: m32r_virtual_frame_pointer
422 Return the register that the function uses for a frame pointer,
423 plus any necessary offset to be applied to the register before
424 any frame pointer offsets. */
425
426 void
427 m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
428 {
429 struct frame_info *fi = deprecated_frame_xmalloc ();
430 struct cleanup *old_chain = make_cleanup (xfree, fi);
431
432 /* Set up a dummy frame_info. */
433 fi->next = NULL;
434 fi->prev = NULL;
435 fi->frame = 0;
436 fi->pc = pc;
437
438 /* Analyze the prolog and fill in the extra info. */
439 m32r_init_extra_frame_info (fi);
440
441 /* Results will tell us which type of frame it uses. */
442 if (fi->using_frame_pointer)
443 {
444 *reg = FP_REGNUM;
445 *offset = 0;
446 }
447 else
448 {
449 *reg = SP_REGNUM;
450 *offset = 0;
451 }
452 do_cleanups (old_chain);
453 }
454
455 /* Function: find_callers_reg
456 Find REGNUM on the stack. Otherwise, it's in an active register. One thing
457 we might want to do here is to check REGNUM against the clobber mask, and
458 somehow flag it as invalid if it isn't saved on the stack somewhere. This
459 would provide a graceful failure mode when trying to get the value of
460 caller-saves registers for an inner frame. */
461
462 CORE_ADDR
463 m32r_find_callers_reg (struct frame_info *fi, int regnum)
464 {
465 for (; fi; fi = fi->next)
466 if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
467 return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
468 else if (fi->fsr.regs[regnum] != 0)
469 return read_memory_integer (fi->fsr.regs[regnum],
470 REGISTER_RAW_SIZE (regnum));
471 return read_register (regnum);
472 }
473
474 /* Function: frame_chain Given a GDB frame, determine the address of
475 the calling function's frame. This will be used to create a new
476 GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
477 DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
478 m32r, we save the frame size when we initialize the frame_info. */
479
480 CORE_ADDR
481 m32r_frame_chain (struct frame_info *fi)
482 {
483 CORE_ADDR fn_start, callers_pc, fp;
484
485 /* is this a dummy frame? */
486 if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
487 return fi->frame; /* dummy frame same as caller's frame */
488
489 /* is caller-of-this a dummy frame? */
490 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
491 fp = m32r_find_callers_reg (fi, FP_REGNUM);
492 if (DEPRECATED_PC_IN_CALL_DUMMY (callers_pc, fp, fp))
493 return fp; /* dummy frame's frame may bear no relation to ours */
494
495 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
496 if (fn_start == entry_point_address ())
497 return 0; /* in _start fn, don't chain further */
498 if (fi->framesize == 0)
499 {
500 printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
501 paddr (fi->frame),
502 paddr (fi->pc));
503 return 0;
504 }
505 insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
506 return fi->frame + fi->framesize;
507 }
508
509 /* Function: push_return_address (pc)
510 Set up the return address for the inferior function call.
511 Necessary for targets that don't actually execute a JSR/BSR instruction
512 (ie. when using an empty CALL_DUMMY) */
513
514 CORE_ADDR
515 m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
516 {
517 write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
518 return sp;
519 }
520
521
522 /* Function: pop_frame
523 Discard from the stack the innermost frame,
524 restoring all saved registers. */
525
526 struct frame_info *
527 m32r_pop_frame (struct frame_info *frame)
528 {
529 int regnum;
530
531 if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
532 generic_pop_dummy_frame ();
533 else
534 {
535 for (regnum = 0; regnum < NUM_REGS; regnum++)
536 if (frame->fsr.regs[regnum] != 0)
537 write_register (regnum,
538 read_memory_integer (frame->fsr.regs[regnum], 4));
539
540 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
541 write_register (SP_REGNUM, read_register (FP_REGNUM));
542 if (read_register (PSW_REGNUM) & 0x80)
543 write_register (SPU_REGNUM, read_register (SP_REGNUM));
544 else
545 write_register (SPI_REGNUM, read_register (SP_REGNUM));
546 }
547 flush_cached_frames ();
548 return NULL;
549 }
550
551 /* Function: frame_saved_pc
552 Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
553 in the stack anywhere, otherwise we get it from the registers. */
554
555 CORE_ADDR
556 m32r_frame_saved_pc (struct frame_info *fi)
557 {
558 if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
559 return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
560 else
561 return m32r_find_callers_reg (fi, RP_REGNUM);
562 }
563
564 /* Function: push_arguments
565 Setup the function arguments for calling a function in the inferior.
566
567 On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
568 which are dedicated for passing function arguments. Up to the first
569 four arguments (depending on size) may go into these registers.
570 The rest go on the stack.
571
572 Arguments that are smaller than 4 bytes will still take up a whole
573 register or a whole 32-bit word on the stack, and will be
574 right-justified in the register or the stack word. This includes
575 chars, shorts, and small aggregate types.
576
577 Arguments of 8 bytes size are split between two registers, if
578 available. If only one register is available, the argument will
579 be split between the register and the stack. Otherwise it is
580 passed entirely on the stack. Aggregate types with sizes between
581 4 and 8 bytes are passed entirely on the stack, and are left-justified
582 within the double-word (as opposed to aggregates smaller than 4 bytes
583 which are right-justified).
584
585 Aggregates of greater than 8 bytes are first copied onto the stack,
586 and then a pointer to the copy is passed in the place of the normal
587 argument (either in a register if available, or on the stack).
588
589 Functions that must return an aggregate type can return it in the
590 normal return value registers (R0 and R1) if its size is 8 bytes or
591 less. For larger return values, the caller must allocate space for
592 the callee to copy the return value to. A pointer to this space is
593 passed as an implicit first argument, always in R0. */
594
595 CORE_ADDR
596 m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
597 unsigned char struct_return, CORE_ADDR struct_addr)
598 {
599 int stack_offset, stack_alloc;
600 int argreg;
601 int argnum;
602 struct type *type;
603 CORE_ADDR regval;
604 char *val;
605 char valbuf[4];
606 int len;
607 int odd_sized_struct;
608
609 /* first force sp to a 4-byte alignment */
610 sp = sp & ~3;
611
612 argreg = ARG0_REGNUM;
613 /* The "struct return pointer" pseudo-argument goes in R0 */
614 if (struct_return)
615 write_register (argreg++, struct_addr);
616
617 /* Now make sure there's space on the stack */
618 for (argnum = 0, stack_alloc = 0;
619 argnum < nargs; argnum++)
620 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
621 sp -= stack_alloc; /* make room on stack for args */
622
623
624 /* Now load as many as possible of the first arguments into
625 registers, and push the rest onto the stack. There are 16 bytes
626 in four registers available. Loop thru args from first to last. */
627
628 argreg = ARG0_REGNUM;
629 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
630 {
631 type = VALUE_TYPE (args[argnum]);
632 len = TYPE_LENGTH (type);
633 memset (valbuf, 0, sizeof (valbuf));
634 if (len < 4)
635 { /* value gets right-justified in the register or stack word */
636 memcpy (valbuf + (4 - len),
637 (char *) VALUE_CONTENTS (args[argnum]), len);
638 val = valbuf;
639 }
640 else
641 val = (char *) VALUE_CONTENTS (args[argnum]);
642
643 if (len > 4 && (len & 3) != 0)
644 odd_sized_struct = 1; /* such structs go entirely on stack */
645 else
646 odd_sized_struct = 0;
647 while (len > 0)
648 {
649 if (argreg > ARGLAST_REGNUM || odd_sized_struct)
650 { /* must go on the stack */
651 write_memory (sp + stack_offset, val, 4);
652 stack_offset += 4;
653 }
654 /* NOTE WELL!!!!! This is not an "else if" clause!!!
655 That's because some *&^%$ things get passed on the stack
656 AND in the registers! */
657 if (argreg <= ARGLAST_REGNUM)
658 { /* there's room in a register */
659 regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
660 write_register (argreg++, regval);
661 }
662 /* Store the value 4 bytes at a time. This means that things
663 larger than 4 bytes may go partly in registers and partly
664 on the stack. */
665 len -= REGISTER_RAW_SIZE (argreg);
666 val += REGISTER_RAW_SIZE (argreg);
667 }
668 }
669 return sp;
670 }
671
672 /* Function: fix_call_dummy
673 If there is real CALL_DUMMY code (eg. on the stack), this function
674 has the responsability to insert the address of the actual code that
675 is the target of the target function call. */
676
677 void
678 m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
679 struct value **args, struct type *type, int gcc_p)
680 {
681 /* ld24 r8, <(imm24) fun> */
682 *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
683 }
684
685
686 /* Function: m32r_write_sp
687 Because SP is really a read-only register that mirrors either SPU or SPI,
688 we must actually write one of those two as well, depending on PSW. */
689
690 void
691 m32r_write_sp (CORE_ADDR val)
692 {
693 unsigned long psw = read_register (PSW_REGNUM);
694
695 if (psw & 0x80) /* stack mode: user or interrupt */
696 write_register (SPU_REGNUM, val);
697 else
698 write_register (SPI_REGNUM, val);
699 write_register (SP_REGNUM, val);
700 }
701
702 void
703 _initialize_m32r_tdep (void)
704 {
705 tm_print_insn = print_insn_m32r;
706 }
This page took 0.046956 seconds and 5 git commands to generate.