Add some more casts (1/2)
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
4
5 Contributed by Stephane Carrez, stcarrez@nerim.fr
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "trad-frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41
42 #include "target.h"
43 #include "opcode/m68hc11.h"
44 #include "elf/m68hc11.h"
45 #include "elf-bfd.h"
46
47 /* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
53
54 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
55 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
56 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
57 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
58
59 #define MSYMBOL_SET_RTC(msym) \
60 MSYMBOL_TARGET_FLAG_1 (msym) = 1
61
62 #define MSYMBOL_SET_RTI(msym) \
63 MSYMBOL_TARGET_FLAG_2 (msym) = 1
64
65 #define MSYMBOL_IS_RTC(msym) \
66 MSYMBOL_TARGET_FLAG_1 (msym)
67
68 #define MSYMBOL_IS_RTI(msym) \
69 MSYMBOL_TARGET_FLAG_2 (msym)
70
71 enum insn_return_kind {
72 RETURN_RTS,
73 RETURN_RTC,
74 RETURN_RTI
75 };
76
77
78 /* Register numbers of various important registers. */
79
80 #define HARD_X_REGNUM 0
81 #define HARD_D_REGNUM 1
82 #define HARD_Y_REGNUM 2
83 #define HARD_SP_REGNUM 3
84 #define HARD_PC_REGNUM 4
85
86 #define HARD_A_REGNUM 5
87 #define HARD_B_REGNUM 6
88 #define HARD_CCR_REGNUM 7
89
90 /* 68HC12 page number register.
91 Note: to keep a compatibility with gcc register naming, we must
92 not have to rename FP and other soft registers. The page register
93 is a real hard register and must therefore be counted by gdbarch_num_regs.
94 For this it has the same number as Z register (which is not used). */
95 #define HARD_PAGE_REGNUM 8
96 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
97
98 /* Z is replaced by X or Y by gcc during machine reorg.
99 ??? There is no way to get it and even know whether
100 it's in X or Y or in ZS. */
101 #define SOFT_Z_REGNUM 8
102
103 /* Soft registers. These registers are special. There are treated
104 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
105 They are physically located in memory. */
106 #define SOFT_FP_REGNUM 9
107 #define SOFT_TMP_REGNUM 10
108 #define SOFT_ZS_REGNUM 11
109 #define SOFT_XY_REGNUM 12
110 #define SOFT_UNUSED_REGNUM 13
111 #define SOFT_D1_REGNUM 14
112 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
113 #define M68HC11_MAX_SOFT_REGS 32
114
115 #define M68HC11_NUM_REGS (8)
116 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
117 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
118
119 #define M68HC11_REG_SIZE (2)
120
121 #define M68HC12_NUM_REGS (9)
122 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
123 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
124
125 struct insn_sequence;
126 struct gdbarch_tdep
127 {
128 /* Stack pointer correction value. For 68hc11, the stack pointer points
129 to the next push location. An offset of 1 must be applied to obtain
130 the address where the last value is saved. For 68hc12, the stack
131 pointer points to the last value pushed. No offset is necessary. */
132 int stack_correction;
133
134 /* Description of instructions in the prologue. */
135 struct insn_sequence *prologue;
136
137 /* True if the page memory bank register is available
138 and must be used. */
139 int use_page_register;
140
141 /* ELF flags for ABI. */
142 int elf_flags;
143 };
144
145 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
146 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
147
148 struct m68hc11_unwind_cache
149 {
150 /* The previous frame's inner most stack address. Used as this
151 frame ID's stack_addr. */
152 CORE_ADDR prev_sp;
153 /* The frame's base, optionally used by the high-level debug info. */
154 CORE_ADDR base;
155 CORE_ADDR pc;
156 int size;
157 int prologue_type;
158 CORE_ADDR return_pc;
159 CORE_ADDR sp_offset;
160 int frameless;
161 enum insn_return_kind return_kind;
162
163 /* Table indicating the location of each and every register. */
164 struct trad_frame_saved_reg *saved_regs;
165 };
166
167 /* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
169 static char *
170 m68hc11_register_names[] =
171 {
172 "x", "d", "y", "sp", "pc", "a", "b",
173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
179 };
180
181 struct m68hc11_soft_reg
182 {
183 const char *name;
184 CORE_ADDR addr;
185 };
186
187 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
188
189 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
190
191 static int soft_min_addr;
192 static int soft_max_addr;
193 static int soft_reg_initialized = 0;
194
195 /* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
198 static void
199 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
200 {
201 struct bound_minimal_symbol msymbol;
202
203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
204 if (msymbol.minsym)
205 {
206 reg->addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
207 reg->name = xstrdup (name);
208
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
211 soft_min_addr = reg->addr;
212 if (reg->addr > (CORE_ADDR) soft_max_addr)
213 soft_max_addr = reg->addr;
214 }
215 else
216 {
217 reg->name = 0;
218 reg->addr = 0;
219 }
220 }
221
222 /* Initialize the table of soft register addresses according
223 to the symbol table. */
224 static void
225 m68hc11_initialize_register_info (void)
226 {
227 int i;
228
229 if (soft_reg_initialized)
230 return;
231
232 soft_min_addr = INT_MAX;
233 soft_max_addr = 0;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
235 {
236 soft_regs[i].name = 0;
237 }
238
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
244
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
246 {
247 char buf[10];
248
249 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
250 m68hc11_get_register_info (&soft_regs[i], buf);
251 }
252
253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
254 warning (_("No frame soft register found in the symbol table.\n"
255 "Stack backtrace will not work."));
256 soft_reg_initialized = 1;
257 }
258
259 /* Given an address in memory, return the soft register number if
260 that address corresponds to a soft register. Returns -1 if not. */
261 static int
262 m68hc11_which_soft_register (CORE_ADDR addr)
263 {
264 int i;
265
266 if (addr < soft_min_addr || addr > soft_max_addr)
267 return -1;
268
269 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
270 {
271 if (soft_regs[i].name && soft_regs[i].addr == addr)
272 return i;
273 }
274 return -1;
275 }
276
277 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
278 pseudo registers. They are located in memory. Translate the register
279 fetch into a memory read. */
280 static enum register_status
281 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
282 struct regcache *regcache,
283 int regno, gdb_byte *buf)
284 {
285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
286
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
291 ULONGEST pc;
292 const int regsize = 4;
293 enum register_status status;
294
295 status = regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
296 if (status != REG_VALID)
297 return status;
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
300 ULONGEST page;
301
302 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
307 store_unsigned_integer (buf, regsize, byte_order, pc);
308 return REG_VALID;
309 }
310
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
322
323 return REG_VALID;
324 }
325
326 /* Store a pseudo register. Translate the register store
327 into a memory write. */
328 static void
329 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
331 int regno, const gdb_byte *buf)
332 {
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
334
335 /* The PC is a pseudo reg only for 68HC12 with the memory bank
336 addressing mode. */
337 if (regno == M68HC12_HARD_PC_REGNUM)
338 {
339 const int regsize = 4;
340 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
341 CORE_ADDR pc;
342
343 memcpy (tmp, buf, regsize);
344 pc = extract_unsigned_integer (tmp, regsize, byte_order);
345 if (pc >= 0x1000000)
346 {
347 pc -= 0x1000000;
348 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
349 (pc >> 14) & 0x0ff);
350 pc &= 0x03fff;
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
352 pc + 0x8000);
353 }
354 else
355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
356 return;
357 }
358
359 m68hc11_initialize_register_info ();
360
361 /* Store a soft register: translate into a memory write. */
362 if (soft_regs[regno].name)
363 {
364 const int regsize = 2;
365 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
366 memcpy (tmp, buf, regsize);
367 target_write_memory (soft_regs[regno].addr, tmp, regsize);
368 }
369 }
370
371 static const char *
372 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
373 {
374 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
375 return "pc";
376 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
377 return "ppc";
378
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= M68HC11_ALL_REGS)
382 return NULL;
383
384 m68hc11_initialize_register_info ();
385
386 /* If we don't know the address of a soft register, pretend it
387 does not exist. */
388 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
389 return NULL;
390 return m68hc11_register_names[reg_nr];
391 }
392
393 static const unsigned char *
394 m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
395 int *lenptr)
396 {
397 static unsigned char breakpoint[] = {0x0};
398
399 *lenptr = sizeof (breakpoint);
400 return breakpoint;
401 }
402
403 \f
404 /* 68HC11 & 68HC12 prologue analysis. */
405
406 #define MAX_CODES 12
407
408 /* 68HC11 opcodes. */
409 #undef M6811_OP_PAGE2
410 #define M6811_OP_PAGE2 (0x18)
411 #define M6811_OP_LDX (0xde)
412 #define M6811_OP_LDX_EXT (0xfe)
413 #define M6811_OP_PSHX (0x3c)
414 #define M6811_OP_STS (0x9f)
415 #define M6811_OP_STS_EXT (0xbf)
416 #define M6811_OP_TSX (0x30)
417 #define M6811_OP_XGDX (0x8f)
418 #define M6811_OP_ADDD (0xc3)
419 #define M6811_OP_TXS (0x35)
420 #define M6811_OP_DES (0x34)
421
422 /* 68HC12 opcodes. */
423 #define M6812_OP_PAGE2 (0x18)
424 #define M6812_OP_MOVW (0x01)
425 #define M6812_PB_PSHW (0xae)
426 #define M6812_OP_STS (0x5f)
427 #define M6812_OP_STS_EXT (0x7f)
428 #define M6812_OP_LEAS (0x1b)
429 #define M6812_OP_PSHX (0x34)
430 #define M6812_OP_PSHY (0x35)
431
432 /* Operand extraction. */
433 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
434 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
435 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
436 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
437
438 /* Identification of the sequence. */
439 enum m6811_seq_type
440 {
441 P_LAST = 0,
442 P_SAVE_REG, /* Save a register on the stack. */
443 P_SET_FRAME, /* Setup the frame pointer. */
444 P_LOCAL_1, /* Allocate 1 byte for locals. */
445 P_LOCAL_2, /* Allocate 2 bytes for locals. */
446 P_LOCAL_N /* Allocate N bytes for locals. */
447 };
448
449 struct insn_sequence {
450 enum m6811_seq_type type;
451 unsigned length;
452 unsigned short code[MAX_CODES];
453 };
454
455 /* Sequence of instructions in the 68HC11 function prologue. */
456 static struct insn_sequence m6811_prologue[] = {
457 /* Sequences to save a soft-register. */
458 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
459 M6811_OP_PSHX } },
460 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
461 M6811_OP_PAGE2, M6811_OP_PSHX } },
462 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
463 M6811_OP_PSHX } },
464 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
465 M6811_OP_PAGE2, M6811_OP_PSHX } },
466
467 /* Sequences to allocate local variables. */
468 { P_LOCAL_N, 7, { M6811_OP_TSX,
469 M6811_OP_XGDX,
470 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
471 M6811_OP_XGDX,
472 M6811_OP_TXS } },
473 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
474 M6811_OP_PAGE2, M6811_OP_XGDX,
475 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
476 M6811_OP_PAGE2, M6811_OP_XGDX,
477 M6811_OP_PAGE2, M6811_OP_TXS } },
478 { P_LOCAL_1, 1, { M6811_OP_DES } },
479 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
480 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
481
482 /* Initialize the frame pointer. */
483 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
484 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
485 { P_LAST, 0, { 0 } }
486 };
487
488
489 /* Sequence of instructions in the 68HC12 function prologue. */
490 static struct insn_sequence m6812_prologue[] = {
491 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
492 OP_IMM_HIGH, OP_IMM_LOW } },
493 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
494 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
495 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
496 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
497 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
498 { P_LAST, 0 }
499 };
500
501
502 /* Analyze the sequence of instructions starting at the given address.
503 Returns a pointer to the sequence when it is recognized and
504 the optional value (constant/address) associated with it. */
505 static struct insn_sequence *
506 m68hc11_analyze_instruction (struct gdbarch *gdbarch,
507 struct insn_sequence *seq, CORE_ADDR pc,
508 CORE_ADDR *val)
509 {
510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
511 unsigned char buffer[MAX_CODES];
512 unsigned bufsize;
513 unsigned j;
514 CORE_ADDR cur_val;
515 short v = 0;
516
517 bufsize = 0;
518 for (; seq->type != P_LAST; seq++)
519 {
520 cur_val = 0;
521 for (j = 0; j < seq->length; j++)
522 {
523 if (bufsize < j + 1)
524 {
525 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
526 1, byte_order);
527 bufsize++;
528 }
529 /* Continue while we match the opcode. */
530 if (seq->code[j] == buffer[j])
531 continue;
532
533 if ((seq->code[j] & 0xf00) == 0)
534 break;
535
536 /* Extract a sequence parameter (address or constant). */
537 switch (seq->code[j])
538 {
539 case OP_DIRECT:
540 cur_val = (CORE_ADDR) buffer[j];
541 break;
542
543 case OP_IMM_HIGH:
544 cur_val = cur_val & 0x0ff;
545 cur_val |= (buffer[j] << 8);
546 break;
547
548 case OP_IMM_LOW:
549 cur_val &= 0x0ff00;
550 cur_val |= buffer[j];
551 break;
552
553 case OP_PBYTE:
554 if ((buffer[j] & 0xE0) == 0x80)
555 {
556 v = buffer[j] & 0x1f;
557 if (v & 0x10)
558 v |= 0xfff0;
559 }
560 else if ((buffer[j] & 0xfe) == 0xf0)
561 {
562 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
563 if (buffer[j] & 1)
564 v |= 0xff00;
565 }
566 else if (buffer[j] == 0xf2)
567 {
568 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
569 }
570 cur_val = v;
571 break;
572 }
573 }
574
575 /* We have a full match. */
576 if (j == seq->length)
577 {
578 *val = cur_val;
579 return seq;
580 }
581 }
582 return 0;
583 }
584
585 /* Return the instruction that the function at the PC is using. */
586 static enum insn_return_kind
587 m68hc11_get_return_insn (CORE_ADDR pc)
588 {
589 struct bound_minimal_symbol sym;
590
591 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
592 function is stored by elfread.c in the high bit of the info field.
593 Use this to decide which instruction the function uses to return. */
594 sym = lookup_minimal_symbol_by_pc (pc);
595 if (sym.minsym == 0)
596 return RETURN_RTS;
597
598 if (MSYMBOL_IS_RTC (sym.minsym))
599 return RETURN_RTC;
600 else if (MSYMBOL_IS_RTI (sym.minsym))
601 return RETURN_RTI;
602 else
603 return RETURN_RTS;
604 }
605
606 /* Analyze the function prologue to find some information
607 about the function:
608 - the PC of the first line (for m68hc11_skip_prologue)
609 - the offset of the previous frame saved address (from current frame)
610 - the soft registers which are pushed. */
611 static CORE_ADDR
612 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
613 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
614 {
615 LONGEST save_addr;
616 CORE_ADDR func_end;
617 int size;
618 int found_frame_point;
619 int saved_reg;
620 int done = 0;
621 struct insn_sequence *seq_table;
622
623 info->size = 0;
624 info->sp_offset = 0;
625 if (pc >= current_pc)
626 return current_pc;
627
628 size = 0;
629
630 m68hc11_initialize_register_info ();
631 if (pc == 0)
632 {
633 info->size = 0;
634 return pc;
635 }
636
637 seq_table = gdbarch_tdep (gdbarch)->prologue;
638
639 /* The 68hc11 stack is as follows:
640
641
642 | |
643 +-----------+
644 | |
645 | args |
646 | |
647 +-----------+
648 | PC-return |
649 +-----------+
650 | Old frame |
651 +-----------+
652 | |
653 | Locals |
654 | |
655 +-----------+ <--- current frame
656 | |
657
658 With most processors (like 68K) the previous frame can be computed
659 easily because it is always at a fixed offset (see link/unlink).
660 That is, locals are accessed with negative offsets, arguments are
661 accessed with positive ones. Since 68hc11 only supports offsets
662 in the range [0..255], the frame is defined at the bottom of
663 locals (see picture).
664
665 The purpose of the analysis made here is to find out the size
666 of locals in this function. An alternative to this is to use
667 DWARF2 info. This would be better but I don't know how to
668 access dwarf2 debug from this function.
669
670 Walk from the function entry point to the point where we save
671 the frame. While walking instructions, compute the size of bytes
672 which are pushed. This gives us the index to access the previous
673 frame.
674
675 We limit the search to 128 bytes so that the algorithm is bounded
676 in case of random and wrong code. We also stop and abort if
677 we find an instruction which is not supposed to appear in the
678 prologue (as generated by gcc 2.95, 2.96). */
679
680 func_end = pc + 128;
681 found_frame_point = 0;
682 info->size = 0;
683 save_addr = 0;
684 while (!done && pc + 2 < func_end)
685 {
686 struct insn_sequence *seq;
687 CORE_ADDR val;
688
689 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
690 if (seq == 0)
691 break;
692
693 /* If we are within the instruction group, we can't advance the
694 pc nor the stack offset. Otherwise the caller's stack computed
695 from the current stack can be wrong. */
696 if (pc + seq->length > current_pc)
697 break;
698
699 pc = pc + seq->length;
700 if (seq->type == P_SAVE_REG)
701 {
702 if (found_frame_point)
703 {
704 saved_reg = m68hc11_which_soft_register (val);
705 if (saved_reg < 0)
706 break;
707
708 save_addr -= 2;
709 if (info->saved_regs)
710 info->saved_regs[saved_reg].addr = save_addr;
711 }
712 else
713 {
714 size += 2;
715 }
716 }
717 else if (seq->type == P_SET_FRAME)
718 {
719 found_frame_point = 1;
720 info->size = size;
721 }
722 else if (seq->type == P_LOCAL_1)
723 {
724 size += 1;
725 }
726 else if (seq->type == P_LOCAL_2)
727 {
728 size += 2;
729 }
730 else if (seq->type == P_LOCAL_N)
731 {
732 /* Stack pointer is decremented for the allocation. */
733 if (val & 0x8000)
734 size -= (int) (val) | 0xffff0000;
735 else
736 size -= val;
737 }
738 }
739 if (found_frame_point == 0)
740 info->sp_offset = size;
741 else
742 info->sp_offset = -1;
743 return pc;
744 }
745
746 static CORE_ADDR
747 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
748 {
749 CORE_ADDR func_addr, func_end;
750 struct symtab_and_line sal;
751 struct m68hc11_unwind_cache tmp_cache = { 0 };
752
753 /* If we have line debugging information, then the end of the
754 prologue should be the first assembly instruction of the
755 first source line. */
756 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
757 {
758 sal = find_pc_line (func_addr, 0);
759 if (sal.end && sal.end < func_end)
760 return sal.end;
761 }
762
763 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
764 return pc;
765 }
766
767 static CORE_ADDR
768 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
769 {
770 ULONGEST pc;
771
772 pc = frame_unwind_register_unsigned (next_frame,
773 gdbarch_pc_regnum (gdbarch));
774 return pc;
775 }
776
777 /* Put here the code to store, into fi->saved_regs, the addresses of
778 the saved registers of frame described by FRAME_INFO. This
779 includes special registers such as pc and fp saved in special ways
780 in the stack frame. sp is even more special: the address we return
781 for it IS the sp for the next frame. */
782
783 static struct m68hc11_unwind_cache *
784 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
785 void **this_prologue_cache)
786 {
787 struct gdbarch *gdbarch = get_frame_arch (this_frame);
788 ULONGEST prev_sp;
789 ULONGEST this_base;
790 struct m68hc11_unwind_cache *info;
791 CORE_ADDR current_pc;
792 int i;
793
794 if ((*this_prologue_cache))
795 return (struct m68hc11_unwind_cache *) (*this_prologue_cache);
796
797 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
798 (*this_prologue_cache) = info;
799 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
800
801 info->pc = get_frame_func (this_frame);
802
803 info->size = 0;
804 info->return_kind = m68hc11_get_return_insn (info->pc);
805
806 /* The SP was moved to the FP. This indicates that a new frame
807 was created. Get THIS frame's FP value by unwinding it from
808 the next frame. */
809 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
810 if (this_base == 0)
811 {
812 info->base = 0;
813 return info;
814 }
815
816 current_pc = get_frame_pc (this_frame);
817 if (info->pc != 0)
818 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
819
820 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
821
822 if (info->sp_offset != (CORE_ADDR) -1)
823 {
824 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
825 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
826 prev_sp = this_base + info->sp_offset + 2;
827 this_base += STACK_CORRECTION (gdbarch);
828 }
829 else
830 {
831 /* The FP points at the last saved register. Adjust the FP back
832 to before the first saved register giving the SP. */
833 prev_sp = this_base + info->size + 2;
834
835 this_base += STACK_CORRECTION (gdbarch);
836 if (soft_regs[SOFT_FP_REGNUM].name)
837 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
838 }
839
840 if (info->return_kind == RETURN_RTC)
841 {
842 prev_sp += 1;
843 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
844 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
845 }
846 else if (info->return_kind == RETURN_RTI)
847 {
848 prev_sp += 7;
849 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
850 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
851 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
852 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
853 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
854 }
855
856 /* Add 1 here to adjust for the post-decrement nature of the push
857 instruction. */
858 info->prev_sp = prev_sp;
859
860 info->base = this_base;
861
862 /* Adjust all the saved registers so that they contain addresses and not
863 offsets. */
864 for (i = 0;
865 i < gdbarch_num_regs (gdbarch)
866 + gdbarch_num_pseudo_regs (gdbarch) - 1;
867 i++)
868 if (trad_frame_addr_p (info->saved_regs, i))
869 {
870 info->saved_regs[i].addr += this_base;
871 }
872
873 /* The previous frame's SP needed to be computed. Save the computed
874 value. */
875 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
876
877 return info;
878 }
879
880 /* Given a GDB frame, determine the address of the calling function's
881 frame. This will be used to create a new GDB frame struct. */
882
883 static void
884 m68hc11_frame_this_id (struct frame_info *this_frame,
885 void **this_prologue_cache,
886 struct frame_id *this_id)
887 {
888 struct m68hc11_unwind_cache *info
889 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
890 CORE_ADDR base;
891 CORE_ADDR func;
892 struct frame_id id;
893
894 /* The FUNC is easy. */
895 func = get_frame_func (this_frame);
896
897 /* Hopefully the prologue analysis either correctly determined the
898 frame's base (which is the SP from the previous frame), or set
899 that base to "NULL". */
900 base = info->prev_sp;
901 if (base == 0)
902 return;
903
904 id = frame_id_build (base, func);
905 (*this_id) = id;
906 }
907
908 static struct value *
909 m68hc11_frame_prev_register (struct frame_info *this_frame,
910 void **this_prologue_cache, int regnum)
911 {
912 struct value *value;
913 struct m68hc11_unwind_cache *info
914 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
915
916 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
917
918 /* Take into account the 68HC12 specific call (PC + page). */
919 if (regnum == HARD_PC_REGNUM
920 && info->return_kind == RETURN_RTC
921 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
922 {
923 CORE_ADDR pc = value_as_long (value);
924 if (pc >= 0x08000 && pc < 0x0c000)
925 {
926 CORE_ADDR page;
927
928 release_value (value);
929 value_free (value);
930
931 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
932 HARD_PAGE_REGNUM);
933 page = value_as_long (value);
934 release_value (value);
935 value_free (value);
936
937 pc -= 0x08000;
938 pc += ((page & 0x0ff) << 14);
939 pc += 0x1000000;
940
941 return frame_unwind_got_constant (this_frame, regnum, pc);
942 }
943 }
944
945 return value;
946 }
947
948 static const struct frame_unwind m68hc11_frame_unwind = {
949 NORMAL_FRAME,
950 default_frame_unwind_stop_reason,
951 m68hc11_frame_this_id,
952 m68hc11_frame_prev_register,
953 NULL,
954 default_frame_sniffer
955 };
956
957 static CORE_ADDR
958 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
959 {
960 struct m68hc11_unwind_cache *info
961 = m68hc11_frame_unwind_cache (this_frame, this_cache);
962
963 return info->base;
964 }
965
966 static CORE_ADDR
967 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
968 {
969 CORE_ADDR addr;
970 struct m68hc11_unwind_cache *info
971 = m68hc11_frame_unwind_cache (this_frame, this_cache);
972
973 addr = info->base + info->size;
974 if (info->return_kind == RETURN_RTC)
975 addr += 1;
976 else if (info->return_kind == RETURN_RTI)
977 addr += 7;
978
979 return addr;
980 }
981
982 static const struct frame_base m68hc11_frame_base = {
983 &m68hc11_frame_unwind,
984 m68hc11_frame_base_address,
985 m68hc11_frame_base_address,
986 m68hc11_frame_args_address
987 };
988
989 static CORE_ADDR
990 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
991 {
992 ULONGEST sp;
993 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
994 return sp;
995 }
996
997 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
998 frame. The frame ID's base needs to match the TOS value saved by
999 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1000
1001 static struct frame_id
1002 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1003 {
1004 ULONGEST tos;
1005 CORE_ADDR pc = get_frame_pc (this_frame);
1006
1007 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1008 tos += 2;
1009 return frame_id_build (tos, pc);
1010 }
1011
1012 \f
1013 /* Get and print the register from the given frame. */
1014 static void
1015 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1016 struct frame_info *frame, int regno)
1017 {
1018 LONGEST rval;
1019
1020 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1021 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1022 rval = get_frame_register_unsigned (frame, regno);
1023 else
1024 rval = get_frame_register_signed (frame, regno);
1025
1026 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1027 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1028 {
1029 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1030 if (regno != HARD_CCR_REGNUM)
1031 print_longest (file, 'd', 1, rval);
1032 }
1033 else
1034 {
1035 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1036 {
1037 ULONGEST page;
1038
1039 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1040 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1041 (unsigned) rval);
1042 }
1043 else
1044 {
1045 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1046 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1047 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1048 print_longest (file, 'd', 1, rval);
1049 }
1050 }
1051
1052 if (regno == HARD_CCR_REGNUM)
1053 {
1054 /* CCR register */
1055 int C, Z, N, V;
1056 unsigned char l = rval & 0xff;
1057
1058 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1059 l & M6811_S_BIT ? 'S' : '-',
1060 l & M6811_X_BIT ? 'X' : '-',
1061 l & M6811_H_BIT ? 'H' : '-',
1062 l & M6811_I_BIT ? 'I' : '-',
1063 l & M6811_N_BIT ? 'N' : '-',
1064 l & M6811_Z_BIT ? 'Z' : '-',
1065 l & M6811_V_BIT ? 'V' : '-',
1066 l & M6811_C_BIT ? 'C' : '-');
1067 N = (l & M6811_N_BIT) != 0;
1068 Z = (l & M6811_Z_BIT) != 0;
1069 V = (l & M6811_V_BIT) != 0;
1070 C = (l & M6811_C_BIT) != 0;
1071
1072 /* Print flags following the h8300. */
1073 if ((C | Z) == 0)
1074 fprintf_filtered (file, "u> ");
1075 else if ((C | Z) == 1)
1076 fprintf_filtered (file, "u<= ");
1077 else if (C == 0)
1078 fprintf_filtered (file, "u< ");
1079
1080 if (Z == 0)
1081 fprintf_filtered (file, "!= ");
1082 else
1083 fprintf_filtered (file, "== ");
1084
1085 if ((N ^ V) == 0)
1086 fprintf_filtered (file, ">= ");
1087 else
1088 fprintf_filtered (file, "< ");
1089
1090 if ((Z | (N ^ V)) == 0)
1091 fprintf_filtered (file, "> ");
1092 else
1093 fprintf_filtered (file, "<= ");
1094 }
1095 }
1096
1097 /* Same as 'info reg' but prints the registers in a different way. */
1098 static void
1099 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1100 struct frame_info *frame, int regno, int cpregs)
1101 {
1102 if (regno >= 0)
1103 {
1104 const char *name = gdbarch_register_name (gdbarch, regno);
1105
1106 if (!name || !*name)
1107 return;
1108
1109 fprintf_filtered (file, "%-10s ", name);
1110 m68hc11_print_register (gdbarch, file, frame, regno);
1111 fprintf_filtered (file, "\n");
1112 }
1113 else
1114 {
1115 int i, nr;
1116
1117 fprintf_filtered (file, "PC=");
1118 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1119
1120 fprintf_filtered (file, " SP=");
1121 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1122
1123 fprintf_filtered (file, " FP=");
1124 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1125
1126 fprintf_filtered (file, "\nCCR=");
1127 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1128
1129 fprintf_filtered (file, "\nD=");
1130 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1131
1132 fprintf_filtered (file, " X=");
1133 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1134
1135 fprintf_filtered (file, " Y=");
1136 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1137
1138 if (gdbarch_tdep (gdbarch)->use_page_register)
1139 {
1140 fprintf_filtered (file, "\nPage=");
1141 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1142 }
1143 fprintf_filtered (file, "\n");
1144
1145 nr = 0;
1146 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1147 {
1148 /* Skip registers which are not defined in the symbol table. */
1149 if (soft_regs[i].name == 0)
1150 continue;
1151
1152 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1153 m68hc11_print_register (gdbarch, file, frame, i);
1154 nr++;
1155 if ((nr % 8) == 7)
1156 fprintf_filtered (file, "\n");
1157 else
1158 fprintf_filtered (file, " ");
1159 }
1160 if (nr && (nr % 8) != 7)
1161 fprintf_filtered (file, "\n");
1162 }
1163 }
1164
1165 static CORE_ADDR
1166 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1167 struct regcache *regcache, CORE_ADDR bp_addr,
1168 int nargs, struct value **args, CORE_ADDR sp,
1169 int struct_return, CORE_ADDR struct_addr)
1170 {
1171 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1172 int argnum;
1173 int first_stack_argnum;
1174 struct type *type;
1175 const gdb_byte *val;
1176 gdb_byte buf[2];
1177
1178 first_stack_argnum = 0;
1179 if (struct_return)
1180 {
1181 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1182 }
1183 else if (nargs > 0)
1184 {
1185 type = value_type (args[0]);
1186
1187 /* First argument is passed in D and X registers. */
1188 if (TYPE_LENGTH (type) <= 4)
1189 {
1190 ULONGEST v;
1191
1192 v = extract_unsigned_integer (value_contents (args[0]),
1193 TYPE_LENGTH (type), byte_order);
1194 first_stack_argnum = 1;
1195
1196 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1197 if (TYPE_LENGTH (type) > 2)
1198 {
1199 v >>= 16;
1200 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1201 }
1202 }
1203 }
1204
1205 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1206 {
1207 type = value_type (args[argnum]);
1208
1209 if (TYPE_LENGTH (type) & 1)
1210 {
1211 static gdb_byte zero = 0;
1212
1213 sp--;
1214 write_memory (sp, &zero, 1);
1215 }
1216 val = value_contents (args[argnum]);
1217 sp -= TYPE_LENGTH (type);
1218 write_memory (sp, val, TYPE_LENGTH (type));
1219 }
1220
1221 /* Store return address. */
1222 sp -= 2;
1223 store_unsigned_integer (buf, 2, byte_order, bp_addr);
1224 write_memory (sp, buf, 2);
1225
1226 /* Finally, update the stack pointer... */
1227 sp -= STACK_CORRECTION (gdbarch);
1228 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1229
1230 /* ...and fake a frame pointer. */
1231 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1232
1233 /* DWARF2/GCC uses the stack address *before* the function call as a
1234 frame's CFA. */
1235 return sp + 2;
1236 }
1237
1238
1239 /* Return the GDB type object for the "standard" data type
1240 of data in register N. */
1241
1242 static struct type *
1243 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1244 {
1245 switch (reg_nr)
1246 {
1247 case HARD_PAGE_REGNUM:
1248 case HARD_A_REGNUM:
1249 case HARD_B_REGNUM:
1250 case HARD_CCR_REGNUM:
1251 return builtin_type (gdbarch)->builtin_uint8;
1252
1253 case M68HC12_HARD_PC_REGNUM:
1254 return builtin_type (gdbarch)->builtin_uint32;
1255
1256 default:
1257 return builtin_type (gdbarch)->builtin_uint16;
1258 }
1259 }
1260
1261 static void
1262 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1263 const gdb_byte *valbuf)
1264 {
1265 int len;
1266
1267 len = TYPE_LENGTH (type);
1268
1269 /* First argument is passed in D and X registers. */
1270 if (len <= 2)
1271 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1272 else if (len <= 4)
1273 {
1274 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1275 len - 2, valbuf);
1276 regcache_raw_write (regcache, HARD_D_REGNUM, valbuf + (len - 2));
1277 }
1278 else
1279 error (_("return of value > 4 is not supported."));
1280 }
1281
1282
1283 /* Given a return value in `regcache' with a type `type',
1284 extract and copy its value into `valbuf'. */
1285
1286 static void
1287 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1288 void *valbuf)
1289 {
1290 gdb_byte buf[M68HC11_REG_SIZE];
1291
1292 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1293 switch (TYPE_LENGTH (type))
1294 {
1295 case 1:
1296 memcpy (valbuf, buf + 1, 1);
1297 break;
1298
1299 case 2:
1300 memcpy (valbuf, buf, 2);
1301 break;
1302
1303 case 3:
1304 memcpy ((char*) valbuf + 1, buf, 2);
1305 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1306 memcpy (valbuf, buf + 1, 1);
1307 break;
1308
1309 case 4:
1310 memcpy ((char*) valbuf + 2, buf, 2);
1311 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1312 memcpy (valbuf, buf, 2);
1313 break;
1314
1315 default:
1316 error (_("bad size for return value"));
1317 }
1318 }
1319
1320 static enum return_value_convention
1321 m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
1322 struct type *valtype, struct regcache *regcache,
1323 gdb_byte *readbuf, const gdb_byte *writebuf)
1324 {
1325 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1326 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1327 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1328 || TYPE_LENGTH (valtype) > 4)
1329 return RETURN_VALUE_STRUCT_CONVENTION;
1330 else
1331 {
1332 if (readbuf != NULL)
1333 m68hc11_extract_return_value (valtype, regcache, readbuf);
1334 if (writebuf != NULL)
1335 m68hc11_store_return_value (valtype, regcache, writebuf);
1336 return RETURN_VALUE_REGISTER_CONVENTION;
1337 }
1338 }
1339
1340 /* Test whether the ELF symbol corresponds to a function using rtc or
1341 rti to return. */
1342
1343 static void
1344 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1345 {
1346 unsigned char flags;
1347
1348 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1349 if (flags & STO_M68HC12_FAR)
1350 MSYMBOL_SET_RTC (msym);
1351 if (flags & STO_M68HC12_INTERRUPT)
1352 MSYMBOL_SET_RTI (msym);
1353 }
1354
1355 static int
1356 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1357 {
1358 if (info->arch == bfd_arch_m68hc11)
1359 return print_insn_m68hc11 (memaddr, info);
1360 else
1361 return print_insn_m68hc12 (memaddr, info);
1362 }
1363
1364 \f
1365
1366 /* 68HC11/68HC12 register groups.
1367 Identify real hard registers and soft registers used by gcc. */
1368
1369 static struct reggroup *m68hc11_soft_reggroup;
1370 static struct reggroup *m68hc11_hard_reggroup;
1371
1372 static void
1373 m68hc11_init_reggroups (void)
1374 {
1375 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1376 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1377 }
1378
1379 static void
1380 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1381 {
1382 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1383 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1384 reggroup_add (gdbarch, general_reggroup);
1385 reggroup_add (gdbarch, float_reggroup);
1386 reggroup_add (gdbarch, all_reggroup);
1387 reggroup_add (gdbarch, save_reggroup);
1388 reggroup_add (gdbarch, restore_reggroup);
1389 reggroup_add (gdbarch, vector_reggroup);
1390 reggroup_add (gdbarch, system_reggroup);
1391 }
1392
1393 static int
1394 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1395 struct reggroup *group)
1396 {
1397 /* We must save the real hard register as well as gcc
1398 soft registers including the frame pointer. */
1399 if (group == save_reggroup || group == restore_reggroup)
1400 {
1401 return (regnum <= gdbarch_num_regs (gdbarch)
1402 || ((regnum == SOFT_FP_REGNUM
1403 || regnum == SOFT_TMP_REGNUM
1404 || regnum == SOFT_ZS_REGNUM
1405 || regnum == SOFT_XY_REGNUM)
1406 && m68hc11_register_name (gdbarch, regnum)));
1407 }
1408
1409 /* Group to identify gcc soft registers (d1..dN). */
1410 if (group == m68hc11_soft_reggroup)
1411 {
1412 return regnum >= SOFT_D1_REGNUM
1413 && m68hc11_register_name (gdbarch, regnum);
1414 }
1415
1416 if (group == m68hc11_hard_reggroup)
1417 {
1418 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1419 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1420 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1421 }
1422 return default_register_reggroup_p (gdbarch, regnum, group);
1423 }
1424
1425 static struct gdbarch *
1426 m68hc11_gdbarch_init (struct gdbarch_info info,
1427 struct gdbarch_list *arches)
1428 {
1429 struct gdbarch *gdbarch;
1430 struct gdbarch_tdep *tdep;
1431 int elf_flags;
1432
1433 soft_reg_initialized = 0;
1434
1435 /* Extract the elf_flags if available. */
1436 if (info.abfd != NULL
1437 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1438 elf_flags = elf_elfheader (info.abfd)->e_flags;
1439 else
1440 elf_flags = 0;
1441
1442 /* Try to find a pre-existing architecture. */
1443 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1444 arches != NULL;
1445 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1446 {
1447 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1448 continue;
1449
1450 return arches->gdbarch;
1451 }
1452
1453 /* Need a new architecture. Fill in a target specific vector. */
1454 tdep = XNEW (struct gdbarch_tdep);
1455 gdbarch = gdbarch_alloc (&info, tdep);
1456 tdep->elf_flags = elf_flags;
1457
1458 switch (info.bfd_arch_info->arch)
1459 {
1460 case bfd_arch_m68hc11:
1461 tdep->stack_correction = 1;
1462 tdep->use_page_register = 0;
1463 tdep->prologue = m6811_prologue;
1464 set_gdbarch_addr_bit (gdbarch, 16);
1465 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1466 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1467 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1468 break;
1469
1470 case bfd_arch_m68hc12:
1471 tdep->stack_correction = 0;
1472 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1473 tdep->prologue = m6812_prologue;
1474 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1475 set_gdbarch_num_pseudo_regs (gdbarch,
1476 elf_flags & E_M68HC12_BANKS
1477 ? M68HC12_NUM_PSEUDO_REGS
1478 : M68HC11_NUM_PSEUDO_REGS);
1479 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1480 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1481 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1482 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1483 break;
1484
1485 default:
1486 break;
1487 }
1488
1489 /* Initially set everything according to the ABI.
1490 Use 16-bit integers since it will be the case for most
1491 programs. The size of these types should normally be set
1492 according to the dwarf2 debug information. */
1493 set_gdbarch_short_bit (gdbarch, 16);
1494 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1495 set_gdbarch_float_bit (gdbarch, 32);
1496 if (elf_flags & E_M68HC11_F64)
1497 {
1498 set_gdbarch_double_bit (gdbarch, 64);
1499 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1500 }
1501 else
1502 {
1503 set_gdbarch_double_bit (gdbarch, 32);
1504 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1505 }
1506 set_gdbarch_long_double_bit (gdbarch, 64);
1507 set_gdbarch_long_bit (gdbarch, 32);
1508 set_gdbarch_ptr_bit (gdbarch, 16);
1509 set_gdbarch_long_long_bit (gdbarch, 64);
1510
1511 /* Characters are unsigned. */
1512 set_gdbarch_char_signed (gdbarch, 0);
1513
1514 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1515 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1516
1517 /* Set register info. */
1518 set_gdbarch_fp0_regnum (gdbarch, -1);
1519
1520 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1521 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1522 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1523 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1524 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1525
1526 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1527
1528 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1529 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1530 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1531 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1532 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1533
1534 m68hc11_add_reggroups (gdbarch);
1535 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1536 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1537
1538 /* Hook in the DWARF CFI frame unwinder. */
1539 dwarf2_append_unwinders (gdbarch);
1540
1541 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1542 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1543
1544 /* Methods for saving / extracting a dummy frame's ID. The ID's
1545 stack address must match the SP value returned by
1546 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1547 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1548
1549 /* Return the unwound PC value. */
1550 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1551
1552 /* Minsymbol frobbing. */
1553 set_gdbarch_elf_make_msymbol_special (gdbarch,
1554 m68hc11_elf_make_msymbol_special);
1555
1556 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1557
1558 return gdbarch;
1559 }
1560
1561 /* -Wmissing-prototypes */
1562 extern initialize_file_ftype _initialize_m68hc11_tdep;
1563
1564 void
1565 _initialize_m68hc11_tdep (void)
1566 {
1567 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1568 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1569 m68hc11_init_reggroups ();
1570 }
1571
This page took 0.063688 seconds and 5 git commands to generate.