* NEWS: Mention "regs" deprecated for m68hc11 too.
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez, stcarrez@nerim.fr
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "gdb_string.h"
29 #include "value.h"
30 #include "inferior.h"
31 #include "dis-asm.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "reggroups.h"
37
38 #include "target.h"
39 #include "opcode/m68hc11.h"
40 #include "elf/m68hc11.h"
41 #include "elf-bfd.h"
42
43 /* Macros for setting and testing a bit in a minimal symbol.
44 For 68HC11/68HC12 we have two flags that tell which return
45 type the function is using. This is used for prologue and frame
46 analysis to compute correct stack frame layout.
47
48 The MSB of the minimal symbol's "info" field is used for this purpose.
49 This field is already being used to store the symbol size, so the
50 assumption is that the symbol size cannot exceed 2^30.
51
52 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
53 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
54 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
55 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol.
56 MSYMBOL_SIZE Returns the size of the minimal symbol,
57 i.e. the "info" field with the "special" bit
58 masked out. */
59
60 #define MSYMBOL_SET_RTC(msym) \
61 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
62 | 0x80000000)
63
64 #define MSYMBOL_SET_RTI(msym) \
65 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
66 | 0x40000000)
67
68 #define MSYMBOL_IS_RTC(msym) \
69 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
70
71 #define MSYMBOL_IS_RTI(msym) \
72 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
73
74 #define MSYMBOL_SIZE(msym) \
75 ((long) MSYMBOL_INFO (msym) & 0x3fffffff)
76
77 enum insn_return_kind {
78 RETURN_RTS,
79 RETURN_RTC,
80 RETURN_RTI
81 };
82
83
84 /* Register numbers of various important registers.
85 Note that some of these values are "real" register numbers,
86 and correspond to the general registers of the machine,
87 and some are "phony" register numbers which are too large
88 to be actual register numbers as far as the user is concerned
89 but do serve to get the desired values when passed to read_register. */
90
91 #define HARD_X_REGNUM 0
92 #define HARD_D_REGNUM 1
93 #define HARD_Y_REGNUM 2
94 #define HARD_SP_REGNUM 3
95 #define HARD_PC_REGNUM 4
96
97 #define HARD_A_REGNUM 5
98 #define HARD_B_REGNUM 6
99 #define HARD_CCR_REGNUM 7
100
101 /* 68HC12 page number register.
102 Note: to keep a compatibility with gcc register naming, we must
103 not have to rename FP and other soft registers. The page register
104 is a real hard register and must therefore be counted by NUM_REGS.
105 For this it has the same number as Z register (which is not used). */
106 #define HARD_PAGE_REGNUM 8
107 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
108
109 /* Z is replaced by X or Y by gcc during machine reorg.
110 ??? There is no way to get it and even know whether
111 it's in X or Y or in ZS. */
112 #define SOFT_Z_REGNUM 8
113
114 /* Soft registers. These registers are special. There are treated
115 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
116 They are physically located in memory. */
117 #define SOFT_FP_REGNUM 9
118 #define SOFT_TMP_REGNUM 10
119 #define SOFT_ZS_REGNUM 11
120 #define SOFT_XY_REGNUM 12
121 #define SOFT_UNUSED_REGNUM 13
122 #define SOFT_D1_REGNUM 14
123 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
124 #define M68HC11_MAX_SOFT_REGS 32
125
126 #define M68HC11_NUM_REGS (8)
127 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
128 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
129
130 #define M68HC11_REG_SIZE (2)
131
132 #define M68HC12_NUM_REGS (9)
133 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
134 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
135
136 struct insn_sequence;
137 struct gdbarch_tdep
138 {
139 /* Stack pointer correction value. For 68hc11, the stack pointer points
140 to the next push location. An offset of 1 must be applied to obtain
141 the address where the last value is saved. For 68hc12, the stack
142 pointer points to the last value pushed. No offset is necessary. */
143 int stack_correction;
144
145 /* Description of instructions in the prologue. */
146 struct insn_sequence *prologue;
147
148 /* True if the page memory bank register is available
149 and must be used. */
150 int use_page_register;
151
152 /* ELF flags for ABI. */
153 int elf_flags;
154 };
155
156 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
157 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
158 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
159
160 struct frame_extra_info
161 {
162 CORE_ADDR return_pc;
163 int frameless;
164 int size;
165 enum insn_return_kind return_kind;
166 };
167
168 /* Table of registers for 68HC11. This includes the hard registers
169 and the soft registers used by GCC. */
170 static char *
171 m68hc11_register_names[] =
172 {
173 "x", "d", "y", "sp", "pc", "a", "b",
174 "ccr", "page", "frame","tmp", "zs", "xy", 0,
175 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
176 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
177 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
178 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
179 "d29", "d30", "d31", "d32"
180 };
181
182 struct m68hc11_soft_reg
183 {
184 const char *name;
185 CORE_ADDR addr;
186 };
187
188 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
189
190 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
191
192 static int soft_min_addr;
193 static int soft_max_addr;
194 static int soft_reg_initialized = 0;
195
196 /* Look in the symbol table for the address of a pseudo register
197 in memory. If we don't find it, pretend the register is not used
198 and not available. */
199 static void
200 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
201 {
202 struct minimal_symbol *msymbol;
203
204 msymbol = lookup_minimal_symbol (name, NULL, NULL);
205 if (msymbol)
206 {
207 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
208 reg->name = xstrdup (name);
209
210 /* Keep track of the address range for soft registers. */
211 if (reg->addr < (CORE_ADDR) soft_min_addr)
212 soft_min_addr = reg->addr;
213 if (reg->addr > (CORE_ADDR) soft_max_addr)
214 soft_max_addr = reg->addr;
215 }
216 else
217 {
218 reg->name = 0;
219 reg->addr = 0;
220 }
221 }
222
223 /* Initialize the table of soft register addresses according
224 to the symbol table. */
225 static void
226 m68hc11_initialize_register_info (void)
227 {
228 int i;
229
230 if (soft_reg_initialized)
231 return;
232
233 soft_min_addr = INT_MAX;
234 soft_max_addr = 0;
235 for (i = 0; i < M68HC11_ALL_REGS; i++)
236 {
237 soft_regs[i].name = 0;
238 }
239
240 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
241 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
242 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
243 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
244 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
245
246 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
247 {
248 char buf[10];
249
250 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
251 m68hc11_get_register_info (&soft_regs[i], buf);
252 }
253
254 if (soft_regs[SOFT_FP_REGNUM].name == 0)
255 {
256 warning ("No frame soft register found in the symbol table.\n");
257 warning ("Stack backtrace will not work.\n");
258 }
259 soft_reg_initialized = 1;
260 }
261
262 /* Given an address in memory, return the soft register number if
263 that address corresponds to a soft register. Returns -1 if not. */
264 static int
265 m68hc11_which_soft_register (CORE_ADDR addr)
266 {
267 int i;
268
269 if (addr < soft_min_addr || addr > soft_max_addr)
270 return -1;
271
272 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
273 {
274 if (soft_regs[i].name && soft_regs[i].addr == addr)
275 return i;
276 }
277 return -1;
278 }
279
280 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
281 pseudo registers. They are located in memory. Translate the register
282 fetch into a memory read. */
283 static void
284 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
285 struct regcache *regcache,
286 int regno, void *buf)
287 {
288 /* The PC is a pseudo reg only for 68HC12 with the memory bank
289 addressing mode. */
290 if (regno == M68HC12_HARD_PC_REGNUM)
291 {
292 ULONGEST pc;
293 const int regsize = TYPE_LENGTH (builtin_type_uint32);
294
295 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
296 if (pc >= 0x8000 && pc < 0xc000)
297 {
298 ULONGEST page;
299
300 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
301 pc -= 0x8000;
302 pc += (page << 14);
303 pc += 0x1000000;
304 }
305 store_unsigned_integer (buf, regsize, pc);
306 return;
307 }
308
309 m68hc11_initialize_register_info ();
310
311 /* Fetch a soft register: translate into a memory read. */
312 if (soft_regs[regno].name)
313 {
314 target_read_memory (soft_regs[regno].addr, buf, 2);
315 }
316 else
317 {
318 memset (buf, 0, 2);
319 }
320 }
321
322 /* Store a pseudo register. Translate the register store
323 into a memory write. */
324 static void
325 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
326 struct regcache *regcache,
327 int regno, const void *buf)
328 {
329 /* The PC is a pseudo reg only for 68HC12 with the memory bank
330 addressing mode. */
331 if (regno == M68HC12_HARD_PC_REGNUM)
332 {
333 const int regsize = TYPE_LENGTH (builtin_type_uint32);
334 char *tmp = alloca (regsize);
335 CORE_ADDR pc;
336
337 memcpy (tmp, buf, regsize);
338 pc = extract_unsigned_integer (tmp, regsize);
339 if (pc >= 0x1000000)
340 {
341 pc -= 0x1000000;
342 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
343 (pc >> 14) & 0x0ff);
344 pc &= 0x03fff;
345 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
346 pc + 0x8000);
347 }
348 else
349 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
350 return;
351 }
352
353 m68hc11_initialize_register_info ();
354
355 /* Store a soft register: translate into a memory write. */
356 if (soft_regs[regno].name)
357 {
358 const int regsize = 2;
359 char *tmp = alloca (regsize);
360 memcpy (tmp, buf, regsize);
361 target_write_memory (soft_regs[regno].addr, tmp, regsize);
362 }
363 }
364
365 static const char *
366 m68hc11_register_name (int reg_nr)
367 {
368 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
369 return "pc";
370 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
371 return "ppc";
372
373 if (reg_nr < 0)
374 return NULL;
375 if (reg_nr >= M68HC11_ALL_REGS)
376 return NULL;
377
378 /* If we don't know the address of a soft register, pretend it
379 does not exist. */
380 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
381 return NULL;
382 return m68hc11_register_names[reg_nr];
383 }
384
385 static const unsigned char *
386 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
387 {
388 static unsigned char breakpoint[] = {0x0};
389
390 *lenptr = sizeof (breakpoint);
391 return breakpoint;
392 }
393
394 /* Immediately after a function call, return the saved pc before the frame
395 is setup. */
396
397 static CORE_ADDR
398 m68hc11_saved_pc_after_call (struct frame_info *frame)
399 {
400 CORE_ADDR addr;
401 ULONGEST sp;
402
403 regcache_cooked_read_unsigned (current_regcache, HARD_SP_REGNUM, &sp);
404 sp += STACK_CORRECTION;
405 addr = sp & 0x0ffff;
406 return read_memory_integer (addr, 2) & 0x0FFFF;
407 }
408
409 static CORE_ADDR
410 m68hc11_frame_saved_pc (struct frame_info *frame)
411 {
412 return get_frame_extra_info (frame)->return_pc;
413 }
414
415 static CORE_ADDR
416 m68hc11_frame_args_address (struct frame_info *frame)
417 {
418 CORE_ADDR addr;
419
420 addr = get_frame_base (frame) + get_frame_extra_info (frame)->size + STACK_CORRECTION + 2;
421 if (get_frame_extra_info (frame)->return_kind == RETURN_RTC)
422 addr += 1;
423 else if (get_frame_extra_info (frame)->return_kind == RETURN_RTI)
424 addr += 7;
425
426 return addr;
427 }
428
429 /* Discard from the stack the innermost frame, restoring all saved
430 registers. */
431
432 static void
433 m68hc11_pop_frame (void)
434 {
435 register struct frame_info *frame = get_current_frame ();
436 register CORE_ADDR fp, sp;
437 register int regnum;
438
439 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
440 get_frame_base (frame),
441 get_frame_base (frame)))
442 generic_pop_dummy_frame ();
443 else
444 {
445 fp = get_frame_base (frame);
446 DEPRECATED_FRAME_INIT_SAVED_REGS (frame);
447
448 /* Copy regs from where they were saved in the frame. */
449 for (regnum = 0; regnum < M68HC11_ALL_REGS; regnum++)
450 if (get_frame_saved_regs (frame)[regnum])
451 write_register (regnum,
452 read_memory_integer (get_frame_saved_regs (frame)[regnum], 2));
453
454 write_register (HARD_PC_REGNUM, get_frame_extra_info (frame)->return_pc);
455 sp = (fp + get_frame_extra_info (frame)->size + 2) & 0x0ffff;
456 write_register (HARD_SP_REGNUM, sp);
457 }
458 flush_cached_frames ();
459 }
460
461 \f
462 /* 68HC11 & 68HC12 prologue analysis.
463
464 */
465 #define MAX_CODES 12
466
467 /* 68HC11 opcodes. */
468 #undef M6811_OP_PAGE2
469 #define M6811_OP_PAGE2 (0x18)
470 #define M6811_OP_LDX (0xde)
471 #define M6811_OP_LDX_EXT (0xfe)
472 #define M6811_OP_PSHX (0x3c)
473 #define M6811_OP_STS (0x9f)
474 #define M6811_OP_STS_EXT (0xbf)
475 #define M6811_OP_TSX (0x30)
476 #define M6811_OP_XGDX (0x8f)
477 #define M6811_OP_ADDD (0xc3)
478 #define M6811_OP_TXS (0x35)
479 #define M6811_OP_DES (0x34)
480
481 /* 68HC12 opcodes. */
482 #define M6812_OP_PAGE2 (0x18)
483 #define M6812_OP_MOVW (0x01)
484 #define M6812_PB_PSHW (0xae)
485 #define M6812_OP_STS (0x5f)
486 #define M6812_OP_STS_EXT (0x7f)
487 #define M6812_OP_LEAS (0x1b)
488 #define M6812_OP_PSHX (0x34)
489 #define M6812_OP_PSHY (0x35)
490
491 /* Operand extraction. */
492 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
493 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
494 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
495 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
496
497 /* Identification of the sequence. */
498 enum m6811_seq_type
499 {
500 P_LAST = 0,
501 P_SAVE_REG, /* Save a register on the stack. */
502 P_SET_FRAME, /* Setup the frame pointer. */
503 P_LOCAL_1, /* Allocate 1 byte for locals. */
504 P_LOCAL_2, /* Allocate 2 bytes for locals. */
505 P_LOCAL_N /* Allocate N bytes for locals. */
506 };
507
508 struct insn_sequence {
509 enum m6811_seq_type type;
510 unsigned length;
511 unsigned short code[MAX_CODES];
512 };
513
514 /* Sequence of instructions in the 68HC11 function prologue. */
515 static struct insn_sequence m6811_prologue[] = {
516 /* Sequences to save a soft-register. */
517 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
518 M6811_OP_PSHX } },
519 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
520 M6811_OP_PAGE2, M6811_OP_PSHX } },
521 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
522 M6811_OP_PSHX } },
523 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
524 M6811_OP_PAGE2, M6811_OP_PSHX } },
525
526 /* Sequences to allocate local variables. */
527 { P_LOCAL_N, 7, { M6811_OP_TSX,
528 M6811_OP_XGDX,
529 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
530 M6811_OP_XGDX,
531 M6811_OP_TXS } },
532 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
533 M6811_OP_PAGE2, M6811_OP_XGDX,
534 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
535 M6811_OP_PAGE2, M6811_OP_XGDX,
536 M6811_OP_PAGE2, M6811_OP_TXS } },
537 { P_LOCAL_1, 1, { M6811_OP_DES } },
538 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
539 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
540
541 /* Initialize the frame pointer. */
542 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
543 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
544 { P_LAST, 0, { 0 } }
545 };
546
547
548 /* Sequence of instructions in the 68HC12 function prologue. */
549 static struct insn_sequence m6812_prologue[] = {
550 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
551 OP_IMM_HIGH, OP_IMM_LOW } },
552 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
553 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
554 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
555 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
556 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
557 { P_LAST, 0 }
558 };
559
560
561 /* Analyze the sequence of instructions starting at the given address.
562 Returns a pointer to the sequence when it is recognized and
563 the optional value (constant/address) associated with it.
564 Advance the pc for the next sequence. */
565 static struct insn_sequence *
566 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR *pc,
567 CORE_ADDR *val)
568 {
569 unsigned char buffer[MAX_CODES];
570 unsigned bufsize;
571 unsigned j;
572 CORE_ADDR cur_val;
573 short v = 0;
574
575 bufsize = 0;
576 for (; seq->type != P_LAST; seq++)
577 {
578 cur_val = 0;
579 for (j = 0; j < seq->length; j++)
580 {
581 if (bufsize < j + 1)
582 {
583 buffer[bufsize] = read_memory_unsigned_integer (*pc + bufsize,
584 1);
585 bufsize++;
586 }
587 /* Continue while we match the opcode. */
588 if (seq->code[j] == buffer[j])
589 continue;
590
591 if ((seq->code[j] & 0xf00) == 0)
592 break;
593
594 /* Extract a sequence parameter (address or constant). */
595 switch (seq->code[j])
596 {
597 case OP_DIRECT:
598 cur_val = (CORE_ADDR) buffer[j];
599 break;
600
601 case OP_IMM_HIGH:
602 cur_val = cur_val & 0x0ff;
603 cur_val |= (buffer[j] << 8);
604 break;
605
606 case OP_IMM_LOW:
607 cur_val &= 0x0ff00;
608 cur_val |= buffer[j];
609 break;
610
611 case OP_PBYTE:
612 if ((buffer[j] & 0xE0) == 0x80)
613 {
614 v = buffer[j] & 0x1f;
615 if (v & 0x10)
616 v |= 0xfff0;
617 }
618 else if ((buffer[j] & 0xfe) == 0xf0)
619 {
620 v = read_memory_unsigned_integer (*pc + j + 1, 1);
621 if (buffer[j] & 1)
622 v |= 0xff00;
623 *pc = *pc + 1;
624 }
625 else if (buffer[j] == 0xf2)
626 {
627 v = read_memory_unsigned_integer (*pc + j + 1, 2);
628 *pc = *pc + 2;
629 }
630 cur_val = v;
631 break;
632 }
633 }
634
635 /* We have a full match. */
636 if (j == seq->length)
637 {
638 *val = cur_val;
639 *pc = *pc + j;
640 return seq;
641 }
642 }
643 return 0;
644 }
645
646 /* Return the instruction that the function at the PC is using. */
647 static enum insn_return_kind
648 m68hc11_get_return_insn (CORE_ADDR pc)
649 {
650 struct minimal_symbol *sym;
651
652 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
653 function is stored by elfread.c in the high bit of the info field.
654 Use this to decide which instruction the function uses to return. */
655 sym = lookup_minimal_symbol_by_pc (pc);
656 if (sym == 0)
657 return RETURN_RTS;
658
659 if (MSYMBOL_IS_RTC (sym))
660 return RETURN_RTC;
661 else if (MSYMBOL_IS_RTI (sym))
662 return RETURN_RTI;
663 else
664 return RETURN_RTS;
665 }
666
667
668 /* Analyze the function prologue to find some information
669 about the function:
670 - the PC of the first line (for m68hc11_skip_prologue)
671 - the offset of the previous frame saved address (from current frame)
672 - the soft registers which are pushed. */
673 static void
674 m68hc11_guess_from_prologue (CORE_ADDR pc, CORE_ADDR fp,
675 CORE_ADDR *first_line,
676 int *frame_offset, CORE_ADDR *pushed_regs)
677 {
678 CORE_ADDR save_addr;
679 CORE_ADDR func_end;
680 int size;
681 int found_frame_point;
682 int saved_reg;
683 CORE_ADDR first_pc;
684 int done = 0;
685 struct insn_sequence *seq_table;
686
687 first_pc = get_pc_function_start (pc);
688 size = 0;
689
690 m68hc11_initialize_register_info ();
691 if (first_pc == 0)
692 {
693 *frame_offset = 0;
694 *first_line = pc;
695 return;
696 }
697
698 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
699
700 /* The 68hc11 stack is as follows:
701
702
703 | |
704 +-----------+
705 | |
706 | args |
707 | |
708 +-----------+
709 | PC-return |
710 +-----------+
711 | Old frame |
712 +-----------+
713 | |
714 | Locals |
715 | |
716 +-----------+ <--- current frame
717 | |
718
719 With most processors (like 68K) the previous frame can be computed
720 easily because it is always at a fixed offset (see link/unlink).
721 That is, locals are accessed with negative offsets, arguments are
722 accessed with positive ones. Since 68hc11 only supports offsets
723 in the range [0..255], the frame is defined at the bottom of
724 locals (see picture).
725
726 The purpose of the analysis made here is to find out the size
727 of locals in this function. An alternative to this is to use
728 DWARF2 info. This would be better but I don't know how to
729 access dwarf2 debug from this function.
730
731 Walk from the function entry point to the point where we save
732 the frame. While walking instructions, compute the size of bytes
733 which are pushed. This gives us the index to access the previous
734 frame.
735
736 We limit the search to 128 bytes so that the algorithm is bounded
737 in case of random and wrong code. We also stop and abort if
738 we find an instruction which is not supposed to appear in the
739 prologue (as generated by gcc 2.95, 2.96).
740 */
741 pc = first_pc;
742 func_end = pc + 128;
743 found_frame_point = 0;
744 *frame_offset = 0;
745 save_addr = fp + STACK_CORRECTION;
746 while (!done && pc + 2 < func_end)
747 {
748 struct insn_sequence *seq;
749 CORE_ADDR val;
750
751 seq = m68hc11_analyze_instruction (seq_table, &pc, &val);
752 if (seq == 0)
753 break;
754
755 if (seq->type == P_SAVE_REG)
756 {
757 if (found_frame_point)
758 {
759 saved_reg = m68hc11_which_soft_register (val);
760 if (saved_reg < 0)
761 break;
762
763 save_addr -= 2;
764 if (pushed_regs)
765 pushed_regs[saved_reg] = save_addr;
766 }
767 else
768 {
769 size += 2;
770 }
771 }
772 else if (seq->type == P_SET_FRAME)
773 {
774 found_frame_point = 1;
775 *frame_offset = size;
776 }
777 else if (seq->type == P_LOCAL_1)
778 {
779 size += 1;
780 }
781 else if (seq->type == P_LOCAL_2)
782 {
783 size += 2;
784 }
785 else if (seq->type == P_LOCAL_N)
786 {
787 /* Stack pointer is decremented for the allocation. */
788 if (val & 0x8000)
789 size -= (int) (val) | 0xffff0000;
790 else
791 size -= val;
792 }
793 }
794 *first_line = pc;
795 }
796
797 static CORE_ADDR
798 m68hc11_skip_prologue (CORE_ADDR pc)
799 {
800 CORE_ADDR func_addr, func_end;
801 struct symtab_and_line sal;
802 int frame_offset;
803
804 /* If we have line debugging information, then the end of the
805 prologue should be the first assembly instruction of the
806 first source line. */
807 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
808 {
809 sal = find_pc_line (func_addr, 0);
810 if (sal.end && sal.end < func_end)
811 return sal.end;
812 }
813
814 m68hc11_guess_from_prologue (pc, 0, &pc, &frame_offset, 0);
815 return pc;
816 }
817
818 /* Given a GDB frame, determine the address of the calling function's
819 frame. This will be used to create a new GDB frame struct, and
820 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
821 will be called for the new frame. */
822
823 static CORE_ADDR
824 m68hc11_frame_chain (struct frame_info *frame)
825 {
826 CORE_ADDR addr;
827
828 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
829 get_frame_base (frame),
830 get_frame_base (frame)))
831 return get_frame_base (frame); /* dummy frame same as caller's frame */
832
833 if (get_frame_extra_info (frame)->return_pc == 0
834 || inside_entry_file (get_frame_extra_info (frame)->return_pc))
835 return (CORE_ADDR) 0;
836
837 if (get_frame_base (frame) == 0)
838 {
839 return (CORE_ADDR) 0;
840 }
841
842 addr = get_frame_base (frame) + get_frame_extra_info (frame)->size + STACK_CORRECTION - 2;
843 addr = read_memory_unsigned_integer (addr, 2) & 0x0FFFF;
844 return addr;
845 }
846
847 /* Put here the code to store, into a struct frame_saved_regs, the
848 addresses of the saved registers of frame described by FRAME_INFO.
849 This includes special registers such as pc and fp saved in special
850 ways in the stack frame. sp is even more special: the address we
851 return for it IS the sp for the next frame. */
852 static void
853 m68hc11_frame_init_saved_regs (struct frame_info *fi)
854 {
855 CORE_ADDR pc;
856 CORE_ADDR addr;
857
858 if (get_frame_saved_regs (fi) == NULL)
859 frame_saved_regs_zalloc (fi);
860 else
861 memset (get_frame_saved_regs (fi), 0, SIZEOF_FRAME_SAVED_REGS);
862
863 pc = get_frame_pc (fi);
864 get_frame_extra_info (fi)->return_kind = m68hc11_get_return_insn (pc);
865 m68hc11_guess_from_prologue (pc, get_frame_base (fi), &pc,
866 &get_frame_extra_info (fi)->size,
867 get_frame_saved_regs (fi));
868
869 addr = get_frame_base (fi) + get_frame_extra_info (fi)->size + STACK_CORRECTION;
870 if (soft_regs[SOFT_FP_REGNUM].name)
871 get_frame_saved_regs (fi)[SOFT_FP_REGNUM] = addr - 2;
872
873 /* Take into account how the function was called/returns. */
874 if (get_frame_extra_info (fi)->return_kind == RETURN_RTC)
875 {
876 get_frame_saved_regs (fi)[HARD_PAGE_REGNUM] = addr;
877 addr++;
878 }
879 else if (get_frame_extra_info (fi)->return_kind == RETURN_RTI)
880 {
881 get_frame_saved_regs (fi)[HARD_CCR_REGNUM] = addr;
882 get_frame_saved_regs (fi)[HARD_D_REGNUM] = addr + 1;
883 get_frame_saved_regs (fi)[HARD_X_REGNUM] = addr + 3;
884 get_frame_saved_regs (fi)[HARD_Y_REGNUM] = addr + 5;
885 addr += 7;
886 }
887 get_frame_saved_regs (fi)[HARD_SP_REGNUM] = addr;
888 get_frame_saved_regs (fi)[HARD_PC_REGNUM] = get_frame_saved_regs (fi)[HARD_SP_REGNUM];
889 }
890
891 static void
892 m68hc11_init_extra_frame_info (int fromleaf, struct frame_info *fi)
893 {
894 CORE_ADDR addr;
895
896 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
897
898 if (get_next_frame (fi))
899 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
900
901 m68hc11_frame_init_saved_regs (fi);
902
903 if (fromleaf)
904 {
905 get_frame_extra_info (fi)->return_kind = m68hc11_get_return_insn (get_frame_pc (fi));
906 get_frame_extra_info (fi)->return_pc = m68hc11_saved_pc_after_call (fi);
907 }
908 else
909 {
910 addr = get_frame_saved_regs (fi)[HARD_PC_REGNUM];
911 addr = read_memory_unsigned_integer (addr, 2) & 0x0ffff;
912
913 /* Take into account the 68HC12 specific call (PC + page). */
914 if (get_frame_extra_info (fi)->return_kind == RETURN_RTC
915 && addr >= 0x08000 && addr < 0x0c000
916 && USE_PAGE_REGISTER)
917 {
918 CORE_ADDR page_addr = get_frame_saved_regs (fi)[HARD_PAGE_REGNUM];
919
920 unsigned page = read_memory_unsigned_integer (page_addr, 1);
921 addr -= 0x08000;
922 addr += ((page & 0x0ff) << 14);
923 addr += 0x1000000;
924 }
925 get_frame_extra_info (fi)->return_pc = addr;
926 }
927 }
928
929 \f
930 /* Get and print the register from the given frame. */
931 static void
932 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
933 struct frame_info *frame, int regno)
934 {
935 LONGEST rval;
936
937 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
938 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
939 frame_read_unsigned_register (frame, regno, &rval);
940 else
941 frame_read_signed_register (frame, regno, &rval);
942
943 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
944 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
945 {
946 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
947 if (regno != HARD_CCR_REGNUM)
948 print_longest (file, 'd', 1, rval);
949 }
950 else
951 {
952 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
953 {
954 ULONGEST page;
955
956 frame_read_unsigned_register (frame, HARD_PAGE_REGNUM, &page);
957 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
958 (unsigned) rval);
959 }
960 else
961 {
962 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
963 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
964 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
965 print_longest (file, 'd', 1, rval);
966 }
967 }
968
969 if (regno == HARD_CCR_REGNUM)
970 {
971 /* CCR register */
972 int C, Z, N, V;
973 unsigned char l = rval & 0xff;
974
975 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
976 l & M6811_S_BIT ? 'S' : '-',
977 l & M6811_X_BIT ? 'X' : '-',
978 l & M6811_H_BIT ? 'H' : '-',
979 l & M6811_I_BIT ? 'I' : '-',
980 l & M6811_N_BIT ? 'N' : '-',
981 l & M6811_Z_BIT ? 'Z' : '-',
982 l & M6811_V_BIT ? 'V' : '-',
983 l & M6811_C_BIT ? 'C' : '-');
984 N = (l & M6811_N_BIT) != 0;
985 Z = (l & M6811_Z_BIT) != 0;
986 V = (l & M6811_V_BIT) != 0;
987 C = (l & M6811_C_BIT) != 0;
988
989 /* Print flags following the h8300 */
990 if ((C | Z) == 0)
991 fprintf_filtered (file, "u> ");
992 else if ((C | Z) == 1)
993 fprintf_filtered (file, "u<= ");
994 else if (C == 0)
995 fprintf_filtered (file, "u< ");
996
997 if (Z == 0)
998 fprintf_filtered (file, "!= ");
999 else
1000 fprintf_filtered (file, "== ");
1001
1002 if ((N ^ V) == 0)
1003 fprintf_filtered (file, ">= ");
1004 else
1005 fprintf_filtered (file, "< ");
1006
1007 if ((Z | (N ^ V)) == 0)
1008 fprintf_filtered (file, "> ");
1009 else
1010 fprintf_filtered (file, "<= ");
1011 }
1012 }
1013
1014 /* Same as 'info reg' but prints the registers in a different way. */
1015 static void
1016 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1017 struct frame_info *frame, int regno, int cpregs)
1018 {
1019 if (regno >= 0)
1020 {
1021 const char *name = gdbarch_register_name (gdbarch, regno);
1022
1023 if (!name || !*name)
1024 return;
1025
1026 fprintf_filtered (file, "%-10s ", name);
1027 m68hc11_print_register (gdbarch, file, frame, regno);
1028 fprintf_filtered (file, "\n");
1029 }
1030 else
1031 {
1032 int i, nr;
1033
1034 fprintf_filtered (file, "PC=");
1035 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1036
1037 fprintf_filtered (file, " SP=");
1038 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1039
1040 fprintf_filtered (file, " FP=");
1041 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1042
1043 fprintf_filtered (file, "\nCCR=");
1044 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1045
1046 fprintf_filtered (file, "\nD=");
1047 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1048
1049 fprintf_filtered (file, " X=");
1050 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1051
1052 fprintf_filtered (file, " Y=");
1053 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1054
1055 if (gdbarch_tdep (gdbarch)->use_page_register)
1056 {
1057 fprintf_filtered (file, "\nPage=");
1058 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1059 }
1060 fprintf_filtered (file, "\n");
1061
1062 nr = 0;
1063 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1064 {
1065 /* Skip registers which are not defined in the symbol table. */
1066 if (soft_regs[i].name == 0)
1067 continue;
1068
1069 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1070 m68hc11_print_register (gdbarch, file, frame, i);
1071 nr++;
1072 if ((nr % 8) == 7)
1073 fprintf_filtered (file, "\n");
1074 else
1075 fprintf_filtered (file, " ");
1076 }
1077 if (nr && (nr % 8) != 7)
1078 fprintf_filtered (file, "\n");
1079 }
1080 }
1081
1082 /* Same as 'info reg' but prints the registers in a different way. */
1083 static void
1084 show_regs (char *args, int from_tty)
1085 {
1086 m68hc11_print_registers_info (current_gdbarch, gdb_stdout,
1087 get_current_frame (), -1, 1);
1088 }
1089
1090 static CORE_ADDR
1091 m68hc11_stack_align (CORE_ADDR addr)
1092 {
1093 return ((addr + 1) & -2);
1094 }
1095
1096 static CORE_ADDR
1097 m68hc11_push_arguments (int nargs,
1098 struct value **args,
1099 CORE_ADDR sp,
1100 int struct_return,
1101 CORE_ADDR struct_addr)
1102 {
1103 int stack_alloc;
1104 int argnum;
1105 int first_stack_argnum;
1106 int stack_offset;
1107 struct type *type;
1108 char *val;
1109 int len;
1110
1111 stack_alloc = 0;
1112 first_stack_argnum = 0;
1113 if (struct_return)
1114 {
1115 /* The struct is allocated on the stack and gdb used the stack
1116 pointer for the address of that struct. We must apply the
1117 stack offset on the address. */
1118 write_register (HARD_D_REGNUM, struct_addr + STACK_CORRECTION);
1119 }
1120 else if (nargs > 0)
1121 {
1122 type = VALUE_TYPE (args[0]);
1123 len = TYPE_LENGTH (type);
1124
1125 /* First argument is passed in D and X registers. */
1126 if (len <= 4)
1127 {
1128 LONGEST v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
1129 first_stack_argnum = 1;
1130 write_register (HARD_D_REGNUM, v);
1131 if (len > 2)
1132 {
1133 v >>= 16;
1134 write_register (HARD_X_REGNUM, v);
1135 }
1136 }
1137 }
1138 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
1139 {
1140 type = VALUE_TYPE (args[argnum]);
1141 stack_alloc += (TYPE_LENGTH (type) + 1) & -2;
1142 }
1143 sp -= stack_alloc;
1144
1145 stack_offset = STACK_CORRECTION;
1146 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
1147 {
1148 type = VALUE_TYPE (args[argnum]);
1149 len = TYPE_LENGTH (type);
1150
1151 val = (char*) VALUE_CONTENTS (args[argnum]);
1152 write_memory (sp + stack_offset, val, len);
1153 stack_offset += len;
1154 if (len & 1)
1155 {
1156 static char zero = 0;
1157
1158 write_memory (sp + stack_offset, &zero, 1);
1159 stack_offset++;
1160 }
1161 }
1162 return sp;
1163 }
1164
1165
1166 /* Return the GDB type object for the "standard" data type
1167 of data in register N. */
1168
1169 static struct type *
1170 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1171 {
1172 switch (reg_nr)
1173 {
1174 case HARD_PAGE_REGNUM:
1175 case HARD_A_REGNUM:
1176 case HARD_B_REGNUM:
1177 case HARD_CCR_REGNUM:
1178 return builtin_type_uint8;
1179
1180 case M68HC12_HARD_PC_REGNUM:
1181 return builtin_type_uint32;
1182
1183 default:
1184 return builtin_type_uint16;
1185 }
1186 }
1187
1188 static void
1189 m68hc11_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1190 {
1191 /* The struct address computed by gdb is on the stack.
1192 It uses the stack pointer so we must apply the stack
1193 correction offset. */
1194 write_register (HARD_D_REGNUM, addr + STACK_CORRECTION);
1195 }
1196
1197 static void
1198 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1199 const void *valbuf)
1200 {
1201 int len;
1202
1203 len = TYPE_LENGTH (type);
1204
1205 /* First argument is passed in D and X registers. */
1206 if (len <= 2)
1207 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1208 else if (len <= 4)
1209 {
1210 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1211 len - 2, valbuf);
1212 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1213 }
1214 else
1215 error ("return of value > 4 is not supported.");
1216 }
1217
1218
1219 /* Given a return value in `regcache' with a type `type',
1220 extract and copy its value into `valbuf'. */
1221
1222 static void
1223 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1224 void *valbuf)
1225 {
1226 int len = TYPE_LENGTH (type);
1227 char buf[M68HC11_REG_SIZE];
1228
1229 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1230 switch (len)
1231 {
1232 case 1:
1233 memcpy (valbuf, buf + 1, 1);
1234 break;
1235
1236 case 2:
1237 memcpy (valbuf, buf, 2);
1238 break;
1239
1240 case 3:
1241 memcpy ((char*) valbuf + 1, buf, 2);
1242 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1243 memcpy (valbuf, buf + 1, 1);
1244 break;
1245
1246 case 4:
1247 memcpy ((char*) valbuf + 2, buf, 2);
1248 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1249 memcpy (valbuf, buf, 2);
1250 break;
1251
1252 default:
1253 error ("bad size for return value");
1254 }
1255 }
1256
1257 /* Should call_function allocate stack space for a struct return? */
1258 static int
1259 m68hc11_use_struct_convention (int gcc_p, struct type *type)
1260 {
1261 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1262 || TYPE_CODE (type) == TYPE_CODE_UNION
1263 || TYPE_LENGTH (type) > 4);
1264 }
1265
1266 static int
1267 m68hc11_return_value_on_stack (struct type *type)
1268 {
1269 return TYPE_LENGTH (type) > 4;
1270 }
1271
1272 /* Extract from an array REGBUF containing the (raw) register state
1273 the address in which a function should return its structure value,
1274 as a CORE_ADDR (or an expression that can be used as one). */
1275 static CORE_ADDR
1276 m68hc11_extract_struct_value_address (struct regcache *regcache)
1277 {
1278 char buf[M68HC11_REG_SIZE];
1279
1280 regcache_cooked_read (regcache, HARD_D_REGNUM, buf);
1281 return extract_unsigned_integer (buf, M68HC11_REG_SIZE);
1282 }
1283
1284 /* Function: push_return_address (pc)
1285 Set up the return address for the inferior function call.
1286 Needed for targets where we don't actually execute a JSR/BSR instruction */
1287
1288 static CORE_ADDR
1289 m68hc11_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1290 {
1291 char valbuf[2];
1292
1293 pc = CALL_DUMMY_ADDRESS ();
1294 sp -= 2;
1295 store_unsigned_integer (valbuf, 2, pc);
1296 write_memory (sp + STACK_CORRECTION, valbuf, 2);
1297 return sp;
1298 }
1299
1300 /* Test whether the ELF symbol corresponds to a function using rtc or
1301 rti to return. */
1302
1303 static void
1304 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1305 {
1306 unsigned char flags;
1307
1308 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1309 if (flags & STO_M68HC12_FAR)
1310 MSYMBOL_SET_RTC (msym);
1311 if (flags & STO_M68HC12_INTERRUPT)
1312 MSYMBOL_SET_RTI (msym);
1313 }
1314
1315 static int
1316 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1317 {
1318 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1319 return print_insn_m68hc11 (memaddr, info);
1320 else
1321 return print_insn_m68hc12 (memaddr, info);
1322 }
1323
1324 \f
1325
1326 /* 68HC11/68HC12 register groups.
1327 Identify real hard registers and soft registers used by gcc. */
1328
1329 static struct reggroup *m68hc11_soft_reggroup;
1330 static struct reggroup *m68hc11_hard_reggroup;
1331
1332 static void
1333 m68hc11_init_reggroups (void)
1334 {
1335 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1336 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1337 }
1338
1339 static void
1340 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1341 {
1342 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1343 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1344 reggroup_add (gdbarch, general_reggroup);
1345 reggroup_add (gdbarch, float_reggroup);
1346 reggroup_add (gdbarch, all_reggroup);
1347 reggroup_add (gdbarch, save_reggroup);
1348 reggroup_add (gdbarch, restore_reggroup);
1349 reggroup_add (gdbarch, vector_reggroup);
1350 reggroup_add (gdbarch, system_reggroup);
1351 }
1352
1353 static int
1354 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1355 struct reggroup *group)
1356 {
1357 /* We must save the real hard register as well as gcc
1358 soft registers including the frame pointer. */
1359 if (group == save_reggroup || group == restore_reggroup)
1360 {
1361 return (regnum <= gdbarch_num_regs (gdbarch)
1362 || ((regnum == SOFT_FP_REGNUM
1363 || regnum == SOFT_TMP_REGNUM
1364 || regnum == SOFT_ZS_REGNUM
1365 || regnum == SOFT_XY_REGNUM)
1366 && m68hc11_register_name (regnum)));
1367 }
1368
1369 /* Group to identify gcc soft registers (d1..dN). */
1370 if (group == m68hc11_soft_reggroup)
1371 {
1372 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1373 }
1374
1375 if (group == m68hc11_hard_reggroup)
1376 {
1377 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1378 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1379 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1380 }
1381 return default_register_reggroup_p (gdbarch, regnum, group);
1382 }
1383
1384 static struct gdbarch *
1385 m68hc11_gdbarch_init (struct gdbarch_info info,
1386 struct gdbarch_list *arches)
1387 {
1388 static LONGEST m68hc11_call_dummy_words[] =
1389 {0};
1390 struct gdbarch *gdbarch;
1391 struct gdbarch_tdep *tdep;
1392 int elf_flags;
1393
1394 soft_reg_initialized = 0;
1395
1396 /* Extract the elf_flags if available. */
1397 if (info.abfd != NULL
1398 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1399 elf_flags = elf_elfheader (info.abfd)->e_flags;
1400 else
1401 elf_flags = 0;
1402
1403 /* try to find a pre-existing architecture */
1404 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1405 arches != NULL;
1406 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1407 {
1408 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1409 continue;
1410
1411 return arches->gdbarch;
1412 }
1413
1414 /* Need a new architecture. Fill in a target specific vector. */
1415 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1416 gdbarch = gdbarch_alloc (&info, tdep);
1417 tdep->elf_flags = elf_flags;
1418
1419 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1420 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1421 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1422
1423 switch (info.bfd_arch_info->arch)
1424 {
1425 case bfd_arch_m68hc11:
1426 tdep->stack_correction = 1;
1427 tdep->use_page_register = 0;
1428 tdep->prologue = m6811_prologue;
1429 set_gdbarch_addr_bit (gdbarch, 16);
1430 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1431 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1432 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1433 break;
1434
1435 case bfd_arch_m68hc12:
1436 tdep->stack_correction = 0;
1437 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1438 tdep->prologue = m6812_prologue;
1439 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1440 set_gdbarch_num_pseudo_regs (gdbarch,
1441 elf_flags & E_M68HC12_BANKS
1442 ? M68HC12_NUM_PSEUDO_REGS
1443 : M68HC11_NUM_PSEUDO_REGS);
1444 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1445 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1446 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1447 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1448 break;
1449
1450 default:
1451 break;
1452 }
1453
1454 /* Initially set everything according to the ABI.
1455 Use 16-bit integers since it will be the case for most
1456 programs. The size of these types should normally be set
1457 according to the dwarf2 debug information. */
1458 set_gdbarch_short_bit (gdbarch, 16);
1459 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1460 set_gdbarch_float_bit (gdbarch, 32);
1461 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1462 set_gdbarch_long_double_bit (gdbarch, 64);
1463 set_gdbarch_long_bit (gdbarch, 32);
1464 set_gdbarch_ptr_bit (gdbarch, 16);
1465 set_gdbarch_long_long_bit (gdbarch, 64);
1466
1467 /* Characters are unsigned. */
1468 set_gdbarch_char_signed (gdbarch, 0);
1469
1470 /* Set register info. */
1471 set_gdbarch_fp0_regnum (gdbarch, -1);
1472 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, m68hc11_frame_init_saved_regs);
1473 set_gdbarch_frame_args_skip (gdbarch, 0);
1474
1475 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1476 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
1477
1478 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1479 set_gdbarch_deprecated_fp_regnum (gdbarch, SOFT_FP_REGNUM);
1480 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1481 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1482 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1483 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1484
1485 set_gdbarch_deprecated_call_dummy_words (gdbarch, m68hc11_call_dummy_words);
1486 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (m68hc11_call_dummy_words));
1487 set_gdbarch_deprecated_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
1488 set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
1489 set_gdbarch_deprecated_push_arguments (gdbarch, m68hc11_push_arguments);
1490 set_gdbarch_deprecated_push_return_address (gdbarch, m68hc11_push_return_address);
1491 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1492
1493 set_gdbarch_deprecated_store_struct_return (gdbarch, m68hc11_store_struct_return);
1494 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1495 set_gdbarch_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
1496
1497 set_gdbarch_deprecated_frame_chain (gdbarch, m68hc11_frame_chain);
1498 set_gdbarch_deprecated_frame_saved_pc (gdbarch, m68hc11_frame_saved_pc);
1499 set_gdbarch_deprecated_frame_args_address (gdbarch, m68hc11_frame_args_address);
1500 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, m68hc11_saved_pc_after_call);
1501
1502 set_gdbarch_deprecated_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
1503
1504 set_gdbarch_deprecated_store_struct_return (gdbarch, m68hc11_store_struct_return);
1505 set_gdbarch_deprecated_store_return_value (gdbarch, m68hc11_store_return_value);
1506 set_gdbarch_deprecated_extract_struct_value_address
1507 (gdbarch, m68hc11_extract_struct_value_address);
1508 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1509 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, m68hc11_init_extra_frame_info);
1510 set_gdbarch_deprecated_pop_frame (gdbarch, m68hc11_pop_frame);
1511 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1512 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1513 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1514 set_gdbarch_function_start_offset (gdbarch, 0);
1515 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1516 set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);
1517 set_gdbarch_deprecated_extra_stack_alignment_needed (gdbarch, 1);
1518 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1519
1520 m68hc11_add_reggroups (gdbarch);
1521 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1522 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1523
1524 /* Minsymbol frobbing. */
1525 set_gdbarch_elf_make_msymbol_special (gdbarch,
1526 m68hc11_elf_make_msymbol_special);
1527
1528 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1529
1530 return gdbarch;
1531 }
1532
1533 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1534
1535 void
1536 _initialize_m68hc11_tdep (void)
1537 {
1538 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1539 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1540 m68hc11_init_reggroups ();
1541
1542 deprecate_cmd (add_com ("regs", class_vars, show_regs,
1543 "Print all registers"),
1544 "info registers");
1545 }
1546
This page took 0.06258 seconds and 5 git commands to generate.