* frame.c (frame_unwind_unsigned_register): Delete.
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "dwarf2-frame.h"
29 #include "trad-frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdb_string.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "reggroups.h"
43
44 #include "target.h"
45 #include "opcode/m68hc11.h"
46 #include "elf/m68hc11.h"
47 #include "elf-bfd.h"
48
49 /* Macros for setting and testing a bit in a minimal symbol.
50 For 68HC11/68HC12 we have two flags that tell which return
51 type the function is using. This is used for prologue and frame
52 analysis to compute correct stack frame layout.
53
54 The MSB of the minimal symbol's "info" field is used for this purpose.
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
60
61 #define MSYMBOL_SET_RTC(msym) \
62 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
63 | 0x80000000)
64
65 #define MSYMBOL_SET_RTI(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x40000000)
68
69 #define MSYMBOL_IS_RTC(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72 #define MSYMBOL_IS_RTI(msym) \
73 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
74
75 enum insn_return_kind {
76 RETURN_RTS,
77 RETURN_RTC,
78 RETURN_RTI
79 };
80
81
82 /* Register numbers of various important registers. */
83
84 #define HARD_X_REGNUM 0
85 #define HARD_D_REGNUM 1
86 #define HARD_Y_REGNUM 2
87 #define HARD_SP_REGNUM 3
88 #define HARD_PC_REGNUM 4
89
90 #define HARD_A_REGNUM 5
91 #define HARD_B_REGNUM 6
92 #define HARD_CCR_REGNUM 7
93
94 /* 68HC12 page number register.
95 Note: to keep a compatibility with gcc register naming, we must
96 not have to rename FP and other soft registers. The page register
97 is a real hard register and must therefore be counted by gdbarch_num_regs.
98 For this it has the same number as Z register (which is not used). */
99 #define HARD_PAGE_REGNUM 8
100 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
101
102 /* Z is replaced by X or Y by gcc during machine reorg.
103 ??? There is no way to get it and even know whether
104 it's in X or Y or in ZS. */
105 #define SOFT_Z_REGNUM 8
106
107 /* Soft registers. These registers are special. There are treated
108 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
109 They are physically located in memory. */
110 #define SOFT_FP_REGNUM 9
111 #define SOFT_TMP_REGNUM 10
112 #define SOFT_ZS_REGNUM 11
113 #define SOFT_XY_REGNUM 12
114 #define SOFT_UNUSED_REGNUM 13
115 #define SOFT_D1_REGNUM 14
116 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
117 #define M68HC11_MAX_SOFT_REGS 32
118
119 #define M68HC11_NUM_REGS (8)
120 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
121 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
122
123 #define M68HC11_REG_SIZE (2)
124
125 #define M68HC12_NUM_REGS (9)
126 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
127 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
128
129 struct insn_sequence;
130 struct gdbarch_tdep
131 {
132 /* Stack pointer correction value. For 68hc11, the stack pointer points
133 to the next push location. An offset of 1 must be applied to obtain
134 the address where the last value is saved. For 68hc12, the stack
135 pointer points to the last value pushed. No offset is necessary. */
136 int stack_correction;
137
138 /* Description of instructions in the prologue. */
139 struct insn_sequence *prologue;
140
141 /* True if the page memory bank register is available
142 and must be used. */
143 int use_page_register;
144
145 /* ELF flags for ABI. */
146 int elf_flags;
147 };
148
149 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
150 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
151 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
152
153 struct m68hc11_unwind_cache
154 {
155 /* The previous frame's inner most stack address. Used as this
156 frame ID's stack_addr. */
157 CORE_ADDR prev_sp;
158 /* The frame's base, optionally used by the high-level debug info. */
159 CORE_ADDR base;
160 CORE_ADDR pc;
161 int size;
162 int prologue_type;
163 CORE_ADDR return_pc;
164 CORE_ADDR sp_offset;
165 int frameless;
166 enum insn_return_kind return_kind;
167
168 /* Table indicating the location of each and every register. */
169 struct trad_frame_saved_reg *saved_regs;
170 };
171
172 /* Table of registers for 68HC11. This includes the hard registers
173 and the soft registers used by GCC. */
174 static char *
175 m68hc11_register_names[] =
176 {
177 "x", "d", "y", "sp", "pc", "a", "b",
178 "ccr", "page", "frame","tmp", "zs", "xy", 0,
179 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
180 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
181 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
182 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
183 "d29", "d30", "d31", "d32"
184 };
185
186 struct m68hc11_soft_reg
187 {
188 const char *name;
189 CORE_ADDR addr;
190 };
191
192 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
193
194 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
195
196 static int soft_min_addr;
197 static int soft_max_addr;
198 static int soft_reg_initialized = 0;
199
200 /* Look in the symbol table for the address of a pseudo register
201 in memory. If we don't find it, pretend the register is not used
202 and not available. */
203 static void
204 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
205 {
206 struct minimal_symbol *msymbol;
207
208 msymbol = lookup_minimal_symbol (name, NULL, NULL);
209 if (msymbol)
210 {
211 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
212 reg->name = xstrdup (name);
213
214 /* Keep track of the address range for soft registers. */
215 if (reg->addr < (CORE_ADDR) soft_min_addr)
216 soft_min_addr = reg->addr;
217 if (reg->addr > (CORE_ADDR) soft_max_addr)
218 soft_max_addr = reg->addr;
219 }
220 else
221 {
222 reg->name = 0;
223 reg->addr = 0;
224 }
225 }
226
227 /* Initialize the table of soft register addresses according
228 to the symbol table. */
229 static void
230 m68hc11_initialize_register_info (void)
231 {
232 int i;
233
234 if (soft_reg_initialized)
235 return;
236
237 soft_min_addr = INT_MAX;
238 soft_max_addr = 0;
239 for (i = 0; i < M68HC11_ALL_REGS; i++)
240 {
241 soft_regs[i].name = 0;
242 }
243
244 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
245 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
246 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
247 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
248 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
249
250 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
251 {
252 char buf[10];
253
254 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
255 m68hc11_get_register_info (&soft_regs[i], buf);
256 }
257
258 if (soft_regs[SOFT_FP_REGNUM].name == 0)
259 warning (_("No frame soft register found in the symbol table.\n"
260 "Stack backtrace will not work."));
261 soft_reg_initialized = 1;
262 }
263
264 /* Given an address in memory, return the soft register number if
265 that address corresponds to a soft register. Returns -1 if not. */
266 static int
267 m68hc11_which_soft_register (CORE_ADDR addr)
268 {
269 int i;
270
271 if (addr < soft_min_addr || addr > soft_max_addr)
272 return -1;
273
274 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
275 {
276 if (soft_regs[i].name && soft_regs[i].addr == addr)
277 return i;
278 }
279 return -1;
280 }
281
282 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
283 pseudo registers. They are located in memory. Translate the register
284 fetch into a memory read. */
285 static void
286 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
287 struct regcache *regcache,
288 int regno, gdb_byte *buf)
289 {
290 /* The PC is a pseudo reg only for 68HC12 with the memory bank
291 addressing mode. */
292 if (regno == M68HC12_HARD_PC_REGNUM)
293 {
294 ULONGEST pc;
295 const int regsize = TYPE_LENGTH (builtin_type_uint32);
296
297 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
300 ULONGEST page;
301
302 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
307 store_unsigned_integer (buf, regsize, pc);
308 return;
309 }
310
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
322 }
323
324 /* Store a pseudo register. Translate the register store
325 into a memory write. */
326 static void
327 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
328 struct regcache *regcache,
329 int regno, const gdb_byte *buf)
330 {
331 /* The PC is a pseudo reg only for 68HC12 with the memory bank
332 addressing mode. */
333 if (regno == M68HC12_HARD_PC_REGNUM)
334 {
335 const int regsize = TYPE_LENGTH (builtin_type_uint32);
336 char *tmp = alloca (regsize);
337 CORE_ADDR pc;
338
339 memcpy (tmp, buf, regsize);
340 pc = extract_unsigned_integer (tmp, regsize);
341 if (pc >= 0x1000000)
342 {
343 pc -= 0x1000000;
344 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
345 (pc >> 14) & 0x0ff);
346 pc &= 0x03fff;
347 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
348 pc + 0x8000);
349 }
350 else
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
352 return;
353 }
354
355 m68hc11_initialize_register_info ();
356
357 /* Store a soft register: translate into a memory write. */
358 if (soft_regs[regno].name)
359 {
360 const int regsize = 2;
361 char *tmp = alloca (regsize);
362 memcpy (tmp, buf, regsize);
363 target_write_memory (soft_regs[regno].addr, tmp, regsize);
364 }
365 }
366
367 static const char *
368 m68hc11_register_name (int reg_nr)
369 {
370 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
371 return "pc";
372 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
373 return "ppc";
374
375 if (reg_nr < 0)
376 return NULL;
377 if (reg_nr >= M68HC11_ALL_REGS)
378 return NULL;
379
380 m68hc11_initialize_register_info ();
381
382 /* If we don't know the address of a soft register, pretend it
383 does not exist. */
384 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
385 return NULL;
386 return m68hc11_register_names[reg_nr];
387 }
388
389 static const unsigned char *
390 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
391 {
392 static unsigned char breakpoint[] = {0x0};
393
394 *lenptr = sizeof (breakpoint);
395 return breakpoint;
396 }
397
398 \f
399 /* 68HC11 & 68HC12 prologue analysis.
400
401 */
402 #define MAX_CODES 12
403
404 /* 68HC11 opcodes. */
405 #undef M6811_OP_PAGE2
406 #define M6811_OP_PAGE2 (0x18)
407 #define M6811_OP_LDX (0xde)
408 #define M6811_OP_LDX_EXT (0xfe)
409 #define M6811_OP_PSHX (0x3c)
410 #define M6811_OP_STS (0x9f)
411 #define M6811_OP_STS_EXT (0xbf)
412 #define M6811_OP_TSX (0x30)
413 #define M6811_OP_XGDX (0x8f)
414 #define M6811_OP_ADDD (0xc3)
415 #define M6811_OP_TXS (0x35)
416 #define M6811_OP_DES (0x34)
417
418 /* 68HC12 opcodes. */
419 #define M6812_OP_PAGE2 (0x18)
420 #define M6812_OP_MOVW (0x01)
421 #define M6812_PB_PSHW (0xae)
422 #define M6812_OP_STS (0x5f)
423 #define M6812_OP_STS_EXT (0x7f)
424 #define M6812_OP_LEAS (0x1b)
425 #define M6812_OP_PSHX (0x34)
426 #define M6812_OP_PSHY (0x35)
427
428 /* Operand extraction. */
429 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
430 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
431 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
432 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
433
434 /* Identification of the sequence. */
435 enum m6811_seq_type
436 {
437 P_LAST = 0,
438 P_SAVE_REG, /* Save a register on the stack. */
439 P_SET_FRAME, /* Setup the frame pointer. */
440 P_LOCAL_1, /* Allocate 1 byte for locals. */
441 P_LOCAL_2, /* Allocate 2 bytes for locals. */
442 P_LOCAL_N /* Allocate N bytes for locals. */
443 };
444
445 struct insn_sequence {
446 enum m6811_seq_type type;
447 unsigned length;
448 unsigned short code[MAX_CODES];
449 };
450
451 /* Sequence of instructions in the 68HC11 function prologue. */
452 static struct insn_sequence m6811_prologue[] = {
453 /* Sequences to save a soft-register. */
454 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
455 M6811_OP_PSHX } },
456 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
457 M6811_OP_PAGE2, M6811_OP_PSHX } },
458 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
459 M6811_OP_PSHX } },
460 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
461 M6811_OP_PAGE2, M6811_OP_PSHX } },
462
463 /* Sequences to allocate local variables. */
464 { P_LOCAL_N, 7, { M6811_OP_TSX,
465 M6811_OP_XGDX,
466 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_XGDX,
468 M6811_OP_TXS } },
469 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
470 M6811_OP_PAGE2, M6811_OP_XGDX,
471 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
472 M6811_OP_PAGE2, M6811_OP_XGDX,
473 M6811_OP_PAGE2, M6811_OP_TXS } },
474 { P_LOCAL_1, 1, { M6811_OP_DES } },
475 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
476 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
477
478 /* Initialize the frame pointer. */
479 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
480 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
481 { P_LAST, 0, { 0 } }
482 };
483
484
485 /* Sequence of instructions in the 68HC12 function prologue. */
486 static struct insn_sequence m6812_prologue[] = {
487 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
488 OP_IMM_HIGH, OP_IMM_LOW } },
489 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
490 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
491 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
492 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
493 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
494 { P_LAST, 0 }
495 };
496
497
498 /* Analyze the sequence of instructions starting at the given address.
499 Returns a pointer to the sequence when it is recognized and
500 the optional value (constant/address) associated with it. */
501 static struct insn_sequence *
502 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
503 CORE_ADDR *val)
504 {
505 unsigned char buffer[MAX_CODES];
506 unsigned bufsize;
507 unsigned j;
508 CORE_ADDR cur_val;
509 short v = 0;
510
511 bufsize = 0;
512 for (; seq->type != P_LAST; seq++)
513 {
514 cur_val = 0;
515 for (j = 0; j < seq->length; j++)
516 {
517 if (bufsize < j + 1)
518 {
519 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
520 1);
521 bufsize++;
522 }
523 /* Continue while we match the opcode. */
524 if (seq->code[j] == buffer[j])
525 continue;
526
527 if ((seq->code[j] & 0xf00) == 0)
528 break;
529
530 /* Extract a sequence parameter (address or constant). */
531 switch (seq->code[j])
532 {
533 case OP_DIRECT:
534 cur_val = (CORE_ADDR) buffer[j];
535 break;
536
537 case OP_IMM_HIGH:
538 cur_val = cur_val & 0x0ff;
539 cur_val |= (buffer[j] << 8);
540 break;
541
542 case OP_IMM_LOW:
543 cur_val &= 0x0ff00;
544 cur_val |= buffer[j];
545 break;
546
547 case OP_PBYTE:
548 if ((buffer[j] & 0xE0) == 0x80)
549 {
550 v = buffer[j] & 0x1f;
551 if (v & 0x10)
552 v |= 0xfff0;
553 }
554 else if ((buffer[j] & 0xfe) == 0xf0)
555 {
556 v = read_memory_unsigned_integer (pc + j + 1, 1);
557 if (buffer[j] & 1)
558 v |= 0xff00;
559 }
560 else if (buffer[j] == 0xf2)
561 {
562 v = read_memory_unsigned_integer (pc + j + 1, 2);
563 }
564 cur_val = v;
565 break;
566 }
567 }
568
569 /* We have a full match. */
570 if (j == seq->length)
571 {
572 *val = cur_val;
573 return seq;
574 }
575 }
576 return 0;
577 }
578
579 /* Return the instruction that the function at the PC is using. */
580 static enum insn_return_kind
581 m68hc11_get_return_insn (CORE_ADDR pc)
582 {
583 struct minimal_symbol *sym;
584
585 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
586 function is stored by elfread.c in the high bit of the info field.
587 Use this to decide which instruction the function uses to return. */
588 sym = lookup_minimal_symbol_by_pc (pc);
589 if (sym == 0)
590 return RETURN_RTS;
591
592 if (MSYMBOL_IS_RTC (sym))
593 return RETURN_RTC;
594 else if (MSYMBOL_IS_RTI (sym))
595 return RETURN_RTI;
596 else
597 return RETURN_RTS;
598 }
599
600 /* Analyze the function prologue to find some information
601 about the function:
602 - the PC of the first line (for m68hc11_skip_prologue)
603 - the offset of the previous frame saved address (from current frame)
604 - the soft registers which are pushed. */
605 static CORE_ADDR
606 m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
607 struct m68hc11_unwind_cache *info)
608 {
609 LONGEST save_addr;
610 CORE_ADDR func_end;
611 int size;
612 int found_frame_point;
613 int saved_reg;
614 int done = 0;
615 struct insn_sequence *seq_table;
616
617 info->size = 0;
618 info->sp_offset = 0;
619 if (pc >= current_pc)
620 return current_pc;
621
622 size = 0;
623
624 m68hc11_initialize_register_info ();
625 if (pc == 0)
626 {
627 info->size = 0;
628 return pc;
629 }
630
631 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
632
633 /* The 68hc11 stack is as follows:
634
635
636 | |
637 +-----------+
638 | |
639 | args |
640 | |
641 +-----------+
642 | PC-return |
643 +-----------+
644 | Old frame |
645 +-----------+
646 | |
647 | Locals |
648 | |
649 +-----------+ <--- current frame
650 | |
651
652 With most processors (like 68K) the previous frame can be computed
653 easily because it is always at a fixed offset (see link/unlink).
654 That is, locals are accessed with negative offsets, arguments are
655 accessed with positive ones. Since 68hc11 only supports offsets
656 in the range [0..255], the frame is defined at the bottom of
657 locals (see picture).
658
659 The purpose of the analysis made here is to find out the size
660 of locals in this function. An alternative to this is to use
661 DWARF2 info. This would be better but I don't know how to
662 access dwarf2 debug from this function.
663
664 Walk from the function entry point to the point where we save
665 the frame. While walking instructions, compute the size of bytes
666 which are pushed. This gives us the index to access the previous
667 frame.
668
669 We limit the search to 128 bytes so that the algorithm is bounded
670 in case of random and wrong code. We also stop and abort if
671 we find an instruction which is not supposed to appear in the
672 prologue (as generated by gcc 2.95, 2.96).
673 */
674 func_end = pc + 128;
675 found_frame_point = 0;
676 info->size = 0;
677 save_addr = 0;
678 while (!done && pc + 2 < func_end)
679 {
680 struct insn_sequence *seq;
681 CORE_ADDR val;
682
683 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
684 if (seq == 0)
685 break;
686
687 /* If we are within the instruction group, we can't advance the
688 pc nor the stack offset. Otherwise the caller's stack computed
689 from the current stack can be wrong. */
690 if (pc + seq->length > current_pc)
691 break;
692
693 pc = pc + seq->length;
694 if (seq->type == P_SAVE_REG)
695 {
696 if (found_frame_point)
697 {
698 saved_reg = m68hc11_which_soft_register (val);
699 if (saved_reg < 0)
700 break;
701
702 save_addr -= 2;
703 if (info->saved_regs)
704 info->saved_regs[saved_reg].addr = save_addr;
705 }
706 else
707 {
708 size += 2;
709 }
710 }
711 else if (seq->type == P_SET_FRAME)
712 {
713 found_frame_point = 1;
714 info->size = size;
715 }
716 else if (seq->type == P_LOCAL_1)
717 {
718 size += 1;
719 }
720 else if (seq->type == P_LOCAL_2)
721 {
722 size += 2;
723 }
724 else if (seq->type == P_LOCAL_N)
725 {
726 /* Stack pointer is decremented for the allocation. */
727 if (val & 0x8000)
728 size -= (int) (val) | 0xffff0000;
729 else
730 size -= val;
731 }
732 }
733 if (found_frame_point == 0)
734 info->sp_offset = size;
735 else
736 info->sp_offset = -1;
737 return pc;
738 }
739
740 static CORE_ADDR
741 m68hc11_skip_prologue (CORE_ADDR pc)
742 {
743 CORE_ADDR func_addr, func_end;
744 struct symtab_and_line sal;
745 struct m68hc11_unwind_cache tmp_cache = { 0 };
746
747 /* If we have line debugging information, then the end of the
748 prologue should be the first assembly instruction of the
749 first source line. */
750 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
751 {
752 sal = find_pc_line (func_addr, 0);
753 if (sal.end && sal.end < func_end)
754 return sal.end;
755 }
756
757 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
758 return pc;
759 }
760
761 static CORE_ADDR
762 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
763 {
764 ULONGEST pc;
765
766 pc = frame_unwind_register_unsigned (next_frame, gdbarch_pc_regnum (gdbarch));
767 return pc;
768 }
769
770 /* Put here the code to store, into fi->saved_regs, the addresses of
771 the saved registers of frame described by FRAME_INFO. This
772 includes special registers such as pc and fp saved in special ways
773 in the stack frame. sp is even more special: the address we return
774 for it IS the sp for the next frame. */
775
776 struct m68hc11_unwind_cache *
777 m68hc11_frame_unwind_cache (struct frame_info *next_frame,
778 void **this_prologue_cache)
779 {
780 ULONGEST prev_sp;
781 ULONGEST this_base;
782 struct m68hc11_unwind_cache *info;
783 CORE_ADDR current_pc;
784 int i;
785
786 if ((*this_prologue_cache))
787 return (*this_prologue_cache);
788
789 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
790 (*this_prologue_cache) = info;
791 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
792
793 info->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
794
795 info->size = 0;
796 info->return_kind = m68hc11_get_return_insn (info->pc);
797
798 /* The SP was moved to the FP. This indicates that a new frame
799 was created. Get THIS frame's FP value by unwinding it from
800 the next frame. */
801 this_base = frame_unwind_register_unsigned (next_frame, SOFT_FP_REGNUM);
802 if (this_base == 0)
803 {
804 info->base = 0;
805 return info;
806 }
807
808 current_pc = frame_pc_unwind (next_frame);
809 if (info->pc != 0)
810 m68hc11_scan_prologue (info->pc, current_pc, info);
811
812 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
813
814 if (info->sp_offset != (CORE_ADDR) -1)
815 {
816 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
817 this_base = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
818 prev_sp = this_base + info->sp_offset + 2;
819 this_base += STACK_CORRECTION;
820 }
821 else
822 {
823 /* The FP points at the last saved register. Adjust the FP back
824 to before the first saved register giving the SP. */
825 prev_sp = this_base + info->size + 2;
826
827 this_base += STACK_CORRECTION;
828 if (soft_regs[SOFT_FP_REGNUM].name)
829 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
830 }
831
832 if (info->return_kind == RETURN_RTC)
833 {
834 prev_sp += 1;
835 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
836 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
837 }
838 else if (info->return_kind == RETURN_RTI)
839 {
840 prev_sp += 7;
841 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
842 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
843 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
844 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
845 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
846 }
847
848 /* Add 1 here to adjust for the post-decrement nature of the push
849 instruction.*/
850 info->prev_sp = prev_sp;
851
852 info->base = this_base;
853
854 /* Adjust all the saved registers so that they contain addresses and not
855 offsets. */
856 for (i = 0;
857 i < gdbarch_num_regs (current_gdbarch)
858 + gdbarch_num_pseudo_regs (current_gdbarch) - 1;
859 i++)
860 if (trad_frame_addr_p (info->saved_regs, i))
861 {
862 info->saved_regs[i].addr += this_base;
863 }
864
865 /* The previous frame's SP needed to be computed. Save the computed
866 value. */
867 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
868
869 return info;
870 }
871
872 /* Given a GDB frame, determine the address of the calling function's
873 frame. This will be used to create a new GDB frame struct. */
874
875 static void
876 m68hc11_frame_this_id (struct frame_info *next_frame,
877 void **this_prologue_cache,
878 struct frame_id *this_id)
879 {
880 struct m68hc11_unwind_cache *info
881 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
882 CORE_ADDR base;
883 CORE_ADDR func;
884 struct frame_id id;
885
886 /* The FUNC is easy. */
887 func = frame_func_unwind (next_frame, NORMAL_FRAME);
888
889 /* Hopefully the prologue analysis either correctly determined the
890 frame's base (which is the SP from the previous frame), or set
891 that base to "NULL". */
892 base = info->prev_sp;
893 if (base == 0)
894 return;
895
896 id = frame_id_build (base, func);
897 (*this_id) = id;
898 }
899
900 static void
901 m68hc11_frame_prev_register (struct frame_info *next_frame,
902 void **this_prologue_cache,
903 int regnum, int *optimizedp,
904 enum lval_type *lvalp, CORE_ADDR *addrp,
905 int *realnump, gdb_byte *bufferp)
906 {
907 struct m68hc11_unwind_cache *info
908 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
909
910 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
911 optimizedp, lvalp, addrp, realnump, bufferp);
912
913 if (regnum == HARD_PC_REGNUM)
914 {
915 /* Take into account the 68HC12 specific call (PC + page). */
916 if (info->return_kind == RETURN_RTC
917 && *addrp >= 0x08000 && *addrp < 0x0c000
918 && USE_PAGE_REGISTER)
919 {
920 int page_optimized;
921
922 CORE_ADDR page;
923
924 trad_frame_get_prev_register (next_frame, info->saved_regs,
925 HARD_PAGE_REGNUM, &page_optimized,
926 0, &page, 0, 0);
927 *addrp -= 0x08000;
928 *addrp += ((page & 0x0ff) << 14);
929 *addrp += 0x1000000;
930 }
931 }
932 }
933
934 static const struct frame_unwind m68hc11_frame_unwind = {
935 NORMAL_FRAME,
936 m68hc11_frame_this_id,
937 m68hc11_frame_prev_register
938 };
939
940 const struct frame_unwind *
941 m68hc11_frame_sniffer (struct frame_info *next_frame)
942 {
943 return &m68hc11_frame_unwind;
944 }
945
946 static CORE_ADDR
947 m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
948 {
949 struct m68hc11_unwind_cache *info
950 = m68hc11_frame_unwind_cache (next_frame, this_cache);
951
952 return info->base;
953 }
954
955 static CORE_ADDR
956 m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
957 {
958 CORE_ADDR addr;
959 struct m68hc11_unwind_cache *info
960 = m68hc11_frame_unwind_cache (next_frame, this_cache);
961
962 addr = info->base + info->size;
963 if (info->return_kind == RETURN_RTC)
964 addr += 1;
965 else if (info->return_kind == RETURN_RTI)
966 addr += 7;
967
968 return addr;
969 }
970
971 static const struct frame_base m68hc11_frame_base = {
972 &m68hc11_frame_unwind,
973 m68hc11_frame_base_address,
974 m68hc11_frame_base_address,
975 m68hc11_frame_args_address
976 };
977
978 static CORE_ADDR
979 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
980 {
981 ULONGEST sp;
982 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
983 return sp;
984 }
985
986 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
987 dummy frame. The frame ID's base needs to match the TOS value
988 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
989 breakpoint. */
990
991 static struct frame_id
992 m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
993 {
994 ULONGEST tos;
995 CORE_ADDR pc = frame_pc_unwind (next_frame);
996
997 tos = frame_unwind_register_unsigned (next_frame, SOFT_FP_REGNUM);
998 tos += 2;
999 return frame_id_build (tos, pc);
1000 }
1001
1002 \f
1003 /* Get and print the register from the given frame. */
1004 static void
1005 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1006 struct frame_info *frame, int regno)
1007 {
1008 LONGEST rval;
1009
1010 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1011 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1012 rval = get_frame_register_unsigned (frame, regno);
1013 else
1014 rval = get_frame_register_signed (frame, regno);
1015
1016 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1017 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1018 {
1019 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1020 if (regno != HARD_CCR_REGNUM)
1021 print_longest (file, 'd', 1, rval);
1022 }
1023 else
1024 {
1025 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1026 {
1027 ULONGEST page;
1028
1029 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1030 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1031 (unsigned) rval);
1032 }
1033 else
1034 {
1035 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1036 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1037 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1038 print_longest (file, 'd', 1, rval);
1039 }
1040 }
1041
1042 if (regno == HARD_CCR_REGNUM)
1043 {
1044 /* CCR register */
1045 int C, Z, N, V;
1046 unsigned char l = rval & 0xff;
1047
1048 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1049 l & M6811_S_BIT ? 'S' : '-',
1050 l & M6811_X_BIT ? 'X' : '-',
1051 l & M6811_H_BIT ? 'H' : '-',
1052 l & M6811_I_BIT ? 'I' : '-',
1053 l & M6811_N_BIT ? 'N' : '-',
1054 l & M6811_Z_BIT ? 'Z' : '-',
1055 l & M6811_V_BIT ? 'V' : '-',
1056 l & M6811_C_BIT ? 'C' : '-');
1057 N = (l & M6811_N_BIT) != 0;
1058 Z = (l & M6811_Z_BIT) != 0;
1059 V = (l & M6811_V_BIT) != 0;
1060 C = (l & M6811_C_BIT) != 0;
1061
1062 /* Print flags following the h8300 */
1063 if ((C | Z) == 0)
1064 fprintf_filtered (file, "u> ");
1065 else if ((C | Z) == 1)
1066 fprintf_filtered (file, "u<= ");
1067 else if (C == 0)
1068 fprintf_filtered (file, "u< ");
1069
1070 if (Z == 0)
1071 fprintf_filtered (file, "!= ");
1072 else
1073 fprintf_filtered (file, "== ");
1074
1075 if ((N ^ V) == 0)
1076 fprintf_filtered (file, ">= ");
1077 else
1078 fprintf_filtered (file, "< ");
1079
1080 if ((Z | (N ^ V)) == 0)
1081 fprintf_filtered (file, "> ");
1082 else
1083 fprintf_filtered (file, "<= ");
1084 }
1085 }
1086
1087 /* Same as 'info reg' but prints the registers in a different way. */
1088 static void
1089 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1090 struct frame_info *frame, int regno, int cpregs)
1091 {
1092 if (regno >= 0)
1093 {
1094 const char *name = gdbarch_register_name (gdbarch, regno);
1095
1096 if (!name || !*name)
1097 return;
1098
1099 fprintf_filtered (file, "%-10s ", name);
1100 m68hc11_print_register (gdbarch, file, frame, regno);
1101 fprintf_filtered (file, "\n");
1102 }
1103 else
1104 {
1105 int i, nr;
1106
1107 fprintf_filtered (file, "PC=");
1108 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1109
1110 fprintf_filtered (file, " SP=");
1111 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1112
1113 fprintf_filtered (file, " FP=");
1114 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1115
1116 fprintf_filtered (file, "\nCCR=");
1117 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1118
1119 fprintf_filtered (file, "\nD=");
1120 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1121
1122 fprintf_filtered (file, " X=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1124
1125 fprintf_filtered (file, " Y=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1127
1128 if (gdbarch_tdep (gdbarch)->use_page_register)
1129 {
1130 fprintf_filtered (file, "\nPage=");
1131 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1132 }
1133 fprintf_filtered (file, "\n");
1134
1135 nr = 0;
1136 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1137 {
1138 /* Skip registers which are not defined in the symbol table. */
1139 if (soft_regs[i].name == 0)
1140 continue;
1141
1142 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1143 m68hc11_print_register (gdbarch, file, frame, i);
1144 nr++;
1145 if ((nr % 8) == 7)
1146 fprintf_filtered (file, "\n");
1147 else
1148 fprintf_filtered (file, " ");
1149 }
1150 if (nr && (nr % 8) != 7)
1151 fprintf_filtered (file, "\n");
1152 }
1153 }
1154
1155 static CORE_ADDR
1156 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1157 struct regcache *regcache, CORE_ADDR bp_addr,
1158 int nargs, struct value **args, CORE_ADDR sp,
1159 int struct_return, CORE_ADDR struct_addr)
1160 {
1161 int argnum;
1162 int first_stack_argnum;
1163 struct type *type;
1164 char *val;
1165 int len;
1166 char buf[2];
1167
1168 first_stack_argnum = 0;
1169 if (struct_return)
1170 {
1171 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1172 }
1173 else if (nargs > 0)
1174 {
1175 type = value_type (args[0]);
1176 len = TYPE_LENGTH (type);
1177
1178 /* First argument is passed in D and X registers. */
1179 if (len <= 4)
1180 {
1181 ULONGEST v;
1182
1183 v = extract_unsigned_integer (value_contents (args[0]), len);
1184 first_stack_argnum = 1;
1185
1186 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1187 if (len > 2)
1188 {
1189 v >>= 16;
1190 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1191 }
1192 }
1193 }
1194
1195 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1196 {
1197 type = value_type (args[argnum]);
1198 len = TYPE_LENGTH (type);
1199
1200 if (len & 1)
1201 {
1202 static char zero = 0;
1203
1204 sp--;
1205 write_memory (sp, &zero, 1);
1206 }
1207 val = (char*) value_contents (args[argnum]);
1208 sp -= len;
1209 write_memory (sp, val, len);
1210 }
1211
1212 /* Store return address. */
1213 sp -= 2;
1214 store_unsigned_integer (buf, 2, bp_addr);
1215 write_memory (sp, buf, 2);
1216
1217 /* Finally, update the stack pointer... */
1218 sp -= STACK_CORRECTION;
1219 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1220
1221 /* ...and fake a frame pointer. */
1222 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1223
1224 /* DWARF2/GCC uses the stack address *before* the function call as a
1225 frame's CFA. */
1226 return sp + 2;
1227 }
1228
1229
1230 /* Return the GDB type object for the "standard" data type
1231 of data in register N. */
1232
1233 static struct type *
1234 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1235 {
1236 switch (reg_nr)
1237 {
1238 case HARD_PAGE_REGNUM:
1239 case HARD_A_REGNUM:
1240 case HARD_B_REGNUM:
1241 case HARD_CCR_REGNUM:
1242 return builtin_type_uint8;
1243
1244 case M68HC12_HARD_PC_REGNUM:
1245 return builtin_type_uint32;
1246
1247 default:
1248 return builtin_type_uint16;
1249 }
1250 }
1251
1252 static void
1253 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1254 const void *valbuf)
1255 {
1256 int len;
1257
1258 len = TYPE_LENGTH (type);
1259
1260 /* First argument is passed in D and X registers. */
1261 if (len <= 2)
1262 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1263 else if (len <= 4)
1264 {
1265 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1266 len - 2, valbuf);
1267 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1268 }
1269 else
1270 error (_("return of value > 4 is not supported."));
1271 }
1272
1273
1274 /* Given a return value in `regcache' with a type `type',
1275 extract and copy its value into `valbuf'. */
1276
1277 static void
1278 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1279 void *valbuf)
1280 {
1281 int len = TYPE_LENGTH (type);
1282 char buf[M68HC11_REG_SIZE];
1283
1284 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1285 switch (len)
1286 {
1287 case 1:
1288 memcpy (valbuf, buf + 1, 1);
1289 break;
1290
1291 case 2:
1292 memcpy (valbuf, buf, 2);
1293 break;
1294
1295 case 3:
1296 memcpy ((char*) valbuf + 1, buf, 2);
1297 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1298 memcpy (valbuf, buf + 1, 1);
1299 break;
1300
1301 case 4:
1302 memcpy ((char*) valbuf + 2, buf, 2);
1303 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1304 memcpy (valbuf, buf, 2);
1305 break;
1306
1307 default:
1308 error (_("bad size for return value"));
1309 }
1310 }
1311
1312 enum return_value_convention
1313 m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
1314 struct regcache *regcache, gdb_byte *readbuf,
1315 const gdb_byte *writebuf)
1316 {
1317 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1318 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1319 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1320 || TYPE_LENGTH (valtype) > 4)
1321 return RETURN_VALUE_STRUCT_CONVENTION;
1322 else
1323 {
1324 if (readbuf != NULL)
1325 m68hc11_extract_return_value (valtype, regcache, readbuf);
1326 if (writebuf != NULL)
1327 m68hc11_store_return_value (valtype, regcache, writebuf);
1328 return RETURN_VALUE_REGISTER_CONVENTION;
1329 }
1330 }
1331
1332 /* Test whether the ELF symbol corresponds to a function using rtc or
1333 rti to return. */
1334
1335 static void
1336 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1337 {
1338 unsigned char flags;
1339
1340 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1341 if (flags & STO_M68HC12_FAR)
1342 MSYMBOL_SET_RTC (msym);
1343 if (flags & STO_M68HC12_INTERRUPT)
1344 MSYMBOL_SET_RTI (msym);
1345 }
1346
1347 static int
1348 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1349 {
1350 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_m68hc11)
1351 return print_insn_m68hc11 (memaddr, info);
1352 else
1353 return print_insn_m68hc12 (memaddr, info);
1354 }
1355
1356 \f
1357
1358 /* 68HC11/68HC12 register groups.
1359 Identify real hard registers and soft registers used by gcc. */
1360
1361 static struct reggroup *m68hc11_soft_reggroup;
1362 static struct reggroup *m68hc11_hard_reggroup;
1363
1364 static void
1365 m68hc11_init_reggroups (void)
1366 {
1367 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1368 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1369 }
1370
1371 static void
1372 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1373 {
1374 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1375 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1376 reggroup_add (gdbarch, general_reggroup);
1377 reggroup_add (gdbarch, float_reggroup);
1378 reggroup_add (gdbarch, all_reggroup);
1379 reggroup_add (gdbarch, save_reggroup);
1380 reggroup_add (gdbarch, restore_reggroup);
1381 reggroup_add (gdbarch, vector_reggroup);
1382 reggroup_add (gdbarch, system_reggroup);
1383 }
1384
1385 static int
1386 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1387 struct reggroup *group)
1388 {
1389 /* We must save the real hard register as well as gcc
1390 soft registers including the frame pointer. */
1391 if (group == save_reggroup || group == restore_reggroup)
1392 {
1393 return (regnum <= gdbarch_num_regs (gdbarch)
1394 || ((regnum == SOFT_FP_REGNUM
1395 || regnum == SOFT_TMP_REGNUM
1396 || regnum == SOFT_ZS_REGNUM
1397 || regnum == SOFT_XY_REGNUM)
1398 && m68hc11_register_name (regnum)));
1399 }
1400
1401 /* Group to identify gcc soft registers (d1..dN). */
1402 if (group == m68hc11_soft_reggroup)
1403 {
1404 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1405 }
1406
1407 if (group == m68hc11_hard_reggroup)
1408 {
1409 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1410 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1411 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1412 }
1413 return default_register_reggroup_p (gdbarch, regnum, group);
1414 }
1415
1416 static struct gdbarch *
1417 m68hc11_gdbarch_init (struct gdbarch_info info,
1418 struct gdbarch_list *arches)
1419 {
1420 struct gdbarch *gdbarch;
1421 struct gdbarch_tdep *tdep;
1422 int elf_flags;
1423
1424 soft_reg_initialized = 0;
1425
1426 /* Extract the elf_flags if available. */
1427 if (info.abfd != NULL
1428 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1429 elf_flags = elf_elfheader (info.abfd)->e_flags;
1430 else
1431 elf_flags = 0;
1432
1433 /* try to find a pre-existing architecture */
1434 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1435 arches != NULL;
1436 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1437 {
1438 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1439 continue;
1440
1441 return arches->gdbarch;
1442 }
1443
1444 /* Need a new architecture. Fill in a target specific vector. */
1445 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1446 gdbarch = gdbarch_alloc (&info, tdep);
1447 tdep->elf_flags = elf_flags;
1448
1449 switch (info.bfd_arch_info->arch)
1450 {
1451 case bfd_arch_m68hc11:
1452 tdep->stack_correction = 1;
1453 tdep->use_page_register = 0;
1454 tdep->prologue = m6811_prologue;
1455 set_gdbarch_addr_bit (gdbarch, 16);
1456 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1457 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1458 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1459 break;
1460
1461 case bfd_arch_m68hc12:
1462 tdep->stack_correction = 0;
1463 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1464 tdep->prologue = m6812_prologue;
1465 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1466 set_gdbarch_num_pseudo_regs (gdbarch,
1467 elf_flags & E_M68HC12_BANKS
1468 ? M68HC12_NUM_PSEUDO_REGS
1469 : M68HC11_NUM_PSEUDO_REGS);
1470 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1471 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1472 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1473 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1474 break;
1475
1476 default:
1477 break;
1478 }
1479
1480 /* Initially set everything according to the ABI.
1481 Use 16-bit integers since it will be the case for most
1482 programs. The size of these types should normally be set
1483 according to the dwarf2 debug information. */
1484 set_gdbarch_short_bit (gdbarch, 16);
1485 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1486 set_gdbarch_float_bit (gdbarch, 32);
1487 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1488 set_gdbarch_long_double_bit (gdbarch, 64);
1489 set_gdbarch_long_bit (gdbarch, 32);
1490 set_gdbarch_ptr_bit (gdbarch, 16);
1491 set_gdbarch_long_long_bit (gdbarch, 64);
1492
1493 /* Characters are unsigned. */
1494 set_gdbarch_char_signed (gdbarch, 0);
1495
1496 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1497 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1498
1499 /* Set register info. */
1500 set_gdbarch_fp0_regnum (gdbarch, -1);
1501
1502 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1503 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1504 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1505 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1506 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1507
1508 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1509
1510 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1511 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1512 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1513 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1514 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1515
1516 m68hc11_add_reggroups (gdbarch);
1517 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1518 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1519
1520 /* Hook in the DWARF CFI frame unwinder. */
1521 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1522
1523 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1524 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1525
1526 /* Methods for saving / extracting a dummy frame's ID. The ID's
1527 stack address must match the SP value returned by
1528 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1529 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1530
1531 /* Return the unwound PC value. */
1532 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1533
1534 /* Minsymbol frobbing. */
1535 set_gdbarch_elf_make_msymbol_special (gdbarch,
1536 m68hc11_elf_make_msymbol_special);
1537
1538 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1539
1540 return gdbarch;
1541 }
1542
1543 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1544
1545 void
1546 _initialize_m68hc11_tdep (void)
1547 {
1548 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1549 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1550 m68hc11_init_reggroups ();
1551 }
1552
This page took 0.061322 seconds and 5 git commands to generate.