*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "dwarf2-frame.h"
29 #include "trad-frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdb_string.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "reggroups.h"
43
44 #include "target.h"
45 #include "opcode/m68hc11.h"
46 #include "elf/m68hc11.h"
47 #include "elf-bfd.h"
48
49 /* Macros for setting and testing a bit in a minimal symbol.
50 For 68HC11/68HC12 we have two flags that tell which return
51 type the function is using. This is used for prologue and frame
52 analysis to compute correct stack frame layout.
53
54 The MSB of the minimal symbol's "info" field is used for this purpose.
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
60
61 #define MSYMBOL_SET_RTC(msym) \
62 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
63 | 0x80000000)
64
65 #define MSYMBOL_SET_RTI(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x40000000)
68
69 #define MSYMBOL_IS_RTC(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72 #define MSYMBOL_IS_RTI(msym) \
73 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
74
75 enum insn_return_kind {
76 RETURN_RTS,
77 RETURN_RTC,
78 RETURN_RTI
79 };
80
81
82 /* Register numbers of various important registers. */
83
84 #define HARD_X_REGNUM 0
85 #define HARD_D_REGNUM 1
86 #define HARD_Y_REGNUM 2
87 #define HARD_SP_REGNUM 3
88 #define HARD_PC_REGNUM 4
89
90 #define HARD_A_REGNUM 5
91 #define HARD_B_REGNUM 6
92 #define HARD_CCR_REGNUM 7
93
94 /* 68HC12 page number register.
95 Note: to keep a compatibility with gcc register naming, we must
96 not have to rename FP and other soft registers. The page register
97 is a real hard register and must therefore be counted by gdbarch_num_regs.
98 For this it has the same number as Z register (which is not used). */
99 #define HARD_PAGE_REGNUM 8
100 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
101
102 /* Z is replaced by X or Y by gcc during machine reorg.
103 ??? There is no way to get it and even know whether
104 it's in X or Y or in ZS. */
105 #define SOFT_Z_REGNUM 8
106
107 /* Soft registers. These registers are special. There are treated
108 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
109 They are physically located in memory. */
110 #define SOFT_FP_REGNUM 9
111 #define SOFT_TMP_REGNUM 10
112 #define SOFT_ZS_REGNUM 11
113 #define SOFT_XY_REGNUM 12
114 #define SOFT_UNUSED_REGNUM 13
115 #define SOFT_D1_REGNUM 14
116 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
117 #define M68HC11_MAX_SOFT_REGS 32
118
119 #define M68HC11_NUM_REGS (8)
120 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
121 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
122
123 #define M68HC11_REG_SIZE (2)
124
125 #define M68HC12_NUM_REGS (9)
126 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
127 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
128
129 struct insn_sequence;
130 struct gdbarch_tdep
131 {
132 /* Stack pointer correction value. For 68hc11, the stack pointer points
133 to the next push location. An offset of 1 must be applied to obtain
134 the address where the last value is saved. For 68hc12, the stack
135 pointer points to the last value pushed. No offset is necessary. */
136 int stack_correction;
137
138 /* Description of instructions in the prologue. */
139 struct insn_sequence *prologue;
140
141 /* True if the page memory bank register is available
142 and must be used. */
143 int use_page_register;
144
145 /* ELF flags for ABI. */
146 int elf_flags;
147 };
148
149 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
150 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
151 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
152
153 struct m68hc11_unwind_cache
154 {
155 /* The previous frame's inner most stack address. Used as this
156 frame ID's stack_addr. */
157 CORE_ADDR prev_sp;
158 /* The frame's base, optionally used by the high-level debug info. */
159 CORE_ADDR base;
160 CORE_ADDR pc;
161 int size;
162 int prologue_type;
163 CORE_ADDR return_pc;
164 CORE_ADDR sp_offset;
165 int frameless;
166 enum insn_return_kind return_kind;
167
168 /* Table indicating the location of each and every register. */
169 struct trad_frame_saved_reg *saved_regs;
170 };
171
172 /* Table of registers for 68HC11. This includes the hard registers
173 and the soft registers used by GCC. */
174 static char *
175 m68hc11_register_names[] =
176 {
177 "x", "d", "y", "sp", "pc", "a", "b",
178 "ccr", "page", "frame","tmp", "zs", "xy", 0,
179 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
180 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
181 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
182 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
183 "d29", "d30", "d31", "d32"
184 };
185
186 struct m68hc11_soft_reg
187 {
188 const char *name;
189 CORE_ADDR addr;
190 };
191
192 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
193
194 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
195
196 static int soft_min_addr;
197 static int soft_max_addr;
198 static int soft_reg_initialized = 0;
199
200 /* Look in the symbol table for the address of a pseudo register
201 in memory. If we don't find it, pretend the register is not used
202 and not available. */
203 static void
204 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
205 {
206 struct minimal_symbol *msymbol;
207
208 msymbol = lookup_minimal_symbol (name, NULL, NULL);
209 if (msymbol)
210 {
211 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
212 reg->name = xstrdup (name);
213
214 /* Keep track of the address range for soft registers. */
215 if (reg->addr < (CORE_ADDR) soft_min_addr)
216 soft_min_addr = reg->addr;
217 if (reg->addr > (CORE_ADDR) soft_max_addr)
218 soft_max_addr = reg->addr;
219 }
220 else
221 {
222 reg->name = 0;
223 reg->addr = 0;
224 }
225 }
226
227 /* Initialize the table of soft register addresses according
228 to the symbol table. */
229 static void
230 m68hc11_initialize_register_info (void)
231 {
232 int i;
233
234 if (soft_reg_initialized)
235 return;
236
237 soft_min_addr = INT_MAX;
238 soft_max_addr = 0;
239 for (i = 0; i < M68HC11_ALL_REGS; i++)
240 {
241 soft_regs[i].name = 0;
242 }
243
244 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
245 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
246 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
247 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
248 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
249
250 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
251 {
252 char buf[10];
253
254 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
255 m68hc11_get_register_info (&soft_regs[i], buf);
256 }
257
258 if (soft_regs[SOFT_FP_REGNUM].name == 0)
259 warning (_("No frame soft register found in the symbol table.\n"
260 "Stack backtrace will not work."));
261 soft_reg_initialized = 1;
262 }
263
264 /* Given an address in memory, return the soft register number if
265 that address corresponds to a soft register. Returns -1 if not. */
266 static int
267 m68hc11_which_soft_register (CORE_ADDR addr)
268 {
269 int i;
270
271 if (addr < soft_min_addr || addr > soft_max_addr)
272 return -1;
273
274 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
275 {
276 if (soft_regs[i].name && soft_regs[i].addr == addr)
277 return i;
278 }
279 return -1;
280 }
281
282 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
283 pseudo registers. They are located in memory. Translate the register
284 fetch into a memory read. */
285 static void
286 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
287 struct regcache *regcache,
288 int regno, gdb_byte *buf)
289 {
290 /* The PC is a pseudo reg only for 68HC12 with the memory bank
291 addressing mode. */
292 if (regno == M68HC12_HARD_PC_REGNUM)
293 {
294 ULONGEST pc;
295 const int regsize = TYPE_LENGTH (builtin_type_uint32);
296
297 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
300 ULONGEST page;
301
302 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
307 store_unsigned_integer (buf, regsize, pc);
308 return;
309 }
310
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
322 }
323
324 /* Store a pseudo register. Translate the register store
325 into a memory write. */
326 static void
327 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
328 struct regcache *regcache,
329 int regno, const gdb_byte *buf)
330 {
331 /* The PC is a pseudo reg only for 68HC12 with the memory bank
332 addressing mode. */
333 if (regno == M68HC12_HARD_PC_REGNUM)
334 {
335 const int regsize = TYPE_LENGTH (builtin_type_uint32);
336 char *tmp = alloca (regsize);
337 CORE_ADDR pc;
338
339 memcpy (tmp, buf, regsize);
340 pc = extract_unsigned_integer (tmp, regsize);
341 if (pc >= 0x1000000)
342 {
343 pc -= 0x1000000;
344 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
345 (pc >> 14) & 0x0ff);
346 pc &= 0x03fff;
347 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
348 pc + 0x8000);
349 }
350 else
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
352 return;
353 }
354
355 m68hc11_initialize_register_info ();
356
357 /* Store a soft register: translate into a memory write. */
358 if (soft_regs[regno].name)
359 {
360 const int regsize = 2;
361 char *tmp = alloca (regsize);
362 memcpy (tmp, buf, regsize);
363 target_write_memory (soft_regs[regno].addr, tmp, regsize);
364 }
365 }
366
367 static const char *
368 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
369 {
370 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
371 return "pc";
372 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
373 return "ppc";
374
375 if (reg_nr < 0)
376 return NULL;
377 if (reg_nr >= M68HC11_ALL_REGS)
378 return NULL;
379
380 m68hc11_initialize_register_info ();
381
382 /* If we don't know the address of a soft register, pretend it
383 does not exist. */
384 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
385 return NULL;
386 return m68hc11_register_names[reg_nr];
387 }
388
389 static const unsigned char *
390 m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
391 int *lenptr)
392 {
393 static unsigned char breakpoint[] = {0x0};
394
395 *lenptr = sizeof (breakpoint);
396 return breakpoint;
397 }
398
399 \f
400 /* 68HC11 & 68HC12 prologue analysis.
401
402 */
403 #define MAX_CODES 12
404
405 /* 68HC11 opcodes. */
406 #undef M6811_OP_PAGE2
407 #define M6811_OP_PAGE2 (0x18)
408 #define M6811_OP_LDX (0xde)
409 #define M6811_OP_LDX_EXT (0xfe)
410 #define M6811_OP_PSHX (0x3c)
411 #define M6811_OP_STS (0x9f)
412 #define M6811_OP_STS_EXT (0xbf)
413 #define M6811_OP_TSX (0x30)
414 #define M6811_OP_XGDX (0x8f)
415 #define M6811_OP_ADDD (0xc3)
416 #define M6811_OP_TXS (0x35)
417 #define M6811_OP_DES (0x34)
418
419 /* 68HC12 opcodes. */
420 #define M6812_OP_PAGE2 (0x18)
421 #define M6812_OP_MOVW (0x01)
422 #define M6812_PB_PSHW (0xae)
423 #define M6812_OP_STS (0x5f)
424 #define M6812_OP_STS_EXT (0x7f)
425 #define M6812_OP_LEAS (0x1b)
426 #define M6812_OP_PSHX (0x34)
427 #define M6812_OP_PSHY (0x35)
428
429 /* Operand extraction. */
430 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
431 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
432 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
433 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
434
435 /* Identification of the sequence. */
436 enum m6811_seq_type
437 {
438 P_LAST = 0,
439 P_SAVE_REG, /* Save a register on the stack. */
440 P_SET_FRAME, /* Setup the frame pointer. */
441 P_LOCAL_1, /* Allocate 1 byte for locals. */
442 P_LOCAL_2, /* Allocate 2 bytes for locals. */
443 P_LOCAL_N /* Allocate N bytes for locals. */
444 };
445
446 struct insn_sequence {
447 enum m6811_seq_type type;
448 unsigned length;
449 unsigned short code[MAX_CODES];
450 };
451
452 /* Sequence of instructions in the 68HC11 function prologue. */
453 static struct insn_sequence m6811_prologue[] = {
454 /* Sequences to save a soft-register. */
455 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
456 M6811_OP_PSHX } },
457 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
458 M6811_OP_PAGE2, M6811_OP_PSHX } },
459 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
460 M6811_OP_PSHX } },
461 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
462 M6811_OP_PAGE2, M6811_OP_PSHX } },
463
464 /* Sequences to allocate local variables. */
465 { P_LOCAL_N, 7, { M6811_OP_TSX,
466 M6811_OP_XGDX,
467 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
468 M6811_OP_XGDX,
469 M6811_OP_TXS } },
470 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
471 M6811_OP_PAGE2, M6811_OP_XGDX,
472 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
473 M6811_OP_PAGE2, M6811_OP_XGDX,
474 M6811_OP_PAGE2, M6811_OP_TXS } },
475 { P_LOCAL_1, 1, { M6811_OP_DES } },
476 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
477 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
478
479 /* Initialize the frame pointer. */
480 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
481 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
482 { P_LAST, 0, { 0 } }
483 };
484
485
486 /* Sequence of instructions in the 68HC12 function prologue. */
487 static struct insn_sequence m6812_prologue[] = {
488 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
489 OP_IMM_HIGH, OP_IMM_LOW } },
490 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
491 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
492 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
493 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
494 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
495 { P_LAST, 0 }
496 };
497
498
499 /* Analyze the sequence of instructions starting at the given address.
500 Returns a pointer to the sequence when it is recognized and
501 the optional value (constant/address) associated with it. */
502 static struct insn_sequence *
503 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
504 CORE_ADDR *val)
505 {
506 unsigned char buffer[MAX_CODES];
507 unsigned bufsize;
508 unsigned j;
509 CORE_ADDR cur_val;
510 short v = 0;
511
512 bufsize = 0;
513 for (; seq->type != P_LAST; seq++)
514 {
515 cur_val = 0;
516 for (j = 0; j < seq->length; j++)
517 {
518 if (bufsize < j + 1)
519 {
520 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
521 1);
522 bufsize++;
523 }
524 /* Continue while we match the opcode. */
525 if (seq->code[j] == buffer[j])
526 continue;
527
528 if ((seq->code[j] & 0xf00) == 0)
529 break;
530
531 /* Extract a sequence parameter (address or constant). */
532 switch (seq->code[j])
533 {
534 case OP_DIRECT:
535 cur_val = (CORE_ADDR) buffer[j];
536 break;
537
538 case OP_IMM_HIGH:
539 cur_val = cur_val & 0x0ff;
540 cur_val |= (buffer[j] << 8);
541 break;
542
543 case OP_IMM_LOW:
544 cur_val &= 0x0ff00;
545 cur_val |= buffer[j];
546 break;
547
548 case OP_PBYTE:
549 if ((buffer[j] & 0xE0) == 0x80)
550 {
551 v = buffer[j] & 0x1f;
552 if (v & 0x10)
553 v |= 0xfff0;
554 }
555 else if ((buffer[j] & 0xfe) == 0xf0)
556 {
557 v = read_memory_unsigned_integer (pc + j + 1, 1);
558 if (buffer[j] & 1)
559 v |= 0xff00;
560 }
561 else if (buffer[j] == 0xf2)
562 {
563 v = read_memory_unsigned_integer (pc + j + 1, 2);
564 }
565 cur_val = v;
566 break;
567 }
568 }
569
570 /* We have a full match. */
571 if (j == seq->length)
572 {
573 *val = cur_val;
574 return seq;
575 }
576 }
577 return 0;
578 }
579
580 /* Return the instruction that the function at the PC is using. */
581 static enum insn_return_kind
582 m68hc11_get_return_insn (CORE_ADDR pc)
583 {
584 struct minimal_symbol *sym;
585
586 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
587 function is stored by elfread.c in the high bit of the info field.
588 Use this to decide which instruction the function uses to return. */
589 sym = lookup_minimal_symbol_by_pc (pc);
590 if (sym == 0)
591 return RETURN_RTS;
592
593 if (MSYMBOL_IS_RTC (sym))
594 return RETURN_RTC;
595 else if (MSYMBOL_IS_RTI (sym))
596 return RETURN_RTI;
597 else
598 return RETURN_RTS;
599 }
600
601 /* Analyze the function prologue to find some information
602 about the function:
603 - the PC of the first line (for m68hc11_skip_prologue)
604 - the offset of the previous frame saved address (from current frame)
605 - the soft registers which are pushed. */
606 static CORE_ADDR
607 m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
608 struct m68hc11_unwind_cache *info)
609 {
610 LONGEST save_addr;
611 CORE_ADDR func_end;
612 int size;
613 int found_frame_point;
614 int saved_reg;
615 int done = 0;
616 struct insn_sequence *seq_table;
617
618 info->size = 0;
619 info->sp_offset = 0;
620 if (pc >= current_pc)
621 return current_pc;
622
623 size = 0;
624
625 m68hc11_initialize_register_info ();
626 if (pc == 0)
627 {
628 info->size = 0;
629 return pc;
630 }
631
632 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
633
634 /* The 68hc11 stack is as follows:
635
636
637 | |
638 +-----------+
639 | |
640 | args |
641 | |
642 +-----------+
643 | PC-return |
644 +-----------+
645 | Old frame |
646 +-----------+
647 | |
648 | Locals |
649 | |
650 +-----------+ <--- current frame
651 | |
652
653 With most processors (like 68K) the previous frame can be computed
654 easily because it is always at a fixed offset (see link/unlink).
655 That is, locals are accessed with negative offsets, arguments are
656 accessed with positive ones. Since 68hc11 only supports offsets
657 in the range [0..255], the frame is defined at the bottom of
658 locals (see picture).
659
660 The purpose of the analysis made here is to find out the size
661 of locals in this function. An alternative to this is to use
662 DWARF2 info. This would be better but I don't know how to
663 access dwarf2 debug from this function.
664
665 Walk from the function entry point to the point where we save
666 the frame. While walking instructions, compute the size of bytes
667 which are pushed. This gives us the index to access the previous
668 frame.
669
670 We limit the search to 128 bytes so that the algorithm is bounded
671 in case of random and wrong code. We also stop and abort if
672 we find an instruction which is not supposed to appear in the
673 prologue (as generated by gcc 2.95, 2.96).
674 */
675 func_end = pc + 128;
676 found_frame_point = 0;
677 info->size = 0;
678 save_addr = 0;
679 while (!done && pc + 2 < func_end)
680 {
681 struct insn_sequence *seq;
682 CORE_ADDR val;
683
684 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
685 if (seq == 0)
686 break;
687
688 /* If we are within the instruction group, we can't advance the
689 pc nor the stack offset. Otherwise the caller's stack computed
690 from the current stack can be wrong. */
691 if (pc + seq->length > current_pc)
692 break;
693
694 pc = pc + seq->length;
695 if (seq->type == P_SAVE_REG)
696 {
697 if (found_frame_point)
698 {
699 saved_reg = m68hc11_which_soft_register (val);
700 if (saved_reg < 0)
701 break;
702
703 save_addr -= 2;
704 if (info->saved_regs)
705 info->saved_regs[saved_reg].addr = save_addr;
706 }
707 else
708 {
709 size += 2;
710 }
711 }
712 else if (seq->type == P_SET_FRAME)
713 {
714 found_frame_point = 1;
715 info->size = size;
716 }
717 else if (seq->type == P_LOCAL_1)
718 {
719 size += 1;
720 }
721 else if (seq->type == P_LOCAL_2)
722 {
723 size += 2;
724 }
725 else if (seq->type == P_LOCAL_N)
726 {
727 /* Stack pointer is decremented for the allocation. */
728 if (val & 0x8000)
729 size -= (int) (val) | 0xffff0000;
730 else
731 size -= val;
732 }
733 }
734 if (found_frame_point == 0)
735 info->sp_offset = size;
736 else
737 info->sp_offset = -1;
738 return pc;
739 }
740
741 static CORE_ADDR
742 m68hc11_skip_prologue (CORE_ADDR pc)
743 {
744 CORE_ADDR func_addr, func_end;
745 struct symtab_and_line sal;
746 struct m68hc11_unwind_cache tmp_cache = { 0 };
747
748 /* If we have line debugging information, then the end of the
749 prologue should be the first assembly instruction of the
750 first source line. */
751 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
752 {
753 sal = find_pc_line (func_addr, 0);
754 if (sal.end && sal.end < func_end)
755 return sal.end;
756 }
757
758 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
759 return pc;
760 }
761
762 static CORE_ADDR
763 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
764 {
765 ULONGEST pc;
766
767 pc = frame_unwind_register_unsigned (next_frame, gdbarch_pc_regnum (gdbarch));
768 return pc;
769 }
770
771 /* Put here the code to store, into fi->saved_regs, the addresses of
772 the saved registers of frame described by FRAME_INFO. This
773 includes special registers such as pc and fp saved in special ways
774 in the stack frame. sp is even more special: the address we return
775 for it IS the sp for the next frame. */
776
777 struct m68hc11_unwind_cache *
778 m68hc11_frame_unwind_cache (struct frame_info *next_frame,
779 void **this_prologue_cache)
780 {
781 ULONGEST prev_sp;
782 ULONGEST this_base;
783 struct m68hc11_unwind_cache *info;
784 CORE_ADDR current_pc;
785 int i;
786
787 if ((*this_prologue_cache))
788 return (*this_prologue_cache);
789
790 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
791 (*this_prologue_cache) = info;
792 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
793
794 info->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
795
796 info->size = 0;
797 info->return_kind = m68hc11_get_return_insn (info->pc);
798
799 /* The SP was moved to the FP. This indicates that a new frame
800 was created. Get THIS frame's FP value by unwinding it from
801 the next frame. */
802 this_base = frame_unwind_register_unsigned (next_frame, SOFT_FP_REGNUM);
803 if (this_base == 0)
804 {
805 info->base = 0;
806 return info;
807 }
808
809 current_pc = frame_pc_unwind (next_frame);
810 if (info->pc != 0)
811 m68hc11_scan_prologue (info->pc, current_pc, info);
812
813 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
814
815 if (info->sp_offset != (CORE_ADDR) -1)
816 {
817 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
818 this_base = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
819 prev_sp = this_base + info->sp_offset + 2;
820 this_base += STACK_CORRECTION;
821 }
822 else
823 {
824 /* The FP points at the last saved register. Adjust the FP back
825 to before the first saved register giving the SP. */
826 prev_sp = this_base + info->size + 2;
827
828 this_base += STACK_CORRECTION;
829 if (soft_regs[SOFT_FP_REGNUM].name)
830 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
831 }
832
833 if (info->return_kind == RETURN_RTC)
834 {
835 prev_sp += 1;
836 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
837 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
838 }
839 else if (info->return_kind == RETURN_RTI)
840 {
841 prev_sp += 7;
842 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
843 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
844 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
845 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
846 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
847 }
848
849 /* Add 1 here to adjust for the post-decrement nature of the push
850 instruction.*/
851 info->prev_sp = prev_sp;
852
853 info->base = this_base;
854
855 /* Adjust all the saved registers so that they contain addresses and not
856 offsets. */
857 for (i = 0;
858 i < gdbarch_num_regs (current_gdbarch)
859 + gdbarch_num_pseudo_regs (current_gdbarch) - 1;
860 i++)
861 if (trad_frame_addr_p (info->saved_regs, i))
862 {
863 info->saved_regs[i].addr += this_base;
864 }
865
866 /* The previous frame's SP needed to be computed. Save the computed
867 value. */
868 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
869
870 return info;
871 }
872
873 /* Given a GDB frame, determine the address of the calling function's
874 frame. This will be used to create a new GDB frame struct. */
875
876 static void
877 m68hc11_frame_this_id (struct frame_info *next_frame,
878 void **this_prologue_cache,
879 struct frame_id *this_id)
880 {
881 struct m68hc11_unwind_cache *info
882 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
883 CORE_ADDR base;
884 CORE_ADDR func;
885 struct frame_id id;
886
887 /* The FUNC is easy. */
888 func = frame_func_unwind (next_frame, NORMAL_FRAME);
889
890 /* Hopefully the prologue analysis either correctly determined the
891 frame's base (which is the SP from the previous frame), or set
892 that base to "NULL". */
893 base = info->prev_sp;
894 if (base == 0)
895 return;
896
897 id = frame_id_build (base, func);
898 (*this_id) = id;
899 }
900
901 static void
902 m68hc11_frame_prev_register (struct frame_info *next_frame,
903 void **this_prologue_cache,
904 int regnum, int *optimizedp,
905 enum lval_type *lvalp, CORE_ADDR *addrp,
906 int *realnump, gdb_byte *bufferp)
907 {
908 struct m68hc11_unwind_cache *info
909 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
910
911 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
912 optimizedp, lvalp, addrp, realnump, bufferp);
913
914 if (regnum == HARD_PC_REGNUM)
915 {
916 /* Take into account the 68HC12 specific call (PC + page). */
917 if (info->return_kind == RETURN_RTC
918 && *addrp >= 0x08000 && *addrp < 0x0c000
919 && USE_PAGE_REGISTER)
920 {
921 int page_optimized;
922
923 CORE_ADDR page;
924
925 trad_frame_get_prev_register (next_frame, info->saved_regs,
926 HARD_PAGE_REGNUM, &page_optimized,
927 0, &page, 0, 0);
928 *addrp -= 0x08000;
929 *addrp += ((page & 0x0ff) << 14);
930 *addrp += 0x1000000;
931 }
932 }
933 }
934
935 static const struct frame_unwind m68hc11_frame_unwind = {
936 NORMAL_FRAME,
937 m68hc11_frame_this_id,
938 m68hc11_frame_prev_register
939 };
940
941 const struct frame_unwind *
942 m68hc11_frame_sniffer (struct frame_info *next_frame)
943 {
944 return &m68hc11_frame_unwind;
945 }
946
947 static CORE_ADDR
948 m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
949 {
950 struct m68hc11_unwind_cache *info
951 = m68hc11_frame_unwind_cache (next_frame, this_cache);
952
953 return info->base;
954 }
955
956 static CORE_ADDR
957 m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
958 {
959 CORE_ADDR addr;
960 struct m68hc11_unwind_cache *info
961 = m68hc11_frame_unwind_cache (next_frame, this_cache);
962
963 addr = info->base + info->size;
964 if (info->return_kind == RETURN_RTC)
965 addr += 1;
966 else if (info->return_kind == RETURN_RTI)
967 addr += 7;
968
969 return addr;
970 }
971
972 static const struct frame_base m68hc11_frame_base = {
973 &m68hc11_frame_unwind,
974 m68hc11_frame_base_address,
975 m68hc11_frame_base_address,
976 m68hc11_frame_args_address
977 };
978
979 static CORE_ADDR
980 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
981 {
982 ULONGEST sp;
983 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
984 return sp;
985 }
986
987 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
988 dummy frame. The frame ID's base needs to match the TOS value
989 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
990 breakpoint. */
991
992 static struct frame_id
993 m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
994 {
995 ULONGEST tos;
996 CORE_ADDR pc = frame_pc_unwind (next_frame);
997
998 tos = frame_unwind_register_unsigned (next_frame, SOFT_FP_REGNUM);
999 tos += 2;
1000 return frame_id_build (tos, pc);
1001 }
1002
1003 \f
1004 /* Get and print the register from the given frame. */
1005 static void
1006 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1007 struct frame_info *frame, int regno)
1008 {
1009 LONGEST rval;
1010
1011 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1012 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1013 rval = get_frame_register_unsigned (frame, regno);
1014 else
1015 rval = get_frame_register_signed (frame, regno);
1016
1017 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1018 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1019 {
1020 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1021 if (regno != HARD_CCR_REGNUM)
1022 print_longest (file, 'd', 1, rval);
1023 }
1024 else
1025 {
1026 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1027 {
1028 ULONGEST page;
1029
1030 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1031 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1032 (unsigned) rval);
1033 }
1034 else
1035 {
1036 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1037 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1038 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1039 print_longest (file, 'd', 1, rval);
1040 }
1041 }
1042
1043 if (regno == HARD_CCR_REGNUM)
1044 {
1045 /* CCR register */
1046 int C, Z, N, V;
1047 unsigned char l = rval & 0xff;
1048
1049 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1050 l & M6811_S_BIT ? 'S' : '-',
1051 l & M6811_X_BIT ? 'X' : '-',
1052 l & M6811_H_BIT ? 'H' : '-',
1053 l & M6811_I_BIT ? 'I' : '-',
1054 l & M6811_N_BIT ? 'N' : '-',
1055 l & M6811_Z_BIT ? 'Z' : '-',
1056 l & M6811_V_BIT ? 'V' : '-',
1057 l & M6811_C_BIT ? 'C' : '-');
1058 N = (l & M6811_N_BIT) != 0;
1059 Z = (l & M6811_Z_BIT) != 0;
1060 V = (l & M6811_V_BIT) != 0;
1061 C = (l & M6811_C_BIT) != 0;
1062
1063 /* Print flags following the h8300 */
1064 if ((C | Z) == 0)
1065 fprintf_filtered (file, "u> ");
1066 else if ((C | Z) == 1)
1067 fprintf_filtered (file, "u<= ");
1068 else if (C == 0)
1069 fprintf_filtered (file, "u< ");
1070
1071 if (Z == 0)
1072 fprintf_filtered (file, "!= ");
1073 else
1074 fprintf_filtered (file, "== ");
1075
1076 if ((N ^ V) == 0)
1077 fprintf_filtered (file, ">= ");
1078 else
1079 fprintf_filtered (file, "< ");
1080
1081 if ((Z | (N ^ V)) == 0)
1082 fprintf_filtered (file, "> ");
1083 else
1084 fprintf_filtered (file, "<= ");
1085 }
1086 }
1087
1088 /* Same as 'info reg' but prints the registers in a different way. */
1089 static void
1090 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1091 struct frame_info *frame, int regno, int cpregs)
1092 {
1093 if (regno >= 0)
1094 {
1095 const char *name = gdbarch_register_name (gdbarch, regno);
1096
1097 if (!name || !*name)
1098 return;
1099
1100 fprintf_filtered (file, "%-10s ", name);
1101 m68hc11_print_register (gdbarch, file, frame, regno);
1102 fprintf_filtered (file, "\n");
1103 }
1104 else
1105 {
1106 int i, nr;
1107
1108 fprintf_filtered (file, "PC=");
1109 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1110
1111 fprintf_filtered (file, " SP=");
1112 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1113
1114 fprintf_filtered (file, " FP=");
1115 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1116
1117 fprintf_filtered (file, "\nCCR=");
1118 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1119
1120 fprintf_filtered (file, "\nD=");
1121 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1122
1123 fprintf_filtered (file, " X=");
1124 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1125
1126 fprintf_filtered (file, " Y=");
1127 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1128
1129 if (gdbarch_tdep (gdbarch)->use_page_register)
1130 {
1131 fprintf_filtered (file, "\nPage=");
1132 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1133 }
1134 fprintf_filtered (file, "\n");
1135
1136 nr = 0;
1137 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1138 {
1139 /* Skip registers which are not defined in the symbol table. */
1140 if (soft_regs[i].name == 0)
1141 continue;
1142
1143 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1144 m68hc11_print_register (gdbarch, file, frame, i);
1145 nr++;
1146 if ((nr % 8) == 7)
1147 fprintf_filtered (file, "\n");
1148 else
1149 fprintf_filtered (file, " ");
1150 }
1151 if (nr && (nr % 8) != 7)
1152 fprintf_filtered (file, "\n");
1153 }
1154 }
1155
1156 static CORE_ADDR
1157 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1158 struct regcache *regcache, CORE_ADDR bp_addr,
1159 int nargs, struct value **args, CORE_ADDR sp,
1160 int struct_return, CORE_ADDR struct_addr)
1161 {
1162 int argnum;
1163 int first_stack_argnum;
1164 struct type *type;
1165 char *val;
1166 int len;
1167 char buf[2];
1168
1169 first_stack_argnum = 0;
1170 if (struct_return)
1171 {
1172 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1173 }
1174 else if (nargs > 0)
1175 {
1176 type = value_type (args[0]);
1177 len = TYPE_LENGTH (type);
1178
1179 /* First argument is passed in D and X registers. */
1180 if (len <= 4)
1181 {
1182 ULONGEST v;
1183
1184 v = extract_unsigned_integer (value_contents (args[0]), len);
1185 first_stack_argnum = 1;
1186
1187 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1188 if (len > 2)
1189 {
1190 v >>= 16;
1191 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1192 }
1193 }
1194 }
1195
1196 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1197 {
1198 type = value_type (args[argnum]);
1199 len = TYPE_LENGTH (type);
1200
1201 if (len & 1)
1202 {
1203 static char zero = 0;
1204
1205 sp--;
1206 write_memory (sp, &zero, 1);
1207 }
1208 val = (char*) value_contents (args[argnum]);
1209 sp -= len;
1210 write_memory (sp, val, len);
1211 }
1212
1213 /* Store return address. */
1214 sp -= 2;
1215 store_unsigned_integer (buf, 2, bp_addr);
1216 write_memory (sp, buf, 2);
1217
1218 /* Finally, update the stack pointer... */
1219 sp -= STACK_CORRECTION;
1220 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1221
1222 /* ...and fake a frame pointer. */
1223 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1224
1225 /* DWARF2/GCC uses the stack address *before* the function call as a
1226 frame's CFA. */
1227 return sp + 2;
1228 }
1229
1230
1231 /* Return the GDB type object for the "standard" data type
1232 of data in register N. */
1233
1234 static struct type *
1235 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1236 {
1237 switch (reg_nr)
1238 {
1239 case HARD_PAGE_REGNUM:
1240 case HARD_A_REGNUM:
1241 case HARD_B_REGNUM:
1242 case HARD_CCR_REGNUM:
1243 return builtin_type_uint8;
1244
1245 case M68HC12_HARD_PC_REGNUM:
1246 return builtin_type_uint32;
1247
1248 default:
1249 return builtin_type_uint16;
1250 }
1251 }
1252
1253 static void
1254 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1255 const void *valbuf)
1256 {
1257 int len;
1258
1259 len = TYPE_LENGTH (type);
1260
1261 /* First argument is passed in D and X registers. */
1262 if (len <= 2)
1263 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1264 else if (len <= 4)
1265 {
1266 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1267 len - 2, valbuf);
1268 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1269 }
1270 else
1271 error (_("return of value > 4 is not supported."));
1272 }
1273
1274
1275 /* Given a return value in `regcache' with a type `type',
1276 extract and copy its value into `valbuf'. */
1277
1278 static void
1279 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1280 void *valbuf)
1281 {
1282 int len = TYPE_LENGTH (type);
1283 char buf[M68HC11_REG_SIZE];
1284
1285 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1286 switch (len)
1287 {
1288 case 1:
1289 memcpy (valbuf, buf + 1, 1);
1290 break;
1291
1292 case 2:
1293 memcpy (valbuf, buf, 2);
1294 break;
1295
1296 case 3:
1297 memcpy ((char*) valbuf + 1, buf, 2);
1298 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1299 memcpy (valbuf, buf + 1, 1);
1300 break;
1301
1302 case 4:
1303 memcpy ((char*) valbuf + 2, buf, 2);
1304 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1305 memcpy (valbuf, buf, 2);
1306 break;
1307
1308 default:
1309 error (_("bad size for return value"));
1310 }
1311 }
1312
1313 enum return_value_convention
1314 m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
1315 struct regcache *regcache, gdb_byte *readbuf,
1316 const gdb_byte *writebuf)
1317 {
1318 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1319 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1320 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1321 || TYPE_LENGTH (valtype) > 4)
1322 return RETURN_VALUE_STRUCT_CONVENTION;
1323 else
1324 {
1325 if (readbuf != NULL)
1326 m68hc11_extract_return_value (valtype, regcache, readbuf);
1327 if (writebuf != NULL)
1328 m68hc11_store_return_value (valtype, regcache, writebuf);
1329 return RETURN_VALUE_REGISTER_CONVENTION;
1330 }
1331 }
1332
1333 /* Test whether the ELF symbol corresponds to a function using rtc or
1334 rti to return. */
1335
1336 static void
1337 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1338 {
1339 unsigned char flags;
1340
1341 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1342 if (flags & STO_M68HC12_FAR)
1343 MSYMBOL_SET_RTC (msym);
1344 if (flags & STO_M68HC12_INTERRUPT)
1345 MSYMBOL_SET_RTI (msym);
1346 }
1347
1348 static int
1349 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1350 {
1351 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_m68hc11)
1352 return print_insn_m68hc11 (memaddr, info);
1353 else
1354 return print_insn_m68hc12 (memaddr, info);
1355 }
1356
1357 \f
1358
1359 /* 68HC11/68HC12 register groups.
1360 Identify real hard registers and soft registers used by gcc. */
1361
1362 static struct reggroup *m68hc11_soft_reggroup;
1363 static struct reggroup *m68hc11_hard_reggroup;
1364
1365 static void
1366 m68hc11_init_reggroups (void)
1367 {
1368 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1369 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1370 }
1371
1372 static void
1373 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1374 {
1375 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1376 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1377 reggroup_add (gdbarch, general_reggroup);
1378 reggroup_add (gdbarch, float_reggroup);
1379 reggroup_add (gdbarch, all_reggroup);
1380 reggroup_add (gdbarch, save_reggroup);
1381 reggroup_add (gdbarch, restore_reggroup);
1382 reggroup_add (gdbarch, vector_reggroup);
1383 reggroup_add (gdbarch, system_reggroup);
1384 }
1385
1386 static int
1387 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1388 struct reggroup *group)
1389 {
1390 /* We must save the real hard register as well as gcc
1391 soft registers including the frame pointer. */
1392 if (group == save_reggroup || group == restore_reggroup)
1393 {
1394 return (regnum <= gdbarch_num_regs (gdbarch)
1395 || ((regnum == SOFT_FP_REGNUM
1396 || regnum == SOFT_TMP_REGNUM
1397 || regnum == SOFT_ZS_REGNUM
1398 || regnum == SOFT_XY_REGNUM)
1399 && m68hc11_register_name (gdbarch, regnum)));
1400 }
1401
1402 /* Group to identify gcc soft registers (d1..dN). */
1403 if (group == m68hc11_soft_reggroup)
1404 {
1405 return regnum >= SOFT_D1_REGNUM
1406 && m68hc11_register_name (gdbarch, regnum);
1407 }
1408
1409 if (group == m68hc11_hard_reggroup)
1410 {
1411 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1412 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1413 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1414 }
1415 return default_register_reggroup_p (gdbarch, regnum, group);
1416 }
1417
1418 static struct gdbarch *
1419 m68hc11_gdbarch_init (struct gdbarch_info info,
1420 struct gdbarch_list *arches)
1421 {
1422 struct gdbarch *gdbarch;
1423 struct gdbarch_tdep *tdep;
1424 int elf_flags;
1425
1426 soft_reg_initialized = 0;
1427
1428 /* Extract the elf_flags if available. */
1429 if (info.abfd != NULL
1430 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1431 elf_flags = elf_elfheader (info.abfd)->e_flags;
1432 else
1433 elf_flags = 0;
1434
1435 /* try to find a pre-existing architecture */
1436 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1437 arches != NULL;
1438 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1439 {
1440 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1441 continue;
1442
1443 return arches->gdbarch;
1444 }
1445
1446 /* Need a new architecture. Fill in a target specific vector. */
1447 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1448 gdbarch = gdbarch_alloc (&info, tdep);
1449 tdep->elf_flags = elf_flags;
1450
1451 switch (info.bfd_arch_info->arch)
1452 {
1453 case bfd_arch_m68hc11:
1454 tdep->stack_correction = 1;
1455 tdep->use_page_register = 0;
1456 tdep->prologue = m6811_prologue;
1457 set_gdbarch_addr_bit (gdbarch, 16);
1458 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1459 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1460 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1461 break;
1462
1463 case bfd_arch_m68hc12:
1464 tdep->stack_correction = 0;
1465 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1466 tdep->prologue = m6812_prologue;
1467 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1468 set_gdbarch_num_pseudo_regs (gdbarch,
1469 elf_flags & E_M68HC12_BANKS
1470 ? M68HC12_NUM_PSEUDO_REGS
1471 : M68HC11_NUM_PSEUDO_REGS);
1472 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1473 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1474 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1475 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1476 break;
1477
1478 default:
1479 break;
1480 }
1481
1482 /* Initially set everything according to the ABI.
1483 Use 16-bit integers since it will be the case for most
1484 programs. The size of these types should normally be set
1485 according to the dwarf2 debug information. */
1486 set_gdbarch_short_bit (gdbarch, 16);
1487 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1488 set_gdbarch_float_bit (gdbarch, 32);
1489 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1490 set_gdbarch_long_double_bit (gdbarch, 64);
1491 set_gdbarch_long_bit (gdbarch, 32);
1492 set_gdbarch_ptr_bit (gdbarch, 16);
1493 set_gdbarch_long_long_bit (gdbarch, 64);
1494
1495 /* Characters are unsigned. */
1496 set_gdbarch_char_signed (gdbarch, 0);
1497
1498 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1499 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1500
1501 /* Set register info. */
1502 set_gdbarch_fp0_regnum (gdbarch, -1);
1503
1504 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1505 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1506 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1507 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1508 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1509
1510 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1511
1512 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1513 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1514 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1515 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1516 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1517
1518 m68hc11_add_reggroups (gdbarch);
1519 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1520 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1521
1522 /* Hook in the DWARF CFI frame unwinder. */
1523 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1524
1525 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1526 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1527
1528 /* Methods for saving / extracting a dummy frame's ID. The ID's
1529 stack address must match the SP value returned by
1530 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1531 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1532
1533 /* Return the unwound PC value. */
1534 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1535
1536 /* Minsymbol frobbing. */
1537 set_gdbarch_elf_make_msymbol_special (gdbarch,
1538 m68hc11_elf_make_msymbol_special);
1539
1540 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1541
1542 return gdbarch;
1543 }
1544
1545 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1546
1547 void
1548 _initialize_m68hc11_tdep (void)
1549 {
1550 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1551 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1552 m68hc11_init_reggroups ();
1553 }
1554
This page took 0.064576 seconds and 5 git commands to generate.