2007-11-02 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "dwarf2-frame.h"
23 #include "frame.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
26 #include "gdbtypes.h"
27 #include "symtab.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "gdb_string.h"
31 #include "gdb_assert.h"
32 #include "inferior.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "dis-asm.h"
37 #include "target-descriptions.h"
38
39 #include "m68k-tdep.h"
40 \f
41
42 #define P_LINKL_FP 0x480e
43 #define P_LINKW_FP 0x4e56
44 #define P_PEA_FP 0x4856
45 #define P_MOVEAL_SP_FP 0x2c4f
46 #define P_ADDAW_SP 0xdefc
47 #define P_ADDAL_SP 0xdffc
48 #define P_SUBQW_SP 0x514f
49 #define P_SUBQL_SP 0x518f
50 #define P_LEA_SP_SP 0x4fef
51 #define P_LEA_PC_A5 0x4bfb0170
52 #define P_FMOVEMX_SP 0xf227
53 #define P_MOVEL_SP 0x2f00
54 #define P_MOVEML_SP 0x48e7
55
56 /* Offset from SP to first arg on stack at first instruction of a function */
57 #define SP_ARG0 (1 * 4)
58
59 #if !defined (BPT_VECTOR)
60 #define BPT_VECTOR 0xf
61 #endif
62
63 static const gdb_byte *
64 m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
65 {
66 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
67 *lenptr = sizeof (break_insn);
68 return break_insn;
69 }
70 \f
71
72 /* Type for %ps. */
73 struct type *m68k_ps_type;
74
75 /* Construct types for ISA-specific registers. */
76 static void
77 m68k_init_types (void)
78 {
79 struct type *type;
80
81 type = init_flags_type ("builtin_type_m68k_ps", 4);
82 append_flags_type_flag (type, 0, "C");
83 append_flags_type_flag (type, 1, "V");
84 append_flags_type_flag (type, 2, "Z");
85 append_flags_type_flag (type, 3, "N");
86 append_flags_type_flag (type, 4, "X");
87 append_flags_type_flag (type, 8, "I0");
88 append_flags_type_flag (type, 9, "I1");
89 append_flags_type_flag (type, 10, "I2");
90 append_flags_type_flag (type, 12, "M");
91 append_flags_type_flag (type, 13, "S");
92 append_flags_type_flag (type, 14, "T0");
93 append_flags_type_flag (type, 15, "T1");
94 m68k_ps_type = type;
95 }
96
97 /* Return the GDB type object for the "standard" data type of data in
98 register N. This should be int for D0-D7, SR, FPCONTROL and
99 FPSTATUS, long double for FP0-FP7, and void pointer for all others
100 (A0-A7, PC, FPIADDR). Note, for registers which contain
101 addresses return pointer to void, not pointer to char, because we
102 don't want to attempt to print the string after printing the
103 address. */
104
105 static struct type *
106 m68k_register_type (struct gdbarch *gdbarch, int regnum)
107 {
108 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
109
110 if (tdep->fpregs_present)
111 {
112 if (regnum >= gdbarch_fp0_regnum (gdbarch)
113 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
114 {
115 if (tdep->flavour == m68k_coldfire_flavour)
116 return builtin_type (gdbarch)->builtin_double;
117 else
118 return builtin_type_m68881_ext;
119 }
120
121 if (regnum == M68K_FPI_REGNUM)
122 return builtin_type_void_func_ptr;
123
124 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
125 return builtin_type_int32;
126 }
127 else
128 {
129 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
130 return builtin_type_int0;
131 }
132
133 if (regnum == gdbarch_pc_regnum (gdbarch))
134 return builtin_type_void_func_ptr;
135
136 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
137 return builtin_type_void_data_ptr;
138
139 if (regnum == M68K_PS_REGNUM)
140 return m68k_ps_type;
141
142 return builtin_type_int32;
143 }
144
145 static const char *m68k_register_names[] = {
146 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
147 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
148 "ps", "pc",
149 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
150 "fpcontrol", "fpstatus", "fpiaddr"
151 };
152
153 /* Function: m68k_register_name
154 Returns the name of the standard m68k register regnum. */
155
156 static const char *
157 m68k_register_name (struct gdbarch *gdbarch, int regnum)
158 {
159 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
160 internal_error (__FILE__, __LINE__,
161 _("m68k_register_name: illegal register number %d"), regnum);
162 else
163 return m68k_register_names[regnum];
164 }
165 \f
166 /* Return nonzero if a value of type TYPE stored in register REGNUM
167 needs any special handling. */
168
169 static int
170 m68k_convert_register_p (int regnum, struct type *type)
171 {
172 if (!gdbarch_tdep (current_gdbarch)->fpregs_present)
173 return 0;
174 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
175 && type != builtin_type_m68881_ext);
176 }
177
178 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
179 return its contents in TO. */
180
181 static void
182 m68k_register_to_value (struct frame_info *frame, int regnum,
183 struct type *type, gdb_byte *to)
184 {
185 gdb_byte from[M68K_MAX_REGISTER_SIZE];
186 struct type *fpreg_type = register_type (get_frame_arch (frame),
187 M68K_FP0_REGNUM);
188
189 /* We only support floating-point values. */
190 if (TYPE_CODE (type) != TYPE_CODE_FLT)
191 {
192 warning (_("Cannot convert floating-point register value "
193 "to non-floating-point type."));
194 return;
195 }
196
197 /* Convert to TYPE. */
198 get_frame_register (frame, regnum, from);
199 convert_typed_floating (from, fpreg_type, to, type);
200 }
201
202 /* Write the contents FROM of a value of type TYPE into register
203 REGNUM in frame FRAME. */
204
205 static void
206 m68k_value_to_register (struct frame_info *frame, int regnum,
207 struct type *type, const gdb_byte *from)
208 {
209 gdb_byte to[M68K_MAX_REGISTER_SIZE];
210 struct type *fpreg_type = register_type (get_frame_arch (frame),
211 M68K_FP0_REGNUM);
212
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
215 {
216 warning (_("Cannot convert non-floating-point type "
217 "to floating-point register value."));
218 return;
219 }
220
221 /* Convert from TYPE. */
222 convert_typed_floating (from, type, to, fpreg_type);
223 put_frame_register (frame, regnum, to);
224 }
225
226 \f
227 /* There is a fair number of calling conventions that are in somewhat
228 wide use. The 68000/08/10 don't support an FPU, not even as a
229 coprocessor. All function return values are stored in %d0/%d1.
230 Structures are returned in a static buffer, a pointer to which is
231 returned in %d0. This means that functions returning a structure
232 are not re-entrant. To avoid this problem some systems use a
233 convention where the caller passes a pointer to a buffer in %a1
234 where the return values is to be stored. This convention is the
235 default, and is implemented in the function m68k_return_value.
236
237 The 68020/030/040/060 do support an FPU, either as a coprocessor
238 (68881/2) or built-in (68040/68060). That's why System V release 4
239 (SVR4) instroduces a new calling convention specified by the SVR4
240 psABI. Integer values are returned in %d0/%d1, pointer return
241 values in %a0 and floating values in %fp0. When calling functions
242 returning a structure the caller should pass a pointer to a buffer
243 for the return value in %a0. This convention is implemented in the
244 function m68k_svr4_return_value, and by appropriately setting the
245 struct_value_regnum member of `struct gdbarch_tdep'.
246
247 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
248 for passing the structure return value buffer.
249
250 GCC can also generate code where small structures are returned in
251 %d0/%d1 instead of in memory by using -freg-struct-return. This is
252 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
253 embedded systems. This convention is implemented by setting the
254 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
255
256 /* Read a function return value of TYPE from REGCACHE, and copy that
257 into VALBUF. */
258
259 static void
260 m68k_extract_return_value (struct type *type, struct regcache *regcache,
261 gdb_byte *valbuf)
262 {
263 int len = TYPE_LENGTH (type);
264 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
265
266 if (len <= 4)
267 {
268 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
269 memcpy (valbuf, buf + (4 - len), len);
270 }
271 else if (len <= 8)
272 {
273 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
274 memcpy (valbuf, buf + (8 - len), len - 4);
275 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
276 }
277 else
278 internal_error (__FILE__, __LINE__,
279 _("Cannot extract return value of %d bytes long."), len);
280 }
281
282 static void
283 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
284 gdb_byte *valbuf)
285 {
286 int len = TYPE_LENGTH (type);
287 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
288 struct gdbarch *gdbarch = get_regcache_arch (regcache);
289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
290
291 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
292 {
293 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
294 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
295 convert_typed_floating (buf, fpreg_type, valbuf, type);
296 }
297 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
298 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
299 else
300 m68k_extract_return_value (type, regcache, valbuf);
301 }
302
303 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
304
305 static void
306 m68k_store_return_value (struct type *type, struct regcache *regcache,
307 const gdb_byte *valbuf)
308 {
309 int len = TYPE_LENGTH (type);
310
311 if (len <= 4)
312 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
313 else if (len <= 8)
314 {
315 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
316 len - 4, valbuf);
317 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
318 }
319 else
320 internal_error (__FILE__, __LINE__,
321 _("Cannot store return value of %d bytes long."), len);
322 }
323
324 static void
325 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
326 const gdb_byte *valbuf)
327 {
328 int len = TYPE_LENGTH (type);
329 struct gdbarch *gdbarch = get_regcache_arch (regcache);
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331
332 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
333 {
334 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
335 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
336 convert_typed_floating (valbuf, type, buf, fpreg_type);
337 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
338 }
339 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
340 {
341 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
342 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
343 }
344 else
345 m68k_store_return_value (type, regcache, valbuf);
346 }
347
348 /* Return non-zero if TYPE, which is assumed to be a structure or
349 union type, should be returned in registers for architecture
350 GDBARCH. */
351
352 static int
353 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356 enum type_code code = TYPE_CODE (type);
357 int len = TYPE_LENGTH (type);
358
359 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
360
361 if (tdep->struct_return == pcc_struct_return)
362 return 0;
363
364 return (len == 1 || len == 2 || len == 4 || len == 8);
365 }
366
367 /* Determine, for architecture GDBARCH, how a return value of TYPE
368 should be returned. If it is supposed to be returned in registers,
369 and READBUF is non-zero, read the appropriate value from REGCACHE,
370 and copy it into READBUF. If WRITEBUF is non-zero, write the value
371 from WRITEBUF into REGCACHE. */
372
373 static enum return_value_convention
374 m68k_return_value (struct gdbarch *gdbarch, struct type *type,
375 struct regcache *regcache, gdb_byte *readbuf,
376 const gdb_byte *writebuf)
377 {
378 enum type_code code = TYPE_CODE (type);
379
380 /* GCC returns a `long double' in memory too. */
381 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
382 && !m68k_reg_struct_return_p (gdbarch, type))
383 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
384 {
385 /* The default on m68k is to return structures in static memory.
386 Consequently a function must return the address where we can
387 find the return value. */
388
389 if (readbuf)
390 {
391 ULONGEST addr;
392
393 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
394 read_memory (addr, readbuf, TYPE_LENGTH (type));
395 }
396
397 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
398 }
399
400 if (readbuf)
401 m68k_extract_return_value (type, regcache, readbuf);
402 if (writebuf)
403 m68k_store_return_value (type, regcache, writebuf);
404
405 return RETURN_VALUE_REGISTER_CONVENTION;
406 }
407
408 static enum return_value_convention
409 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
410 struct regcache *regcache, gdb_byte *readbuf,
411 const gdb_byte *writebuf)
412 {
413 enum type_code code = TYPE_CODE (type);
414
415 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
416 && !m68k_reg_struct_return_p (gdbarch, type))
417 {
418 /* The System V ABI says that:
419
420 "A function returning a structure or union also sets %a0 to
421 the value it finds in %a0. Thus when the caller receives
422 control again, the address of the returned object resides in
423 register %a0."
424
425 So the ABI guarantees that we can always find the return
426 value just after the function has returned. */
427
428 if (readbuf)
429 {
430 ULONGEST addr;
431
432 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
433 read_memory (addr, readbuf, TYPE_LENGTH (type));
434 }
435
436 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
437 }
438
439 /* This special case is for structures consisting of a single
440 `float' or `double' member. These structures are returned in
441 %fp0. For these structures, we call ourselves recursively,
442 changing TYPE into the type of the first member of the structure.
443 Since that should work for all structures that have only one
444 member, we don't bother to check the member's type here. */
445 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
446 {
447 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
448 return m68k_svr4_return_value (gdbarch, type, regcache,
449 readbuf, writebuf);
450 }
451
452 if (readbuf)
453 m68k_svr4_extract_return_value (type, regcache, readbuf);
454 if (writebuf)
455 m68k_svr4_store_return_value (type, regcache, writebuf);
456
457 return RETURN_VALUE_REGISTER_CONVENTION;
458 }
459 \f
460
461 /* Always align the frame to a 4-byte boundary. This is required on
462 coldfire and harmless on the rest. */
463
464 static CORE_ADDR
465 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
466 {
467 /* Align the stack to four bytes. */
468 return sp & ~3;
469 }
470
471 static CORE_ADDR
472 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
473 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
474 struct value **args, CORE_ADDR sp, int struct_return,
475 CORE_ADDR struct_addr)
476 {
477 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
478 gdb_byte buf[4];
479 int i;
480
481 /* Push arguments in reverse order. */
482 for (i = nargs - 1; i >= 0; i--)
483 {
484 struct type *value_type = value_enclosing_type (args[i]);
485 int len = TYPE_LENGTH (value_type);
486 int container_len = (len + 3) & ~3;
487 int offset;
488
489 /* Non-scalars bigger than 4 bytes are left aligned, others are
490 right aligned. */
491 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
492 || TYPE_CODE (value_type) == TYPE_CODE_UNION
493 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
494 && len > 4)
495 offset = 0;
496 else
497 offset = container_len - len;
498 sp -= container_len;
499 write_memory (sp + offset, value_contents_all (args[i]), len);
500 }
501
502 /* Store struct value address. */
503 if (struct_return)
504 {
505 store_unsigned_integer (buf, 4, struct_addr);
506 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
507 }
508
509 /* Store return address. */
510 sp -= 4;
511 store_unsigned_integer (buf, 4, bp_addr);
512 write_memory (sp, buf, 4);
513
514 /* Finally, update the stack pointer... */
515 store_unsigned_integer (buf, 4, sp);
516 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
517
518 /* ...and fake a frame pointer. */
519 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
520
521 /* DWARF2/GCC uses the stack address *before* the function call as a
522 frame's CFA. */
523 return sp + 8;
524 }
525
526 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
527
528 static int
529 m68k_dwarf_reg_to_regnum (int num)
530 {
531 if (num < 8)
532 /* d0..7 */
533 return (num - 0) + M68K_D0_REGNUM;
534 else if (num < 16)
535 /* a0..7 */
536 return (num - 8) + M68K_A0_REGNUM;
537 else if (num < 24 && gdbarch_tdep (current_gdbarch)->fpregs_present)
538 /* fp0..7 */
539 return (num - 16) + M68K_FP0_REGNUM;
540 else if (num == 25)
541 /* pc */
542 return M68K_PC_REGNUM;
543 else
544 return gdbarch_num_regs (current_gdbarch)
545 + gdbarch_num_pseudo_regs (current_gdbarch);
546 }
547
548 \f
549 struct m68k_frame_cache
550 {
551 /* Base address. */
552 CORE_ADDR base;
553 CORE_ADDR sp_offset;
554 CORE_ADDR pc;
555
556 /* Saved registers. */
557 CORE_ADDR saved_regs[M68K_NUM_REGS];
558 CORE_ADDR saved_sp;
559
560 /* Stack space reserved for local variables. */
561 long locals;
562 };
563
564 /* Allocate and initialize a frame cache. */
565
566 static struct m68k_frame_cache *
567 m68k_alloc_frame_cache (void)
568 {
569 struct m68k_frame_cache *cache;
570 int i;
571
572 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
573
574 /* Base address. */
575 cache->base = 0;
576 cache->sp_offset = -4;
577 cache->pc = 0;
578
579 /* Saved registers. We initialize these to -1 since zero is a valid
580 offset (that's where %fp is supposed to be stored). */
581 for (i = 0; i < M68K_NUM_REGS; i++)
582 cache->saved_regs[i] = -1;
583
584 /* Frameless until proven otherwise. */
585 cache->locals = -1;
586
587 return cache;
588 }
589
590 /* Check whether PC points at a code that sets up a new stack frame.
591 If so, it updates CACHE and returns the address of the first
592 instruction after the sequence that sets removes the "hidden"
593 argument from the stack or CURRENT_PC, whichever is smaller.
594 Otherwise, return PC. */
595
596 static CORE_ADDR
597 m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
598 struct m68k_frame_cache *cache)
599 {
600 int op;
601
602 if (pc >= current_pc)
603 return current_pc;
604
605 op = read_memory_unsigned_integer (pc, 2);
606
607 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
608 {
609 cache->saved_regs[M68K_FP_REGNUM] = 0;
610 cache->sp_offset += 4;
611 if (op == P_LINKW_FP)
612 {
613 /* link.w %fp, #-N */
614 /* link.w %fp, #0; adda.l #-N, %sp */
615 cache->locals = -read_memory_integer (pc + 2, 2);
616
617 if (pc + 4 < current_pc && cache->locals == 0)
618 {
619 op = read_memory_unsigned_integer (pc + 4, 2);
620 if (op == P_ADDAL_SP)
621 {
622 cache->locals = read_memory_integer (pc + 6, 4);
623 return pc + 10;
624 }
625 }
626
627 return pc + 4;
628 }
629 else if (op == P_LINKL_FP)
630 {
631 /* link.l %fp, #-N */
632 cache->locals = -read_memory_integer (pc + 2, 4);
633 return pc + 6;
634 }
635 else
636 {
637 /* pea (%fp); movea.l %sp, %fp */
638 cache->locals = 0;
639
640 if (pc + 2 < current_pc)
641 {
642 op = read_memory_unsigned_integer (pc + 2, 2);
643
644 if (op == P_MOVEAL_SP_FP)
645 {
646 /* move.l %sp, %fp */
647 return pc + 4;
648 }
649 }
650
651 return pc + 2;
652 }
653 }
654 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
655 {
656 /* subq.[wl] #N,%sp */
657 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
658 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
659 if (pc + 2 < current_pc)
660 {
661 op = read_memory_unsigned_integer (pc + 2, 2);
662 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
663 {
664 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
665 return pc + 4;
666 }
667 }
668 return pc + 2;
669 }
670 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
671 {
672 /* adda.w #-N,%sp */
673 /* lea (-N,%sp),%sp */
674 cache->locals = -read_memory_integer (pc + 2, 2);
675 return pc + 4;
676 }
677 else if (op == P_ADDAL_SP)
678 {
679 /* adda.l #-N,%sp */
680 cache->locals = -read_memory_integer (pc + 2, 4);
681 return pc + 6;
682 }
683
684 return pc;
685 }
686
687 /* Check whether PC points at code that saves registers on the stack.
688 If so, it updates CACHE and returns the address of the first
689 instruction after the register saves or CURRENT_PC, whichever is
690 smaller. Otherwise, return PC. */
691
692 static CORE_ADDR
693 m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
694 struct m68k_frame_cache *cache)
695 {
696 if (cache->locals >= 0)
697 {
698 CORE_ADDR offset;
699 int op;
700 int i, mask, regno;
701
702 offset = -4 - cache->locals;
703 while (pc < current_pc)
704 {
705 op = read_memory_unsigned_integer (pc, 2);
706 if (op == P_FMOVEMX_SP
707 && gdbarch_tdep (current_gdbarch)->fpregs_present)
708 {
709 /* fmovem.x REGS,-(%sp) */
710 op = read_memory_unsigned_integer (pc + 2, 2);
711 if ((op & 0xff00) == 0xe000)
712 {
713 mask = op & 0xff;
714 for (i = 0; i < 16; i++, mask >>= 1)
715 {
716 if (mask & 1)
717 {
718 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
719 offset -= 12;
720 }
721 }
722 pc += 4;
723 }
724 else
725 break;
726 }
727 else if ((op & 0177760) == P_MOVEL_SP)
728 {
729 /* move.l %R,-(%sp) */
730 regno = op & 017;
731 cache->saved_regs[regno] = offset;
732 offset -= 4;
733 pc += 2;
734 }
735 else if (op == P_MOVEML_SP)
736 {
737 /* movem.l REGS,-(%sp) */
738 mask = read_memory_unsigned_integer (pc + 2, 2);
739 for (i = 0; i < 16; i++, mask >>= 1)
740 {
741 if (mask & 1)
742 {
743 cache->saved_regs[15 - i] = offset;
744 offset -= 4;
745 }
746 }
747 pc += 4;
748 }
749 else
750 break;
751 }
752 }
753
754 return pc;
755 }
756
757
758 /* Do a full analysis of the prologue at PC and update CACHE
759 accordingly. Bail out early if CURRENT_PC is reached. Return the
760 address where the analysis stopped.
761
762 We handle all cases that can be generated by gcc.
763
764 For allocating a stack frame:
765
766 link.w %a6,#-N
767 link.l %a6,#-N
768 pea (%fp); move.l %sp,%fp
769 link.w %a6,#0; add.l #-N,%sp
770 subq.l #N,%sp
771 subq.w #N,%sp
772 subq.w #8,%sp; subq.w #N-8,%sp
773 add.w #-N,%sp
774 lea (-N,%sp),%sp
775 add.l #-N,%sp
776
777 For saving registers:
778
779 fmovem.x REGS,-(%sp)
780 move.l R1,-(%sp)
781 move.l R1,-(%sp); move.l R2,-(%sp)
782 movem.l REGS,-(%sp)
783
784 For setting up the PIC register:
785
786 lea (%pc,N),%a5
787
788 */
789
790 static CORE_ADDR
791 m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
792 struct m68k_frame_cache *cache)
793 {
794 unsigned int op;
795
796 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
797 pc = m68k_analyze_register_saves (pc, current_pc, cache);
798 if (pc >= current_pc)
799 return current_pc;
800
801 /* Check for GOT setup. */
802 op = read_memory_unsigned_integer (pc, 4);
803 if (op == P_LEA_PC_A5)
804 {
805 /* lea (%pc,N),%a5 */
806 return pc + 6;
807 }
808
809 return pc;
810 }
811
812 /* Return PC of first real instruction. */
813
814 static CORE_ADDR
815 m68k_skip_prologue (CORE_ADDR start_pc)
816 {
817 struct m68k_frame_cache cache;
818 CORE_ADDR pc;
819 int op;
820
821 cache.locals = -1;
822 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
823 if (cache.locals < 0)
824 return start_pc;
825 return pc;
826 }
827
828 static CORE_ADDR
829 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
830 {
831 gdb_byte buf[8];
832
833 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
834 return extract_typed_address (buf, builtin_type_void_func_ptr);
835 }
836 \f
837 /* Normal frames. */
838
839 static struct m68k_frame_cache *
840 m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
841 {
842 struct m68k_frame_cache *cache;
843 gdb_byte buf[4];
844 int i;
845
846 if (*this_cache)
847 return *this_cache;
848
849 cache = m68k_alloc_frame_cache ();
850 *this_cache = cache;
851
852 /* In principle, for normal frames, %fp holds the frame pointer,
853 which holds the base address for the current stack frame.
854 However, for functions that don't need it, the frame pointer is
855 optional. For these "frameless" functions the frame pointer is
856 actually the frame pointer of the calling frame. Signal
857 trampolines are just a special case of a "frameless" function.
858 They (usually) share their frame pointer with the frame that was
859 in progress when the signal occurred. */
860
861 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
862 cache->base = extract_unsigned_integer (buf, 4);
863 if (cache->base == 0)
864 return cache;
865
866 /* For normal frames, %pc is stored at 4(%fp). */
867 cache->saved_regs[M68K_PC_REGNUM] = 4;
868
869 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
870 if (cache->pc != 0)
871 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
872
873 if (cache->locals < 0)
874 {
875 /* We didn't find a valid frame, which means that CACHE->base
876 currently holds the frame pointer for our calling frame. If
877 we're at the start of a function, or somewhere half-way its
878 prologue, the function's frame probably hasn't been fully
879 setup yet. Try to reconstruct the base address for the stack
880 frame by looking at the stack pointer. For truly "frameless"
881 functions this might work too. */
882
883 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
884 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
885 }
886
887 /* Now that we have the base address for the stack frame we can
888 calculate the value of %sp in the calling frame. */
889 cache->saved_sp = cache->base + 8;
890
891 /* Adjust all the saved registers such that they contain addresses
892 instead of offsets. */
893 for (i = 0; i < M68K_NUM_REGS; i++)
894 if (cache->saved_regs[i] != -1)
895 cache->saved_regs[i] += cache->base;
896
897 return cache;
898 }
899
900 static void
901 m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
902 struct frame_id *this_id)
903 {
904 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
905
906 /* This marks the outermost frame. */
907 if (cache->base == 0)
908 return;
909
910 /* See the end of m68k_push_dummy_call. */
911 *this_id = frame_id_build (cache->base + 8, cache->pc);
912 }
913
914 static void
915 m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
916 int regnum, int *optimizedp,
917 enum lval_type *lvalp, CORE_ADDR *addrp,
918 int *realnump, gdb_byte *valuep)
919 {
920 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
921
922 gdb_assert (regnum >= 0);
923
924 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
925 {
926 *optimizedp = 0;
927 *lvalp = not_lval;
928 *addrp = 0;
929 *realnump = -1;
930 if (valuep)
931 {
932 /* Store the value. */
933 store_unsigned_integer (valuep, 4, cache->saved_sp);
934 }
935 return;
936 }
937
938 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
939 {
940 *optimizedp = 0;
941 *lvalp = lval_memory;
942 *addrp = cache->saved_regs[regnum];
943 *realnump = -1;
944 if (valuep)
945 {
946 /* Read the value in from memory. */
947 read_memory (*addrp, valuep,
948 register_size (get_frame_arch (next_frame), regnum));
949 }
950 return;
951 }
952
953 *optimizedp = 0;
954 *lvalp = lval_register;
955 *addrp = 0;
956 *realnump = regnum;
957 if (valuep)
958 frame_unwind_register (next_frame, (*realnump), valuep);
959 }
960
961 static const struct frame_unwind m68k_frame_unwind =
962 {
963 NORMAL_FRAME,
964 m68k_frame_this_id,
965 m68k_frame_prev_register
966 };
967
968 static const struct frame_unwind *
969 m68k_frame_sniffer (struct frame_info *next_frame)
970 {
971 return &m68k_frame_unwind;
972 }
973 \f
974 static CORE_ADDR
975 m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
976 {
977 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
978
979 return cache->base;
980 }
981
982 static const struct frame_base m68k_frame_base =
983 {
984 &m68k_frame_unwind,
985 m68k_frame_base_address,
986 m68k_frame_base_address,
987 m68k_frame_base_address
988 };
989
990 static struct frame_id
991 m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
992 {
993 gdb_byte buf[4];
994 CORE_ADDR fp;
995
996 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
997 fp = extract_unsigned_integer (buf, 4);
998
999 /* See the end of m68k_push_dummy_call. */
1000 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1001 }
1002 \f
1003
1004 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1005 We expect the first arg to be a pointer to the jmp_buf structure from which
1006 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1007 This routine returns true on success. */
1008
1009 static int
1010 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1011 {
1012 gdb_byte *buf;
1013 CORE_ADDR sp, jb_addr;
1014 struct gdbarch *gdbarch = get_frame_arch (frame);
1015 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
1016
1017 if (tdep->jb_pc < 0)
1018 {
1019 internal_error (__FILE__, __LINE__,
1020 _("m68k_get_longjmp_target: not implemented"));
1021 return 0;
1022 }
1023
1024 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1025 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1026
1027 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1028 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1029 return 0;
1030
1031 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1032 / TARGET_CHAR_BIT);
1033
1034 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1035 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1036 return 0;
1037
1038 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1039 / TARGET_CHAR_BIT);
1040 return 1;
1041 }
1042 \f
1043
1044 /* System V Release 4 (SVR4). */
1045
1046 void
1047 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1048 {
1049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1050
1051 /* SVR4 uses a different calling convention. */
1052 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1053
1054 /* SVR4 uses %a0 instead of %a1. */
1055 tdep->struct_value_regnum = M68K_A0_REGNUM;
1056 }
1057 \f
1058
1059 /* Function: m68k_gdbarch_init
1060 Initializer function for the m68k gdbarch vector.
1061 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1062
1063 static struct gdbarch *
1064 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1065 {
1066 struct gdbarch_tdep *tdep = NULL;
1067 struct gdbarch *gdbarch;
1068 struct gdbarch_list *best_arch;
1069 struct tdesc_arch_data *tdesc_data = NULL;
1070 int i;
1071 enum m68k_flavour flavour = m68k_no_flavour;
1072 int has_fp = 1;
1073 const struct floatformat **long_double_format = floatformats_m68881_ext;
1074
1075 /* Check any target description for validity. */
1076 if (tdesc_has_registers (info.target_desc))
1077 {
1078 const struct tdesc_feature *feature;
1079 int valid_p;
1080
1081 feature = tdesc_find_feature (info.target_desc,
1082 "org.gnu.gdb.m68k.core");
1083 if (feature != NULL)
1084 /* Do nothing. */
1085 ;
1086
1087 if (feature == NULL)
1088 {
1089 feature = tdesc_find_feature (info.target_desc,
1090 "org.gnu.gdb.coldfire.core");
1091 if (feature != NULL)
1092 flavour = m68k_coldfire_flavour;
1093 }
1094
1095 if (feature == NULL)
1096 {
1097 feature = tdesc_find_feature (info.target_desc,
1098 "org.gnu.gdb.fido.core");
1099 if (feature != NULL)
1100 flavour = m68k_fido_flavour;
1101 }
1102
1103 if (feature == NULL)
1104 return NULL;
1105
1106 tdesc_data = tdesc_data_alloc ();
1107
1108 valid_p = 1;
1109 for (i = 0; i <= M68K_PC_REGNUM; i++)
1110 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1111 m68k_register_names[i]);
1112
1113 if (!valid_p)
1114 {
1115 tdesc_data_cleanup (tdesc_data);
1116 return NULL;
1117 }
1118
1119 feature = tdesc_find_feature (info.target_desc,
1120 "org.gnu.gdb.coldfire.fp");
1121 if (feature != NULL)
1122 {
1123 valid_p = 1;
1124 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1125 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1126 m68k_register_names[i]);
1127 if (!valid_p)
1128 {
1129 tdesc_data_cleanup (tdesc_data);
1130 return NULL;
1131 }
1132 }
1133 else
1134 has_fp = 0;
1135 }
1136
1137 /* The mechanism for returning floating values from function
1138 and the type of long double depend on whether we're
1139 on ColdFire or standard m68k. */
1140
1141 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1142 {
1143 const bfd_arch_info_type *coldfire_arch =
1144 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1145
1146 if (coldfire_arch
1147 && ((*info.bfd_arch_info->compatible)
1148 (info.bfd_arch_info, coldfire_arch)))
1149 flavour = m68k_coldfire_flavour;
1150 }
1151
1152 /* If there is already a candidate, use it. */
1153 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1154 best_arch != NULL;
1155 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1156 {
1157 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1158 continue;
1159
1160 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1161 continue;
1162
1163 break;
1164 }
1165
1166 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1167 gdbarch = gdbarch_alloc (&info, tdep);
1168 tdep->fpregs_present = has_fp;
1169 tdep->flavour = flavour;
1170
1171 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1172 long_double_format = floatformats_ieee_double;
1173 set_gdbarch_long_double_format (gdbarch, long_double_format);
1174 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1175
1176 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1177 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1178
1179 /* Stack grows down. */
1180 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1181 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1182
1183 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1184 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1185 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1186
1187 set_gdbarch_frame_args_skip (gdbarch, 8);
1188 set_gdbarch_dwarf_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1189 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1190
1191 set_gdbarch_register_type (gdbarch, m68k_register_type);
1192 set_gdbarch_register_name (gdbarch, m68k_register_name);
1193 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1194 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1195 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1196 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1197 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1198 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1199 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1200 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1201
1202 if (has_fp)
1203 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1204
1205 /* Try to figure out if the arch uses floating registers to return
1206 floating point values from functions. */
1207 if (has_fp)
1208 {
1209 /* On ColdFire, floating point values are returned in D0. */
1210 if (flavour == m68k_coldfire_flavour)
1211 tdep->float_return = 0;
1212 else
1213 tdep->float_return = 1;
1214 }
1215 else
1216 {
1217 /* No floating registers, so can't use them for returning values. */
1218 tdep->float_return = 0;
1219 }
1220
1221 /* Function call & return */
1222 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1223 set_gdbarch_return_value (gdbarch, m68k_return_value);
1224
1225
1226 /* Disassembler. */
1227 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1228
1229 #if defined JB_PC && defined JB_ELEMENT_SIZE
1230 tdep->jb_pc = JB_PC;
1231 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1232 #else
1233 tdep->jb_pc = -1;
1234 #endif
1235 tdep->struct_value_regnum = M68K_A1_REGNUM;
1236 tdep->struct_return = reg_struct_return;
1237
1238 /* Frame unwinder. */
1239 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1240 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1241
1242 /* Hook in the DWARF CFI frame unwinder. */
1243 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1244
1245 frame_base_set_default (gdbarch, &m68k_frame_base);
1246
1247 /* Hook in ABI-specific overrides, if they have been registered. */
1248 gdbarch_init_osabi (info, gdbarch);
1249
1250 /* Now we have tuned the configuration, set a few final things,
1251 based on what the OS ABI has told us. */
1252
1253 if (tdep->jb_pc >= 0)
1254 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1255
1256 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
1257
1258 if (tdesc_data)
1259 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1260
1261 return gdbarch;
1262 }
1263
1264
1265 static void
1266 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1267 {
1268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1269
1270 if (tdep == NULL)
1271 return;
1272 }
1273
1274 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1275
1276 void
1277 _initialize_m68k_tdep (void)
1278 {
1279 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1280
1281 /* Initialize the m68k-specific register types. */
1282 m68k_init_types ();
1283 }
This page took 0.090894 seconds and 4 git commands to generate.