* defs.h (extract_signed_integer, extract_unsigned_integer,
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "dwarf2-frame.h"
29 #include "trad-frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "gdb_string.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "reggroups.h"
43
44 #include "target.h"
45 #include "opcode/m68hc11.h"
46 #include "elf/m68hc11.h"
47 #include "elf-bfd.h"
48
49 /* Macros for setting and testing a bit in a minimal symbol.
50 For 68HC11/68HC12 we have two flags that tell which return
51 type the function is using. This is used for prologue and frame
52 analysis to compute correct stack frame layout.
53
54 The MSB of the minimal symbol's "info" field is used for this purpose.
55
56 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
57 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
58 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
59 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
60
61 #define MSYMBOL_SET_RTC(msym) \
62 MSYMBOL_TARGET_FLAG_1 (msym) = 1
63
64 #define MSYMBOL_SET_RTI(msym) \
65 MSYMBOL_TARGET_FLAG_2 (msym) = 1
66
67 #define MSYMBOL_IS_RTC(msym) \
68 MSYMBOL_TARGET_FLAG_1 (msym)
69
70 #define MSYMBOL_IS_RTI(msym) \
71 MSYMBOL_TARGET_FLAG_2 (msym)
72
73 enum insn_return_kind {
74 RETURN_RTS,
75 RETURN_RTC,
76 RETURN_RTI
77 };
78
79
80 /* Register numbers of various important registers. */
81
82 #define HARD_X_REGNUM 0
83 #define HARD_D_REGNUM 1
84 #define HARD_Y_REGNUM 2
85 #define HARD_SP_REGNUM 3
86 #define HARD_PC_REGNUM 4
87
88 #define HARD_A_REGNUM 5
89 #define HARD_B_REGNUM 6
90 #define HARD_CCR_REGNUM 7
91
92 /* 68HC12 page number register.
93 Note: to keep a compatibility with gcc register naming, we must
94 not have to rename FP and other soft registers. The page register
95 is a real hard register and must therefore be counted by gdbarch_num_regs.
96 For this it has the same number as Z register (which is not used). */
97 #define HARD_PAGE_REGNUM 8
98 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
99
100 /* Z is replaced by X or Y by gcc during machine reorg.
101 ??? There is no way to get it and even know whether
102 it's in X or Y or in ZS. */
103 #define SOFT_Z_REGNUM 8
104
105 /* Soft registers. These registers are special. There are treated
106 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
107 They are physically located in memory. */
108 #define SOFT_FP_REGNUM 9
109 #define SOFT_TMP_REGNUM 10
110 #define SOFT_ZS_REGNUM 11
111 #define SOFT_XY_REGNUM 12
112 #define SOFT_UNUSED_REGNUM 13
113 #define SOFT_D1_REGNUM 14
114 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
115 #define M68HC11_MAX_SOFT_REGS 32
116
117 #define M68HC11_NUM_REGS (8)
118 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
119 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
120
121 #define M68HC11_REG_SIZE (2)
122
123 #define M68HC12_NUM_REGS (9)
124 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
125 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
126
127 struct insn_sequence;
128 struct gdbarch_tdep
129 {
130 /* Stack pointer correction value. For 68hc11, the stack pointer points
131 to the next push location. An offset of 1 must be applied to obtain
132 the address where the last value is saved. For 68hc12, the stack
133 pointer points to the last value pushed. No offset is necessary. */
134 int stack_correction;
135
136 /* Description of instructions in the prologue. */
137 struct insn_sequence *prologue;
138
139 /* True if the page memory bank register is available
140 and must be used. */
141 int use_page_register;
142
143 /* ELF flags for ABI. */
144 int elf_flags;
145 };
146
147 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
148 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
149
150 struct m68hc11_unwind_cache
151 {
152 /* The previous frame's inner most stack address. Used as this
153 frame ID's stack_addr. */
154 CORE_ADDR prev_sp;
155 /* The frame's base, optionally used by the high-level debug info. */
156 CORE_ADDR base;
157 CORE_ADDR pc;
158 int size;
159 int prologue_type;
160 CORE_ADDR return_pc;
161 CORE_ADDR sp_offset;
162 int frameless;
163 enum insn_return_kind return_kind;
164
165 /* Table indicating the location of each and every register. */
166 struct trad_frame_saved_reg *saved_regs;
167 };
168
169 /* Table of registers for 68HC11. This includes the hard registers
170 and the soft registers used by GCC. */
171 static char *
172 m68hc11_register_names[] =
173 {
174 "x", "d", "y", "sp", "pc", "a", "b",
175 "ccr", "page", "frame","tmp", "zs", "xy", 0,
176 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
177 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
178 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
179 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
180 "d29", "d30", "d31", "d32"
181 };
182
183 struct m68hc11_soft_reg
184 {
185 const char *name;
186 CORE_ADDR addr;
187 };
188
189 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
190
191 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
192
193 static int soft_min_addr;
194 static int soft_max_addr;
195 static int soft_reg_initialized = 0;
196
197 /* Look in the symbol table for the address of a pseudo register
198 in memory. If we don't find it, pretend the register is not used
199 and not available. */
200 static void
201 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
202 {
203 struct minimal_symbol *msymbol;
204
205 msymbol = lookup_minimal_symbol (name, NULL, NULL);
206 if (msymbol)
207 {
208 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
209 reg->name = xstrdup (name);
210
211 /* Keep track of the address range for soft registers. */
212 if (reg->addr < (CORE_ADDR) soft_min_addr)
213 soft_min_addr = reg->addr;
214 if (reg->addr > (CORE_ADDR) soft_max_addr)
215 soft_max_addr = reg->addr;
216 }
217 else
218 {
219 reg->name = 0;
220 reg->addr = 0;
221 }
222 }
223
224 /* Initialize the table of soft register addresses according
225 to the symbol table. */
226 static void
227 m68hc11_initialize_register_info (void)
228 {
229 int i;
230
231 if (soft_reg_initialized)
232 return;
233
234 soft_min_addr = INT_MAX;
235 soft_max_addr = 0;
236 for (i = 0; i < M68HC11_ALL_REGS; i++)
237 {
238 soft_regs[i].name = 0;
239 }
240
241 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
242 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
243 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
244 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
245 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
246
247 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
248 {
249 char buf[10];
250
251 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
252 m68hc11_get_register_info (&soft_regs[i], buf);
253 }
254
255 if (soft_regs[SOFT_FP_REGNUM].name == 0)
256 warning (_("No frame soft register found in the symbol table.\n"
257 "Stack backtrace will not work."));
258 soft_reg_initialized = 1;
259 }
260
261 /* Given an address in memory, return the soft register number if
262 that address corresponds to a soft register. Returns -1 if not. */
263 static int
264 m68hc11_which_soft_register (CORE_ADDR addr)
265 {
266 int i;
267
268 if (addr < soft_min_addr || addr > soft_max_addr)
269 return -1;
270
271 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
272 {
273 if (soft_regs[i].name && soft_regs[i].addr == addr)
274 return i;
275 }
276 return -1;
277 }
278
279 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
280 pseudo registers. They are located in memory. Translate the register
281 fetch into a memory read. */
282 static void
283 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
284 struct regcache *regcache,
285 int regno, gdb_byte *buf)
286 {
287 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
288
289 /* The PC is a pseudo reg only for 68HC12 with the memory bank
290 addressing mode. */
291 if (regno == M68HC12_HARD_PC_REGNUM)
292 {
293 ULONGEST pc;
294 const int regsize = 4;
295
296 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
297 if (pc >= 0x8000 && pc < 0xc000)
298 {
299 ULONGEST page;
300
301 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
302 pc -= 0x8000;
303 pc += (page << 14);
304 pc += 0x1000000;
305 }
306 store_unsigned_integer (buf, regsize, byte_order, pc);
307 return;
308 }
309
310 m68hc11_initialize_register_info ();
311
312 /* Fetch a soft register: translate into a memory read. */
313 if (soft_regs[regno].name)
314 {
315 target_read_memory (soft_regs[regno].addr, buf, 2);
316 }
317 else
318 {
319 memset (buf, 0, 2);
320 }
321 }
322
323 /* Store a pseudo register. Translate the register store
324 into a memory write. */
325 static void
326 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
327 struct regcache *regcache,
328 int regno, const gdb_byte *buf)
329 {
330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
331
332 /* The PC is a pseudo reg only for 68HC12 with the memory bank
333 addressing mode. */
334 if (regno == M68HC12_HARD_PC_REGNUM)
335 {
336 const int regsize = 4;
337 char *tmp = alloca (regsize);
338 CORE_ADDR pc;
339
340 memcpy (tmp, buf, regsize);
341 pc = extract_unsigned_integer (tmp, regsize, byte_order);
342 if (pc >= 0x1000000)
343 {
344 pc -= 0x1000000;
345 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
346 (pc >> 14) & 0x0ff);
347 pc &= 0x03fff;
348 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
349 pc + 0x8000);
350 }
351 else
352 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
353 return;
354 }
355
356 m68hc11_initialize_register_info ();
357
358 /* Store a soft register: translate into a memory write. */
359 if (soft_regs[regno].name)
360 {
361 const int regsize = 2;
362 char *tmp = alloca (regsize);
363 memcpy (tmp, buf, regsize);
364 target_write_memory (soft_regs[regno].addr, tmp, regsize);
365 }
366 }
367
368 static const char *
369 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
370 {
371 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
372 return "pc";
373 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
374 return "ppc";
375
376 if (reg_nr < 0)
377 return NULL;
378 if (reg_nr >= M68HC11_ALL_REGS)
379 return NULL;
380
381 m68hc11_initialize_register_info ();
382
383 /* If we don't know the address of a soft register, pretend it
384 does not exist. */
385 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
386 return NULL;
387 return m68hc11_register_names[reg_nr];
388 }
389
390 static const unsigned char *
391 m68hc11_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
392 int *lenptr)
393 {
394 static unsigned char breakpoint[] = {0x0};
395
396 *lenptr = sizeof (breakpoint);
397 return breakpoint;
398 }
399
400 \f
401 /* 68HC11 & 68HC12 prologue analysis.
402
403 */
404 #define MAX_CODES 12
405
406 /* 68HC11 opcodes. */
407 #undef M6811_OP_PAGE2
408 #define M6811_OP_PAGE2 (0x18)
409 #define M6811_OP_LDX (0xde)
410 #define M6811_OP_LDX_EXT (0xfe)
411 #define M6811_OP_PSHX (0x3c)
412 #define M6811_OP_STS (0x9f)
413 #define M6811_OP_STS_EXT (0xbf)
414 #define M6811_OP_TSX (0x30)
415 #define M6811_OP_XGDX (0x8f)
416 #define M6811_OP_ADDD (0xc3)
417 #define M6811_OP_TXS (0x35)
418 #define M6811_OP_DES (0x34)
419
420 /* 68HC12 opcodes. */
421 #define M6812_OP_PAGE2 (0x18)
422 #define M6812_OP_MOVW (0x01)
423 #define M6812_PB_PSHW (0xae)
424 #define M6812_OP_STS (0x5f)
425 #define M6812_OP_STS_EXT (0x7f)
426 #define M6812_OP_LEAS (0x1b)
427 #define M6812_OP_PSHX (0x34)
428 #define M6812_OP_PSHY (0x35)
429
430 /* Operand extraction. */
431 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
432 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
433 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
434 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
435
436 /* Identification of the sequence. */
437 enum m6811_seq_type
438 {
439 P_LAST = 0,
440 P_SAVE_REG, /* Save a register on the stack. */
441 P_SET_FRAME, /* Setup the frame pointer. */
442 P_LOCAL_1, /* Allocate 1 byte for locals. */
443 P_LOCAL_2, /* Allocate 2 bytes for locals. */
444 P_LOCAL_N /* Allocate N bytes for locals. */
445 };
446
447 struct insn_sequence {
448 enum m6811_seq_type type;
449 unsigned length;
450 unsigned short code[MAX_CODES];
451 };
452
453 /* Sequence of instructions in the 68HC11 function prologue. */
454 static struct insn_sequence m6811_prologue[] = {
455 /* Sequences to save a soft-register. */
456 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
457 M6811_OP_PSHX } },
458 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
459 M6811_OP_PAGE2, M6811_OP_PSHX } },
460 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
461 M6811_OP_PSHX } },
462 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
463 M6811_OP_PAGE2, M6811_OP_PSHX } },
464
465 /* Sequences to allocate local variables. */
466 { P_LOCAL_N, 7, { M6811_OP_TSX,
467 M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_XGDX,
470 M6811_OP_TXS } },
471 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
472 M6811_OP_PAGE2, M6811_OP_XGDX,
473 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
474 M6811_OP_PAGE2, M6811_OP_XGDX,
475 M6811_OP_PAGE2, M6811_OP_TXS } },
476 { P_LOCAL_1, 1, { M6811_OP_DES } },
477 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
478 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
479
480 /* Initialize the frame pointer. */
481 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
482 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
483 { P_LAST, 0, { 0 } }
484 };
485
486
487 /* Sequence of instructions in the 68HC12 function prologue. */
488 static struct insn_sequence m6812_prologue[] = {
489 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
490 OP_IMM_HIGH, OP_IMM_LOW } },
491 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
492 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
493 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
494 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
495 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
496 { P_LAST, 0 }
497 };
498
499
500 /* Analyze the sequence of instructions starting at the given address.
501 Returns a pointer to the sequence when it is recognized and
502 the optional value (constant/address) associated with it. */
503 static struct insn_sequence *
504 m68hc11_analyze_instruction (struct gdbarch *gdbarch,
505 struct insn_sequence *seq, CORE_ADDR pc,
506 CORE_ADDR *val)
507 {
508 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
509 unsigned char buffer[MAX_CODES];
510 unsigned bufsize;
511 unsigned j;
512 CORE_ADDR cur_val;
513 short v = 0;
514
515 bufsize = 0;
516 for (; seq->type != P_LAST; seq++)
517 {
518 cur_val = 0;
519 for (j = 0; j < seq->length; j++)
520 {
521 if (bufsize < j + 1)
522 {
523 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
524 1, byte_order);
525 bufsize++;
526 }
527 /* Continue while we match the opcode. */
528 if (seq->code[j] == buffer[j])
529 continue;
530
531 if ((seq->code[j] & 0xf00) == 0)
532 break;
533
534 /* Extract a sequence parameter (address or constant). */
535 switch (seq->code[j])
536 {
537 case OP_DIRECT:
538 cur_val = (CORE_ADDR) buffer[j];
539 break;
540
541 case OP_IMM_HIGH:
542 cur_val = cur_val & 0x0ff;
543 cur_val |= (buffer[j] << 8);
544 break;
545
546 case OP_IMM_LOW:
547 cur_val &= 0x0ff00;
548 cur_val |= buffer[j];
549 break;
550
551 case OP_PBYTE:
552 if ((buffer[j] & 0xE0) == 0x80)
553 {
554 v = buffer[j] & 0x1f;
555 if (v & 0x10)
556 v |= 0xfff0;
557 }
558 else if ((buffer[j] & 0xfe) == 0xf0)
559 {
560 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
561 if (buffer[j] & 1)
562 v |= 0xff00;
563 }
564 else if (buffer[j] == 0xf2)
565 {
566 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
567 }
568 cur_val = v;
569 break;
570 }
571 }
572
573 /* We have a full match. */
574 if (j == seq->length)
575 {
576 *val = cur_val;
577 return seq;
578 }
579 }
580 return 0;
581 }
582
583 /* Return the instruction that the function at the PC is using. */
584 static enum insn_return_kind
585 m68hc11_get_return_insn (CORE_ADDR pc)
586 {
587 struct minimal_symbol *sym;
588
589 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
590 function is stored by elfread.c in the high bit of the info field.
591 Use this to decide which instruction the function uses to return. */
592 sym = lookup_minimal_symbol_by_pc (pc);
593 if (sym == 0)
594 return RETURN_RTS;
595
596 if (MSYMBOL_IS_RTC (sym))
597 return RETURN_RTC;
598 else if (MSYMBOL_IS_RTI (sym))
599 return RETURN_RTI;
600 else
601 return RETURN_RTS;
602 }
603
604 /* Analyze the function prologue to find some information
605 about the function:
606 - the PC of the first line (for m68hc11_skip_prologue)
607 - the offset of the previous frame saved address (from current frame)
608 - the soft registers which are pushed. */
609 static CORE_ADDR
610 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
611 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
612 {
613 LONGEST save_addr;
614 CORE_ADDR func_end;
615 int size;
616 int found_frame_point;
617 int saved_reg;
618 int done = 0;
619 struct insn_sequence *seq_table;
620
621 info->size = 0;
622 info->sp_offset = 0;
623 if (pc >= current_pc)
624 return current_pc;
625
626 size = 0;
627
628 m68hc11_initialize_register_info ();
629 if (pc == 0)
630 {
631 info->size = 0;
632 return pc;
633 }
634
635 seq_table = gdbarch_tdep (gdbarch)->prologue;
636
637 /* The 68hc11 stack is as follows:
638
639
640 | |
641 +-----------+
642 | |
643 | args |
644 | |
645 +-----------+
646 | PC-return |
647 +-----------+
648 | Old frame |
649 +-----------+
650 | |
651 | Locals |
652 | |
653 +-----------+ <--- current frame
654 | |
655
656 With most processors (like 68K) the previous frame can be computed
657 easily because it is always at a fixed offset (see link/unlink).
658 That is, locals are accessed with negative offsets, arguments are
659 accessed with positive ones. Since 68hc11 only supports offsets
660 in the range [0..255], the frame is defined at the bottom of
661 locals (see picture).
662
663 The purpose of the analysis made here is to find out the size
664 of locals in this function. An alternative to this is to use
665 DWARF2 info. This would be better but I don't know how to
666 access dwarf2 debug from this function.
667
668 Walk from the function entry point to the point where we save
669 the frame. While walking instructions, compute the size of bytes
670 which are pushed. This gives us the index to access the previous
671 frame.
672
673 We limit the search to 128 bytes so that the algorithm is bounded
674 in case of random and wrong code. We also stop and abort if
675 we find an instruction which is not supposed to appear in the
676 prologue (as generated by gcc 2.95, 2.96).
677 */
678 func_end = pc + 128;
679 found_frame_point = 0;
680 info->size = 0;
681 save_addr = 0;
682 while (!done && pc + 2 < func_end)
683 {
684 struct insn_sequence *seq;
685 CORE_ADDR val;
686
687 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
688 if (seq == 0)
689 break;
690
691 /* If we are within the instruction group, we can't advance the
692 pc nor the stack offset. Otherwise the caller's stack computed
693 from the current stack can be wrong. */
694 if (pc + seq->length > current_pc)
695 break;
696
697 pc = pc + seq->length;
698 if (seq->type == P_SAVE_REG)
699 {
700 if (found_frame_point)
701 {
702 saved_reg = m68hc11_which_soft_register (val);
703 if (saved_reg < 0)
704 break;
705
706 save_addr -= 2;
707 if (info->saved_regs)
708 info->saved_regs[saved_reg].addr = save_addr;
709 }
710 else
711 {
712 size += 2;
713 }
714 }
715 else if (seq->type == P_SET_FRAME)
716 {
717 found_frame_point = 1;
718 info->size = size;
719 }
720 else if (seq->type == P_LOCAL_1)
721 {
722 size += 1;
723 }
724 else if (seq->type == P_LOCAL_2)
725 {
726 size += 2;
727 }
728 else if (seq->type == P_LOCAL_N)
729 {
730 /* Stack pointer is decremented for the allocation. */
731 if (val & 0x8000)
732 size -= (int) (val) | 0xffff0000;
733 else
734 size -= val;
735 }
736 }
737 if (found_frame_point == 0)
738 info->sp_offset = size;
739 else
740 info->sp_offset = -1;
741 return pc;
742 }
743
744 static CORE_ADDR
745 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
746 {
747 CORE_ADDR func_addr, func_end;
748 struct symtab_and_line sal;
749 struct m68hc11_unwind_cache tmp_cache = { 0 };
750
751 /* If we have line debugging information, then the end of the
752 prologue should be the first assembly instruction of the
753 first source line. */
754 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
755 {
756 sal = find_pc_line (func_addr, 0);
757 if (sal.end && sal.end < func_end)
758 return sal.end;
759 }
760
761 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
762 return pc;
763 }
764
765 static CORE_ADDR
766 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
767 {
768 ULONGEST pc;
769
770 pc = frame_unwind_register_unsigned (next_frame, gdbarch_pc_regnum (gdbarch));
771 return pc;
772 }
773
774 /* Put here the code to store, into fi->saved_regs, the addresses of
775 the saved registers of frame described by FRAME_INFO. This
776 includes special registers such as pc and fp saved in special ways
777 in the stack frame. sp is even more special: the address we return
778 for it IS the sp for the next frame. */
779
780 static struct m68hc11_unwind_cache *
781 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
782 void **this_prologue_cache)
783 {
784 struct gdbarch *gdbarch = get_frame_arch (this_frame);
785 ULONGEST prev_sp;
786 ULONGEST this_base;
787 struct m68hc11_unwind_cache *info;
788 CORE_ADDR current_pc;
789 int i;
790
791 if ((*this_prologue_cache))
792 return (*this_prologue_cache);
793
794 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
795 (*this_prologue_cache) = info;
796 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
797
798 info->pc = get_frame_func (this_frame);
799
800 info->size = 0;
801 info->return_kind = m68hc11_get_return_insn (info->pc);
802
803 /* The SP was moved to the FP. This indicates that a new frame
804 was created. Get THIS frame's FP value by unwinding it from
805 the next frame. */
806 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
807 if (this_base == 0)
808 {
809 info->base = 0;
810 return info;
811 }
812
813 current_pc = get_frame_pc (this_frame);
814 if (info->pc != 0)
815 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
816
817 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
818
819 if (info->sp_offset != (CORE_ADDR) -1)
820 {
821 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
822 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
823 prev_sp = this_base + info->sp_offset + 2;
824 this_base += STACK_CORRECTION (gdbarch);
825 }
826 else
827 {
828 /* The FP points at the last saved register. Adjust the FP back
829 to before the first saved register giving the SP. */
830 prev_sp = this_base + info->size + 2;
831
832 this_base += STACK_CORRECTION (gdbarch);
833 if (soft_regs[SOFT_FP_REGNUM].name)
834 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
835 }
836
837 if (info->return_kind == RETURN_RTC)
838 {
839 prev_sp += 1;
840 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
841 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
842 }
843 else if (info->return_kind == RETURN_RTI)
844 {
845 prev_sp += 7;
846 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
847 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
848 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
849 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
850 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
851 }
852
853 /* Add 1 here to adjust for the post-decrement nature of the push
854 instruction.*/
855 info->prev_sp = prev_sp;
856
857 info->base = this_base;
858
859 /* Adjust all the saved registers so that they contain addresses and not
860 offsets. */
861 for (i = 0;
862 i < gdbarch_num_regs (gdbarch)
863 + gdbarch_num_pseudo_regs (gdbarch) - 1;
864 i++)
865 if (trad_frame_addr_p (info->saved_regs, i))
866 {
867 info->saved_regs[i].addr += this_base;
868 }
869
870 /* The previous frame's SP needed to be computed. Save the computed
871 value. */
872 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
873
874 return info;
875 }
876
877 /* Given a GDB frame, determine the address of the calling function's
878 frame. This will be used to create a new GDB frame struct. */
879
880 static void
881 m68hc11_frame_this_id (struct frame_info *this_frame,
882 void **this_prologue_cache,
883 struct frame_id *this_id)
884 {
885 struct m68hc11_unwind_cache *info
886 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
887 CORE_ADDR base;
888 CORE_ADDR func;
889 struct frame_id id;
890
891 /* The FUNC is easy. */
892 func = get_frame_func (this_frame);
893
894 /* Hopefully the prologue analysis either correctly determined the
895 frame's base (which is the SP from the previous frame), or set
896 that base to "NULL". */
897 base = info->prev_sp;
898 if (base == 0)
899 return;
900
901 id = frame_id_build (base, func);
902 (*this_id) = id;
903 }
904
905 static struct value *
906 m68hc11_frame_prev_register (struct frame_info *this_frame,
907 void **this_prologue_cache, int regnum)
908 {
909 struct value *value;
910 struct m68hc11_unwind_cache *info
911 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
912
913 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
914
915 /* Take into account the 68HC12 specific call (PC + page). */
916 if (regnum == HARD_PC_REGNUM
917 && info->return_kind == RETURN_RTC
918 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
919 {
920 CORE_ADDR pc = value_as_long (value);
921 if (pc >= 0x08000 && pc < 0x0c000)
922 {
923 CORE_ADDR page;
924
925 release_value (value);
926 value_free (value);
927
928 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
929 HARD_PAGE_REGNUM);
930 page = value_as_long (value);
931 release_value (value);
932 value_free (value);
933
934 pc -= 0x08000;
935 pc += ((page & 0x0ff) << 14);
936 pc += 0x1000000;
937
938 return frame_unwind_got_constant (this_frame, regnum, pc);
939 }
940 }
941
942 return value;
943 }
944
945 static const struct frame_unwind m68hc11_frame_unwind = {
946 NORMAL_FRAME,
947 m68hc11_frame_this_id,
948 m68hc11_frame_prev_register,
949 NULL,
950 default_frame_sniffer
951 };
952
953 static CORE_ADDR
954 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
955 {
956 struct m68hc11_unwind_cache *info
957 = m68hc11_frame_unwind_cache (this_frame, this_cache);
958
959 return info->base;
960 }
961
962 static CORE_ADDR
963 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
964 {
965 CORE_ADDR addr;
966 struct m68hc11_unwind_cache *info
967 = m68hc11_frame_unwind_cache (this_frame, this_cache);
968
969 addr = info->base + info->size;
970 if (info->return_kind == RETURN_RTC)
971 addr += 1;
972 else if (info->return_kind == RETURN_RTI)
973 addr += 7;
974
975 return addr;
976 }
977
978 static const struct frame_base m68hc11_frame_base = {
979 &m68hc11_frame_unwind,
980 m68hc11_frame_base_address,
981 m68hc11_frame_base_address,
982 m68hc11_frame_args_address
983 };
984
985 static CORE_ADDR
986 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
987 {
988 ULONGEST sp;
989 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
990 return sp;
991 }
992
993 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
994 frame. The frame ID's base needs to match the TOS value saved by
995 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
996
997 static struct frame_id
998 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
999 {
1000 ULONGEST tos;
1001 CORE_ADDR pc = get_frame_pc (this_frame);
1002
1003 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
1004 tos += 2;
1005 return frame_id_build (tos, pc);
1006 }
1007
1008 \f
1009 /* Get and print the register from the given frame. */
1010 static void
1011 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1012 struct frame_info *frame, int regno)
1013 {
1014 LONGEST rval;
1015
1016 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1017 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1018 rval = get_frame_register_unsigned (frame, regno);
1019 else
1020 rval = get_frame_register_signed (frame, regno);
1021
1022 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1023 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1024 {
1025 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1026 if (regno != HARD_CCR_REGNUM)
1027 print_longest (file, 'd', 1, rval);
1028 }
1029 else
1030 {
1031 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1032 {
1033 ULONGEST page;
1034
1035 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1036 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1037 (unsigned) rval);
1038 }
1039 else
1040 {
1041 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1042 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1043 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1044 print_longest (file, 'd', 1, rval);
1045 }
1046 }
1047
1048 if (regno == HARD_CCR_REGNUM)
1049 {
1050 /* CCR register */
1051 int C, Z, N, V;
1052 unsigned char l = rval & 0xff;
1053
1054 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1055 l & M6811_S_BIT ? 'S' : '-',
1056 l & M6811_X_BIT ? 'X' : '-',
1057 l & M6811_H_BIT ? 'H' : '-',
1058 l & M6811_I_BIT ? 'I' : '-',
1059 l & M6811_N_BIT ? 'N' : '-',
1060 l & M6811_Z_BIT ? 'Z' : '-',
1061 l & M6811_V_BIT ? 'V' : '-',
1062 l & M6811_C_BIT ? 'C' : '-');
1063 N = (l & M6811_N_BIT) != 0;
1064 Z = (l & M6811_Z_BIT) != 0;
1065 V = (l & M6811_V_BIT) != 0;
1066 C = (l & M6811_C_BIT) != 0;
1067
1068 /* Print flags following the h8300 */
1069 if ((C | Z) == 0)
1070 fprintf_filtered (file, "u> ");
1071 else if ((C | Z) == 1)
1072 fprintf_filtered (file, "u<= ");
1073 else if (C == 0)
1074 fprintf_filtered (file, "u< ");
1075
1076 if (Z == 0)
1077 fprintf_filtered (file, "!= ");
1078 else
1079 fprintf_filtered (file, "== ");
1080
1081 if ((N ^ V) == 0)
1082 fprintf_filtered (file, ">= ");
1083 else
1084 fprintf_filtered (file, "< ");
1085
1086 if ((Z | (N ^ V)) == 0)
1087 fprintf_filtered (file, "> ");
1088 else
1089 fprintf_filtered (file, "<= ");
1090 }
1091 }
1092
1093 /* Same as 'info reg' but prints the registers in a different way. */
1094 static void
1095 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1096 struct frame_info *frame, int regno, int cpregs)
1097 {
1098 if (regno >= 0)
1099 {
1100 const char *name = gdbarch_register_name (gdbarch, regno);
1101
1102 if (!name || !*name)
1103 return;
1104
1105 fprintf_filtered (file, "%-10s ", name);
1106 m68hc11_print_register (gdbarch, file, frame, regno);
1107 fprintf_filtered (file, "\n");
1108 }
1109 else
1110 {
1111 int i, nr;
1112
1113 fprintf_filtered (file, "PC=");
1114 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1115
1116 fprintf_filtered (file, " SP=");
1117 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1118
1119 fprintf_filtered (file, " FP=");
1120 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1121
1122 fprintf_filtered (file, "\nCCR=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1124
1125 fprintf_filtered (file, "\nD=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1127
1128 fprintf_filtered (file, " X=");
1129 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1130
1131 fprintf_filtered (file, " Y=");
1132 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1133
1134 if (gdbarch_tdep (gdbarch)->use_page_register)
1135 {
1136 fprintf_filtered (file, "\nPage=");
1137 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1138 }
1139 fprintf_filtered (file, "\n");
1140
1141 nr = 0;
1142 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1143 {
1144 /* Skip registers which are not defined in the symbol table. */
1145 if (soft_regs[i].name == 0)
1146 continue;
1147
1148 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1149 m68hc11_print_register (gdbarch, file, frame, i);
1150 nr++;
1151 if ((nr % 8) == 7)
1152 fprintf_filtered (file, "\n");
1153 else
1154 fprintf_filtered (file, " ");
1155 }
1156 if (nr && (nr % 8) != 7)
1157 fprintf_filtered (file, "\n");
1158 }
1159 }
1160
1161 static CORE_ADDR
1162 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1163 struct regcache *regcache, CORE_ADDR bp_addr,
1164 int nargs, struct value **args, CORE_ADDR sp,
1165 int struct_return, CORE_ADDR struct_addr)
1166 {
1167 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1168 int argnum;
1169 int first_stack_argnum;
1170 struct type *type;
1171 char *val;
1172 int len;
1173 char buf[2];
1174
1175 first_stack_argnum = 0;
1176 if (struct_return)
1177 {
1178 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1179 }
1180 else if (nargs > 0)
1181 {
1182 type = value_type (args[0]);
1183 len = TYPE_LENGTH (type);
1184
1185 /* First argument is passed in D and X registers. */
1186 if (len <= 4)
1187 {
1188 ULONGEST v;
1189
1190 v = extract_unsigned_integer (value_contents (args[0]),
1191 len, byte_order);
1192 first_stack_argnum = 1;
1193
1194 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1195 if (len > 2)
1196 {
1197 v >>= 16;
1198 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1199 }
1200 }
1201 }
1202
1203 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1204 {
1205 type = value_type (args[argnum]);
1206 len = TYPE_LENGTH (type);
1207
1208 if (len & 1)
1209 {
1210 static char zero = 0;
1211
1212 sp--;
1213 write_memory (sp, &zero, 1);
1214 }
1215 val = (char*) value_contents (args[argnum]);
1216 sp -= len;
1217 write_memory (sp, val, len);
1218 }
1219
1220 /* Store return address. */
1221 sp -= 2;
1222 store_unsigned_integer (buf, 2, byte_order, bp_addr);
1223 write_memory (sp, buf, 2);
1224
1225 /* Finally, update the stack pointer... */
1226 sp -= STACK_CORRECTION (gdbarch);
1227 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1228
1229 /* ...and fake a frame pointer. */
1230 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1231
1232 /* DWARF2/GCC uses the stack address *before* the function call as a
1233 frame's CFA. */
1234 return sp + 2;
1235 }
1236
1237
1238 /* Return the GDB type object for the "standard" data type
1239 of data in register N. */
1240
1241 static struct type *
1242 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1243 {
1244 switch (reg_nr)
1245 {
1246 case HARD_PAGE_REGNUM:
1247 case HARD_A_REGNUM:
1248 case HARD_B_REGNUM:
1249 case HARD_CCR_REGNUM:
1250 return builtin_type (gdbarch)->builtin_uint8;
1251
1252 case M68HC12_HARD_PC_REGNUM:
1253 return builtin_type (gdbarch)->builtin_uint32;
1254
1255 default:
1256 return builtin_type (gdbarch)->builtin_uint16;
1257 }
1258 }
1259
1260 static void
1261 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1262 const void *valbuf)
1263 {
1264 int len;
1265
1266 len = TYPE_LENGTH (type);
1267
1268 /* First argument is passed in D and X registers. */
1269 if (len <= 2)
1270 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1271 else if (len <= 4)
1272 {
1273 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1274 len - 2, valbuf);
1275 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1276 }
1277 else
1278 error (_("return of value > 4 is not supported."));
1279 }
1280
1281
1282 /* Given a return value in `regcache' with a type `type',
1283 extract and copy its value into `valbuf'. */
1284
1285 static void
1286 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1287 void *valbuf)
1288 {
1289 int len = TYPE_LENGTH (type);
1290 char buf[M68HC11_REG_SIZE];
1291
1292 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1293 switch (len)
1294 {
1295 case 1:
1296 memcpy (valbuf, buf + 1, 1);
1297 break;
1298
1299 case 2:
1300 memcpy (valbuf, buf, 2);
1301 break;
1302
1303 case 3:
1304 memcpy ((char*) valbuf + 1, buf, 2);
1305 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1306 memcpy (valbuf, buf + 1, 1);
1307 break;
1308
1309 case 4:
1310 memcpy ((char*) valbuf + 2, buf, 2);
1311 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1312 memcpy (valbuf, buf, 2);
1313 break;
1314
1315 default:
1316 error (_("bad size for return value"));
1317 }
1318 }
1319
1320 static enum return_value_convention
1321 m68hc11_return_value (struct gdbarch *gdbarch, struct type *func_type,
1322 struct type *valtype, struct regcache *regcache,
1323 gdb_byte *readbuf, const gdb_byte *writebuf)
1324 {
1325 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1326 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1327 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1328 || TYPE_LENGTH (valtype) > 4)
1329 return RETURN_VALUE_STRUCT_CONVENTION;
1330 else
1331 {
1332 if (readbuf != NULL)
1333 m68hc11_extract_return_value (valtype, regcache, readbuf);
1334 if (writebuf != NULL)
1335 m68hc11_store_return_value (valtype, regcache, writebuf);
1336 return RETURN_VALUE_REGISTER_CONVENTION;
1337 }
1338 }
1339
1340 /* Test whether the ELF symbol corresponds to a function using rtc or
1341 rti to return. */
1342
1343 static void
1344 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1345 {
1346 unsigned char flags;
1347
1348 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1349 if (flags & STO_M68HC12_FAR)
1350 MSYMBOL_SET_RTC (msym);
1351 if (flags & STO_M68HC12_INTERRUPT)
1352 MSYMBOL_SET_RTI (msym);
1353 }
1354
1355 static int
1356 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1357 {
1358 if (info->arch == bfd_arch_m68hc11)
1359 return print_insn_m68hc11 (memaddr, info);
1360 else
1361 return print_insn_m68hc12 (memaddr, info);
1362 }
1363
1364 \f
1365
1366 /* 68HC11/68HC12 register groups.
1367 Identify real hard registers and soft registers used by gcc. */
1368
1369 static struct reggroup *m68hc11_soft_reggroup;
1370 static struct reggroup *m68hc11_hard_reggroup;
1371
1372 static void
1373 m68hc11_init_reggroups (void)
1374 {
1375 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1376 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1377 }
1378
1379 static void
1380 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1381 {
1382 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1383 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1384 reggroup_add (gdbarch, general_reggroup);
1385 reggroup_add (gdbarch, float_reggroup);
1386 reggroup_add (gdbarch, all_reggroup);
1387 reggroup_add (gdbarch, save_reggroup);
1388 reggroup_add (gdbarch, restore_reggroup);
1389 reggroup_add (gdbarch, vector_reggroup);
1390 reggroup_add (gdbarch, system_reggroup);
1391 }
1392
1393 static int
1394 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1395 struct reggroup *group)
1396 {
1397 /* We must save the real hard register as well as gcc
1398 soft registers including the frame pointer. */
1399 if (group == save_reggroup || group == restore_reggroup)
1400 {
1401 return (regnum <= gdbarch_num_regs (gdbarch)
1402 || ((regnum == SOFT_FP_REGNUM
1403 || regnum == SOFT_TMP_REGNUM
1404 || regnum == SOFT_ZS_REGNUM
1405 || regnum == SOFT_XY_REGNUM)
1406 && m68hc11_register_name (gdbarch, regnum)));
1407 }
1408
1409 /* Group to identify gcc soft registers (d1..dN). */
1410 if (group == m68hc11_soft_reggroup)
1411 {
1412 return regnum >= SOFT_D1_REGNUM
1413 && m68hc11_register_name (gdbarch, regnum);
1414 }
1415
1416 if (group == m68hc11_hard_reggroup)
1417 {
1418 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1419 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1420 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1421 }
1422 return default_register_reggroup_p (gdbarch, regnum, group);
1423 }
1424
1425 static struct gdbarch *
1426 m68hc11_gdbarch_init (struct gdbarch_info info,
1427 struct gdbarch_list *arches)
1428 {
1429 struct gdbarch *gdbarch;
1430 struct gdbarch_tdep *tdep;
1431 int elf_flags;
1432
1433 soft_reg_initialized = 0;
1434
1435 /* Extract the elf_flags if available. */
1436 if (info.abfd != NULL
1437 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1438 elf_flags = elf_elfheader (info.abfd)->e_flags;
1439 else
1440 elf_flags = 0;
1441
1442 /* try to find a pre-existing architecture */
1443 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1444 arches != NULL;
1445 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1446 {
1447 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1448 continue;
1449
1450 return arches->gdbarch;
1451 }
1452
1453 /* Need a new architecture. Fill in a target specific vector. */
1454 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1455 gdbarch = gdbarch_alloc (&info, tdep);
1456 tdep->elf_flags = elf_flags;
1457
1458 switch (info.bfd_arch_info->arch)
1459 {
1460 case bfd_arch_m68hc11:
1461 tdep->stack_correction = 1;
1462 tdep->use_page_register = 0;
1463 tdep->prologue = m6811_prologue;
1464 set_gdbarch_addr_bit (gdbarch, 16);
1465 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1466 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1467 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1468 break;
1469
1470 case bfd_arch_m68hc12:
1471 tdep->stack_correction = 0;
1472 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1473 tdep->prologue = m6812_prologue;
1474 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1475 set_gdbarch_num_pseudo_regs (gdbarch,
1476 elf_flags & E_M68HC12_BANKS
1477 ? M68HC12_NUM_PSEUDO_REGS
1478 : M68HC11_NUM_PSEUDO_REGS);
1479 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1480 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1481 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1482 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1483 break;
1484
1485 default:
1486 break;
1487 }
1488
1489 /* Initially set everything according to the ABI.
1490 Use 16-bit integers since it will be the case for most
1491 programs. The size of these types should normally be set
1492 according to the dwarf2 debug information. */
1493 set_gdbarch_short_bit (gdbarch, 16);
1494 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1495 set_gdbarch_float_bit (gdbarch, 32);
1496 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1497 set_gdbarch_long_double_bit (gdbarch, 64);
1498 set_gdbarch_long_bit (gdbarch, 32);
1499 set_gdbarch_ptr_bit (gdbarch, 16);
1500 set_gdbarch_long_long_bit (gdbarch, 64);
1501
1502 /* Characters are unsigned. */
1503 set_gdbarch_char_signed (gdbarch, 0);
1504
1505 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1506 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1507
1508 /* Set register info. */
1509 set_gdbarch_fp0_regnum (gdbarch, -1);
1510
1511 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1512 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1513 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1514 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1515 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1516
1517 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1518
1519 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1520 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1521 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1522 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1523 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1524
1525 m68hc11_add_reggroups (gdbarch);
1526 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1527 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1528
1529 /* Hook in the DWARF CFI frame unwinder. */
1530 dwarf2_append_unwinders (gdbarch);
1531
1532 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1533 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1534
1535 /* Methods for saving / extracting a dummy frame's ID. The ID's
1536 stack address must match the SP value returned by
1537 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1538 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1539
1540 /* Return the unwound PC value. */
1541 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1542
1543 /* Minsymbol frobbing. */
1544 set_gdbarch_elf_make_msymbol_special (gdbarch,
1545 m68hc11_elf_make_msymbol_special);
1546
1547 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1548
1549 return gdbarch;
1550 }
1551
1552 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1553
1554 void
1555 _initialize_m68hc11_tdep (void)
1556 {
1557 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1558 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1559 m68hc11_init_reggroups ();
1560 }
1561
This page took 0.0663 seconds and 5 git commands to generate.