2004-01-17 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software
4 Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "dwarf2-frame.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdb_string.h"
36 #include "value.h"
37 #include "inferior.h"
38 #include "dis-asm.h"
39 #include "symfile.h"
40 #include "objfiles.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "reggroups.h"
44
45 #include "target.h"
46 #include "opcode/m68hc11.h"
47 #include "elf/m68hc11.h"
48 #include "elf-bfd.h"
49
50 /* Macros for setting and testing a bit in a minimal symbol.
51 For 68HC11/68HC12 we have two flags that tell which return
52 type the function is using. This is used for prologue and frame
53 analysis to compute correct stack frame layout.
54
55 The MSB of the minimal symbol's "info" field is used for this purpose.
56
57 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
58 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
59 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
60 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
61
62 #define MSYMBOL_SET_RTC(msym) \
63 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
64 | 0x80000000)
65
66 #define MSYMBOL_SET_RTI(msym) \
67 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
68 | 0x40000000)
69
70 #define MSYMBOL_IS_RTC(msym) \
71 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
72
73 #define MSYMBOL_IS_RTI(msym) \
74 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
75
76 enum insn_return_kind {
77 RETURN_RTS,
78 RETURN_RTC,
79 RETURN_RTI
80 };
81
82
83 /* Register numbers of various important registers.
84 Note that some of these values are "real" register numbers,
85 and correspond to the general registers of the machine,
86 and some are "phony" register numbers which are too large
87 to be actual register numbers as far as the user is concerned
88 but do serve to get the desired values when passed to read_register. */
89
90 #define HARD_X_REGNUM 0
91 #define HARD_D_REGNUM 1
92 #define HARD_Y_REGNUM 2
93 #define HARD_SP_REGNUM 3
94 #define HARD_PC_REGNUM 4
95
96 #define HARD_A_REGNUM 5
97 #define HARD_B_REGNUM 6
98 #define HARD_CCR_REGNUM 7
99
100 /* 68HC12 page number register.
101 Note: to keep a compatibility with gcc register naming, we must
102 not have to rename FP and other soft registers. The page register
103 is a real hard register and must therefore be counted by NUM_REGS.
104 For this it has the same number as Z register (which is not used). */
105 #define HARD_PAGE_REGNUM 8
106 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
107
108 /* Z is replaced by X or Y by gcc during machine reorg.
109 ??? There is no way to get it and even know whether
110 it's in X or Y or in ZS. */
111 #define SOFT_Z_REGNUM 8
112
113 /* Soft registers. These registers are special. There are treated
114 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
115 They are physically located in memory. */
116 #define SOFT_FP_REGNUM 9
117 #define SOFT_TMP_REGNUM 10
118 #define SOFT_ZS_REGNUM 11
119 #define SOFT_XY_REGNUM 12
120 #define SOFT_UNUSED_REGNUM 13
121 #define SOFT_D1_REGNUM 14
122 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
123 #define M68HC11_MAX_SOFT_REGS 32
124
125 #define M68HC11_NUM_REGS (8)
126 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
127 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
128
129 #define M68HC11_REG_SIZE (2)
130
131 #define M68HC12_NUM_REGS (9)
132 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
133 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
134
135 struct insn_sequence;
136 struct gdbarch_tdep
137 {
138 /* Stack pointer correction value. For 68hc11, the stack pointer points
139 to the next push location. An offset of 1 must be applied to obtain
140 the address where the last value is saved. For 68hc12, the stack
141 pointer points to the last value pushed. No offset is necessary. */
142 int stack_correction;
143
144 /* Description of instructions in the prologue. */
145 struct insn_sequence *prologue;
146
147 /* True if the page memory bank register is available
148 and must be used. */
149 int use_page_register;
150
151 /* ELF flags for ABI. */
152 int elf_flags;
153 };
154
155 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
156 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
157 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
158
159 struct m68hc11_unwind_cache
160 {
161 /* The previous frame's inner most stack address. Used as this
162 frame ID's stack_addr. */
163 CORE_ADDR prev_sp;
164 /* The frame's base, optionally used by the high-level debug info. */
165 CORE_ADDR base;
166 CORE_ADDR pc;
167 int size;
168 int prologue_type;
169 CORE_ADDR return_pc;
170 CORE_ADDR sp_offset;
171 int frameless;
172 enum insn_return_kind return_kind;
173
174 /* Table indicating the location of each and every register. */
175 struct trad_frame_saved_reg *saved_regs;
176 };
177
178 /* Table of registers for 68HC11. This includes the hard registers
179 and the soft registers used by GCC. */
180 static char *
181 m68hc11_register_names[] =
182 {
183 "x", "d", "y", "sp", "pc", "a", "b",
184 "ccr", "page", "frame","tmp", "zs", "xy", 0,
185 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
186 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
187 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
188 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
189 "d29", "d30", "d31", "d32"
190 };
191
192 struct m68hc11_soft_reg
193 {
194 const char *name;
195 CORE_ADDR addr;
196 };
197
198 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
199
200 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
201
202 static int soft_min_addr;
203 static int soft_max_addr;
204 static int soft_reg_initialized = 0;
205
206 /* Look in the symbol table for the address of a pseudo register
207 in memory. If we don't find it, pretend the register is not used
208 and not available. */
209 static void
210 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
211 {
212 struct minimal_symbol *msymbol;
213
214 msymbol = lookup_minimal_symbol (name, NULL, NULL);
215 if (msymbol)
216 {
217 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
218 reg->name = xstrdup (name);
219
220 /* Keep track of the address range for soft registers. */
221 if (reg->addr < (CORE_ADDR) soft_min_addr)
222 soft_min_addr = reg->addr;
223 if (reg->addr > (CORE_ADDR) soft_max_addr)
224 soft_max_addr = reg->addr;
225 }
226 else
227 {
228 reg->name = 0;
229 reg->addr = 0;
230 }
231 }
232
233 /* Initialize the table of soft register addresses according
234 to the symbol table. */
235 static void
236 m68hc11_initialize_register_info (void)
237 {
238 int i;
239
240 if (soft_reg_initialized)
241 return;
242
243 soft_min_addr = INT_MAX;
244 soft_max_addr = 0;
245 for (i = 0; i < M68HC11_ALL_REGS; i++)
246 {
247 soft_regs[i].name = 0;
248 }
249
250 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
251 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
252 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
253 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
254 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
255
256 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
257 {
258 char buf[10];
259
260 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
261 m68hc11_get_register_info (&soft_regs[i], buf);
262 }
263
264 if (soft_regs[SOFT_FP_REGNUM].name == 0)
265 {
266 warning ("No frame soft register found in the symbol table.\n");
267 warning ("Stack backtrace will not work.\n");
268 }
269 soft_reg_initialized = 1;
270 }
271
272 /* Given an address in memory, return the soft register number if
273 that address corresponds to a soft register. Returns -1 if not. */
274 static int
275 m68hc11_which_soft_register (CORE_ADDR addr)
276 {
277 int i;
278
279 if (addr < soft_min_addr || addr > soft_max_addr)
280 return -1;
281
282 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
283 {
284 if (soft_regs[i].name && soft_regs[i].addr == addr)
285 return i;
286 }
287 return -1;
288 }
289
290 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
291 pseudo registers. They are located in memory. Translate the register
292 fetch into a memory read. */
293 static void
294 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
295 struct regcache *regcache,
296 int regno, void *buf)
297 {
298 /* The PC is a pseudo reg only for 68HC12 with the memory bank
299 addressing mode. */
300 if (regno == M68HC12_HARD_PC_REGNUM)
301 {
302 ULONGEST pc;
303 const int regsize = TYPE_LENGTH (builtin_type_uint32);
304
305 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
306 if (pc >= 0x8000 && pc < 0xc000)
307 {
308 ULONGEST page;
309
310 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
311 pc -= 0x8000;
312 pc += (page << 14);
313 pc += 0x1000000;
314 }
315 store_unsigned_integer (buf, regsize, pc);
316 return;
317 }
318
319 m68hc11_initialize_register_info ();
320
321 /* Fetch a soft register: translate into a memory read. */
322 if (soft_regs[regno].name)
323 {
324 target_read_memory (soft_regs[regno].addr, buf, 2);
325 }
326 else
327 {
328 memset (buf, 0, 2);
329 }
330 }
331
332 /* Store a pseudo register. Translate the register store
333 into a memory write. */
334 static void
335 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
336 struct regcache *regcache,
337 int regno, const void *buf)
338 {
339 /* The PC is a pseudo reg only for 68HC12 with the memory bank
340 addressing mode. */
341 if (regno == M68HC12_HARD_PC_REGNUM)
342 {
343 const int regsize = TYPE_LENGTH (builtin_type_uint32);
344 char *tmp = alloca (regsize);
345 CORE_ADDR pc;
346
347 memcpy (tmp, buf, regsize);
348 pc = extract_unsigned_integer (tmp, regsize);
349 if (pc >= 0x1000000)
350 {
351 pc -= 0x1000000;
352 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
353 (pc >> 14) & 0x0ff);
354 pc &= 0x03fff;
355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
356 pc + 0x8000);
357 }
358 else
359 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
360 return;
361 }
362
363 m68hc11_initialize_register_info ();
364
365 /* Store a soft register: translate into a memory write. */
366 if (soft_regs[regno].name)
367 {
368 const int regsize = 2;
369 char *tmp = alloca (regsize);
370 memcpy (tmp, buf, regsize);
371 target_write_memory (soft_regs[regno].addr, tmp, regsize);
372 }
373 }
374
375 static const char *
376 m68hc11_register_name (int reg_nr)
377 {
378 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
379 return "pc";
380 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
381 return "ppc";
382
383 if (reg_nr < 0)
384 return NULL;
385 if (reg_nr >= M68HC11_ALL_REGS)
386 return NULL;
387
388 /* If we don't know the address of a soft register, pretend it
389 does not exist. */
390 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
391 return NULL;
392 return m68hc11_register_names[reg_nr];
393 }
394
395 static const unsigned char *
396 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
397 {
398 static unsigned char breakpoint[] = {0x0};
399
400 *lenptr = sizeof (breakpoint);
401 return breakpoint;
402 }
403
404 \f
405 /* 68HC11 & 68HC12 prologue analysis.
406
407 */
408 #define MAX_CODES 12
409
410 /* 68HC11 opcodes. */
411 #undef M6811_OP_PAGE2
412 #define M6811_OP_PAGE2 (0x18)
413 #define M6811_OP_LDX (0xde)
414 #define M6811_OP_LDX_EXT (0xfe)
415 #define M6811_OP_PSHX (0x3c)
416 #define M6811_OP_STS (0x9f)
417 #define M6811_OP_STS_EXT (0xbf)
418 #define M6811_OP_TSX (0x30)
419 #define M6811_OP_XGDX (0x8f)
420 #define M6811_OP_ADDD (0xc3)
421 #define M6811_OP_TXS (0x35)
422 #define M6811_OP_DES (0x34)
423
424 /* 68HC12 opcodes. */
425 #define M6812_OP_PAGE2 (0x18)
426 #define M6812_OP_MOVW (0x01)
427 #define M6812_PB_PSHW (0xae)
428 #define M6812_OP_STS (0x5f)
429 #define M6812_OP_STS_EXT (0x7f)
430 #define M6812_OP_LEAS (0x1b)
431 #define M6812_OP_PSHX (0x34)
432 #define M6812_OP_PSHY (0x35)
433
434 /* Operand extraction. */
435 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
436 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
437 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
438 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
439
440 /* Identification of the sequence. */
441 enum m6811_seq_type
442 {
443 P_LAST = 0,
444 P_SAVE_REG, /* Save a register on the stack. */
445 P_SET_FRAME, /* Setup the frame pointer. */
446 P_LOCAL_1, /* Allocate 1 byte for locals. */
447 P_LOCAL_2, /* Allocate 2 bytes for locals. */
448 P_LOCAL_N /* Allocate N bytes for locals. */
449 };
450
451 struct insn_sequence {
452 enum m6811_seq_type type;
453 unsigned length;
454 unsigned short code[MAX_CODES];
455 };
456
457 /* Sequence of instructions in the 68HC11 function prologue. */
458 static struct insn_sequence m6811_prologue[] = {
459 /* Sequences to save a soft-register. */
460 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
461 M6811_OP_PSHX } },
462 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
463 M6811_OP_PAGE2, M6811_OP_PSHX } },
464 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
465 M6811_OP_PSHX } },
466 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
467 M6811_OP_PAGE2, M6811_OP_PSHX } },
468
469 /* Sequences to allocate local variables. */
470 { P_LOCAL_N, 7, { M6811_OP_TSX,
471 M6811_OP_XGDX,
472 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
473 M6811_OP_XGDX,
474 M6811_OP_TXS } },
475 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
476 M6811_OP_PAGE2, M6811_OP_XGDX,
477 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
478 M6811_OP_PAGE2, M6811_OP_XGDX,
479 M6811_OP_PAGE2, M6811_OP_TXS } },
480 { P_LOCAL_1, 1, { M6811_OP_DES } },
481 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
482 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
483
484 /* Initialize the frame pointer. */
485 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
486 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
487 { P_LAST, 0, { 0 } }
488 };
489
490
491 /* Sequence of instructions in the 68HC12 function prologue. */
492 static struct insn_sequence m6812_prologue[] = {
493 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
494 OP_IMM_HIGH, OP_IMM_LOW } },
495 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
496 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
497 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
498 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
499 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
500 { P_LAST, 0 }
501 };
502
503
504 /* Analyze the sequence of instructions starting at the given address.
505 Returns a pointer to the sequence when it is recognized and
506 the optional value (constant/address) associated with it. */
507 static struct insn_sequence *
508 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
509 CORE_ADDR *val)
510 {
511 unsigned char buffer[MAX_CODES];
512 unsigned bufsize;
513 unsigned j;
514 CORE_ADDR cur_val;
515 short v = 0;
516
517 bufsize = 0;
518 for (; seq->type != P_LAST; seq++)
519 {
520 cur_val = 0;
521 for (j = 0; j < seq->length; j++)
522 {
523 if (bufsize < j + 1)
524 {
525 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
526 1);
527 bufsize++;
528 }
529 /* Continue while we match the opcode. */
530 if (seq->code[j] == buffer[j])
531 continue;
532
533 if ((seq->code[j] & 0xf00) == 0)
534 break;
535
536 /* Extract a sequence parameter (address or constant). */
537 switch (seq->code[j])
538 {
539 case OP_DIRECT:
540 cur_val = (CORE_ADDR) buffer[j];
541 break;
542
543 case OP_IMM_HIGH:
544 cur_val = cur_val & 0x0ff;
545 cur_val |= (buffer[j] << 8);
546 break;
547
548 case OP_IMM_LOW:
549 cur_val &= 0x0ff00;
550 cur_val |= buffer[j];
551 break;
552
553 case OP_PBYTE:
554 if ((buffer[j] & 0xE0) == 0x80)
555 {
556 v = buffer[j] & 0x1f;
557 if (v & 0x10)
558 v |= 0xfff0;
559 }
560 else if ((buffer[j] & 0xfe) == 0xf0)
561 {
562 v = read_memory_unsigned_integer (pc + j + 1, 1);
563 if (buffer[j] & 1)
564 v |= 0xff00;
565 }
566 else if (buffer[j] == 0xf2)
567 {
568 v = read_memory_unsigned_integer (pc + j + 1, 2);
569 }
570 cur_val = v;
571 break;
572 }
573 }
574
575 /* We have a full match. */
576 if (j == seq->length)
577 {
578 *val = cur_val;
579 return seq;
580 }
581 }
582 return 0;
583 }
584
585 /* Return the instruction that the function at the PC is using. */
586 static enum insn_return_kind
587 m68hc11_get_return_insn (CORE_ADDR pc)
588 {
589 struct minimal_symbol *sym;
590
591 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
592 function is stored by elfread.c in the high bit of the info field.
593 Use this to decide which instruction the function uses to return. */
594 sym = lookup_minimal_symbol_by_pc (pc);
595 if (sym == 0)
596 return RETURN_RTS;
597
598 if (MSYMBOL_IS_RTC (sym))
599 return RETURN_RTC;
600 else if (MSYMBOL_IS_RTI (sym))
601 return RETURN_RTI;
602 else
603 return RETURN_RTS;
604 }
605
606 /* Analyze the function prologue to find some information
607 about the function:
608 - the PC of the first line (for m68hc11_skip_prologue)
609 - the offset of the previous frame saved address (from current frame)
610 - the soft registers which are pushed. */
611 static CORE_ADDR
612 m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
613 struct m68hc11_unwind_cache *info)
614 {
615 LONGEST save_addr;
616 CORE_ADDR func_end;
617 int size;
618 int found_frame_point;
619 int saved_reg;
620 int done = 0;
621 struct insn_sequence *seq_table;
622
623 info->size = 0;
624 info->sp_offset = 0;
625 if (pc >= current_pc)
626 return current_pc;
627
628 size = 0;
629
630 m68hc11_initialize_register_info ();
631 if (pc == 0)
632 {
633 info->size = 0;
634 return pc;
635 }
636
637 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
638
639 /* The 68hc11 stack is as follows:
640
641
642 | |
643 +-----------+
644 | |
645 | args |
646 | |
647 +-----------+
648 | PC-return |
649 +-----------+
650 | Old frame |
651 +-----------+
652 | |
653 | Locals |
654 | |
655 +-----------+ <--- current frame
656 | |
657
658 With most processors (like 68K) the previous frame can be computed
659 easily because it is always at a fixed offset (see link/unlink).
660 That is, locals are accessed with negative offsets, arguments are
661 accessed with positive ones. Since 68hc11 only supports offsets
662 in the range [0..255], the frame is defined at the bottom of
663 locals (see picture).
664
665 The purpose of the analysis made here is to find out the size
666 of locals in this function. An alternative to this is to use
667 DWARF2 info. This would be better but I don't know how to
668 access dwarf2 debug from this function.
669
670 Walk from the function entry point to the point where we save
671 the frame. While walking instructions, compute the size of bytes
672 which are pushed. This gives us the index to access the previous
673 frame.
674
675 We limit the search to 128 bytes so that the algorithm is bounded
676 in case of random and wrong code. We also stop and abort if
677 we find an instruction which is not supposed to appear in the
678 prologue (as generated by gcc 2.95, 2.96).
679 */
680 func_end = pc + 128;
681 found_frame_point = 0;
682 info->size = 0;
683 save_addr = 0;
684 while (!done && pc + 2 < func_end)
685 {
686 struct insn_sequence *seq;
687 CORE_ADDR val;
688
689 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
690 if (seq == 0)
691 break;
692
693 /* If we are within the instruction group, we can't advance the
694 pc nor the stack offset. Otherwise the caller's stack computed
695 from the current stack can be wrong. */
696 if (pc + seq->length > current_pc)
697 break;
698
699 pc = pc + seq->length;
700 if (seq->type == P_SAVE_REG)
701 {
702 if (found_frame_point)
703 {
704 saved_reg = m68hc11_which_soft_register (val);
705 if (saved_reg < 0)
706 break;
707
708 save_addr -= 2;
709 info->saved_regs[saved_reg].addr = save_addr;
710 }
711 else
712 {
713 size += 2;
714 }
715 }
716 else if (seq->type == P_SET_FRAME)
717 {
718 found_frame_point = 1;
719 info->size = size;
720 }
721 else if (seq->type == P_LOCAL_1)
722 {
723 size += 1;
724 }
725 else if (seq->type == P_LOCAL_2)
726 {
727 size += 2;
728 }
729 else if (seq->type == P_LOCAL_N)
730 {
731 /* Stack pointer is decremented for the allocation. */
732 if (val & 0x8000)
733 size -= (int) (val) | 0xffff0000;
734 else
735 size -= val;
736 }
737 }
738 if (found_frame_point == 0)
739 info->sp_offset = size;
740 else
741 info->sp_offset = -1;
742 return pc;
743 }
744
745 static CORE_ADDR
746 m68hc11_skip_prologue (CORE_ADDR pc)
747 {
748 CORE_ADDR func_addr, func_end;
749 struct symtab_and_line sal;
750 struct m68hc11_unwind_cache tmp_cache = { 0 };
751
752 /* If we have line debugging information, then the end of the
753 prologue should be the first assembly instruction of the
754 first source line. */
755 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
756 {
757 sal = find_pc_line (func_addr, 0);
758 if (sal.end && sal.end < func_end)
759 return sal.end;
760 }
761
762 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
763 return pc;
764 }
765
766 static CORE_ADDR
767 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
768 {
769 ULONGEST pc;
770
771 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
772 &pc);
773 return pc;
774 }
775
776 /* Put here the code to store, into fi->saved_regs, the addresses of
777 the saved registers of frame described by FRAME_INFO. This
778 includes special registers such as pc and fp saved in special ways
779 in the stack frame. sp is even more special: the address we return
780 for it IS the sp for the next frame. */
781
782 struct m68hc11_unwind_cache *
783 m68hc11_frame_unwind_cache (struct frame_info *next_frame,
784 void **this_prologue_cache)
785 {
786 ULONGEST prev_sp;
787 ULONGEST this_base;
788 struct m68hc11_unwind_cache *info;
789 CORE_ADDR current_pc;
790 int i;
791
792 if ((*this_prologue_cache))
793 return (*this_prologue_cache);
794
795 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
796 (*this_prologue_cache) = info;
797 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
798
799 info->pc = frame_func_unwind (next_frame);
800
801 info->size = 0;
802 info->return_kind = m68hc11_get_return_insn (info->pc);
803
804 /* The SP was moved to the FP. This indicates that a new frame
805 was created. Get THIS frame's FP value by unwinding it from
806 the next frame. */
807 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
808 if (this_base == 0)
809 {
810 info->base = 0;
811 return info;
812 }
813
814 current_pc = frame_pc_unwind (next_frame);
815 if (info->pc != 0)
816 m68hc11_scan_prologue (info->pc, current_pc, info);
817
818 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
819
820 if (info->sp_offset != (CORE_ADDR) -1)
821 {
822 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
823 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
824 prev_sp = this_base + info->sp_offset + 2;
825 this_base += STACK_CORRECTION;
826 }
827 else
828 {
829 /* The FP points at the last saved register. Adjust the FP back
830 to before the first saved register giving the SP. */
831 prev_sp = this_base + info->size + 2;
832
833 this_base += STACK_CORRECTION;
834 if (soft_regs[SOFT_FP_REGNUM].name)
835 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
836 }
837
838 if (info->return_kind == RETURN_RTC)
839 {
840 prev_sp += 1;
841 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
842 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
843 }
844 else if (info->return_kind == RETURN_RTI)
845 {
846 prev_sp += 7;
847 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
848 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
849 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
850 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
851 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
852 }
853
854 /* Add 1 here to adjust for the post-decrement nature of the push
855 instruction.*/
856 info->prev_sp = prev_sp;
857
858 info->base = this_base;
859
860 /* Adjust all the saved registers so that they contain addresses and not
861 offsets. */
862 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
863 if (trad_frame_addr_p (info->saved_regs, i))
864 {
865 info->saved_regs[i].addr += this_base;
866 }
867
868 /* The previous frame's SP needed to be computed. Save the computed
869 value. */
870 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
871
872 return info;
873 }
874
875 /* Given a GDB frame, determine the address of the calling function's
876 frame. This will be used to create a new GDB frame struct. */
877
878 static void
879 m68hc11_frame_this_id (struct frame_info *next_frame,
880 void **this_prologue_cache,
881 struct frame_id *this_id)
882 {
883 struct m68hc11_unwind_cache *info
884 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
885 CORE_ADDR base;
886 CORE_ADDR func;
887 struct frame_id id;
888
889 /* The FUNC is easy. */
890 func = frame_func_unwind (next_frame);
891
892 /* Hopefully the prologue analysis either correctly determined the
893 frame's base (which is the SP from the previous frame), or set
894 that base to "NULL". */
895 base = info->prev_sp;
896 if (base == 0)
897 return;
898
899 id = frame_id_build (base, func);
900 #if 0
901 /* Check that we're not going round in circles with the same frame
902 ID (but avoid applying the test to sentinel frames which do go
903 round in circles). Can't use frame_id_eq() as that doesn't yet
904 compare the frame's PC value. */
905 if (frame_relative_level (next_frame) >= 0
906 && get_frame_type (next_frame) != DUMMY_FRAME
907 && frame_id_eq (get_frame_id (next_frame), id))
908 return;
909 #endif
910 (*this_id) = id;
911 }
912
913 static void
914 m68hc11_frame_prev_register (struct frame_info *next_frame,
915 void **this_prologue_cache,
916 int regnum, int *optimizedp,
917 enum lval_type *lvalp, CORE_ADDR *addrp,
918 int *realnump, void *bufferp)
919 {
920 struct m68hc11_unwind_cache *info
921 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
922
923 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
924 optimizedp, lvalp, addrp, realnump, bufferp);
925
926 if (regnum == HARD_PC_REGNUM)
927 {
928 /* Take into account the 68HC12 specific call (PC + page). */
929 if (info->return_kind == RETURN_RTC
930 && *addrp >= 0x08000 && *addrp < 0x0c000
931 && USE_PAGE_REGISTER)
932 {
933 int page_optimized;
934
935 CORE_ADDR page;
936
937 trad_frame_prev_register (next_frame, info->saved_regs,
938 HARD_PAGE_REGNUM, &page_optimized,
939 0, &page, 0, 0);
940 *addrp -= 0x08000;
941 *addrp += ((page & 0x0ff) << 14);
942 *addrp += 0x1000000;
943 }
944 }
945 }
946
947 static const struct frame_unwind m68hc11_frame_unwind = {
948 NORMAL_FRAME,
949 m68hc11_frame_this_id,
950 m68hc11_frame_prev_register
951 };
952
953 const struct frame_unwind *
954 m68hc11_frame_sniffer (struct frame_info *next_frame)
955 {
956 return &m68hc11_frame_unwind;
957 }
958
959 static CORE_ADDR
960 m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
961 {
962 struct m68hc11_unwind_cache *info
963 = m68hc11_frame_unwind_cache (next_frame, this_cache);
964
965 return info->base;
966 }
967
968 static CORE_ADDR
969 m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
970 {
971 CORE_ADDR addr;
972 struct m68hc11_unwind_cache *info
973 = m68hc11_frame_unwind_cache (next_frame, this_cache);
974
975 addr = info->base + info->size;
976 if (info->return_kind == RETURN_RTC)
977 addr += 1;
978 else if (info->return_kind == RETURN_RTI)
979 addr += 7;
980
981 return addr;
982 }
983
984 static const struct frame_base m68hc11_frame_base = {
985 &m68hc11_frame_unwind,
986 m68hc11_frame_base_address,
987 m68hc11_frame_base_address,
988 m68hc11_frame_args_address
989 };
990
991 static CORE_ADDR
992 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
993 {
994 ULONGEST sp;
995 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
996 return sp;
997 }
998
999 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1000 dummy frame. The frame ID's base needs to match the TOS value
1001 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1002 breakpoint. */
1003
1004 static struct frame_id
1005 m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1006 {
1007 ULONGEST tos;
1008 CORE_ADDR pc = frame_pc_unwind (next_frame);
1009
1010 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1011 tos += 2;
1012 return frame_id_build (tos, pc);
1013 }
1014
1015 \f
1016 /* Get and print the register from the given frame. */
1017 static void
1018 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1019 struct frame_info *frame, int regno)
1020 {
1021 LONGEST rval;
1022
1023 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1024 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1025 rval = get_frame_register_unsigned (frame, regno);
1026 else
1027 rval = get_frame_register_signed (frame, regno);
1028
1029 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1030 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1031 {
1032 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1033 if (regno != HARD_CCR_REGNUM)
1034 print_longest (file, 'd', 1, rval);
1035 }
1036 else
1037 {
1038 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1039 {
1040 ULONGEST page;
1041
1042 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1043 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1044 (unsigned) rval);
1045 }
1046 else
1047 {
1048 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1049 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1050 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1051 print_longest (file, 'd', 1, rval);
1052 }
1053 }
1054
1055 if (regno == HARD_CCR_REGNUM)
1056 {
1057 /* CCR register */
1058 int C, Z, N, V;
1059 unsigned char l = rval & 0xff;
1060
1061 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1062 l & M6811_S_BIT ? 'S' : '-',
1063 l & M6811_X_BIT ? 'X' : '-',
1064 l & M6811_H_BIT ? 'H' : '-',
1065 l & M6811_I_BIT ? 'I' : '-',
1066 l & M6811_N_BIT ? 'N' : '-',
1067 l & M6811_Z_BIT ? 'Z' : '-',
1068 l & M6811_V_BIT ? 'V' : '-',
1069 l & M6811_C_BIT ? 'C' : '-');
1070 N = (l & M6811_N_BIT) != 0;
1071 Z = (l & M6811_Z_BIT) != 0;
1072 V = (l & M6811_V_BIT) != 0;
1073 C = (l & M6811_C_BIT) != 0;
1074
1075 /* Print flags following the h8300 */
1076 if ((C | Z) == 0)
1077 fprintf_filtered (file, "u> ");
1078 else if ((C | Z) == 1)
1079 fprintf_filtered (file, "u<= ");
1080 else if (C == 0)
1081 fprintf_filtered (file, "u< ");
1082
1083 if (Z == 0)
1084 fprintf_filtered (file, "!= ");
1085 else
1086 fprintf_filtered (file, "== ");
1087
1088 if ((N ^ V) == 0)
1089 fprintf_filtered (file, ">= ");
1090 else
1091 fprintf_filtered (file, "< ");
1092
1093 if ((Z | (N ^ V)) == 0)
1094 fprintf_filtered (file, "> ");
1095 else
1096 fprintf_filtered (file, "<= ");
1097 }
1098 }
1099
1100 /* Same as 'info reg' but prints the registers in a different way. */
1101 static void
1102 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1103 struct frame_info *frame, int regno, int cpregs)
1104 {
1105 if (regno >= 0)
1106 {
1107 const char *name = gdbarch_register_name (gdbarch, regno);
1108
1109 if (!name || !*name)
1110 return;
1111
1112 fprintf_filtered (file, "%-10s ", name);
1113 m68hc11_print_register (gdbarch, file, frame, regno);
1114 fprintf_filtered (file, "\n");
1115 }
1116 else
1117 {
1118 int i, nr;
1119
1120 fprintf_filtered (file, "PC=");
1121 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1122
1123 fprintf_filtered (file, " SP=");
1124 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1125
1126 fprintf_filtered (file, " FP=");
1127 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1128
1129 fprintf_filtered (file, "\nCCR=");
1130 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1131
1132 fprintf_filtered (file, "\nD=");
1133 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1134
1135 fprintf_filtered (file, " X=");
1136 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1137
1138 fprintf_filtered (file, " Y=");
1139 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1140
1141 if (gdbarch_tdep (gdbarch)->use_page_register)
1142 {
1143 fprintf_filtered (file, "\nPage=");
1144 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1145 }
1146 fprintf_filtered (file, "\n");
1147
1148 nr = 0;
1149 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1150 {
1151 /* Skip registers which are not defined in the symbol table. */
1152 if (soft_regs[i].name == 0)
1153 continue;
1154
1155 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1156 m68hc11_print_register (gdbarch, file, frame, i);
1157 nr++;
1158 if ((nr % 8) == 7)
1159 fprintf_filtered (file, "\n");
1160 else
1161 fprintf_filtered (file, " ");
1162 }
1163 if (nr && (nr % 8) != 7)
1164 fprintf_filtered (file, "\n");
1165 }
1166 }
1167
1168 /* Same as 'info reg' but prints the registers in a different way. */
1169 static void
1170 show_regs (char *args, int from_tty)
1171 {
1172 m68hc11_print_registers_info (current_gdbarch, gdb_stdout,
1173 get_current_frame (), -1, 1);
1174 }
1175
1176 static CORE_ADDR
1177 m68hc11_stack_align (CORE_ADDR addr)
1178 {
1179 return ((addr + 1) & -2);
1180 }
1181
1182 static CORE_ADDR
1183 m68hc11_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1184 struct regcache *regcache, CORE_ADDR bp_addr,
1185 int nargs, struct value **args, CORE_ADDR sp,
1186 int struct_return, CORE_ADDR struct_addr)
1187 {
1188 int argnum;
1189 int first_stack_argnum;
1190 struct type *type;
1191 char *val;
1192 int len;
1193 char buf[2];
1194
1195 first_stack_argnum = 0;
1196 if (struct_return)
1197 {
1198 /* The struct is allocated on the stack and gdb used the stack
1199 pointer for the address of that struct. We must apply the
1200 stack offset on the address. */
1201 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM,
1202 struct_addr + STACK_CORRECTION);
1203 }
1204 else if (nargs > 0)
1205 {
1206 type = VALUE_TYPE (args[0]);
1207 len = TYPE_LENGTH (type);
1208
1209 /* First argument is passed in D and X registers. */
1210 if (len <= 4)
1211 {
1212 ULONGEST v;
1213
1214 v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
1215 first_stack_argnum = 1;
1216
1217 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1218 if (len > 2)
1219 {
1220 v >>= 16;
1221 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1222 }
1223 }
1224 }
1225
1226 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1227 {
1228 type = VALUE_TYPE (args[argnum]);
1229 len = TYPE_LENGTH (type);
1230
1231 if (len & 1)
1232 {
1233 static char zero = 0;
1234
1235 sp--;
1236 write_memory (sp, &zero, 1);
1237 }
1238 val = (char*) VALUE_CONTENTS (args[argnum]);
1239 sp -= len;
1240 write_memory (sp, val, len);
1241 }
1242
1243 /* Store return address. */
1244 sp -= 2;
1245 store_unsigned_integer (buf, 2, bp_addr);
1246 write_memory (sp, buf, 2);
1247
1248 /* Finally, update the stack pointer... */
1249 sp -= STACK_CORRECTION;
1250 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1251
1252 /* ...and fake a frame pointer. */
1253 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1254
1255 /* DWARF2/GCC uses the stack address *before* the function call as a
1256 frame's CFA. */
1257 return sp + 2;
1258 }
1259
1260
1261 /* Return the GDB type object for the "standard" data type
1262 of data in register N. */
1263
1264 static struct type *
1265 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1266 {
1267 switch (reg_nr)
1268 {
1269 case HARD_PAGE_REGNUM:
1270 case HARD_A_REGNUM:
1271 case HARD_B_REGNUM:
1272 case HARD_CCR_REGNUM:
1273 return builtin_type_uint8;
1274
1275 case M68HC12_HARD_PC_REGNUM:
1276 return builtin_type_uint32;
1277
1278 default:
1279 return builtin_type_uint16;
1280 }
1281 }
1282
1283 static void
1284 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1285 const void *valbuf)
1286 {
1287 int len;
1288
1289 len = TYPE_LENGTH (type);
1290
1291 /* First argument is passed in D and X registers. */
1292 if (len <= 2)
1293 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1294 else if (len <= 4)
1295 {
1296 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1297 len - 2, valbuf);
1298 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1299 }
1300 else
1301 error ("return of value > 4 is not supported.");
1302 }
1303
1304
1305 /* Given a return value in `regcache' with a type `type',
1306 extract and copy its value into `valbuf'. */
1307
1308 static void
1309 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1310 void *valbuf)
1311 {
1312 int len = TYPE_LENGTH (type);
1313 char buf[M68HC11_REG_SIZE];
1314
1315 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1316 switch (len)
1317 {
1318 case 1:
1319 memcpy (valbuf, buf + 1, 1);
1320 break;
1321
1322 case 2:
1323 memcpy (valbuf, buf, 2);
1324 break;
1325
1326 case 3:
1327 memcpy ((char*) valbuf + 1, buf, 2);
1328 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1329 memcpy (valbuf, buf + 1, 1);
1330 break;
1331
1332 case 4:
1333 memcpy ((char*) valbuf + 2, buf, 2);
1334 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1335 memcpy (valbuf, buf, 2);
1336 break;
1337
1338 default:
1339 error ("bad size for return value");
1340 }
1341 }
1342
1343 /* Should call_function allocate stack space for a struct return? */
1344 static int
1345 m68hc11_use_struct_convention (int gcc_p, struct type *type)
1346 {
1347 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1348 || TYPE_CODE (type) == TYPE_CODE_UNION
1349 || TYPE_LENGTH (type) > 4);
1350 }
1351
1352 static int
1353 m68hc11_return_value_on_stack (struct type *type)
1354 {
1355 return TYPE_LENGTH (type) > 4;
1356 }
1357
1358 /* Extract from an array REGBUF containing the (raw) register state
1359 the address in which a function should return its structure value,
1360 as a CORE_ADDR (or an expression that can be used as one). */
1361 static CORE_ADDR
1362 m68hc11_extract_struct_value_address (struct regcache *regcache)
1363 {
1364 char buf[M68HC11_REG_SIZE];
1365
1366 regcache_cooked_read (regcache, HARD_D_REGNUM, buf);
1367 return extract_unsigned_integer (buf, M68HC11_REG_SIZE);
1368 }
1369
1370 /* Test whether the ELF symbol corresponds to a function using rtc or
1371 rti to return. */
1372
1373 static void
1374 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1375 {
1376 unsigned char flags;
1377
1378 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1379 if (flags & STO_M68HC12_FAR)
1380 MSYMBOL_SET_RTC (msym);
1381 if (flags & STO_M68HC12_INTERRUPT)
1382 MSYMBOL_SET_RTI (msym);
1383 }
1384
1385 static int
1386 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1387 {
1388 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1389 return print_insn_m68hc11 (memaddr, info);
1390 else
1391 return print_insn_m68hc12 (memaddr, info);
1392 }
1393
1394 \f
1395
1396 /* 68HC11/68HC12 register groups.
1397 Identify real hard registers and soft registers used by gcc. */
1398
1399 static struct reggroup *m68hc11_soft_reggroup;
1400 static struct reggroup *m68hc11_hard_reggroup;
1401
1402 static void
1403 m68hc11_init_reggroups (void)
1404 {
1405 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1406 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1407 }
1408
1409 static void
1410 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1411 {
1412 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1413 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1414 reggroup_add (gdbarch, general_reggroup);
1415 reggroup_add (gdbarch, float_reggroup);
1416 reggroup_add (gdbarch, all_reggroup);
1417 reggroup_add (gdbarch, save_reggroup);
1418 reggroup_add (gdbarch, restore_reggroup);
1419 reggroup_add (gdbarch, vector_reggroup);
1420 reggroup_add (gdbarch, system_reggroup);
1421 }
1422
1423 static int
1424 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1425 struct reggroup *group)
1426 {
1427 /* We must save the real hard register as well as gcc
1428 soft registers including the frame pointer. */
1429 if (group == save_reggroup || group == restore_reggroup)
1430 {
1431 return (regnum <= gdbarch_num_regs (gdbarch)
1432 || ((regnum == SOFT_FP_REGNUM
1433 || regnum == SOFT_TMP_REGNUM
1434 || regnum == SOFT_ZS_REGNUM
1435 || regnum == SOFT_XY_REGNUM)
1436 && m68hc11_register_name (regnum)));
1437 }
1438
1439 /* Group to identify gcc soft registers (d1..dN). */
1440 if (group == m68hc11_soft_reggroup)
1441 {
1442 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1443 }
1444
1445 if (group == m68hc11_hard_reggroup)
1446 {
1447 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1448 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1449 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1450 }
1451 return default_register_reggroup_p (gdbarch, regnum, group);
1452 }
1453
1454 static struct gdbarch *
1455 m68hc11_gdbarch_init (struct gdbarch_info info,
1456 struct gdbarch_list *arches)
1457 {
1458 struct gdbarch *gdbarch;
1459 struct gdbarch_tdep *tdep;
1460 int elf_flags;
1461
1462 soft_reg_initialized = 0;
1463
1464 /* Extract the elf_flags if available. */
1465 if (info.abfd != NULL
1466 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1467 elf_flags = elf_elfheader (info.abfd)->e_flags;
1468 else
1469 elf_flags = 0;
1470
1471 /* try to find a pre-existing architecture */
1472 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1473 arches != NULL;
1474 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1475 {
1476 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1477 continue;
1478
1479 return arches->gdbarch;
1480 }
1481
1482 /* Need a new architecture. Fill in a target specific vector. */
1483 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1484 gdbarch = gdbarch_alloc (&info, tdep);
1485 tdep->elf_flags = elf_flags;
1486
1487 switch (info.bfd_arch_info->arch)
1488 {
1489 case bfd_arch_m68hc11:
1490 tdep->stack_correction = 1;
1491 tdep->use_page_register = 0;
1492 tdep->prologue = m6811_prologue;
1493 set_gdbarch_addr_bit (gdbarch, 16);
1494 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1495 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1496 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1497 break;
1498
1499 case bfd_arch_m68hc12:
1500 tdep->stack_correction = 0;
1501 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1502 tdep->prologue = m6812_prologue;
1503 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1504 set_gdbarch_num_pseudo_regs (gdbarch,
1505 elf_flags & E_M68HC12_BANKS
1506 ? M68HC12_NUM_PSEUDO_REGS
1507 : M68HC11_NUM_PSEUDO_REGS);
1508 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1509 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1510 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1511 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1512 break;
1513
1514 default:
1515 break;
1516 }
1517
1518 /* Initially set everything according to the ABI.
1519 Use 16-bit integers since it will be the case for most
1520 programs. The size of these types should normally be set
1521 according to the dwarf2 debug information. */
1522 set_gdbarch_short_bit (gdbarch, 16);
1523 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1524 set_gdbarch_float_bit (gdbarch, 32);
1525 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1526 set_gdbarch_long_double_bit (gdbarch, 64);
1527 set_gdbarch_long_bit (gdbarch, 32);
1528 set_gdbarch_ptr_bit (gdbarch, 16);
1529 set_gdbarch_long_long_bit (gdbarch, 64);
1530
1531 /* Characters are unsigned. */
1532 set_gdbarch_char_signed (gdbarch, 0);
1533
1534 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1535 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1536
1537 /* Set register info. */
1538 set_gdbarch_fp0_regnum (gdbarch, -1);
1539 set_gdbarch_frame_args_skip (gdbarch, 0);
1540
1541 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1542
1543 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1544 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1545 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1546 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1547 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1548
1549 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1550
1551 set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
1552 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1553
1554 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1555 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1556 set_gdbarch_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
1557 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1558 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1559 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1560 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1561 set_gdbarch_deprecated_stack_align (gdbarch, m68hc11_stack_align);
1562 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1563
1564 m68hc11_add_reggroups (gdbarch);
1565 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1566 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1567
1568 /* Hook in the DWARF CFI frame unwinder. */
1569 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1570
1571 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1572 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1573
1574 /* Methods for saving / extracting a dummy frame's ID. The ID's
1575 stack address must match the SP value returned by
1576 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1577 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1578
1579 /* Return the unwound PC value. */
1580 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1581
1582 /* Minsymbol frobbing. */
1583 set_gdbarch_elf_make_msymbol_special (gdbarch,
1584 m68hc11_elf_make_msymbol_special);
1585
1586 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1587
1588 return gdbarch;
1589 }
1590
1591 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1592
1593 void
1594 _initialize_m68hc11_tdep (void)
1595 {
1596 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1597 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1598 m68hc11_init_reggroups ();
1599
1600 deprecate_cmd (add_com ("regs", class_vars, show_regs,
1601 "Print all registers"),
1602 "info registers");
1603 }
1604
This page took 0.06349 seconds and 5 git commands to generate.