Use XCNEW gdbarch_tdep
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999-2017 Free Software Foundation, Inc.
4
5 Contributed by Stephane Carrez, stcarrez@nerim.fr
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "trad-frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41
42 #include "target.h"
43 #include "opcode/m68hc11.h"
44 #include "elf/m68hc11.h"
45 #include "elf-bfd.h"
46
47 /* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
53
54 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
55 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
56 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
57 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
58
59 #define MSYMBOL_SET_RTC(msym) \
60 MSYMBOL_TARGET_FLAG_1 (msym) = 1
61
62 #define MSYMBOL_SET_RTI(msym) \
63 MSYMBOL_TARGET_FLAG_2 (msym) = 1
64
65 #define MSYMBOL_IS_RTC(msym) \
66 MSYMBOL_TARGET_FLAG_1 (msym)
67
68 #define MSYMBOL_IS_RTI(msym) \
69 MSYMBOL_TARGET_FLAG_2 (msym)
70
71 enum insn_return_kind {
72 RETURN_RTS,
73 RETURN_RTC,
74 RETURN_RTI
75 };
76
77
78 /* Register numbers of various important registers. */
79
80 #define HARD_X_REGNUM 0
81 #define HARD_D_REGNUM 1
82 #define HARD_Y_REGNUM 2
83 #define HARD_SP_REGNUM 3
84 #define HARD_PC_REGNUM 4
85
86 #define HARD_A_REGNUM 5
87 #define HARD_B_REGNUM 6
88 #define HARD_CCR_REGNUM 7
89
90 /* 68HC12 page number register.
91 Note: to keep a compatibility with gcc register naming, we must
92 not have to rename FP and other soft registers. The page register
93 is a real hard register and must therefore be counted by gdbarch_num_regs.
94 For this it has the same number as Z register (which is not used). */
95 #define HARD_PAGE_REGNUM 8
96 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
97
98 /* Z is replaced by X or Y by gcc during machine reorg.
99 ??? There is no way to get it and even know whether
100 it's in X or Y or in ZS. */
101 #define SOFT_Z_REGNUM 8
102
103 /* Soft registers. These registers are special. There are treated
104 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
105 They are physically located in memory. */
106 #define SOFT_FP_REGNUM 9
107 #define SOFT_TMP_REGNUM 10
108 #define SOFT_ZS_REGNUM 11
109 #define SOFT_XY_REGNUM 12
110 #define SOFT_UNUSED_REGNUM 13
111 #define SOFT_D1_REGNUM 14
112 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
113 #define M68HC11_MAX_SOFT_REGS 32
114
115 #define M68HC11_NUM_REGS (8)
116 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
117 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
118
119 #define M68HC11_REG_SIZE (2)
120
121 #define M68HC12_NUM_REGS (9)
122 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
123 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
124
125 struct insn_sequence;
126 struct gdbarch_tdep
127 {
128 /* Stack pointer correction value. For 68hc11, the stack pointer points
129 to the next push location. An offset of 1 must be applied to obtain
130 the address where the last value is saved. For 68hc12, the stack
131 pointer points to the last value pushed. No offset is necessary. */
132 int stack_correction;
133
134 /* Description of instructions in the prologue. */
135 struct insn_sequence *prologue;
136
137 /* True if the page memory bank register is available
138 and must be used. */
139 int use_page_register;
140
141 /* ELF flags for ABI. */
142 int elf_flags;
143 };
144
145 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
146 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
147
148 struct m68hc11_unwind_cache
149 {
150 /* The previous frame's inner most stack address. Used as this
151 frame ID's stack_addr. */
152 CORE_ADDR prev_sp;
153 /* The frame's base, optionally used by the high-level debug info. */
154 CORE_ADDR base;
155 CORE_ADDR pc;
156 int size;
157 int prologue_type;
158 CORE_ADDR return_pc;
159 CORE_ADDR sp_offset;
160 int frameless;
161 enum insn_return_kind return_kind;
162
163 /* Table indicating the location of each and every register. */
164 struct trad_frame_saved_reg *saved_regs;
165 };
166
167 /* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
169 static const char *
170 m68hc11_register_names[] =
171 {
172 "x", "d", "y", "sp", "pc", "a", "b",
173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
179 };
180
181 struct m68hc11_soft_reg
182 {
183 const char *name;
184 CORE_ADDR addr;
185 };
186
187 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
188
189 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
190
191 static int soft_min_addr;
192 static int soft_max_addr;
193 static int soft_reg_initialized = 0;
194
195 /* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
198 static void
199 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
200 {
201 struct bound_minimal_symbol msymbol;
202
203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
204 if (msymbol.minsym)
205 {
206 reg->addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
207 reg->name = xstrdup (name);
208
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
211 soft_min_addr = reg->addr;
212 if (reg->addr > (CORE_ADDR) soft_max_addr)
213 soft_max_addr = reg->addr;
214 }
215 else
216 {
217 reg->name = 0;
218 reg->addr = 0;
219 }
220 }
221
222 /* Initialize the table of soft register addresses according
223 to the symbol table. */
224 static void
225 m68hc11_initialize_register_info (void)
226 {
227 int i;
228
229 if (soft_reg_initialized)
230 return;
231
232 soft_min_addr = INT_MAX;
233 soft_max_addr = 0;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
235 {
236 soft_regs[i].name = 0;
237 }
238
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
244
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
246 {
247 char buf[10];
248
249 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
250 m68hc11_get_register_info (&soft_regs[i], buf);
251 }
252
253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
254 warning (_("No frame soft register found in the symbol table.\n"
255 "Stack backtrace will not work."));
256 soft_reg_initialized = 1;
257 }
258
259 /* Given an address in memory, return the soft register number if
260 that address corresponds to a soft register. Returns -1 if not. */
261 static int
262 m68hc11_which_soft_register (CORE_ADDR addr)
263 {
264 int i;
265
266 if (addr < soft_min_addr || addr > soft_max_addr)
267 return -1;
268
269 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
270 {
271 if (soft_regs[i].name && soft_regs[i].addr == addr)
272 return i;
273 }
274 return -1;
275 }
276
277 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
278 pseudo registers. They are located in memory. Translate the register
279 fetch into a memory read. */
280 static enum register_status
281 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
282 struct regcache *regcache,
283 int regno, gdb_byte *buf)
284 {
285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
286
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
291 ULONGEST pc;
292 const int regsize = 4;
293 enum register_status status;
294
295 status = regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
296 if (status != REG_VALID)
297 return status;
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
300 ULONGEST page;
301
302 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
307 store_unsigned_integer (buf, regsize, byte_order, pc);
308 return REG_VALID;
309 }
310
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
322
323 return REG_VALID;
324 }
325
326 /* Store a pseudo register. Translate the register store
327 into a memory write. */
328 static void
329 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
331 int regno, const gdb_byte *buf)
332 {
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
334
335 /* The PC is a pseudo reg only for 68HC12 with the memory bank
336 addressing mode. */
337 if (regno == M68HC12_HARD_PC_REGNUM)
338 {
339 const int regsize = 4;
340 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
341 CORE_ADDR pc;
342
343 memcpy (tmp, buf, regsize);
344 pc = extract_unsigned_integer (tmp, regsize, byte_order);
345 if (pc >= 0x1000000)
346 {
347 pc -= 0x1000000;
348 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
349 (pc >> 14) & 0x0ff);
350 pc &= 0x03fff;
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
352 pc + 0x8000);
353 }
354 else
355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
356 return;
357 }
358
359 m68hc11_initialize_register_info ();
360
361 /* Store a soft register: translate into a memory write. */
362 if (soft_regs[regno].name)
363 {
364 const int regsize = 2;
365 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
366 memcpy (tmp, buf, regsize);
367 target_write_memory (soft_regs[regno].addr, tmp, regsize);
368 }
369 }
370
371 static const char *
372 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
373 {
374 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
375 return "pc";
376 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
377 return "ppc";
378
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= M68HC11_ALL_REGS)
382 return NULL;
383
384 m68hc11_initialize_register_info ();
385
386 /* If we don't know the address of a soft register, pretend it
387 does not exist. */
388 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
389 return NULL;
390 return m68hc11_register_names[reg_nr];
391 }
392
393 constexpr gdb_byte m68hc11_break_insn[] = {0x0};
394
395 typedef BP_MANIPULATION (m68hc11_break_insn) m68hc11_breakpoint;
396 \f
397 /* 68HC11 & 68HC12 prologue analysis. */
398
399 #define MAX_CODES 12
400
401 /* 68HC11 opcodes. */
402 #undef M6811_OP_PAGE2
403 #define M6811_OP_PAGE2 (0x18)
404 #define M6811_OP_LDX (0xde)
405 #define M6811_OP_LDX_EXT (0xfe)
406 #define M6811_OP_PSHX (0x3c)
407 #define M6811_OP_STS (0x9f)
408 #define M6811_OP_STS_EXT (0xbf)
409 #define M6811_OP_TSX (0x30)
410 #define M6811_OP_XGDX (0x8f)
411 #define M6811_OP_ADDD (0xc3)
412 #define M6811_OP_TXS (0x35)
413 #define M6811_OP_DES (0x34)
414
415 /* 68HC12 opcodes. */
416 #define M6812_OP_PAGE2 (0x18)
417 #define M6812_OP_MOVW (0x01)
418 #define M6812_PB_PSHW (0xae)
419 #define M6812_OP_STS (0x5f)
420 #define M6812_OP_STS_EXT (0x7f)
421 #define M6812_OP_LEAS (0x1b)
422 #define M6812_OP_PSHX (0x34)
423 #define M6812_OP_PSHY (0x35)
424
425 /* Operand extraction. */
426 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
427 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
428 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
429 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
430
431 /* Identification of the sequence. */
432 enum m6811_seq_type
433 {
434 P_LAST = 0,
435 P_SAVE_REG, /* Save a register on the stack. */
436 P_SET_FRAME, /* Setup the frame pointer. */
437 P_LOCAL_1, /* Allocate 1 byte for locals. */
438 P_LOCAL_2, /* Allocate 2 bytes for locals. */
439 P_LOCAL_N /* Allocate N bytes for locals. */
440 };
441
442 struct insn_sequence {
443 enum m6811_seq_type type;
444 unsigned length;
445 unsigned short code[MAX_CODES];
446 };
447
448 /* Sequence of instructions in the 68HC11 function prologue. */
449 static struct insn_sequence m6811_prologue[] = {
450 /* Sequences to save a soft-register. */
451 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
452 M6811_OP_PSHX } },
453 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
454 M6811_OP_PAGE2, M6811_OP_PSHX } },
455 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
456 M6811_OP_PSHX } },
457 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
458 M6811_OP_PAGE2, M6811_OP_PSHX } },
459
460 /* Sequences to allocate local variables. */
461 { P_LOCAL_N, 7, { M6811_OP_TSX,
462 M6811_OP_XGDX,
463 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
464 M6811_OP_XGDX,
465 M6811_OP_TXS } },
466 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
467 M6811_OP_PAGE2, M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_XGDX,
470 M6811_OP_PAGE2, M6811_OP_TXS } },
471 { P_LOCAL_1, 1, { M6811_OP_DES } },
472 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
473 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
474
475 /* Initialize the frame pointer. */
476 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
477 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
478 { P_LAST, 0, { 0 } }
479 };
480
481
482 /* Sequence of instructions in the 68HC12 function prologue. */
483 static struct insn_sequence m6812_prologue[] = {
484 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
485 OP_IMM_HIGH, OP_IMM_LOW } },
486 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
487 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
488 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
489 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
490 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
491 { P_LAST, 0 }
492 };
493
494
495 /* Analyze the sequence of instructions starting at the given address.
496 Returns a pointer to the sequence when it is recognized and
497 the optional value (constant/address) associated with it. */
498 static struct insn_sequence *
499 m68hc11_analyze_instruction (struct gdbarch *gdbarch,
500 struct insn_sequence *seq, CORE_ADDR pc,
501 CORE_ADDR *val)
502 {
503 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
504 unsigned char buffer[MAX_CODES];
505 unsigned bufsize;
506 unsigned j;
507 CORE_ADDR cur_val;
508 short v = 0;
509
510 bufsize = 0;
511 for (; seq->type != P_LAST; seq++)
512 {
513 cur_val = 0;
514 for (j = 0; j < seq->length; j++)
515 {
516 if (bufsize < j + 1)
517 {
518 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
519 1, byte_order);
520 bufsize++;
521 }
522 /* Continue while we match the opcode. */
523 if (seq->code[j] == buffer[j])
524 continue;
525
526 if ((seq->code[j] & 0xf00) == 0)
527 break;
528
529 /* Extract a sequence parameter (address or constant). */
530 switch (seq->code[j])
531 {
532 case OP_DIRECT:
533 cur_val = (CORE_ADDR) buffer[j];
534 break;
535
536 case OP_IMM_HIGH:
537 cur_val = cur_val & 0x0ff;
538 cur_val |= (buffer[j] << 8);
539 break;
540
541 case OP_IMM_LOW:
542 cur_val &= 0x0ff00;
543 cur_val |= buffer[j];
544 break;
545
546 case OP_PBYTE:
547 if ((buffer[j] & 0xE0) == 0x80)
548 {
549 v = buffer[j] & 0x1f;
550 if (v & 0x10)
551 v |= 0xfff0;
552 }
553 else if ((buffer[j] & 0xfe) == 0xf0)
554 {
555 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
556 if (buffer[j] & 1)
557 v |= 0xff00;
558 }
559 else if (buffer[j] == 0xf2)
560 {
561 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
562 }
563 cur_val = v;
564 break;
565 }
566 }
567
568 /* We have a full match. */
569 if (j == seq->length)
570 {
571 *val = cur_val;
572 return seq;
573 }
574 }
575 return 0;
576 }
577
578 /* Return the instruction that the function at the PC is using. */
579 static enum insn_return_kind
580 m68hc11_get_return_insn (CORE_ADDR pc)
581 {
582 struct bound_minimal_symbol sym;
583
584 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
585 function is stored by elfread.c in the high bit of the info field.
586 Use this to decide which instruction the function uses to return. */
587 sym = lookup_minimal_symbol_by_pc (pc);
588 if (sym.minsym == 0)
589 return RETURN_RTS;
590
591 if (MSYMBOL_IS_RTC (sym.minsym))
592 return RETURN_RTC;
593 else if (MSYMBOL_IS_RTI (sym.minsym))
594 return RETURN_RTI;
595 else
596 return RETURN_RTS;
597 }
598
599 /* Analyze the function prologue to find some information
600 about the function:
601 - the PC of the first line (for m68hc11_skip_prologue)
602 - the offset of the previous frame saved address (from current frame)
603 - the soft registers which are pushed. */
604 static CORE_ADDR
605 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
606 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
607 {
608 LONGEST save_addr;
609 CORE_ADDR func_end;
610 int size;
611 int found_frame_point;
612 int saved_reg;
613 int done = 0;
614 struct insn_sequence *seq_table;
615
616 info->size = 0;
617 info->sp_offset = 0;
618 if (pc >= current_pc)
619 return current_pc;
620
621 size = 0;
622
623 m68hc11_initialize_register_info ();
624 if (pc == 0)
625 {
626 info->size = 0;
627 return pc;
628 }
629
630 seq_table = gdbarch_tdep (gdbarch)->prologue;
631
632 /* The 68hc11 stack is as follows:
633
634
635 | |
636 +-----------+
637 | |
638 | args |
639 | |
640 +-----------+
641 | PC-return |
642 +-----------+
643 | Old frame |
644 +-----------+
645 | |
646 | Locals |
647 | |
648 +-----------+ <--- current frame
649 | |
650
651 With most processors (like 68K) the previous frame can be computed
652 easily because it is always at a fixed offset (see link/unlink).
653 That is, locals are accessed with negative offsets, arguments are
654 accessed with positive ones. Since 68hc11 only supports offsets
655 in the range [0..255], the frame is defined at the bottom of
656 locals (see picture).
657
658 The purpose of the analysis made here is to find out the size
659 of locals in this function. An alternative to this is to use
660 DWARF2 info. This would be better but I don't know how to
661 access dwarf2 debug from this function.
662
663 Walk from the function entry point to the point where we save
664 the frame. While walking instructions, compute the size of bytes
665 which are pushed. This gives us the index to access the previous
666 frame.
667
668 We limit the search to 128 bytes so that the algorithm is bounded
669 in case of random and wrong code. We also stop and abort if
670 we find an instruction which is not supposed to appear in the
671 prologue (as generated by gcc 2.95, 2.96). */
672
673 func_end = pc + 128;
674 found_frame_point = 0;
675 info->size = 0;
676 save_addr = 0;
677 while (!done && pc + 2 < func_end)
678 {
679 struct insn_sequence *seq;
680 CORE_ADDR val;
681
682 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
683 if (seq == 0)
684 break;
685
686 /* If we are within the instruction group, we can't advance the
687 pc nor the stack offset. Otherwise the caller's stack computed
688 from the current stack can be wrong. */
689 if (pc + seq->length > current_pc)
690 break;
691
692 pc = pc + seq->length;
693 if (seq->type == P_SAVE_REG)
694 {
695 if (found_frame_point)
696 {
697 saved_reg = m68hc11_which_soft_register (val);
698 if (saved_reg < 0)
699 break;
700
701 save_addr -= 2;
702 if (info->saved_regs)
703 info->saved_regs[saved_reg].addr = save_addr;
704 }
705 else
706 {
707 size += 2;
708 }
709 }
710 else if (seq->type == P_SET_FRAME)
711 {
712 found_frame_point = 1;
713 info->size = size;
714 }
715 else if (seq->type == P_LOCAL_1)
716 {
717 size += 1;
718 }
719 else if (seq->type == P_LOCAL_2)
720 {
721 size += 2;
722 }
723 else if (seq->type == P_LOCAL_N)
724 {
725 /* Stack pointer is decremented for the allocation. */
726 if (val & 0x8000)
727 size -= (int) (val) | 0xffff0000;
728 else
729 size -= val;
730 }
731 }
732 if (found_frame_point == 0)
733 info->sp_offset = size;
734 else
735 info->sp_offset = -1;
736 return pc;
737 }
738
739 static CORE_ADDR
740 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
741 {
742 CORE_ADDR func_addr, func_end;
743 struct symtab_and_line sal;
744 struct m68hc11_unwind_cache tmp_cache = { 0 };
745
746 /* If we have line debugging information, then the end of the
747 prologue should be the first assembly instruction of the
748 first source line. */
749 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
750 {
751 sal = find_pc_line (func_addr, 0);
752 if (sal.end && sal.end < func_end)
753 return sal.end;
754 }
755
756 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
757 return pc;
758 }
759
760 static CORE_ADDR
761 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
762 {
763 ULONGEST pc;
764
765 pc = frame_unwind_register_unsigned (next_frame,
766 gdbarch_pc_regnum (gdbarch));
767 return pc;
768 }
769
770 /* Put here the code to store, into fi->saved_regs, the addresses of
771 the saved registers of frame described by FRAME_INFO. This
772 includes special registers such as pc and fp saved in special ways
773 in the stack frame. sp is even more special: the address we return
774 for it IS the sp for the next frame. */
775
776 static struct m68hc11_unwind_cache *
777 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
778 void **this_prologue_cache)
779 {
780 struct gdbarch *gdbarch = get_frame_arch (this_frame);
781 ULONGEST prev_sp;
782 ULONGEST this_base;
783 struct m68hc11_unwind_cache *info;
784 CORE_ADDR current_pc;
785 int i;
786
787 if ((*this_prologue_cache))
788 return (struct m68hc11_unwind_cache *) (*this_prologue_cache);
789
790 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
791 (*this_prologue_cache) = info;
792 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
793
794 info->pc = get_frame_func (this_frame);
795
796 info->size = 0;
797 info->return_kind = m68hc11_get_return_insn (info->pc);
798
799 /* The SP was moved to the FP. This indicates that a new frame
800 was created. Get THIS frame's FP value by unwinding it from
801 the next frame. */
802 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
803 if (this_base == 0)
804 {
805 info->base = 0;
806 return info;
807 }
808
809 current_pc = get_frame_pc (this_frame);
810 if (info->pc != 0)
811 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
812
813 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
814
815 if (info->sp_offset != (CORE_ADDR) -1)
816 {
817 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
818 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
819 prev_sp = this_base + info->sp_offset + 2;
820 this_base += STACK_CORRECTION (gdbarch);
821 }
822 else
823 {
824 /* The FP points at the last saved register. Adjust the FP back
825 to before the first saved register giving the SP. */
826 prev_sp = this_base + info->size + 2;
827
828 this_base += STACK_CORRECTION (gdbarch);
829 if (soft_regs[SOFT_FP_REGNUM].name)
830 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
831 }
832
833 if (info->return_kind == RETURN_RTC)
834 {
835 prev_sp += 1;
836 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
837 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
838 }
839 else if (info->return_kind == RETURN_RTI)
840 {
841 prev_sp += 7;
842 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
843 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
844 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
845 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
846 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
847 }
848
849 /* Add 1 here to adjust for the post-decrement nature of the push
850 instruction. */
851 info->prev_sp = prev_sp;
852
853 info->base = this_base;
854
855 /* Adjust all the saved registers so that they contain addresses and not
856 offsets. */
857 for (i = 0;
858 i < gdbarch_num_regs (gdbarch)
859 + gdbarch_num_pseudo_regs (gdbarch) - 1;
860 i++)
861 if (trad_frame_addr_p (info->saved_regs, i))
862 {
863 info->saved_regs[i].addr += this_base;
864 }
865
866 /* The previous frame's SP needed to be computed. Save the computed
867 value. */
868 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
869
870 return info;
871 }
872
873 /* Given a GDB frame, determine the address of the calling function's
874 frame. This will be used to create a new GDB frame struct. */
875
876 static void
877 m68hc11_frame_this_id (struct frame_info *this_frame,
878 void **this_prologue_cache,
879 struct frame_id *this_id)
880 {
881 struct m68hc11_unwind_cache *info
882 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
883 CORE_ADDR base;
884 CORE_ADDR func;
885 struct frame_id id;
886
887 /* The FUNC is easy. */
888 func = get_frame_func (this_frame);
889
890 /* Hopefully the prologue analysis either correctly determined the
891 frame's base (which is the SP from the previous frame), or set
892 that base to "NULL". */
893 base = info->prev_sp;
894 if (base == 0)
895 return;
896
897 id = frame_id_build (base, func);
898 (*this_id) = id;
899 }
900
901 static struct value *
902 m68hc11_frame_prev_register (struct frame_info *this_frame,
903 void **this_prologue_cache, int regnum)
904 {
905 struct value *value;
906 struct m68hc11_unwind_cache *info
907 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
908
909 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
910
911 /* Take into account the 68HC12 specific call (PC + page). */
912 if (regnum == HARD_PC_REGNUM
913 && info->return_kind == RETURN_RTC
914 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
915 {
916 CORE_ADDR pc = value_as_long (value);
917 if (pc >= 0x08000 && pc < 0x0c000)
918 {
919 CORE_ADDR page;
920
921 release_value (value);
922 value_free (value);
923
924 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
925 HARD_PAGE_REGNUM);
926 page = value_as_long (value);
927 release_value (value);
928 value_free (value);
929
930 pc -= 0x08000;
931 pc += ((page & 0x0ff) << 14);
932 pc += 0x1000000;
933
934 return frame_unwind_got_constant (this_frame, regnum, pc);
935 }
936 }
937
938 return value;
939 }
940
941 static const struct frame_unwind m68hc11_frame_unwind = {
942 NORMAL_FRAME,
943 default_frame_unwind_stop_reason,
944 m68hc11_frame_this_id,
945 m68hc11_frame_prev_register,
946 NULL,
947 default_frame_sniffer
948 };
949
950 static CORE_ADDR
951 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
952 {
953 struct m68hc11_unwind_cache *info
954 = m68hc11_frame_unwind_cache (this_frame, this_cache);
955
956 return info->base;
957 }
958
959 static CORE_ADDR
960 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
961 {
962 CORE_ADDR addr;
963 struct m68hc11_unwind_cache *info
964 = m68hc11_frame_unwind_cache (this_frame, this_cache);
965
966 addr = info->base + info->size;
967 if (info->return_kind == RETURN_RTC)
968 addr += 1;
969 else if (info->return_kind == RETURN_RTI)
970 addr += 7;
971
972 return addr;
973 }
974
975 static const struct frame_base m68hc11_frame_base = {
976 &m68hc11_frame_unwind,
977 m68hc11_frame_base_address,
978 m68hc11_frame_base_address,
979 m68hc11_frame_args_address
980 };
981
982 static CORE_ADDR
983 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
984 {
985 ULONGEST sp;
986 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
987 return sp;
988 }
989
990 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
991 frame. The frame ID's base needs to match the TOS value saved by
992 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
993
994 static struct frame_id
995 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
996 {
997 ULONGEST tos;
998 CORE_ADDR pc = get_frame_pc (this_frame);
999
1000 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1001 tos += 2;
1002 return frame_id_build (tos, pc);
1003 }
1004
1005 \f
1006 /* Get and print the register from the given frame. */
1007 static void
1008 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1009 struct frame_info *frame, int regno)
1010 {
1011 LONGEST rval;
1012
1013 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1014 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1015 rval = get_frame_register_unsigned (frame, regno);
1016 else
1017 rval = get_frame_register_signed (frame, regno);
1018
1019 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1020 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1021 {
1022 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1023 if (regno != HARD_CCR_REGNUM)
1024 print_longest (file, 'd', 1, rval);
1025 }
1026 else
1027 {
1028 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1029 {
1030 ULONGEST page;
1031
1032 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1033 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1034 (unsigned) rval);
1035 }
1036 else
1037 {
1038 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1039 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1040 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1041 print_longest (file, 'd', 1, rval);
1042 }
1043 }
1044
1045 if (regno == HARD_CCR_REGNUM)
1046 {
1047 /* CCR register */
1048 int C, Z, N, V;
1049 unsigned char l = rval & 0xff;
1050
1051 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1052 l & M6811_S_BIT ? 'S' : '-',
1053 l & M6811_X_BIT ? 'X' : '-',
1054 l & M6811_H_BIT ? 'H' : '-',
1055 l & M6811_I_BIT ? 'I' : '-',
1056 l & M6811_N_BIT ? 'N' : '-',
1057 l & M6811_Z_BIT ? 'Z' : '-',
1058 l & M6811_V_BIT ? 'V' : '-',
1059 l & M6811_C_BIT ? 'C' : '-');
1060 N = (l & M6811_N_BIT) != 0;
1061 Z = (l & M6811_Z_BIT) != 0;
1062 V = (l & M6811_V_BIT) != 0;
1063 C = (l & M6811_C_BIT) != 0;
1064
1065 /* Print flags following the h8300. */
1066 if ((C | Z) == 0)
1067 fprintf_filtered (file, "u> ");
1068 else if ((C | Z) == 1)
1069 fprintf_filtered (file, "u<= ");
1070 else if (C == 0)
1071 fprintf_filtered (file, "u< ");
1072
1073 if (Z == 0)
1074 fprintf_filtered (file, "!= ");
1075 else
1076 fprintf_filtered (file, "== ");
1077
1078 if ((N ^ V) == 0)
1079 fprintf_filtered (file, ">= ");
1080 else
1081 fprintf_filtered (file, "< ");
1082
1083 if ((Z | (N ^ V)) == 0)
1084 fprintf_filtered (file, "> ");
1085 else
1086 fprintf_filtered (file, "<= ");
1087 }
1088 }
1089
1090 /* Same as 'info reg' but prints the registers in a different way. */
1091 static void
1092 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1093 struct frame_info *frame, int regno, int cpregs)
1094 {
1095 if (regno >= 0)
1096 {
1097 const char *name = gdbarch_register_name (gdbarch, regno);
1098
1099 if (!name || !*name)
1100 return;
1101
1102 fprintf_filtered (file, "%-10s ", name);
1103 m68hc11_print_register (gdbarch, file, frame, regno);
1104 fprintf_filtered (file, "\n");
1105 }
1106 else
1107 {
1108 int i, nr;
1109
1110 fprintf_filtered (file, "PC=");
1111 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1112
1113 fprintf_filtered (file, " SP=");
1114 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1115
1116 fprintf_filtered (file, " FP=");
1117 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1118
1119 fprintf_filtered (file, "\nCCR=");
1120 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1121
1122 fprintf_filtered (file, "\nD=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1124
1125 fprintf_filtered (file, " X=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1127
1128 fprintf_filtered (file, " Y=");
1129 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1130
1131 if (gdbarch_tdep (gdbarch)->use_page_register)
1132 {
1133 fprintf_filtered (file, "\nPage=");
1134 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1135 }
1136 fprintf_filtered (file, "\n");
1137
1138 nr = 0;
1139 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1140 {
1141 /* Skip registers which are not defined in the symbol table. */
1142 if (soft_regs[i].name == 0)
1143 continue;
1144
1145 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1146 m68hc11_print_register (gdbarch, file, frame, i);
1147 nr++;
1148 if ((nr % 8) == 7)
1149 fprintf_filtered (file, "\n");
1150 else
1151 fprintf_filtered (file, " ");
1152 }
1153 if (nr && (nr % 8) != 7)
1154 fprintf_filtered (file, "\n");
1155 }
1156 }
1157
1158 static CORE_ADDR
1159 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1160 struct regcache *regcache, CORE_ADDR bp_addr,
1161 int nargs, struct value **args, CORE_ADDR sp,
1162 int struct_return, CORE_ADDR struct_addr)
1163 {
1164 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1165 int argnum;
1166 int first_stack_argnum;
1167 struct type *type;
1168 const gdb_byte *val;
1169 gdb_byte buf[2];
1170
1171 first_stack_argnum = 0;
1172 if (struct_return)
1173 {
1174 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1175 }
1176 else if (nargs > 0)
1177 {
1178 type = value_type (args[0]);
1179
1180 /* First argument is passed in D and X registers. */
1181 if (TYPE_LENGTH (type) <= 4)
1182 {
1183 ULONGEST v;
1184
1185 v = extract_unsigned_integer (value_contents (args[0]),
1186 TYPE_LENGTH (type), byte_order);
1187 first_stack_argnum = 1;
1188
1189 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1190 if (TYPE_LENGTH (type) > 2)
1191 {
1192 v >>= 16;
1193 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1194 }
1195 }
1196 }
1197
1198 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1199 {
1200 type = value_type (args[argnum]);
1201
1202 if (TYPE_LENGTH (type) & 1)
1203 {
1204 static gdb_byte zero = 0;
1205
1206 sp--;
1207 write_memory (sp, &zero, 1);
1208 }
1209 val = value_contents (args[argnum]);
1210 sp -= TYPE_LENGTH (type);
1211 write_memory (sp, val, TYPE_LENGTH (type));
1212 }
1213
1214 /* Store return address. */
1215 sp -= 2;
1216 store_unsigned_integer (buf, 2, byte_order, bp_addr);
1217 write_memory (sp, buf, 2);
1218
1219 /* Finally, update the stack pointer... */
1220 sp -= STACK_CORRECTION (gdbarch);
1221 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1222
1223 /* ...and fake a frame pointer. */
1224 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1225
1226 /* DWARF2/GCC uses the stack address *before* the function call as a
1227 frame's CFA. */
1228 return sp + 2;
1229 }
1230
1231
1232 /* Return the GDB type object for the "standard" data type
1233 of data in register N. */
1234
1235 static struct type *
1236 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1237 {
1238 switch (reg_nr)
1239 {
1240 case HARD_PAGE_REGNUM:
1241 case HARD_A_REGNUM:
1242 case HARD_B_REGNUM:
1243 case HARD_CCR_REGNUM:
1244 return builtin_type (gdbarch)->builtin_uint8;
1245
1246 case M68HC12_HARD_PC_REGNUM:
1247 return builtin_type (gdbarch)->builtin_uint32;
1248
1249 default:
1250 return builtin_type (gdbarch)->builtin_uint16;
1251 }
1252 }
1253
1254 static void
1255 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1256 const gdb_byte *valbuf)
1257 {
1258 int len;
1259
1260 len = TYPE_LENGTH (type);
1261
1262 /* First argument is passed in D and X registers. */
1263 if (len <= 2)
1264 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1265 else if (len <= 4)
1266 {
1267 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1268 len - 2, valbuf);
1269 regcache_raw_write (regcache, HARD_D_REGNUM, valbuf + (len - 2));
1270 }
1271 else
1272 error (_("return of value > 4 is not supported."));
1273 }
1274
1275
1276 /* Given a return value in `regcache' with a type `type',
1277 extract and copy its value into `valbuf'. */
1278
1279 static void
1280 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1281 void *valbuf)
1282 {
1283 gdb_byte buf[M68HC11_REG_SIZE];
1284
1285 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1286 switch (TYPE_LENGTH (type))
1287 {
1288 case 1:
1289 memcpy (valbuf, buf + 1, 1);
1290 break;
1291
1292 case 2:
1293 memcpy (valbuf, buf, 2);
1294 break;
1295
1296 case 3:
1297 memcpy ((char*) valbuf + 1, buf, 2);
1298 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1299 memcpy (valbuf, buf + 1, 1);
1300 break;
1301
1302 case 4:
1303 memcpy ((char*) valbuf + 2, buf, 2);
1304 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1305 memcpy (valbuf, buf, 2);
1306 break;
1307
1308 default:
1309 error (_("bad size for return value"));
1310 }
1311 }
1312
1313 static enum return_value_convention
1314 m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
1315 struct type *valtype, struct regcache *regcache,
1316 gdb_byte *readbuf, const gdb_byte *writebuf)
1317 {
1318 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1319 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1320 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1321 || TYPE_LENGTH (valtype) > 4)
1322 return RETURN_VALUE_STRUCT_CONVENTION;
1323 else
1324 {
1325 if (readbuf != NULL)
1326 m68hc11_extract_return_value (valtype, regcache, readbuf);
1327 if (writebuf != NULL)
1328 m68hc11_store_return_value (valtype, regcache, writebuf);
1329 return RETURN_VALUE_REGISTER_CONVENTION;
1330 }
1331 }
1332
1333 /* Test whether the ELF symbol corresponds to a function using rtc or
1334 rti to return. */
1335
1336 static void
1337 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1338 {
1339 unsigned char flags;
1340
1341 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1342 if (flags & STO_M68HC12_FAR)
1343 MSYMBOL_SET_RTC (msym);
1344 if (flags & STO_M68HC12_INTERRUPT)
1345 MSYMBOL_SET_RTI (msym);
1346 }
1347 \f
1348
1349 /* 68HC11/68HC12 register groups.
1350 Identify real hard registers and soft registers used by gcc. */
1351
1352 static struct reggroup *m68hc11_soft_reggroup;
1353 static struct reggroup *m68hc11_hard_reggroup;
1354
1355 static void
1356 m68hc11_init_reggroups (void)
1357 {
1358 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1359 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1360 }
1361
1362 static void
1363 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1364 {
1365 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1366 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1367 reggroup_add (gdbarch, general_reggroup);
1368 reggroup_add (gdbarch, float_reggroup);
1369 reggroup_add (gdbarch, all_reggroup);
1370 reggroup_add (gdbarch, save_reggroup);
1371 reggroup_add (gdbarch, restore_reggroup);
1372 reggroup_add (gdbarch, vector_reggroup);
1373 reggroup_add (gdbarch, system_reggroup);
1374 }
1375
1376 static int
1377 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1378 struct reggroup *group)
1379 {
1380 /* We must save the real hard register as well as gcc
1381 soft registers including the frame pointer. */
1382 if (group == save_reggroup || group == restore_reggroup)
1383 {
1384 return (regnum <= gdbarch_num_regs (gdbarch)
1385 || ((regnum == SOFT_FP_REGNUM
1386 || regnum == SOFT_TMP_REGNUM
1387 || regnum == SOFT_ZS_REGNUM
1388 || regnum == SOFT_XY_REGNUM)
1389 && m68hc11_register_name (gdbarch, regnum)));
1390 }
1391
1392 /* Group to identify gcc soft registers (d1..dN). */
1393 if (group == m68hc11_soft_reggroup)
1394 {
1395 return regnum >= SOFT_D1_REGNUM
1396 && m68hc11_register_name (gdbarch, regnum);
1397 }
1398
1399 if (group == m68hc11_hard_reggroup)
1400 {
1401 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1402 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1403 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1404 }
1405 return default_register_reggroup_p (gdbarch, regnum, group);
1406 }
1407
1408 static struct gdbarch *
1409 m68hc11_gdbarch_init (struct gdbarch_info info,
1410 struct gdbarch_list *arches)
1411 {
1412 struct gdbarch *gdbarch;
1413 struct gdbarch_tdep *tdep;
1414 int elf_flags;
1415
1416 soft_reg_initialized = 0;
1417
1418 /* Extract the elf_flags if available. */
1419 if (info.abfd != NULL
1420 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1421 elf_flags = elf_elfheader (info.abfd)->e_flags;
1422 else
1423 elf_flags = 0;
1424
1425 /* Try to find a pre-existing architecture. */
1426 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1427 arches != NULL;
1428 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1429 {
1430 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1431 continue;
1432
1433 return arches->gdbarch;
1434 }
1435
1436 /* Need a new architecture. Fill in a target specific vector. */
1437 tdep = XCNEW (struct gdbarch_tdep);
1438 gdbarch = gdbarch_alloc (&info, tdep);
1439 tdep->elf_flags = elf_flags;
1440
1441 switch (info.bfd_arch_info->arch)
1442 {
1443 case bfd_arch_m68hc11:
1444 tdep->stack_correction = 1;
1445 tdep->use_page_register = 0;
1446 tdep->prologue = m6811_prologue;
1447 set_gdbarch_addr_bit (gdbarch, 16);
1448 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1449 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1450 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1451 break;
1452
1453 case bfd_arch_m68hc12:
1454 tdep->stack_correction = 0;
1455 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1456 tdep->prologue = m6812_prologue;
1457 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1458 set_gdbarch_num_pseudo_regs (gdbarch,
1459 elf_flags & E_M68HC12_BANKS
1460 ? M68HC12_NUM_PSEUDO_REGS
1461 : M68HC11_NUM_PSEUDO_REGS);
1462 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1463 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1464 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1465 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1466 break;
1467
1468 default:
1469 break;
1470 }
1471
1472 /* Initially set everything according to the ABI.
1473 Use 16-bit integers since it will be the case for most
1474 programs. The size of these types should normally be set
1475 according to the dwarf2 debug information. */
1476 set_gdbarch_short_bit (gdbarch, 16);
1477 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1478 set_gdbarch_float_bit (gdbarch, 32);
1479 if (elf_flags & E_M68HC11_F64)
1480 {
1481 set_gdbarch_double_bit (gdbarch, 64);
1482 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1483 }
1484 else
1485 {
1486 set_gdbarch_double_bit (gdbarch, 32);
1487 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1488 }
1489 set_gdbarch_long_double_bit (gdbarch, 64);
1490 set_gdbarch_long_bit (gdbarch, 32);
1491 set_gdbarch_ptr_bit (gdbarch, 16);
1492 set_gdbarch_long_long_bit (gdbarch, 64);
1493
1494 /* Characters are unsigned. */
1495 set_gdbarch_char_signed (gdbarch, 0);
1496
1497 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1498 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1499
1500 /* Set register info. */
1501 set_gdbarch_fp0_regnum (gdbarch, -1);
1502
1503 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1504 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1505 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1506 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1507 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1508
1509 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1510
1511 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1512 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1513 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1514 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1515 m68hc11_breakpoint::kind_from_pc);
1516 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1517 m68hc11_breakpoint::bp_from_kind);
1518
1519 m68hc11_add_reggroups (gdbarch);
1520 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1521 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1522
1523 /* Hook in the DWARF CFI frame unwinder. */
1524 dwarf2_append_unwinders (gdbarch);
1525
1526 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1527 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1528
1529 /* Methods for saving / extracting a dummy frame's ID. The ID's
1530 stack address must match the SP value returned by
1531 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1532 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1533
1534 /* Return the unwound PC value. */
1535 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1536
1537 /* Minsymbol frobbing. */
1538 set_gdbarch_elf_make_msymbol_special (gdbarch,
1539 m68hc11_elf_make_msymbol_special);
1540
1541 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1542
1543 return gdbarch;
1544 }
1545
1546 /* -Wmissing-prototypes */
1547 extern initialize_file_ftype _initialize_m68hc11_tdep;
1548
1549 void
1550 _initialize_m68hc11_tdep (void)
1551 {
1552 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1553 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1554 m68hc11_init_reggroups ();
1555 }
1556
This page took 0.060509 seconds and 5 git commands to generate.