* m68hc11-tdep.c (m68hc11_register_name): Get soft reg information.
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software
4 Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "dwarf2-frame.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdb_string.h"
36 #include "value.h"
37 #include "inferior.h"
38 #include "dis-asm.h"
39 #include "symfile.h"
40 #include "objfiles.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "reggroups.h"
44
45 #include "target.h"
46 #include "opcode/m68hc11.h"
47 #include "elf/m68hc11.h"
48 #include "elf-bfd.h"
49
50 /* Macros for setting and testing a bit in a minimal symbol.
51 For 68HC11/68HC12 we have two flags that tell which return
52 type the function is using. This is used for prologue and frame
53 analysis to compute correct stack frame layout.
54
55 The MSB of the minimal symbol's "info" field is used for this purpose.
56
57 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
58 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
59 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
60 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
61
62 #define MSYMBOL_SET_RTC(msym) \
63 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
64 | 0x80000000)
65
66 #define MSYMBOL_SET_RTI(msym) \
67 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
68 | 0x40000000)
69
70 #define MSYMBOL_IS_RTC(msym) \
71 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
72
73 #define MSYMBOL_IS_RTI(msym) \
74 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
75
76 enum insn_return_kind {
77 RETURN_RTS,
78 RETURN_RTC,
79 RETURN_RTI
80 };
81
82
83 /* Register numbers of various important registers.
84 Note that some of these values are "real" register numbers,
85 and correspond to the general registers of the machine,
86 and some are "phony" register numbers which are too large
87 to be actual register numbers as far as the user is concerned
88 but do serve to get the desired values when passed to read_register. */
89
90 #define HARD_X_REGNUM 0
91 #define HARD_D_REGNUM 1
92 #define HARD_Y_REGNUM 2
93 #define HARD_SP_REGNUM 3
94 #define HARD_PC_REGNUM 4
95
96 #define HARD_A_REGNUM 5
97 #define HARD_B_REGNUM 6
98 #define HARD_CCR_REGNUM 7
99
100 /* 68HC12 page number register.
101 Note: to keep a compatibility with gcc register naming, we must
102 not have to rename FP and other soft registers. The page register
103 is a real hard register and must therefore be counted by NUM_REGS.
104 For this it has the same number as Z register (which is not used). */
105 #define HARD_PAGE_REGNUM 8
106 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
107
108 /* Z is replaced by X or Y by gcc during machine reorg.
109 ??? There is no way to get it and even know whether
110 it's in X or Y or in ZS. */
111 #define SOFT_Z_REGNUM 8
112
113 /* Soft registers. These registers are special. There are treated
114 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
115 They are physically located in memory. */
116 #define SOFT_FP_REGNUM 9
117 #define SOFT_TMP_REGNUM 10
118 #define SOFT_ZS_REGNUM 11
119 #define SOFT_XY_REGNUM 12
120 #define SOFT_UNUSED_REGNUM 13
121 #define SOFT_D1_REGNUM 14
122 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
123 #define M68HC11_MAX_SOFT_REGS 32
124
125 #define M68HC11_NUM_REGS (8)
126 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
127 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
128
129 #define M68HC11_REG_SIZE (2)
130
131 #define M68HC12_NUM_REGS (9)
132 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
133 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
134
135 struct insn_sequence;
136 struct gdbarch_tdep
137 {
138 /* Stack pointer correction value. For 68hc11, the stack pointer points
139 to the next push location. An offset of 1 must be applied to obtain
140 the address where the last value is saved. For 68hc12, the stack
141 pointer points to the last value pushed. No offset is necessary. */
142 int stack_correction;
143
144 /* Description of instructions in the prologue. */
145 struct insn_sequence *prologue;
146
147 /* True if the page memory bank register is available
148 and must be used. */
149 int use_page_register;
150
151 /* ELF flags for ABI. */
152 int elf_flags;
153 };
154
155 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
156 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
157 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
158
159 struct m68hc11_unwind_cache
160 {
161 /* The previous frame's inner most stack address. Used as this
162 frame ID's stack_addr. */
163 CORE_ADDR prev_sp;
164 /* The frame's base, optionally used by the high-level debug info. */
165 CORE_ADDR base;
166 CORE_ADDR pc;
167 int size;
168 int prologue_type;
169 CORE_ADDR return_pc;
170 CORE_ADDR sp_offset;
171 int frameless;
172 enum insn_return_kind return_kind;
173
174 /* Table indicating the location of each and every register. */
175 struct trad_frame_saved_reg *saved_regs;
176 };
177
178 /* Table of registers for 68HC11. This includes the hard registers
179 and the soft registers used by GCC. */
180 static char *
181 m68hc11_register_names[] =
182 {
183 "x", "d", "y", "sp", "pc", "a", "b",
184 "ccr", "page", "frame","tmp", "zs", "xy", 0,
185 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
186 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
187 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
188 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
189 "d29", "d30", "d31", "d32"
190 };
191
192 struct m68hc11_soft_reg
193 {
194 const char *name;
195 CORE_ADDR addr;
196 };
197
198 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
199
200 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
201
202 static int soft_min_addr;
203 static int soft_max_addr;
204 static int soft_reg_initialized = 0;
205
206 /* Look in the symbol table for the address of a pseudo register
207 in memory. If we don't find it, pretend the register is not used
208 and not available. */
209 static void
210 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
211 {
212 struct minimal_symbol *msymbol;
213
214 msymbol = lookup_minimal_symbol (name, NULL, NULL);
215 if (msymbol)
216 {
217 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
218 reg->name = xstrdup (name);
219
220 /* Keep track of the address range for soft registers. */
221 if (reg->addr < (CORE_ADDR) soft_min_addr)
222 soft_min_addr = reg->addr;
223 if (reg->addr > (CORE_ADDR) soft_max_addr)
224 soft_max_addr = reg->addr;
225 }
226 else
227 {
228 reg->name = 0;
229 reg->addr = 0;
230 }
231 }
232
233 /* Initialize the table of soft register addresses according
234 to the symbol table. */
235 static void
236 m68hc11_initialize_register_info (void)
237 {
238 int i;
239
240 if (soft_reg_initialized)
241 return;
242
243 soft_min_addr = INT_MAX;
244 soft_max_addr = 0;
245 for (i = 0; i < M68HC11_ALL_REGS; i++)
246 {
247 soft_regs[i].name = 0;
248 }
249
250 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
251 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
252 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
253 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
254 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
255
256 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
257 {
258 char buf[10];
259
260 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
261 m68hc11_get_register_info (&soft_regs[i], buf);
262 }
263
264 if (soft_regs[SOFT_FP_REGNUM].name == 0)
265 {
266 warning ("No frame soft register found in the symbol table.\n");
267 warning ("Stack backtrace will not work.\n");
268 }
269 soft_reg_initialized = 1;
270 }
271
272 /* Given an address in memory, return the soft register number if
273 that address corresponds to a soft register. Returns -1 if not. */
274 static int
275 m68hc11_which_soft_register (CORE_ADDR addr)
276 {
277 int i;
278
279 if (addr < soft_min_addr || addr > soft_max_addr)
280 return -1;
281
282 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
283 {
284 if (soft_regs[i].name && soft_regs[i].addr == addr)
285 return i;
286 }
287 return -1;
288 }
289
290 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
291 pseudo registers. They are located in memory. Translate the register
292 fetch into a memory read. */
293 static void
294 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
295 struct regcache *regcache,
296 int regno, void *buf)
297 {
298 /* The PC is a pseudo reg only for 68HC12 with the memory bank
299 addressing mode. */
300 if (regno == M68HC12_HARD_PC_REGNUM)
301 {
302 ULONGEST pc;
303 const int regsize = TYPE_LENGTH (builtin_type_uint32);
304
305 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
306 if (pc >= 0x8000 && pc < 0xc000)
307 {
308 ULONGEST page;
309
310 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
311 pc -= 0x8000;
312 pc += (page << 14);
313 pc += 0x1000000;
314 }
315 store_unsigned_integer (buf, regsize, pc);
316 return;
317 }
318
319 m68hc11_initialize_register_info ();
320
321 /* Fetch a soft register: translate into a memory read. */
322 if (soft_regs[regno].name)
323 {
324 target_read_memory (soft_regs[regno].addr, buf, 2);
325 }
326 else
327 {
328 memset (buf, 0, 2);
329 }
330 }
331
332 /* Store a pseudo register. Translate the register store
333 into a memory write. */
334 static void
335 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
336 struct regcache *regcache,
337 int regno, const void *buf)
338 {
339 /* The PC is a pseudo reg only for 68HC12 with the memory bank
340 addressing mode. */
341 if (regno == M68HC12_HARD_PC_REGNUM)
342 {
343 const int regsize = TYPE_LENGTH (builtin_type_uint32);
344 char *tmp = alloca (regsize);
345 CORE_ADDR pc;
346
347 memcpy (tmp, buf, regsize);
348 pc = extract_unsigned_integer (tmp, regsize);
349 if (pc >= 0x1000000)
350 {
351 pc -= 0x1000000;
352 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
353 (pc >> 14) & 0x0ff);
354 pc &= 0x03fff;
355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
356 pc + 0x8000);
357 }
358 else
359 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
360 return;
361 }
362
363 m68hc11_initialize_register_info ();
364
365 /* Store a soft register: translate into a memory write. */
366 if (soft_regs[regno].name)
367 {
368 const int regsize = 2;
369 char *tmp = alloca (regsize);
370 memcpy (tmp, buf, regsize);
371 target_write_memory (soft_regs[regno].addr, tmp, regsize);
372 }
373 }
374
375 static const char *
376 m68hc11_register_name (int reg_nr)
377 {
378 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
379 return "pc";
380 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
381 return "ppc";
382
383 if (reg_nr < 0)
384 return NULL;
385 if (reg_nr >= M68HC11_ALL_REGS)
386 return NULL;
387
388 m68hc11_initialize_register_info ();
389
390 /* If we don't know the address of a soft register, pretend it
391 does not exist. */
392 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
393 return NULL;
394 return m68hc11_register_names[reg_nr];
395 }
396
397 static const unsigned char *
398 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
399 {
400 static unsigned char breakpoint[] = {0x0};
401
402 *lenptr = sizeof (breakpoint);
403 return breakpoint;
404 }
405
406 \f
407 /* 68HC11 & 68HC12 prologue analysis.
408
409 */
410 #define MAX_CODES 12
411
412 /* 68HC11 opcodes. */
413 #undef M6811_OP_PAGE2
414 #define M6811_OP_PAGE2 (0x18)
415 #define M6811_OP_LDX (0xde)
416 #define M6811_OP_LDX_EXT (0xfe)
417 #define M6811_OP_PSHX (0x3c)
418 #define M6811_OP_STS (0x9f)
419 #define M6811_OP_STS_EXT (0xbf)
420 #define M6811_OP_TSX (0x30)
421 #define M6811_OP_XGDX (0x8f)
422 #define M6811_OP_ADDD (0xc3)
423 #define M6811_OP_TXS (0x35)
424 #define M6811_OP_DES (0x34)
425
426 /* 68HC12 opcodes. */
427 #define M6812_OP_PAGE2 (0x18)
428 #define M6812_OP_MOVW (0x01)
429 #define M6812_PB_PSHW (0xae)
430 #define M6812_OP_STS (0x5f)
431 #define M6812_OP_STS_EXT (0x7f)
432 #define M6812_OP_LEAS (0x1b)
433 #define M6812_OP_PSHX (0x34)
434 #define M6812_OP_PSHY (0x35)
435
436 /* Operand extraction. */
437 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
438 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
439 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
440 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
441
442 /* Identification of the sequence. */
443 enum m6811_seq_type
444 {
445 P_LAST = 0,
446 P_SAVE_REG, /* Save a register on the stack. */
447 P_SET_FRAME, /* Setup the frame pointer. */
448 P_LOCAL_1, /* Allocate 1 byte for locals. */
449 P_LOCAL_2, /* Allocate 2 bytes for locals. */
450 P_LOCAL_N /* Allocate N bytes for locals. */
451 };
452
453 struct insn_sequence {
454 enum m6811_seq_type type;
455 unsigned length;
456 unsigned short code[MAX_CODES];
457 };
458
459 /* Sequence of instructions in the 68HC11 function prologue. */
460 static struct insn_sequence m6811_prologue[] = {
461 /* Sequences to save a soft-register. */
462 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
463 M6811_OP_PSHX } },
464 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
465 M6811_OP_PAGE2, M6811_OP_PSHX } },
466 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_PSHX } },
468 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_PSHX } },
470
471 /* Sequences to allocate local variables. */
472 { P_LOCAL_N, 7, { M6811_OP_TSX,
473 M6811_OP_XGDX,
474 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
475 M6811_OP_XGDX,
476 M6811_OP_TXS } },
477 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
478 M6811_OP_PAGE2, M6811_OP_XGDX,
479 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
480 M6811_OP_PAGE2, M6811_OP_XGDX,
481 M6811_OP_PAGE2, M6811_OP_TXS } },
482 { P_LOCAL_1, 1, { M6811_OP_DES } },
483 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
484 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
485
486 /* Initialize the frame pointer. */
487 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
488 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
489 { P_LAST, 0, { 0 } }
490 };
491
492
493 /* Sequence of instructions in the 68HC12 function prologue. */
494 static struct insn_sequence m6812_prologue[] = {
495 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
496 OP_IMM_HIGH, OP_IMM_LOW } },
497 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
498 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
499 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
500 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
501 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
502 { P_LAST, 0 }
503 };
504
505
506 /* Analyze the sequence of instructions starting at the given address.
507 Returns a pointer to the sequence when it is recognized and
508 the optional value (constant/address) associated with it. */
509 static struct insn_sequence *
510 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
511 CORE_ADDR *val)
512 {
513 unsigned char buffer[MAX_CODES];
514 unsigned bufsize;
515 unsigned j;
516 CORE_ADDR cur_val;
517 short v = 0;
518
519 bufsize = 0;
520 for (; seq->type != P_LAST; seq++)
521 {
522 cur_val = 0;
523 for (j = 0; j < seq->length; j++)
524 {
525 if (bufsize < j + 1)
526 {
527 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
528 1);
529 bufsize++;
530 }
531 /* Continue while we match the opcode. */
532 if (seq->code[j] == buffer[j])
533 continue;
534
535 if ((seq->code[j] & 0xf00) == 0)
536 break;
537
538 /* Extract a sequence parameter (address or constant). */
539 switch (seq->code[j])
540 {
541 case OP_DIRECT:
542 cur_val = (CORE_ADDR) buffer[j];
543 break;
544
545 case OP_IMM_HIGH:
546 cur_val = cur_val & 0x0ff;
547 cur_val |= (buffer[j] << 8);
548 break;
549
550 case OP_IMM_LOW:
551 cur_val &= 0x0ff00;
552 cur_val |= buffer[j];
553 break;
554
555 case OP_PBYTE:
556 if ((buffer[j] & 0xE0) == 0x80)
557 {
558 v = buffer[j] & 0x1f;
559 if (v & 0x10)
560 v |= 0xfff0;
561 }
562 else if ((buffer[j] & 0xfe) == 0xf0)
563 {
564 v = read_memory_unsigned_integer (pc + j + 1, 1);
565 if (buffer[j] & 1)
566 v |= 0xff00;
567 }
568 else if (buffer[j] == 0xf2)
569 {
570 v = read_memory_unsigned_integer (pc + j + 1, 2);
571 }
572 cur_val = v;
573 break;
574 }
575 }
576
577 /* We have a full match. */
578 if (j == seq->length)
579 {
580 *val = cur_val;
581 return seq;
582 }
583 }
584 return 0;
585 }
586
587 /* Return the instruction that the function at the PC is using. */
588 static enum insn_return_kind
589 m68hc11_get_return_insn (CORE_ADDR pc)
590 {
591 struct minimal_symbol *sym;
592
593 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
594 function is stored by elfread.c in the high bit of the info field.
595 Use this to decide which instruction the function uses to return. */
596 sym = lookup_minimal_symbol_by_pc (pc);
597 if (sym == 0)
598 return RETURN_RTS;
599
600 if (MSYMBOL_IS_RTC (sym))
601 return RETURN_RTC;
602 else if (MSYMBOL_IS_RTI (sym))
603 return RETURN_RTI;
604 else
605 return RETURN_RTS;
606 }
607
608 /* Analyze the function prologue to find some information
609 about the function:
610 - the PC of the first line (for m68hc11_skip_prologue)
611 - the offset of the previous frame saved address (from current frame)
612 - the soft registers which are pushed. */
613 static CORE_ADDR
614 m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
615 struct m68hc11_unwind_cache *info)
616 {
617 LONGEST save_addr;
618 CORE_ADDR func_end;
619 int size;
620 int found_frame_point;
621 int saved_reg;
622 int done = 0;
623 struct insn_sequence *seq_table;
624
625 info->size = 0;
626 info->sp_offset = 0;
627 if (pc >= current_pc)
628 return current_pc;
629
630 size = 0;
631
632 m68hc11_initialize_register_info ();
633 if (pc == 0)
634 {
635 info->size = 0;
636 return pc;
637 }
638
639 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
640
641 /* The 68hc11 stack is as follows:
642
643
644 | |
645 +-----------+
646 | |
647 | args |
648 | |
649 +-----------+
650 | PC-return |
651 +-----------+
652 | Old frame |
653 +-----------+
654 | |
655 | Locals |
656 | |
657 +-----------+ <--- current frame
658 | |
659
660 With most processors (like 68K) the previous frame can be computed
661 easily because it is always at a fixed offset (see link/unlink).
662 That is, locals are accessed with negative offsets, arguments are
663 accessed with positive ones. Since 68hc11 only supports offsets
664 in the range [0..255], the frame is defined at the bottom of
665 locals (see picture).
666
667 The purpose of the analysis made here is to find out the size
668 of locals in this function. An alternative to this is to use
669 DWARF2 info. This would be better but I don't know how to
670 access dwarf2 debug from this function.
671
672 Walk from the function entry point to the point where we save
673 the frame. While walking instructions, compute the size of bytes
674 which are pushed. This gives us the index to access the previous
675 frame.
676
677 We limit the search to 128 bytes so that the algorithm is bounded
678 in case of random and wrong code. We also stop and abort if
679 we find an instruction which is not supposed to appear in the
680 prologue (as generated by gcc 2.95, 2.96).
681 */
682 func_end = pc + 128;
683 found_frame_point = 0;
684 info->size = 0;
685 save_addr = 0;
686 while (!done && pc + 2 < func_end)
687 {
688 struct insn_sequence *seq;
689 CORE_ADDR val;
690
691 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
692 if (seq == 0)
693 break;
694
695 /* If we are within the instruction group, we can't advance the
696 pc nor the stack offset. Otherwise the caller's stack computed
697 from the current stack can be wrong. */
698 if (pc + seq->length > current_pc)
699 break;
700
701 pc = pc + seq->length;
702 if (seq->type == P_SAVE_REG)
703 {
704 if (found_frame_point)
705 {
706 saved_reg = m68hc11_which_soft_register (val);
707 if (saved_reg < 0)
708 break;
709
710 save_addr -= 2;
711 info->saved_regs[saved_reg].addr = save_addr;
712 }
713 else
714 {
715 size += 2;
716 }
717 }
718 else if (seq->type == P_SET_FRAME)
719 {
720 found_frame_point = 1;
721 info->size = size;
722 }
723 else if (seq->type == P_LOCAL_1)
724 {
725 size += 1;
726 }
727 else if (seq->type == P_LOCAL_2)
728 {
729 size += 2;
730 }
731 else if (seq->type == P_LOCAL_N)
732 {
733 /* Stack pointer is decremented for the allocation. */
734 if (val & 0x8000)
735 size -= (int) (val) | 0xffff0000;
736 else
737 size -= val;
738 }
739 }
740 if (found_frame_point == 0)
741 info->sp_offset = size;
742 else
743 info->sp_offset = -1;
744 return pc;
745 }
746
747 static CORE_ADDR
748 m68hc11_skip_prologue (CORE_ADDR pc)
749 {
750 CORE_ADDR func_addr, func_end;
751 struct symtab_and_line sal;
752 struct m68hc11_unwind_cache tmp_cache = { 0 };
753
754 /* If we have line debugging information, then the end of the
755 prologue should be the first assembly instruction of the
756 first source line. */
757 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
758 {
759 sal = find_pc_line (func_addr, 0);
760 if (sal.end && sal.end < func_end)
761 return sal.end;
762 }
763
764 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
765 return pc;
766 }
767
768 static CORE_ADDR
769 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
770 {
771 ULONGEST pc;
772
773 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
774 &pc);
775 return pc;
776 }
777
778 /* Put here the code to store, into fi->saved_regs, the addresses of
779 the saved registers of frame described by FRAME_INFO. This
780 includes special registers such as pc and fp saved in special ways
781 in the stack frame. sp is even more special: the address we return
782 for it IS the sp for the next frame. */
783
784 struct m68hc11_unwind_cache *
785 m68hc11_frame_unwind_cache (struct frame_info *next_frame,
786 void **this_prologue_cache)
787 {
788 ULONGEST prev_sp;
789 ULONGEST this_base;
790 struct m68hc11_unwind_cache *info;
791 CORE_ADDR current_pc;
792 int i;
793
794 if ((*this_prologue_cache))
795 return (*this_prologue_cache);
796
797 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
798 (*this_prologue_cache) = info;
799 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
800
801 info->pc = frame_func_unwind (next_frame);
802
803 info->size = 0;
804 info->return_kind = m68hc11_get_return_insn (info->pc);
805
806 /* The SP was moved to the FP. This indicates that a new frame
807 was created. Get THIS frame's FP value by unwinding it from
808 the next frame. */
809 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
810 if (this_base == 0)
811 {
812 info->base = 0;
813 return info;
814 }
815
816 current_pc = frame_pc_unwind (next_frame);
817 if (info->pc != 0)
818 m68hc11_scan_prologue (info->pc, current_pc, info);
819
820 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
821
822 if (info->sp_offset != (CORE_ADDR) -1)
823 {
824 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
825 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
826 prev_sp = this_base + info->sp_offset + 2;
827 this_base += STACK_CORRECTION;
828 }
829 else
830 {
831 /* The FP points at the last saved register. Adjust the FP back
832 to before the first saved register giving the SP. */
833 prev_sp = this_base + info->size + 2;
834
835 this_base += STACK_CORRECTION;
836 if (soft_regs[SOFT_FP_REGNUM].name)
837 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
838 }
839
840 if (info->return_kind == RETURN_RTC)
841 {
842 prev_sp += 1;
843 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
844 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
845 }
846 else if (info->return_kind == RETURN_RTI)
847 {
848 prev_sp += 7;
849 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
850 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
851 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
852 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
853 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
854 }
855
856 /* Add 1 here to adjust for the post-decrement nature of the push
857 instruction.*/
858 info->prev_sp = prev_sp;
859
860 info->base = this_base;
861
862 /* Adjust all the saved registers so that they contain addresses and not
863 offsets. */
864 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
865 if (trad_frame_addr_p (info->saved_regs, i))
866 {
867 info->saved_regs[i].addr += this_base;
868 }
869
870 /* The previous frame's SP needed to be computed. Save the computed
871 value. */
872 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
873
874 return info;
875 }
876
877 /* Given a GDB frame, determine the address of the calling function's
878 frame. This will be used to create a new GDB frame struct. */
879
880 static void
881 m68hc11_frame_this_id (struct frame_info *next_frame,
882 void **this_prologue_cache,
883 struct frame_id *this_id)
884 {
885 struct m68hc11_unwind_cache *info
886 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
887 CORE_ADDR base;
888 CORE_ADDR func;
889 struct frame_id id;
890
891 /* The FUNC is easy. */
892 func = frame_func_unwind (next_frame);
893
894 /* Hopefully the prologue analysis either correctly determined the
895 frame's base (which is the SP from the previous frame), or set
896 that base to "NULL". */
897 base = info->prev_sp;
898 if (base == 0)
899 return;
900
901 id = frame_id_build (base, func);
902 #if 0
903 /* Check that we're not going round in circles with the same frame
904 ID (but avoid applying the test to sentinel frames which do go
905 round in circles). Can't use frame_id_eq() as that doesn't yet
906 compare the frame's PC value. */
907 if (frame_relative_level (next_frame) >= 0
908 && get_frame_type (next_frame) != DUMMY_FRAME
909 && frame_id_eq (get_frame_id (next_frame), id))
910 return;
911 #endif
912 (*this_id) = id;
913 }
914
915 static void
916 m68hc11_frame_prev_register (struct frame_info *next_frame,
917 void **this_prologue_cache,
918 int regnum, int *optimizedp,
919 enum lval_type *lvalp, CORE_ADDR *addrp,
920 int *realnump, void *bufferp)
921 {
922 struct m68hc11_unwind_cache *info
923 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
924
925 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
926 optimizedp, lvalp, addrp, realnump, bufferp);
927
928 if (regnum == HARD_PC_REGNUM)
929 {
930 /* Take into account the 68HC12 specific call (PC + page). */
931 if (info->return_kind == RETURN_RTC
932 && *addrp >= 0x08000 && *addrp < 0x0c000
933 && USE_PAGE_REGISTER)
934 {
935 int page_optimized;
936
937 CORE_ADDR page;
938
939 trad_frame_prev_register (next_frame, info->saved_regs,
940 HARD_PAGE_REGNUM, &page_optimized,
941 0, &page, 0, 0);
942 *addrp -= 0x08000;
943 *addrp += ((page & 0x0ff) << 14);
944 *addrp += 0x1000000;
945 }
946 }
947 }
948
949 static const struct frame_unwind m68hc11_frame_unwind = {
950 NORMAL_FRAME,
951 m68hc11_frame_this_id,
952 m68hc11_frame_prev_register
953 };
954
955 const struct frame_unwind *
956 m68hc11_frame_sniffer (struct frame_info *next_frame)
957 {
958 return &m68hc11_frame_unwind;
959 }
960
961 static CORE_ADDR
962 m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
963 {
964 struct m68hc11_unwind_cache *info
965 = m68hc11_frame_unwind_cache (next_frame, this_cache);
966
967 return info->base;
968 }
969
970 static CORE_ADDR
971 m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
972 {
973 CORE_ADDR addr;
974 struct m68hc11_unwind_cache *info
975 = m68hc11_frame_unwind_cache (next_frame, this_cache);
976
977 addr = info->base + info->size;
978 if (info->return_kind == RETURN_RTC)
979 addr += 1;
980 else if (info->return_kind == RETURN_RTI)
981 addr += 7;
982
983 return addr;
984 }
985
986 static const struct frame_base m68hc11_frame_base = {
987 &m68hc11_frame_unwind,
988 m68hc11_frame_base_address,
989 m68hc11_frame_base_address,
990 m68hc11_frame_args_address
991 };
992
993 static CORE_ADDR
994 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
995 {
996 ULONGEST sp;
997 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
998 return sp;
999 }
1000
1001 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1002 dummy frame. The frame ID's base needs to match the TOS value
1003 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1004 breakpoint. */
1005
1006 static struct frame_id
1007 m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1008 {
1009 ULONGEST tos;
1010 CORE_ADDR pc = frame_pc_unwind (next_frame);
1011
1012 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1013 tos += 2;
1014 return frame_id_build (tos, pc);
1015 }
1016
1017 \f
1018 /* Get and print the register from the given frame. */
1019 static void
1020 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1021 struct frame_info *frame, int regno)
1022 {
1023 LONGEST rval;
1024
1025 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1026 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1027 rval = get_frame_register_unsigned (frame, regno);
1028 else
1029 rval = get_frame_register_signed (frame, regno);
1030
1031 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1032 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1033 {
1034 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1035 if (regno != HARD_CCR_REGNUM)
1036 print_longest (file, 'd', 1, rval);
1037 }
1038 else
1039 {
1040 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1041 {
1042 ULONGEST page;
1043
1044 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1045 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1046 (unsigned) rval);
1047 }
1048 else
1049 {
1050 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1051 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1052 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1053 print_longest (file, 'd', 1, rval);
1054 }
1055 }
1056
1057 if (regno == HARD_CCR_REGNUM)
1058 {
1059 /* CCR register */
1060 int C, Z, N, V;
1061 unsigned char l = rval & 0xff;
1062
1063 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1064 l & M6811_S_BIT ? 'S' : '-',
1065 l & M6811_X_BIT ? 'X' : '-',
1066 l & M6811_H_BIT ? 'H' : '-',
1067 l & M6811_I_BIT ? 'I' : '-',
1068 l & M6811_N_BIT ? 'N' : '-',
1069 l & M6811_Z_BIT ? 'Z' : '-',
1070 l & M6811_V_BIT ? 'V' : '-',
1071 l & M6811_C_BIT ? 'C' : '-');
1072 N = (l & M6811_N_BIT) != 0;
1073 Z = (l & M6811_Z_BIT) != 0;
1074 V = (l & M6811_V_BIT) != 0;
1075 C = (l & M6811_C_BIT) != 0;
1076
1077 /* Print flags following the h8300 */
1078 if ((C | Z) == 0)
1079 fprintf_filtered (file, "u> ");
1080 else if ((C | Z) == 1)
1081 fprintf_filtered (file, "u<= ");
1082 else if (C == 0)
1083 fprintf_filtered (file, "u< ");
1084
1085 if (Z == 0)
1086 fprintf_filtered (file, "!= ");
1087 else
1088 fprintf_filtered (file, "== ");
1089
1090 if ((N ^ V) == 0)
1091 fprintf_filtered (file, ">= ");
1092 else
1093 fprintf_filtered (file, "< ");
1094
1095 if ((Z | (N ^ V)) == 0)
1096 fprintf_filtered (file, "> ");
1097 else
1098 fprintf_filtered (file, "<= ");
1099 }
1100 }
1101
1102 /* Same as 'info reg' but prints the registers in a different way. */
1103 static void
1104 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1105 struct frame_info *frame, int regno, int cpregs)
1106 {
1107 if (regno >= 0)
1108 {
1109 const char *name = gdbarch_register_name (gdbarch, regno);
1110
1111 if (!name || !*name)
1112 return;
1113
1114 fprintf_filtered (file, "%-10s ", name);
1115 m68hc11_print_register (gdbarch, file, frame, regno);
1116 fprintf_filtered (file, "\n");
1117 }
1118 else
1119 {
1120 int i, nr;
1121
1122 fprintf_filtered (file, "PC=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1124
1125 fprintf_filtered (file, " SP=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1127
1128 fprintf_filtered (file, " FP=");
1129 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1130
1131 fprintf_filtered (file, "\nCCR=");
1132 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1133
1134 fprintf_filtered (file, "\nD=");
1135 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1136
1137 fprintf_filtered (file, " X=");
1138 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1139
1140 fprintf_filtered (file, " Y=");
1141 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1142
1143 if (gdbarch_tdep (gdbarch)->use_page_register)
1144 {
1145 fprintf_filtered (file, "\nPage=");
1146 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1147 }
1148 fprintf_filtered (file, "\n");
1149
1150 nr = 0;
1151 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1152 {
1153 /* Skip registers which are not defined in the symbol table. */
1154 if (soft_regs[i].name == 0)
1155 continue;
1156
1157 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1158 m68hc11_print_register (gdbarch, file, frame, i);
1159 nr++;
1160 if ((nr % 8) == 7)
1161 fprintf_filtered (file, "\n");
1162 else
1163 fprintf_filtered (file, " ");
1164 }
1165 if (nr && (nr % 8) != 7)
1166 fprintf_filtered (file, "\n");
1167 }
1168 }
1169
1170 /* Same as 'info reg' but prints the registers in a different way. */
1171 static void
1172 show_regs (char *args, int from_tty)
1173 {
1174 m68hc11_print_registers_info (current_gdbarch, gdb_stdout,
1175 get_current_frame (), -1, 1);
1176 }
1177
1178 static CORE_ADDR
1179 m68hc11_stack_align (CORE_ADDR addr)
1180 {
1181 return ((addr + 1) & -2);
1182 }
1183
1184 static CORE_ADDR
1185 m68hc11_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1186 struct regcache *regcache, CORE_ADDR bp_addr,
1187 int nargs, struct value **args, CORE_ADDR sp,
1188 int struct_return, CORE_ADDR struct_addr)
1189 {
1190 int argnum;
1191 int first_stack_argnum;
1192 struct type *type;
1193 char *val;
1194 int len;
1195 char buf[2];
1196
1197 first_stack_argnum = 0;
1198 if (struct_return)
1199 {
1200 /* The struct is allocated on the stack and gdb used the stack
1201 pointer for the address of that struct. We must apply the
1202 stack offset on the address. */
1203 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM,
1204 struct_addr + STACK_CORRECTION);
1205 }
1206 else if (nargs > 0)
1207 {
1208 type = VALUE_TYPE (args[0]);
1209 len = TYPE_LENGTH (type);
1210
1211 /* First argument is passed in D and X registers. */
1212 if (len <= 4)
1213 {
1214 ULONGEST v;
1215
1216 v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
1217 first_stack_argnum = 1;
1218
1219 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1220 if (len > 2)
1221 {
1222 v >>= 16;
1223 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1224 }
1225 }
1226 }
1227
1228 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1229 {
1230 type = VALUE_TYPE (args[argnum]);
1231 len = TYPE_LENGTH (type);
1232
1233 if (len & 1)
1234 {
1235 static char zero = 0;
1236
1237 sp--;
1238 write_memory (sp, &zero, 1);
1239 }
1240 val = (char*) VALUE_CONTENTS (args[argnum]);
1241 sp -= len;
1242 write_memory (sp, val, len);
1243 }
1244
1245 /* Store return address. */
1246 sp -= 2;
1247 store_unsigned_integer (buf, 2, bp_addr);
1248 write_memory (sp, buf, 2);
1249
1250 /* Finally, update the stack pointer... */
1251 sp -= STACK_CORRECTION;
1252 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1253
1254 /* ...and fake a frame pointer. */
1255 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1256
1257 /* DWARF2/GCC uses the stack address *before* the function call as a
1258 frame's CFA. */
1259 return sp + 2;
1260 }
1261
1262
1263 /* Return the GDB type object for the "standard" data type
1264 of data in register N. */
1265
1266 static struct type *
1267 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1268 {
1269 switch (reg_nr)
1270 {
1271 case HARD_PAGE_REGNUM:
1272 case HARD_A_REGNUM:
1273 case HARD_B_REGNUM:
1274 case HARD_CCR_REGNUM:
1275 return builtin_type_uint8;
1276
1277 case M68HC12_HARD_PC_REGNUM:
1278 return builtin_type_uint32;
1279
1280 default:
1281 return builtin_type_uint16;
1282 }
1283 }
1284
1285 static void
1286 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1287 const void *valbuf)
1288 {
1289 int len;
1290
1291 len = TYPE_LENGTH (type);
1292
1293 /* First argument is passed in D and X registers. */
1294 if (len <= 2)
1295 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1296 else if (len <= 4)
1297 {
1298 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1299 len - 2, valbuf);
1300 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1301 }
1302 else
1303 error ("return of value > 4 is not supported.");
1304 }
1305
1306
1307 /* Given a return value in `regcache' with a type `type',
1308 extract and copy its value into `valbuf'. */
1309
1310 static void
1311 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1312 void *valbuf)
1313 {
1314 int len = TYPE_LENGTH (type);
1315 char buf[M68HC11_REG_SIZE];
1316
1317 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1318 switch (len)
1319 {
1320 case 1:
1321 memcpy (valbuf, buf + 1, 1);
1322 break;
1323
1324 case 2:
1325 memcpy (valbuf, buf, 2);
1326 break;
1327
1328 case 3:
1329 memcpy ((char*) valbuf + 1, buf, 2);
1330 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1331 memcpy (valbuf, buf + 1, 1);
1332 break;
1333
1334 case 4:
1335 memcpy ((char*) valbuf + 2, buf, 2);
1336 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1337 memcpy (valbuf, buf, 2);
1338 break;
1339
1340 default:
1341 error ("bad size for return value");
1342 }
1343 }
1344
1345 /* Should call_function allocate stack space for a struct return? */
1346 static int
1347 m68hc11_use_struct_convention (int gcc_p, struct type *type)
1348 {
1349 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1350 || TYPE_CODE (type) == TYPE_CODE_UNION
1351 || TYPE_LENGTH (type) > 4);
1352 }
1353
1354 static int
1355 m68hc11_return_value_on_stack (struct type *type)
1356 {
1357 return TYPE_LENGTH (type) > 4;
1358 }
1359
1360 /* Extract from an array REGBUF containing the (raw) register state
1361 the address in which a function should return its structure value,
1362 as a CORE_ADDR (or an expression that can be used as one). */
1363 static CORE_ADDR
1364 m68hc11_extract_struct_value_address (struct regcache *regcache)
1365 {
1366 char buf[M68HC11_REG_SIZE];
1367
1368 regcache_cooked_read (regcache, HARD_D_REGNUM, buf);
1369 return extract_unsigned_integer (buf, M68HC11_REG_SIZE);
1370 }
1371
1372 /* Test whether the ELF symbol corresponds to a function using rtc or
1373 rti to return. */
1374
1375 static void
1376 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1377 {
1378 unsigned char flags;
1379
1380 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1381 if (flags & STO_M68HC12_FAR)
1382 MSYMBOL_SET_RTC (msym);
1383 if (flags & STO_M68HC12_INTERRUPT)
1384 MSYMBOL_SET_RTI (msym);
1385 }
1386
1387 static int
1388 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1389 {
1390 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1391 return print_insn_m68hc11 (memaddr, info);
1392 else
1393 return print_insn_m68hc12 (memaddr, info);
1394 }
1395
1396 \f
1397
1398 /* 68HC11/68HC12 register groups.
1399 Identify real hard registers and soft registers used by gcc. */
1400
1401 static struct reggroup *m68hc11_soft_reggroup;
1402 static struct reggroup *m68hc11_hard_reggroup;
1403
1404 static void
1405 m68hc11_init_reggroups (void)
1406 {
1407 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1408 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1409 }
1410
1411 static void
1412 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1413 {
1414 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1415 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1416 reggroup_add (gdbarch, general_reggroup);
1417 reggroup_add (gdbarch, float_reggroup);
1418 reggroup_add (gdbarch, all_reggroup);
1419 reggroup_add (gdbarch, save_reggroup);
1420 reggroup_add (gdbarch, restore_reggroup);
1421 reggroup_add (gdbarch, vector_reggroup);
1422 reggroup_add (gdbarch, system_reggroup);
1423 }
1424
1425 static int
1426 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1427 struct reggroup *group)
1428 {
1429 /* We must save the real hard register as well as gcc
1430 soft registers including the frame pointer. */
1431 if (group == save_reggroup || group == restore_reggroup)
1432 {
1433 return (regnum <= gdbarch_num_regs (gdbarch)
1434 || ((regnum == SOFT_FP_REGNUM
1435 || regnum == SOFT_TMP_REGNUM
1436 || regnum == SOFT_ZS_REGNUM
1437 || regnum == SOFT_XY_REGNUM)
1438 && m68hc11_register_name (regnum)));
1439 }
1440
1441 /* Group to identify gcc soft registers (d1..dN). */
1442 if (group == m68hc11_soft_reggroup)
1443 {
1444 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1445 }
1446
1447 if (group == m68hc11_hard_reggroup)
1448 {
1449 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1450 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1451 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1452 }
1453 return default_register_reggroup_p (gdbarch, regnum, group);
1454 }
1455
1456 static struct gdbarch *
1457 m68hc11_gdbarch_init (struct gdbarch_info info,
1458 struct gdbarch_list *arches)
1459 {
1460 struct gdbarch *gdbarch;
1461 struct gdbarch_tdep *tdep;
1462 int elf_flags;
1463
1464 soft_reg_initialized = 0;
1465
1466 /* Extract the elf_flags if available. */
1467 if (info.abfd != NULL
1468 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1469 elf_flags = elf_elfheader (info.abfd)->e_flags;
1470 else
1471 elf_flags = 0;
1472
1473 /* try to find a pre-existing architecture */
1474 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1475 arches != NULL;
1476 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1477 {
1478 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1479 continue;
1480
1481 return arches->gdbarch;
1482 }
1483
1484 /* Need a new architecture. Fill in a target specific vector. */
1485 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1486 gdbarch = gdbarch_alloc (&info, tdep);
1487 tdep->elf_flags = elf_flags;
1488
1489 switch (info.bfd_arch_info->arch)
1490 {
1491 case bfd_arch_m68hc11:
1492 tdep->stack_correction = 1;
1493 tdep->use_page_register = 0;
1494 tdep->prologue = m6811_prologue;
1495 set_gdbarch_addr_bit (gdbarch, 16);
1496 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1497 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1498 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1499 break;
1500
1501 case bfd_arch_m68hc12:
1502 tdep->stack_correction = 0;
1503 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1504 tdep->prologue = m6812_prologue;
1505 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1506 set_gdbarch_num_pseudo_regs (gdbarch,
1507 elf_flags & E_M68HC12_BANKS
1508 ? M68HC12_NUM_PSEUDO_REGS
1509 : M68HC11_NUM_PSEUDO_REGS);
1510 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1511 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1512 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1513 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1514 break;
1515
1516 default:
1517 break;
1518 }
1519
1520 /* Initially set everything according to the ABI.
1521 Use 16-bit integers since it will be the case for most
1522 programs. The size of these types should normally be set
1523 according to the dwarf2 debug information. */
1524 set_gdbarch_short_bit (gdbarch, 16);
1525 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1526 set_gdbarch_float_bit (gdbarch, 32);
1527 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1528 set_gdbarch_long_double_bit (gdbarch, 64);
1529 set_gdbarch_long_bit (gdbarch, 32);
1530 set_gdbarch_ptr_bit (gdbarch, 16);
1531 set_gdbarch_long_long_bit (gdbarch, 64);
1532
1533 /* Characters are unsigned. */
1534 set_gdbarch_char_signed (gdbarch, 0);
1535
1536 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1537 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1538
1539 /* Set register info. */
1540 set_gdbarch_fp0_regnum (gdbarch, -1);
1541
1542 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1543
1544 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1545 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1546 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1547 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1548 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1549
1550 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1551
1552 set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
1553 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1554
1555 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1556 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
1557 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1558 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1559 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1560 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1561 set_gdbarch_deprecated_stack_align (gdbarch, m68hc11_stack_align);
1562 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1563
1564 m68hc11_add_reggroups (gdbarch);
1565 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1566 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1567
1568 /* Hook in the DWARF CFI frame unwinder. */
1569 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1570
1571 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1572 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1573
1574 /* Methods for saving / extracting a dummy frame's ID. The ID's
1575 stack address must match the SP value returned by
1576 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1577 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1578
1579 /* Return the unwound PC value. */
1580 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1581
1582 /* Minsymbol frobbing. */
1583 set_gdbarch_elf_make_msymbol_special (gdbarch,
1584 m68hc11_elf_make_msymbol_special);
1585
1586 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1587
1588 return gdbarch;
1589 }
1590
1591 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1592
1593 void
1594 _initialize_m68hc11_tdep (void)
1595 {
1596 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1597 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1598 m68hc11_init_reggroups ();
1599
1600 deprecate_cmd (add_com ("regs", class_vars, show_regs,
1601 "Print all registers"),
1602 "info registers");
1603 }
1604
This page took 0.212616 seconds and 5 git commands to generate.