Introduce gdbarch_num_cooked_regs
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
4
5 Contributed by Stephane Carrez, stcarrez@nerim.fr
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "trad-frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41
42 #include "target.h"
43 #include "opcode/m68hc11.h"
44 #include "elf/m68hc11.h"
45 #include "elf-bfd.h"
46
47 /* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
53
54 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
55 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
56 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
57 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
58
59 #define MSYMBOL_SET_RTC(msym) \
60 MSYMBOL_TARGET_FLAG_1 (msym) = 1
61
62 #define MSYMBOL_SET_RTI(msym) \
63 MSYMBOL_TARGET_FLAG_2 (msym) = 1
64
65 #define MSYMBOL_IS_RTC(msym) \
66 MSYMBOL_TARGET_FLAG_1 (msym)
67
68 #define MSYMBOL_IS_RTI(msym) \
69 MSYMBOL_TARGET_FLAG_2 (msym)
70
71 enum insn_return_kind {
72 RETURN_RTS,
73 RETURN_RTC,
74 RETURN_RTI
75 };
76
77
78 /* Register numbers of various important registers. */
79
80 #define HARD_X_REGNUM 0
81 #define HARD_D_REGNUM 1
82 #define HARD_Y_REGNUM 2
83 #define HARD_SP_REGNUM 3
84 #define HARD_PC_REGNUM 4
85
86 #define HARD_A_REGNUM 5
87 #define HARD_B_REGNUM 6
88 #define HARD_CCR_REGNUM 7
89
90 /* 68HC12 page number register.
91 Note: to keep a compatibility with gcc register naming, we must
92 not have to rename FP and other soft registers. The page register
93 is a real hard register and must therefore be counted by gdbarch_num_regs.
94 For this it has the same number as Z register (which is not used). */
95 #define HARD_PAGE_REGNUM 8
96 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
97
98 /* Z is replaced by X or Y by gcc during machine reorg.
99 ??? There is no way to get it and even know whether
100 it's in X or Y or in ZS. */
101 #define SOFT_Z_REGNUM 8
102
103 /* Soft registers. These registers are special. There are treated
104 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
105 They are physically located in memory. */
106 #define SOFT_FP_REGNUM 9
107 #define SOFT_TMP_REGNUM 10
108 #define SOFT_ZS_REGNUM 11
109 #define SOFT_XY_REGNUM 12
110 #define SOFT_UNUSED_REGNUM 13
111 #define SOFT_D1_REGNUM 14
112 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
113 #define M68HC11_MAX_SOFT_REGS 32
114
115 #define M68HC11_NUM_REGS (M68HC11_LAST_HARD_REG + 1)
116 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
117 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
118
119 #define M68HC11_REG_SIZE (2)
120
121 #define M68HC12_NUM_REGS (9)
122 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
123 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
124
125 struct insn_sequence;
126 struct gdbarch_tdep
127 {
128 /* Stack pointer correction value. For 68hc11, the stack pointer points
129 to the next push location. An offset of 1 must be applied to obtain
130 the address where the last value is saved. For 68hc12, the stack
131 pointer points to the last value pushed. No offset is necessary. */
132 int stack_correction;
133
134 /* Description of instructions in the prologue. */
135 struct insn_sequence *prologue;
136
137 /* True if the page memory bank register is available
138 and must be used. */
139 int use_page_register;
140
141 /* ELF flags for ABI. */
142 int elf_flags;
143 };
144
145 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
146 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
147
148 struct m68hc11_unwind_cache
149 {
150 /* The previous frame's inner most stack address. Used as this
151 frame ID's stack_addr. */
152 CORE_ADDR prev_sp;
153 /* The frame's base, optionally used by the high-level debug info. */
154 CORE_ADDR base;
155 CORE_ADDR pc;
156 int size;
157 int prologue_type;
158 CORE_ADDR return_pc;
159 CORE_ADDR sp_offset;
160 int frameless;
161 enum insn_return_kind return_kind;
162
163 /* Table indicating the location of each and every register. */
164 struct trad_frame_saved_reg *saved_regs;
165 };
166
167 /* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
169 static const char *
170 m68hc11_register_names[] =
171 {
172 "x", "d", "y", "sp", "pc", "a", "b",
173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
179 };
180
181 struct m68hc11_soft_reg
182 {
183 const char *name;
184 CORE_ADDR addr;
185 };
186
187 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
188
189 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
190
191 static int soft_min_addr;
192 static int soft_max_addr;
193 static int soft_reg_initialized = 0;
194
195 /* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
198 static void
199 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
200 {
201 struct bound_minimal_symbol msymbol;
202
203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
204 if (msymbol.minsym)
205 {
206 reg->addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
207 reg->name = xstrdup (name);
208
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
211 soft_min_addr = reg->addr;
212 if (reg->addr > (CORE_ADDR) soft_max_addr)
213 soft_max_addr = reg->addr;
214 }
215 else
216 {
217 reg->name = 0;
218 reg->addr = 0;
219 }
220 }
221
222 /* Initialize the table of soft register addresses according
223 to the symbol table. */
224 static void
225 m68hc11_initialize_register_info (void)
226 {
227 int i;
228
229 if (soft_reg_initialized)
230 return;
231
232 soft_min_addr = INT_MAX;
233 soft_max_addr = 0;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
235 {
236 soft_regs[i].name = 0;
237 }
238
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
244
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
246 {
247 char buf[10];
248
249 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
250 m68hc11_get_register_info (&soft_regs[i], buf);
251 }
252
253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
254 warning (_("No frame soft register found in the symbol table.\n"
255 "Stack backtrace will not work."));
256 soft_reg_initialized = 1;
257 }
258
259 /* Given an address in memory, return the soft register number if
260 that address corresponds to a soft register. Returns -1 if not. */
261 static int
262 m68hc11_which_soft_register (CORE_ADDR addr)
263 {
264 int i;
265
266 if (addr < soft_min_addr || addr > soft_max_addr)
267 return -1;
268
269 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
270 {
271 if (soft_regs[i].name && soft_regs[i].addr == addr)
272 return i;
273 }
274 return -1;
275 }
276
277 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
278 pseudo registers. They are located in memory. Translate the register
279 fetch into a memory read. */
280 static enum register_status
281 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
282 readable_regcache *regcache,
283 int regno, gdb_byte *buf)
284 {
285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
286
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
291 ULONGEST pc;
292 const int regsize = 4;
293 enum register_status status;
294
295 status = regcache->cooked_read (HARD_PC_REGNUM, &pc);
296 if (status != REG_VALID)
297 return status;
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
300 ULONGEST page;
301
302 regcache->cooked_read (HARD_PAGE_REGNUM, &page);
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
307 store_unsigned_integer (buf, regsize, byte_order, pc);
308 return REG_VALID;
309 }
310
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
322
323 return REG_VALID;
324 }
325
326 /* Store a pseudo register. Translate the register store
327 into a memory write. */
328 static void
329 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
331 int regno, const gdb_byte *buf)
332 {
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
334
335 /* The PC is a pseudo reg only for 68HC12 with the memory bank
336 addressing mode. */
337 if (regno == M68HC12_HARD_PC_REGNUM)
338 {
339 const int regsize = 4;
340 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
341 CORE_ADDR pc;
342
343 memcpy (tmp, buf, regsize);
344 pc = extract_unsigned_integer (tmp, regsize, byte_order);
345 if (pc >= 0x1000000)
346 {
347 pc -= 0x1000000;
348 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
349 (pc >> 14) & 0x0ff);
350 pc &= 0x03fff;
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
352 pc + 0x8000);
353 }
354 else
355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
356 return;
357 }
358
359 m68hc11_initialize_register_info ();
360
361 /* Store a soft register: translate into a memory write. */
362 if (soft_regs[regno].name)
363 {
364 const int regsize = 2;
365 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
366 memcpy (tmp, buf, regsize);
367 target_write_memory (soft_regs[regno].addr, tmp, regsize);
368 }
369 }
370
371 static const char *
372 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
373 {
374 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
375 return "pc";
376 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
377 return "ppc";
378
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= M68HC11_ALL_REGS)
382 return NULL;
383
384 m68hc11_initialize_register_info ();
385
386 /* If we don't know the address of a soft register, pretend it
387 does not exist. */
388 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
389 return NULL;
390 return m68hc11_register_names[reg_nr];
391 }
392
393 constexpr gdb_byte m68hc11_break_insn[] = {0x0};
394
395 typedef BP_MANIPULATION (m68hc11_break_insn) m68hc11_breakpoint;
396 \f
397 /* 68HC11 & 68HC12 prologue analysis. */
398
399 #define MAX_CODES 12
400
401 /* 68HC11 opcodes. */
402 #undef M6811_OP_PAGE2
403 #define M6811_OP_PAGE2 (0x18)
404 #define M6811_OP_LDX (0xde)
405 #define M6811_OP_LDX_EXT (0xfe)
406 #define M6811_OP_PSHX (0x3c)
407 #define M6811_OP_STS (0x9f)
408 #define M6811_OP_STS_EXT (0xbf)
409 #define M6811_OP_TSX (0x30)
410 #define M6811_OP_XGDX (0x8f)
411 #define M6811_OP_ADDD (0xc3)
412 #define M6811_OP_TXS (0x35)
413 #define M6811_OP_DES (0x34)
414
415 /* 68HC12 opcodes. */
416 #define M6812_OP_PAGE2 (0x18)
417 #define M6812_OP_MOVW (0x01)
418 #define M6812_PB_PSHW (0xae)
419 #define M6812_OP_STS (0x5f)
420 #define M6812_OP_STS_EXT (0x7f)
421 #define M6812_OP_LEAS (0x1b)
422 #define M6812_OP_PSHX (0x34)
423 #define M6812_OP_PSHY (0x35)
424
425 /* Operand extraction. */
426 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
427 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
428 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
429 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
430
431 /* Identification of the sequence. */
432 enum m6811_seq_type
433 {
434 P_LAST = 0,
435 P_SAVE_REG, /* Save a register on the stack. */
436 P_SET_FRAME, /* Setup the frame pointer. */
437 P_LOCAL_1, /* Allocate 1 byte for locals. */
438 P_LOCAL_2, /* Allocate 2 bytes for locals. */
439 P_LOCAL_N /* Allocate N bytes for locals. */
440 };
441
442 struct insn_sequence {
443 enum m6811_seq_type type;
444 unsigned length;
445 unsigned short code[MAX_CODES];
446 };
447
448 /* Sequence of instructions in the 68HC11 function prologue. */
449 static struct insn_sequence m6811_prologue[] = {
450 /* Sequences to save a soft-register. */
451 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
452 M6811_OP_PSHX } },
453 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
454 M6811_OP_PAGE2, M6811_OP_PSHX } },
455 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
456 M6811_OP_PSHX } },
457 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
458 M6811_OP_PAGE2, M6811_OP_PSHX } },
459
460 /* Sequences to allocate local variables. */
461 { P_LOCAL_N, 7, { M6811_OP_TSX,
462 M6811_OP_XGDX,
463 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
464 M6811_OP_XGDX,
465 M6811_OP_TXS } },
466 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
467 M6811_OP_PAGE2, M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_XGDX,
470 M6811_OP_PAGE2, M6811_OP_TXS } },
471 { P_LOCAL_1, 1, { M6811_OP_DES } },
472 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
473 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
474
475 /* Initialize the frame pointer. */
476 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
477 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
478 { P_LAST, 0, { 0 } }
479 };
480
481
482 /* Sequence of instructions in the 68HC12 function prologue. */
483 static struct insn_sequence m6812_prologue[] = {
484 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
485 OP_IMM_HIGH, OP_IMM_LOW } },
486 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
487 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
488 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
489 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
490 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
491 { P_LAST, 0 }
492 };
493
494
495 /* Analyze the sequence of instructions starting at the given address.
496 Returns a pointer to the sequence when it is recognized and
497 the optional value (constant/address) associated with it. */
498 static struct insn_sequence *
499 m68hc11_analyze_instruction (struct gdbarch *gdbarch,
500 struct insn_sequence *seq, CORE_ADDR pc,
501 CORE_ADDR *val)
502 {
503 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
504 unsigned char buffer[MAX_CODES];
505 unsigned bufsize;
506 unsigned j;
507 CORE_ADDR cur_val;
508 short v = 0;
509
510 bufsize = 0;
511 for (; seq->type != P_LAST; seq++)
512 {
513 cur_val = 0;
514 for (j = 0; j < seq->length; j++)
515 {
516 if (bufsize < j + 1)
517 {
518 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
519 1, byte_order);
520 bufsize++;
521 }
522 /* Continue while we match the opcode. */
523 if (seq->code[j] == buffer[j])
524 continue;
525
526 if ((seq->code[j] & 0xf00) == 0)
527 break;
528
529 /* Extract a sequence parameter (address or constant). */
530 switch (seq->code[j])
531 {
532 case OP_DIRECT:
533 cur_val = (CORE_ADDR) buffer[j];
534 break;
535
536 case OP_IMM_HIGH:
537 cur_val = cur_val & 0x0ff;
538 cur_val |= (buffer[j] << 8);
539 break;
540
541 case OP_IMM_LOW:
542 cur_val &= 0x0ff00;
543 cur_val |= buffer[j];
544 break;
545
546 case OP_PBYTE:
547 if ((buffer[j] & 0xE0) == 0x80)
548 {
549 v = buffer[j] & 0x1f;
550 if (v & 0x10)
551 v |= 0xfff0;
552 }
553 else if ((buffer[j] & 0xfe) == 0xf0)
554 {
555 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
556 if (buffer[j] & 1)
557 v |= 0xff00;
558 }
559 else if (buffer[j] == 0xf2)
560 {
561 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
562 }
563 cur_val = v;
564 break;
565 }
566 }
567
568 /* We have a full match. */
569 if (j == seq->length)
570 {
571 *val = cur_val;
572 return seq;
573 }
574 }
575 return 0;
576 }
577
578 /* Return the instruction that the function at the PC is using. */
579 static enum insn_return_kind
580 m68hc11_get_return_insn (CORE_ADDR pc)
581 {
582 struct bound_minimal_symbol sym;
583
584 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
585 function is stored by elfread.c in the high bit of the info field.
586 Use this to decide which instruction the function uses to return. */
587 sym = lookup_minimal_symbol_by_pc (pc);
588 if (sym.minsym == 0)
589 return RETURN_RTS;
590
591 if (MSYMBOL_IS_RTC (sym.minsym))
592 return RETURN_RTC;
593 else if (MSYMBOL_IS_RTI (sym.minsym))
594 return RETURN_RTI;
595 else
596 return RETURN_RTS;
597 }
598
599 /* Analyze the function prologue to find some information
600 about the function:
601 - the PC of the first line (for m68hc11_skip_prologue)
602 - the offset of the previous frame saved address (from current frame)
603 - the soft registers which are pushed. */
604 static CORE_ADDR
605 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
606 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
607 {
608 LONGEST save_addr;
609 CORE_ADDR func_end;
610 int size;
611 int found_frame_point;
612 int saved_reg;
613 int done = 0;
614 struct insn_sequence *seq_table;
615
616 info->size = 0;
617 info->sp_offset = 0;
618 if (pc >= current_pc)
619 return current_pc;
620
621 size = 0;
622
623 m68hc11_initialize_register_info ();
624 if (pc == 0)
625 {
626 info->size = 0;
627 return pc;
628 }
629
630 seq_table = gdbarch_tdep (gdbarch)->prologue;
631
632 /* The 68hc11 stack is as follows:
633
634
635 | |
636 +-----------+
637 | |
638 | args |
639 | |
640 +-----------+
641 | PC-return |
642 +-----------+
643 | Old frame |
644 +-----------+
645 | |
646 | Locals |
647 | |
648 +-----------+ <--- current frame
649 | |
650
651 With most processors (like 68K) the previous frame can be computed
652 easily because it is always at a fixed offset (see link/unlink).
653 That is, locals are accessed with negative offsets, arguments are
654 accessed with positive ones. Since 68hc11 only supports offsets
655 in the range [0..255], the frame is defined at the bottom of
656 locals (see picture).
657
658 The purpose of the analysis made here is to find out the size
659 of locals in this function. An alternative to this is to use
660 DWARF2 info. This would be better but I don't know how to
661 access dwarf2 debug from this function.
662
663 Walk from the function entry point to the point where we save
664 the frame. While walking instructions, compute the size of bytes
665 which are pushed. This gives us the index to access the previous
666 frame.
667
668 We limit the search to 128 bytes so that the algorithm is bounded
669 in case of random and wrong code. We also stop and abort if
670 we find an instruction which is not supposed to appear in the
671 prologue (as generated by gcc 2.95, 2.96). */
672
673 func_end = pc + 128;
674 found_frame_point = 0;
675 info->size = 0;
676 save_addr = 0;
677 while (!done && pc + 2 < func_end)
678 {
679 struct insn_sequence *seq;
680 CORE_ADDR val;
681
682 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
683 if (seq == 0)
684 break;
685
686 /* If we are within the instruction group, we can't advance the
687 pc nor the stack offset. Otherwise the caller's stack computed
688 from the current stack can be wrong. */
689 if (pc + seq->length > current_pc)
690 break;
691
692 pc = pc + seq->length;
693 if (seq->type == P_SAVE_REG)
694 {
695 if (found_frame_point)
696 {
697 saved_reg = m68hc11_which_soft_register (val);
698 if (saved_reg < 0)
699 break;
700
701 save_addr -= 2;
702 if (info->saved_regs)
703 info->saved_regs[saved_reg].addr = save_addr;
704 }
705 else
706 {
707 size += 2;
708 }
709 }
710 else if (seq->type == P_SET_FRAME)
711 {
712 found_frame_point = 1;
713 info->size = size;
714 }
715 else if (seq->type == P_LOCAL_1)
716 {
717 size += 1;
718 }
719 else if (seq->type == P_LOCAL_2)
720 {
721 size += 2;
722 }
723 else if (seq->type == P_LOCAL_N)
724 {
725 /* Stack pointer is decremented for the allocation. */
726 if (val & 0x8000)
727 size -= (int) (val) | 0xffff0000;
728 else
729 size -= val;
730 }
731 }
732 if (found_frame_point == 0)
733 info->sp_offset = size;
734 else
735 info->sp_offset = -1;
736 return pc;
737 }
738
739 static CORE_ADDR
740 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
741 {
742 CORE_ADDR func_addr, func_end;
743 struct symtab_and_line sal;
744 struct m68hc11_unwind_cache tmp_cache = { 0 };
745
746 /* If we have line debugging information, then the end of the
747 prologue should be the first assembly instruction of the
748 first source line. */
749 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
750 {
751 sal = find_pc_line (func_addr, 0);
752 if (sal.end && sal.end < func_end)
753 return sal.end;
754 }
755
756 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
757 return pc;
758 }
759
760 static CORE_ADDR
761 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
762 {
763 ULONGEST pc;
764
765 pc = frame_unwind_register_unsigned (next_frame,
766 gdbarch_pc_regnum (gdbarch));
767 return pc;
768 }
769
770 /* Put here the code to store, into fi->saved_regs, the addresses of
771 the saved registers of frame described by FRAME_INFO. This
772 includes special registers such as pc and fp saved in special ways
773 in the stack frame. sp is even more special: the address we return
774 for it IS the sp for the next frame. */
775
776 static struct m68hc11_unwind_cache *
777 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
778 void **this_prologue_cache)
779 {
780 struct gdbarch *gdbarch = get_frame_arch (this_frame);
781 ULONGEST prev_sp;
782 ULONGEST this_base;
783 struct m68hc11_unwind_cache *info;
784 CORE_ADDR current_pc;
785 int i;
786
787 if ((*this_prologue_cache))
788 return (struct m68hc11_unwind_cache *) (*this_prologue_cache);
789
790 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
791 (*this_prologue_cache) = info;
792 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
793
794 info->pc = get_frame_func (this_frame);
795
796 info->size = 0;
797 info->return_kind = m68hc11_get_return_insn (info->pc);
798
799 /* The SP was moved to the FP. This indicates that a new frame
800 was created. Get THIS frame's FP value by unwinding it from
801 the next frame. */
802 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
803 if (this_base == 0)
804 {
805 info->base = 0;
806 return info;
807 }
808
809 current_pc = get_frame_pc (this_frame);
810 if (info->pc != 0)
811 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
812
813 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
814
815 if (info->sp_offset != (CORE_ADDR) -1)
816 {
817 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
818 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
819 prev_sp = this_base + info->sp_offset + 2;
820 this_base += STACK_CORRECTION (gdbarch);
821 }
822 else
823 {
824 /* The FP points at the last saved register. Adjust the FP back
825 to before the first saved register giving the SP. */
826 prev_sp = this_base + info->size + 2;
827
828 this_base += STACK_CORRECTION (gdbarch);
829 if (soft_regs[SOFT_FP_REGNUM].name)
830 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
831 }
832
833 if (info->return_kind == RETURN_RTC)
834 {
835 prev_sp += 1;
836 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
837 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
838 }
839 else if (info->return_kind == RETURN_RTI)
840 {
841 prev_sp += 7;
842 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
843 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
844 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
845 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
846 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
847 }
848
849 /* Add 1 here to adjust for the post-decrement nature of the push
850 instruction. */
851 info->prev_sp = prev_sp;
852
853 info->base = this_base;
854
855 /* Adjust all the saved registers so that they contain addresses and not
856 offsets. */
857 for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
858 if (trad_frame_addr_p (info->saved_regs, i))
859 {
860 info->saved_regs[i].addr += this_base;
861 }
862
863 /* The previous frame's SP needed to be computed. Save the computed
864 value. */
865 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
866
867 return info;
868 }
869
870 /* Given a GDB frame, determine the address of the calling function's
871 frame. This will be used to create a new GDB frame struct. */
872
873 static void
874 m68hc11_frame_this_id (struct frame_info *this_frame,
875 void **this_prologue_cache,
876 struct frame_id *this_id)
877 {
878 struct m68hc11_unwind_cache *info
879 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
880 CORE_ADDR base;
881 CORE_ADDR func;
882 struct frame_id id;
883
884 /* The FUNC is easy. */
885 func = get_frame_func (this_frame);
886
887 /* Hopefully the prologue analysis either correctly determined the
888 frame's base (which is the SP from the previous frame), or set
889 that base to "NULL". */
890 base = info->prev_sp;
891 if (base == 0)
892 return;
893
894 id = frame_id_build (base, func);
895 (*this_id) = id;
896 }
897
898 static struct value *
899 m68hc11_frame_prev_register (struct frame_info *this_frame,
900 void **this_prologue_cache, int regnum)
901 {
902 struct value *value;
903 struct m68hc11_unwind_cache *info
904 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
905
906 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
907
908 /* Take into account the 68HC12 specific call (PC + page). */
909 if (regnum == HARD_PC_REGNUM
910 && info->return_kind == RETURN_RTC
911 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
912 {
913 CORE_ADDR pc = value_as_long (value);
914 if (pc >= 0x08000 && pc < 0x0c000)
915 {
916 CORE_ADDR page;
917
918 release_value (value);
919
920 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
921 HARD_PAGE_REGNUM);
922 page = value_as_long (value);
923 release_value (value);
924
925 pc -= 0x08000;
926 pc += ((page & 0x0ff) << 14);
927 pc += 0x1000000;
928
929 return frame_unwind_got_constant (this_frame, regnum, pc);
930 }
931 }
932
933 return value;
934 }
935
936 static const struct frame_unwind m68hc11_frame_unwind = {
937 NORMAL_FRAME,
938 default_frame_unwind_stop_reason,
939 m68hc11_frame_this_id,
940 m68hc11_frame_prev_register,
941 NULL,
942 default_frame_sniffer
943 };
944
945 static CORE_ADDR
946 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
947 {
948 struct m68hc11_unwind_cache *info
949 = m68hc11_frame_unwind_cache (this_frame, this_cache);
950
951 return info->base;
952 }
953
954 static CORE_ADDR
955 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
956 {
957 CORE_ADDR addr;
958 struct m68hc11_unwind_cache *info
959 = m68hc11_frame_unwind_cache (this_frame, this_cache);
960
961 addr = info->base + info->size;
962 if (info->return_kind == RETURN_RTC)
963 addr += 1;
964 else if (info->return_kind == RETURN_RTI)
965 addr += 7;
966
967 return addr;
968 }
969
970 static const struct frame_base m68hc11_frame_base = {
971 &m68hc11_frame_unwind,
972 m68hc11_frame_base_address,
973 m68hc11_frame_base_address,
974 m68hc11_frame_args_address
975 };
976
977 static CORE_ADDR
978 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
979 {
980 ULONGEST sp;
981 sp = frame_unwind_register_unsigned (next_frame, HARD_SP_REGNUM);
982 return sp;
983 }
984
985 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
986 frame. The frame ID's base needs to match the TOS value saved by
987 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
988
989 static struct frame_id
990 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
991 {
992 ULONGEST tos;
993 CORE_ADDR pc = get_frame_pc (this_frame);
994
995 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
996 tos += 2;
997 return frame_id_build (tos, pc);
998 }
999
1000 \f
1001 /* Get and print the register from the given frame. */
1002 static void
1003 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1004 struct frame_info *frame, int regno)
1005 {
1006 LONGEST rval;
1007
1008 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1009 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1010 rval = get_frame_register_unsigned (frame, regno);
1011 else
1012 rval = get_frame_register_signed (frame, regno);
1013
1014 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1015 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1016 {
1017 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1018 if (regno != HARD_CCR_REGNUM)
1019 print_longest (file, 'd', 1, rval);
1020 }
1021 else
1022 {
1023 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1024 {
1025 ULONGEST page;
1026
1027 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1028 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1029 (unsigned) rval);
1030 }
1031 else
1032 {
1033 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1034 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1035 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1036 print_longest (file, 'd', 1, rval);
1037 }
1038 }
1039
1040 if (regno == HARD_CCR_REGNUM)
1041 {
1042 /* CCR register */
1043 int C, Z, N, V;
1044 unsigned char l = rval & 0xff;
1045
1046 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1047 l & M6811_S_BIT ? 'S' : '-',
1048 l & M6811_X_BIT ? 'X' : '-',
1049 l & M6811_H_BIT ? 'H' : '-',
1050 l & M6811_I_BIT ? 'I' : '-',
1051 l & M6811_N_BIT ? 'N' : '-',
1052 l & M6811_Z_BIT ? 'Z' : '-',
1053 l & M6811_V_BIT ? 'V' : '-',
1054 l & M6811_C_BIT ? 'C' : '-');
1055 N = (l & M6811_N_BIT) != 0;
1056 Z = (l & M6811_Z_BIT) != 0;
1057 V = (l & M6811_V_BIT) != 0;
1058 C = (l & M6811_C_BIT) != 0;
1059
1060 /* Print flags following the h8300. */
1061 if ((C | Z) == 0)
1062 fprintf_filtered (file, "u> ");
1063 else if ((C | Z) == 1)
1064 fprintf_filtered (file, "u<= ");
1065 else if (C == 0)
1066 fprintf_filtered (file, "u< ");
1067
1068 if (Z == 0)
1069 fprintf_filtered (file, "!= ");
1070 else
1071 fprintf_filtered (file, "== ");
1072
1073 if ((N ^ V) == 0)
1074 fprintf_filtered (file, ">= ");
1075 else
1076 fprintf_filtered (file, "< ");
1077
1078 if ((Z | (N ^ V)) == 0)
1079 fprintf_filtered (file, "> ");
1080 else
1081 fprintf_filtered (file, "<= ");
1082 }
1083 }
1084
1085 /* Same as 'info reg' but prints the registers in a different way. */
1086 static void
1087 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1088 struct frame_info *frame, int regno, int cpregs)
1089 {
1090 if (regno >= 0)
1091 {
1092 const char *name = gdbarch_register_name (gdbarch, regno);
1093
1094 if (!name || !*name)
1095 return;
1096
1097 fprintf_filtered (file, "%-10s ", name);
1098 m68hc11_print_register (gdbarch, file, frame, regno);
1099 fprintf_filtered (file, "\n");
1100 }
1101 else
1102 {
1103 int i, nr;
1104
1105 fprintf_filtered (file, "PC=");
1106 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1107
1108 fprintf_filtered (file, " SP=");
1109 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1110
1111 fprintf_filtered (file, " FP=");
1112 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1113
1114 fprintf_filtered (file, "\nCCR=");
1115 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1116
1117 fprintf_filtered (file, "\nD=");
1118 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1119
1120 fprintf_filtered (file, " X=");
1121 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1122
1123 fprintf_filtered (file, " Y=");
1124 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1125
1126 if (gdbarch_tdep (gdbarch)->use_page_register)
1127 {
1128 fprintf_filtered (file, "\nPage=");
1129 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1130 }
1131 fprintf_filtered (file, "\n");
1132
1133 nr = 0;
1134 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1135 {
1136 /* Skip registers which are not defined in the symbol table. */
1137 if (soft_regs[i].name == 0)
1138 continue;
1139
1140 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1141 m68hc11_print_register (gdbarch, file, frame, i);
1142 nr++;
1143 if ((nr % 8) == 7)
1144 fprintf_filtered (file, "\n");
1145 else
1146 fprintf_filtered (file, " ");
1147 }
1148 if (nr && (nr % 8) != 7)
1149 fprintf_filtered (file, "\n");
1150 }
1151 }
1152
1153 static CORE_ADDR
1154 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1155 struct regcache *regcache, CORE_ADDR bp_addr,
1156 int nargs, struct value **args, CORE_ADDR sp,
1157 int struct_return, CORE_ADDR struct_addr)
1158 {
1159 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1160 int argnum;
1161 int first_stack_argnum;
1162 struct type *type;
1163 const gdb_byte *val;
1164 gdb_byte buf[2];
1165
1166 first_stack_argnum = 0;
1167 if (struct_return)
1168 {
1169 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1170 }
1171 else if (nargs > 0)
1172 {
1173 type = value_type (args[0]);
1174
1175 /* First argument is passed in D and X registers. */
1176 if (TYPE_LENGTH (type) <= 4)
1177 {
1178 ULONGEST v;
1179
1180 v = extract_unsigned_integer (value_contents (args[0]),
1181 TYPE_LENGTH (type), byte_order);
1182 first_stack_argnum = 1;
1183
1184 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1185 if (TYPE_LENGTH (type) > 2)
1186 {
1187 v >>= 16;
1188 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1189 }
1190 }
1191 }
1192
1193 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1194 {
1195 type = value_type (args[argnum]);
1196
1197 if (TYPE_LENGTH (type) & 1)
1198 {
1199 static gdb_byte zero = 0;
1200
1201 sp--;
1202 write_memory (sp, &zero, 1);
1203 }
1204 val = value_contents (args[argnum]);
1205 sp -= TYPE_LENGTH (type);
1206 write_memory (sp, val, TYPE_LENGTH (type));
1207 }
1208
1209 /* Store return address. */
1210 sp -= 2;
1211 store_unsigned_integer (buf, 2, byte_order, bp_addr);
1212 write_memory (sp, buf, 2);
1213
1214 /* Finally, update the stack pointer... */
1215 sp -= STACK_CORRECTION (gdbarch);
1216 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1217
1218 /* ...and fake a frame pointer. */
1219 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1220
1221 /* DWARF2/GCC uses the stack address *before* the function call as a
1222 frame's CFA. */
1223 return sp + 2;
1224 }
1225
1226
1227 /* Return the GDB type object for the "standard" data type
1228 of data in register N. */
1229
1230 static struct type *
1231 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1232 {
1233 switch (reg_nr)
1234 {
1235 case HARD_PAGE_REGNUM:
1236 case HARD_A_REGNUM:
1237 case HARD_B_REGNUM:
1238 case HARD_CCR_REGNUM:
1239 return builtin_type (gdbarch)->builtin_uint8;
1240
1241 case M68HC12_HARD_PC_REGNUM:
1242 return builtin_type (gdbarch)->builtin_uint32;
1243
1244 default:
1245 return builtin_type (gdbarch)->builtin_uint16;
1246 }
1247 }
1248
1249 static void
1250 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1251 const gdb_byte *valbuf)
1252 {
1253 int len;
1254
1255 len = TYPE_LENGTH (type);
1256
1257 /* First argument is passed in D and X registers. */
1258 if (len <= 2)
1259 regcache->raw_write_part (HARD_D_REGNUM, 2 - len, len, valbuf);
1260 else if (len <= 4)
1261 {
1262 regcache->raw_write_part (HARD_X_REGNUM, 4 - len, len - 2, valbuf);
1263 regcache->raw_write (HARD_D_REGNUM, valbuf + (len - 2));
1264 }
1265 else
1266 error (_("return of value > 4 is not supported."));
1267 }
1268
1269
1270 /* Given a return value in `regcache' with a type `type',
1271 extract and copy its value into `valbuf'. */
1272
1273 static void
1274 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1275 void *valbuf)
1276 {
1277 gdb_byte buf[M68HC11_REG_SIZE];
1278
1279 regcache->raw_read (HARD_D_REGNUM, buf);
1280 switch (TYPE_LENGTH (type))
1281 {
1282 case 1:
1283 memcpy (valbuf, buf + 1, 1);
1284 break;
1285
1286 case 2:
1287 memcpy (valbuf, buf, 2);
1288 break;
1289
1290 case 3:
1291 memcpy ((char*) valbuf + 1, buf, 2);
1292 regcache->raw_read (HARD_X_REGNUM, buf);
1293 memcpy (valbuf, buf + 1, 1);
1294 break;
1295
1296 case 4:
1297 memcpy ((char*) valbuf + 2, buf, 2);
1298 regcache->raw_read (HARD_X_REGNUM, buf);
1299 memcpy (valbuf, buf, 2);
1300 break;
1301
1302 default:
1303 error (_("bad size for return value"));
1304 }
1305 }
1306
1307 static enum return_value_convention
1308 m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
1309 struct type *valtype, struct regcache *regcache,
1310 gdb_byte *readbuf, const gdb_byte *writebuf)
1311 {
1312 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1313 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1314 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1315 || TYPE_LENGTH (valtype) > 4)
1316 return RETURN_VALUE_STRUCT_CONVENTION;
1317 else
1318 {
1319 if (readbuf != NULL)
1320 m68hc11_extract_return_value (valtype, regcache, readbuf);
1321 if (writebuf != NULL)
1322 m68hc11_store_return_value (valtype, regcache, writebuf);
1323 return RETURN_VALUE_REGISTER_CONVENTION;
1324 }
1325 }
1326
1327 /* Test whether the ELF symbol corresponds to a function using rtc or
1328 rti to return. */
1329
1330 static void
1331 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1332 {
1333 unsigned char flags;
1334
1335 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1336 if (flags & STO_M68HC12_FAR)
1337 MSYMBOL_SET_RTC (msym);
1338 if (flags & STO_M68HC12_INTERRUPT)
1339 MSYMBOL_SET_RTI (msym);
1340 }
1341 \f
1342
1343 /* 68HC11/68HC12 register groups.
1344 Identify real hard registers and soft registers used by gcc. */
1345
1346 static struct reggroup *m68hc11_soft_reggroup;
1347 static struct reggroup *m68hc11_hard_reggroup;
1348
1349 static void
1350 m68hc11_init_reggroups (void)
1351 {
1352 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1353 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1354 }
1355
1356 static void
1357 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1358 {
1359 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1360 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1361 reggroup_add (gdbarch, general_reggroup);
1362 reggroup_add (gdbarch, float_reggroup);
1363 reggroup_add (gdbarch, all_reggroup);
1364 reggroup_add (gdbarch, save_reggroup);
1365 reggroup_add (gdbarch, restore_reggroup);
1366 reggroup_add (gdbarch, vector_reggroup);
1367 reggroup_add (gdbarch, system_reggroup);
1368 }
1369
1370 static int
1371 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1372 struct reggroup *group)
1373 {
1374 /* We must save the real hard register as well as gcc
1375 soft registers including the frame pointer. */
1376 if (group == save_reggroup || group == restore_reggroup)
1377 {
1378 return (regnum <= gdbarch_num_regs (gdbarch)
1379 || ((regnum == SOFT_FP_REGNUM
1380 || regnum == SOFT_TMP_REGNUM
1381 || regnum == SOFT_ZS_REGNUM
1382 || regnum == SOFT_XY_REGNUM)
1383 && m68hc11_register_name (gdbarch, regnum)));
1384 }
1385
1386 /* Group to identify gcc soft registers (d1..dN). */
1387 if (group == m68hc11_soft_reggroup)
1388 {
1389 return regnum >= SOFT_D1_REGNUM
1390 && m68hc11_register_name (gdbarch, regnum);
1391 }
1392
1393 if (group == m68hc11_hard_reggroup)
1394 {
1395 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1396 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1397 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1398 }
1399 return default_register_reggroup_p (gdbarch, regnum, group);
1400 }
1401
1402 static struct gdbarch *
1403 m68hc11_gdbarch_init (struct gdbarch_info info,
1404 struct gdbarch_list *arches)
1405 {
1406 struct gdbarch *gdbarch;
1407 struct gdbarch_tdep *tdep;
1408 int elf_flags;
1409
1410 soft_reg_initialized = 0;
1411
1412 /* Extract the elf_flags if available. */
1413 if (info.abfd != NULL
1414 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1415 elf_flags = elf_elfheader (info.abfd)->e_flags;
1416 else
1417 elf_flags = 0;
1418
1419 /* Try to find a pre-existing architecture. */
1420 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1421 arches != NULL;
1422 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1423 {
1424 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1425 continue;
1426
1427 return arches->gdbarch;
1428 }
1429
1430 /* Need a new architecture. Fill in a target specific vector. */
1431 tdep = XCNEW (struct gdbarch_tdep);
1432 gdbarch = gdbarch_alloc (&info, tdep);
1433 tdep->elf_flags = elf_flags;
1434
1435 switch (info.bfd_arch_info->arch)
1436 {
1437 case bfd_arch_m68hc11:
1438 tdep->stack_correction = 1;
1439 tdep->use_page_register = 0;
1440 tdep->prologue = m6811_prologue;
1441 set_gdbarch_addr_bit (gdbarch, 16);
1442 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1443 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1444 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1445 break;
1446
1447 case bfd_arch_m68hc12:
1448 tdep->stack_correction = 0;
1449 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1450 tdep->prologue = m6812_prologue;
1451 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1452 set_gdbarch_num_pseudo_regs (gdbarch,
1453 elf_flags & E_M68HC12_BANKS
1454 ? M68HC12_NUM_PSEUDO_REGS
1455 : M68HC11_NUM_PSEUDO_REGS);
1456 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1457 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1458 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1459 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1460 break;
1461
1462 default:
1463 break;
1464 }
1465
1466 /* Initially set everything according to the ABI.
1467 Use 16-bit integers since it will be the case for most
1468 programs. The size of these types should normally be set
1469 according to the dwarf2 debug information. */
1470 set_gdbarch_short_bit (gdbarch, 16);
1471 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1472 set_gdbarch_float_bit (gdbarch, 32);
1473 if (elf_flags & E_M68HC11_F64)
1474 {
1475 set_gdbarch_double_bit (gdbarch, 64);
1476 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1477 }
1478 else
1479 {
1480 set_gdbarch_double_bit (gdbarch, 32);
1481 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1482 }
1483 set_gdbarch_long_double_bit (gdbarch, 64);
1484 set_gdbarch_long_bit (gdbarch, 32);
1485 set_gdbarch_ptr_bit (gdbarch, 16);
1486 set_gdbarch_long_long_bit (gdbarch, 64);
1487
1488 /* Characters are unsigned. */
1489 set_gdbarch_char_signed (gdbarch, 0);
1490
1491 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1492 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1493
1494 /* Set register info. */
1495 set_gdbarch_fp0_regnum (gdbarch, -1);
1496
1497 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1498 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1499 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1500 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1501 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1502
1503 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1504
1505 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1506 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1507 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1508 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1509 m68hc11_breakpoint::kind_from_pc);
1510 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1511 m68hc11_breakpoint::bp_from_kind);
1512
1513 m68hc11_add_reggroups (gdbarch);
1514 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1515 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1516
1517 /* Hook in the DWARF CFI frame unwinder. */
1518 dwarf2_append_unwinders (gdbarch);
1519
1520 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1521 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1522
1523 /* Methods for saving / extracting a dummy frame's ID. The ID's
1524 stack address must match the SP value returned by
1525 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1526 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1527
1528 /* Return the unwound PC value. */
1529 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1530
1531 /* Minsymbol frobbing. */
1532 set_gdbarch_elf_make_msymbol_special (gdbarch,
1533 m68hc11_elf_make_msymbol_special);
1534
1535 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1536
1537 return gdbarch;
1538 }
1539
1540 void
1541 _initialize_m68hc11_tdep (void)
1542 {
1543 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1544 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1545 m68hc11_init_reggroups ();
1546 }
1547
This page took 0.092803 seconds and 5 git commands to generate.