This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "dwarf2-frame.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "floatformat.h"
29 #include "symtab.h"
30 #include "gdbcore.h"
31 #include "value.h"
32 #include "gdb_string.h"
33 #include "gdb_assert.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "dis-asm.h"
39
40 #include "m68k-tdep.h"
41 \f
42
43 #define P_LINKL_FP 0x480e
44 #define P_LINKW_FP 0x4e56
45 #define P_PEA_FP 0x4856
46 #define P_MOVEAL_SP_FP 0x2c4f
47 #define P_ADDAW_SP 0xdefc
48 #define P_ADDAL_SP 0xdffc
49 #define P_SUBQW_SP 0x514f
50 #define P_SUBQL_SP 0x518f
51 #define P_LEA_SP_SP 0x4fef
52 #define P_LEA_PC_A5 0x4bfb0170
53 #define P_FMOVEMX_SP 0xf227
54 #define P_MOVEL_SP 0x2f00
55 #define P_MOVEML_SP 0x48e7
56
57
58 #define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
59 #define REGISTER_BYTES_NOFP (16*4 + 8)
60
61 /* Offset from SP to first arg on stack at first instruction of a function */
62 #define SP_ARG0 (1 * 4)
63
64 #if !defined (BPT_VECTOR)
65 #define BPT_VECTOR 0xf
66 #endif
67
68 static const gdb_byte *
69 m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
70 {
71 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
72 *lenptr = sizeof (break_insn);
73 return break_insn;
74 }
75
76
77 static int
78 m68k_register_bytes_ok (long numbytes)
79 {
80 return ((numbytes == REGISTER_BYTES_FP)
81 || (numbytes == REGISTER_BYTES_NOFP));
82 }
83
84 /* Return the GDB type object for the "standard" data type of data in
85 register N. This should be int for D0-D7, SR, FPCONTROL and
86 FPSTATUS, long double for FP0-FP7, and void pointer for all others
87 (A0-A7, PC, FPIADDR). Note, for registers which contain
88 addresses return pointer to void, not pointer to char, because we
89 don't want to attempt to print the string after printing the
90 address. */
91
92 static struct type *
93 m68k_register_type (struct gdbarch *gdbarch, int regnum)
94 {
95 if (regnum >= FP0_REGNUM && regnum <= FP0_REGNUM + 7)
96 return builtin_type_m68881_ext;
97
98 if (regnum == M68K_FPI_REGNUM || regnum == PC_REGNUM)
99 return builtin_type_void_func_ptr;
100
101 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM
102 || regnum == PS_REGNUM)
103 return builtin_type_int32;
104
105 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
106 return builtin_type_void_data_ptr;
107
108 return builtin_type_int32;
109 }
110
111 /* Function: m68k_register_name
112 Returns the name of the standard m68k register regnum. */
113
114 static const char *
115 m68k_register_name (int regnum)
116 {
117 static char *register_names[] = {
118 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
119 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
120 "ps", "pc",
121 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
122 "fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags"
123 };
124
125 if (regnum < 0 || regnum >= ARRAY_SIZE (register_names))
126 internal_error (__FILE__, __LINE__,
127 _("m68k_register_name: illegal register number %d"), regnum);
128 else
129 return register_names[regnum];
130 }
131 \f
132 /* Return nonzero if a value of type TYPE stored in register REGNUM
133 needs any special handling. */
134
135 static int
136 m68k_convert_register_p (int regnum, struct type *type)
137 {
138 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7);
139 }
140
141 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
142 return its contents in TO. */
143
144 static void
145 m68k_register_to_value (struct frame_info *frame, int regnum,
146 struct type *type, gdb_byte *to)
147 {
148 gdb_byte from[M68K_MAX_REGISTER_SIZE];
149
150 /* We only support floating-point values. */
151 if (TYPE_CODE (type) != TYPE_CODE_FLT)
152 {
153 warning (_("Cannot convert floating-point register value "
154 "to non-floating-point type."));
155 return;
156 }
157
158 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
159 the extended floating-point format used by the FPU. */
160 get_frame_register (frame, regnum, from);
161 convert_typed_floating (from, builtin_type_m68881_ext, to, type);
162 }
163
164 /* Write the contents FROM of a value of type TYPE into register
165 REGNUM in frame FRAME. */
166
167 static void
168 m68k_value_to_register (struct frame_info *frame, int regnum,
169 struct type *type, const gdb_byte *from)
170 {
171 gdb_byte to[M68K_MAX_REGISTER_SIZE];
172
173 /* We only support floating-point values. */
174 if (TYPE_CODE (type) != TYPE_CODE_FLT)
175 {
176 warning (_("Cannot convert non-floating-point type "
177 "to floating-point register value."));
178 return;
179 }
180
181 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
182 to the extended floating-point format used by the FPU. */
183 convert_typed_floating (from, type, to, builtin_type_m68881_ext);
184 put_frame_register (frame, regnum, to);
185 }
186
187 \f
188 /* There is a fair number of calling conventions that are in somewhat
189 wide use. The 68000/08/10 don't support an FPU, not even as a
190 coprocessor. All function return values are stored in %d0/%d1.
191 Structures are returned in a static buffer, a pointer to which is
192 returned in %d0. This means that functions returning a structure
193 are not re-entrant. To avoid this problem some systems use a
194 convention where the caller passes a pointer to a buffer in %a1
195 where the return values is to be stored. This convention is the
196 default, and is implemented in the function m68k_return_value.
197
198 The 68020/030/040/060 do support an FPU, either as a coprocessor
199 (68881/2) or built-in (68040/68060). That's why System V release 4
200 (SVR4) instroduces a new calling convention specified by the SVR4
201 psABI. Integer values are returned in %d0/%d1, pointer return
202 values in %a0 and floating values in %fp0. When calling functions
203 returning a structure the caller should pass a pointer to a buffer
204 for the return value in %a0. This convention is implemented in the
205 function m68k_svr4_return_value, and by appropriately setting the
206 struct_value_regnum member of `struct gdbarch_tdep'.
207
208 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
209 for passing the structure return value buffer.
210
211 GCC can also generate code where small structures are returned in
212 %d0/%d1 instead of in memory by using -freg-struct-return. This is
213 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
214 embedded systems. This convention is implemented by setting the
215 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
216
217 /* Read a function return value of TYPE from REGCACHE, and copy that
218 into VALBUF. */
219
220 static void
221 m68k_extract_return_value (struct type *type, struct regcache *regcache,
222 gdb_byte *valbuf)
223 {
224 int len = TYPE_LENGTH (type);
225 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
226
227 if (len <= 4)
228 {
229 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
230 memcpy (valbuf, buf + (4 - len), len);
231 }
232 else if (len <= 8)
233 {
234 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
235 memcpy (valbuf, buf + (8 - len), len - 4);
236 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
237 }
238 else
239 internal_error (__FILE__, __LINE__,
240 _("Cannot extract return value of %d bytes long."), len);
241 }
242
243 static void
244 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
245 gdb_byte *valbuf)
246 {
247 int len = TYPE_LENGTH (type);
248 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
249
250 if (TYPE_CODE (type) == TYPE_CODE_FLT)
251 {
252 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
253 convert_typed_floating (buf, builtin_type_m68881_ext, valbuf, type);
254 }
255 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
256 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
257 else
258 m68k_extract_return_value (type, regcache, valbuf);
259 }
260
261 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
262
263 static void
264 m68k_store_return_value (struct type *type, struct regcache *regcache,
265 const gdb_byte *valbuf)
266 {
267 int len = TYPE_LENGTH (type);
268
269 if (len <= 4)
270 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
271 else if (len <= 8)
272 {
273 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
274 len - 4, valbuf);
275 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
276 }
277 else
278 internal_error (__FILE__, __LINE__,
279 _("Cannot store return value of %d bytes long."), len);
280 }
281
282 static void
283 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
284 const gdb_byte *valbuf)
285 {
286 int len = TYPE_LENGTH (type);
287
288 if (TYPE_CODE (type) == TYPE_CODE_FLT)
289 {
290 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
291 convert_typed_floating (valbuf, type, buf, builtin_type_m68881_ext);
292 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
293 }
294 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
295 {
296 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
297 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
298 }
299 else
300 m68k_store_return_value (type, regcache, valbuf);
301 }
302
303 /* Return non-zero if TYPE, which is assumed to be a structure or
304 union type, should be returned in registers for architecture
305 GDBARCH. */
306
307 static int
308 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
309 {
310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
311 enum type_code code = TYPE_CODE (type);
312 int len = TYPE_LENGTH (type);
313
314 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
315
316 if (tdep->struct_return == pcc_struct_return)
317 return 0;
318
319 return (len == 1 || len == 2 || len == 4 || len == 8);
320 }
321
322 /* Determine, for architecture GDBARCH, how a return value of TYPE
323 should be returned. If it is supposed to be returned in registers,
324 and READBUF is non-zero, read the appropriate value from REGCACHE,
325 and copy it into READBUF. If WRITEBUF is non-zero, write the value
326 from WRITEBUF into REGCACHE. */
327
328 static enum return_value_convention
329 m68k_return_value (struct gdbarch *gdbarch, struct type *type,
330 struct regcache *regcache, gdb_byte *readbuf,
331 const gdb_byte *writebuf)
332 {
333 enum type_code code = TYPE_CODE (type);
334
335 /* GCC returns a `long double' in memory too. */
336 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
337 && !m68k_reg_struct_return_p (gdbarch, type))
338 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
339 {
340 /* The default on m68k is to return structures in static memory.
341 Consequently a function must return the address where we can
342 find the return value. */
343
344 if (readbuf)
345 {
346 ULONGEST addr;
347
348 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
349 read_memory (addr, readbuf, TYPE_LENGTH (type));
350 }
351
352 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
353 }
354
355 if (readbuf)
356 m68k_extract_return_value (type, regcache, readbuf);
357 if (writebuf)
358 m68k_store_return_value (type, regcache, writebuf);
359
360 return RETURN_VALUE_REGISTER_CONVENTION;
361 }
362
363 static enum return_value_convention
364 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
365 struct regcache *regcache, gdb_byte *readbuf,
366 const gdb_byte *writebuf)
367 {
368 enum type_code code = TYPE_CODE (type);
369
370 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
371 && !m68k_reg_struct_return_p (gdbarch, type))
372 {
373 /* The System V ABI says that:
374
375 "A function returning a structure or union also sets %a0 to
376 the value it finds in %a0. Thus when the caller receives
377 control again, the address of the returned object resides in
378 register %a0."
379
380 So the ABI guarantees that we can always find the return
381 value just after the function has returned. */
382
383 if (readbuf)
384 {
385 ULONGEST addr;
386
387 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
388 read_memory (addr, readbuf, TYPE_LENGTH (type));
389 }
390
391 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
392 }
393
394 /* This special case is for structures consisting of a single
395 `float' or `double' member. These structures are returned in
396 %fp0. For these structures, we call ourselves recursively,
397 changing TYPE into the type of the first member of the structure.
398 Since that should work for all structures that have only one
399 member, we don't bother to check the member's type here. */
400 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
401 {
402 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
403 return m68k_svr4_return_value (gdbarch, type, regcache,
404 readbuf, writebuf);
405 }
406
407 if (readbuf)
408 m68k_svr4_extract_return_value (type, regcache, readbuf);
409 if (writebuf)
410 m68k_svr4_store_return_value (type, regcache, writebuf);
411
412 return RETURN_VALUE_REGISTER_CONVENTION;
413 }
414 \f
415
416 static CORE_ADDR
417 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
418 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
419 struct value **args, CORE_ADDR sp, int struct_return,
420 CORE_ADDR struct_addr)
421 {
422 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
423 gdb_byte buf[4];
424 int i;
425
426 /* Push arguments in reverse order. */
427 for (i = nargs - 1; i >= 0; i--)
428 {
429 struct type *value_type = value_enclosing_type (args[i]);
430 int len = TYPE_LENGTH (value_type);
431 int container_len = (len + 3) & ~3;
432 int offset;
433
434 /* Non-scalars bigger than 4 bytes are left aligned, others are
435 right aligned. */
436 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
437 || TYPE_CODE (value_type) == TYPE_CODE_UNION
438 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
439 && len > 4)
440 offset = 0;
441 else
442 offset = container_len - len;
443 sp -= container_len;
444 write_memory (sp + offset, value_contents_all (args[i]), len);
445 }
446
447 /* Store struct value address. */
448 if (struct_return)
449 {
450 store_unsigned_integer (buf, 4, struct_addr);
451 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
452 }
453
454 /* Store return address. */
455 sp -= 4;
456 store_unsigned_integer (buf, 4, bp_addr);
457 write_memory (sp, buf, 4);
458
459 /* Finally, update the stack pointer... */
460 store_unsigned_integer (buf, 4, sp);
461 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
462
463 /* ...and fake a frame pointer. */
464 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
465
466 /* DWARF2/GCC uses the stack address *before* the function call as a
467 frame's CFA. */
468 return sp + 8;
469 }
470 \f
471 struct m68k_frame_cache
472 {
473 /* Base address. */
474 CORE_ADDR base;
475 CORE_ADDR sp_offset;
476 CORE_ADDR pc;
477
478 /* Saved registers. */
479 CORE_ADDR saved_regs[M68K_NUM_REGS];
480 CORE_ADDR saved_sp;
481
482 /* Stack space reserved for local variables. */
483 long locals;
484 };
485
486 /* Allocate and initialize a frame cache. */
487
488 static struct m68k_frame_cache *
489 m68k_alloc_frame_cache (void)
490 {
491 struct m68k_frame_cache *cache;
492 int i;
493
494 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
495
496 /* Base address. */
497 cache->base = 0;
498 cache->sp_offset = -4;
499 cache->pc = 0;
500
501 /* Saved registers. We initialize these to -1 since zero is a valid
502 offset (that's where %fp is supposed to be stored). */
503 for (i = 0; i < M68K_NUM_REGS; i++)
504 cache->saved_regs[i] = -1;
505
506 /* Frameless until proven otherwise. */
507 cache->locals = -1;
508
509 return cache;
510 }
511
512 /* Check whether PC points at a code that sets up a new stack frame.
513 If so, it updates CACHE and returns the address of the first
514 instruction after the sequence that sets removes the "hidden"
515 argument from the stack or CURRENT_PC, whichever is smaller.
516 Otherwise, return PC. */
517
518 static CORE_ADDR
519 m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
520 struct m68k_frame_cache *cache)
521 {
522 int op;
523
524 if (pc >= current_pc)
525 return current_pc;
526
527 op = read_memory_unsigned_integer (pc, 2);
528
529 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
530 {
531 cache->saved_regs[M68K_FP_REGNUM] = 0;
532 cache->sp_offset += 4;
533 if (op == P_LINKW_FP)
534 {
535 /* link.w %fp, #-N */
536 /* link.w %fp, #0; adda.l #-N, %sp */
537 cache->locals = -read_memory_integer (pc + 2, 2);
538
539 if (pc + 4 < current_pc && cache->locals == 0)
540 {
541 op = read_memory_unsigned_integer (pc + 4, 2);
542 if (op == P_ADDAL_SP)
543 {
544 cache->locals = read_memory_integer (pc + 6, 4);
545 return pc + 10;
546 }
547 }
548
549 return pc + 4;
550 }
551 else if (op == P_LINKL_FP)
552 {
553 /* link.l %fp, #-N */
554 cache->locals = -read_memory_integer (pc + 2, 4);
555 return pc + 6;
556 }
557 else
558 {
559 /* pea (%fp); movea.l %sp, %fp */
560 cache->locals = 0;
561
562 if (pc + 2 < current_pc)
563 {
564 op = read_memory_unsigned_integer (pc + 2, 2);
565
566 if (op == P_MOVEAL_SP_FP)
567 {
568 /* move.l %sp, %fp */
569 return pc + 4;
570 }
571 }
572
573 return pc + 2;
574 }
575 }
576 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
577 {
578 /* subq.[wl] #N,%sp */
579 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
580 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
581 if (pc + 2 < current_pc)
582 {
583 op = read_memory_unsigned_integer (pc + 2, 2);
584 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
585 {
586 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
587 return pc + 4;
588 }
589 }
590 return pc + 2;
591 }
592 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
593 {
594 /* adda.w #-N,%sp */
595 /* lea (-N,%sp),%sp */
596 cache->locals = -read_memory_integer (pc + 2, 2);
597 return pc + 4;
598 }
599 else if (op == P_ADDAL_SP)
600 {
601 /* adda.l #-N,%sp */
602 cache->locals = -read_memory_integer (pc + 2, 4);
603 return pc + 6;
604 }
605
606 return pc;
607 }
608
609 /* Check whether PC points at code that saves registers on the stack.
610 If so, it updates CACHE and returns the address of the first
611 instruction after the register saves or CURRENT_PC, whichever is
612 smaller. Otherwise, return PC. */
613
614 static CORE_ADDR
615 m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
616 struct m68k_frame_cache *cache)
617 {
618 if (cache->locals >= 0)
619 {
620 CORE_ADDR offset;
621 int op;
622 int i, mask, regno;
623
624 offset = -4 - cache->locals;
625 while (pc < current_pc)
626 {
627 op = read_memory_unsigned_integer (pc, 2);
628 if (op == P_FMOVEMX_SP)
629 {
630 /* fmovem.x REGS,-(%sp) */
631 op = read_memory_unsigned_integer (pc + 2, 2);
632 if ((op & 0xff00) == 0xe000)
633 {
634 mask = op & 0xff;
635 for (i = 0; i < 16; i++, mask >>= 1)
636 {
637 if (mask & 1)
638 {
639 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
640 offset -= 12;
641 }
642 }
643 pc += 4;
644 }
645 else
646 break;
647 }
648 else if ((op & 0170677) == P_MOVEL_SP)
649 {
650 /* move.l %R,-(%sp) */
651 regno = ((op & 07000) >> 9) | ((op & 0100) >> 3);
652 cache->saved_regs[regno] = offset;
653 offset -= 4;
654 pc += 2;
655 }
656 else if (op == P_MOVEML_SP)
657 {
658 /* movem.l REGS,-(%sp) */
659 mask = read_memory_unsigned_integer (pc + 2, 2);
660 for (i = 0; i < 16; i++, mask >>= 1)
661 {
662 if (mask & 1)
663 {
664 cache->saved_regs[15 - i] = offset;
665 offset -= 4;
666 }
667 }
668 pc += 4;
669 }
670 else
671 break;
672 }
673 }
674
675 return pc;
676 }
677
678
679 /* Do a full analysis of the prologue at PC and update CACHE
680 accordingly. Bail out early if CURRENT_PC is reached. Return the
681 address where the analysis stopped.
682
683 We handle all cases that can be generated by gcc.
684
685 For allocating a stack frame:
686
687 link.w %a6,#-N
688 link.l %a6,#-N
689 pea (%fp); move.l %sp,%fp
690 link.w %a6,#0; add.l #-N,%sp
691 subq.l #N,%sp
692 subq.w #N,%sp
693 subq.w #8,%sp; subq.w #N-8,%sp
694 add.w #-N,%sp
695 lea (-N,%sp),%sp
696 add.l #-N,%sp
697
698 For saving registers:
699
700 fmovem.x REGS,-(%sp)
701 move.l R1,-(%sp)
702 move.l R1,-(%sp); move.l R2,-(%sp)
703 movem.l REGS,-(%sp)
704
705 For setting up the PIC register:
706
707 lea (%pc,N),%a5
708
709 */
710
711 static CORE_ADDR
712 m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
713 struct m68k_frame_cache *cache)
714 {
715 unsigned int op;
716
717 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
718 pc = m68k_analyze_register_saves (pc, current_pc, cache);
719 if (pc >= current_pc)
720 return current_pc;
721
722 /* Check for GOT setup. */
723 op = read_memory_unsigned_integer (pc, 4);
724 if (op == P_LEA_PC_A5)
725 {
726 /* lea (%pc,N),%a5 */
727 return pc + 6;
728 }
729
730 return pc;
731 }
732
733 /* Return PC of first real instruction. */
734
735 static CORE_ADDR
736 m68k_skip_prologue (CORE_ADDR start_pc)
737 {
738 struct m68k_frame_cache cache;
739 CORE_ADDR pc;
740 int op;
741
742 cache.locals = -1;
743 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
744 if (cache.locals < 0)
745 return start_pc;
746 return pc;
747 }
748
749 static CORE_ADDR
750 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
751 {
752 gdb_byte buf[8];
753
754 frame_unwind_register (next_frame, PC_REGNUM, buf);
755 return extract_typed_address (buf, builtin_type_void_func_ptr);
756 }
757 \f
758 /* Normal frames. */
759
760 static struct m68k_frame_cache *
761 m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
762 {
763 struct m68k_frame_cache *cache;
764 gdb_byte buf[4];
765 int i;
766
767 if (*this_cache)
768 return *this_cache;
769
770 cache = m68k_alloc_frame_cache ();
771 *this_cache = cache;
772
773 /* In principle, for normal frames, %fp holds the frame pointer,
774 which holds the base address for the current stack frame.
775 However, for functions that don't need it, the frame pointer is
776 optional. For these "frameless" functions the frame pointer is
777 actually the frame pointer of the calling frame. Signal
778 trampolines are just a special case of a "frameless" function.
779 They (usually) share their frame pointer with the frame that was
780 in progress when the signal occurred. */
781
782 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
783 cache->base = extract_unsigned_integer (buf, 4);
784 if (cache->base == 0)
785 return cache;
786
787 /* For normal frames, %pc is stored at 4(%fp). */
788 cache->saved_regs[M68K_PC_REGNUM] = 4;
789
790 cache->pc = frame_func_unwind (next_frame);
791 if (cache->pc != 0)
792 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
793
794 if (cache->locals < 0)
795 {
796 /* We didn't find a valid frame, which means that CACHE->base
797 currently holds the frame pointer for our calling frame. If
798 we're at the start of a function, or somewhere half-way its
799 prologue, the function's frame probably hasn't been fully
800 setup yet. Try to reconstruct the base address for the stack
801 frame by looking at the stack pointer. For truly "frameless"
802 functions this might work too. */
803
804 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
805 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
806 }
807
808 /* Now that we have the base address for the stack frame we can
809 calculate the value of %sp in the calling frame. */
810 cache->saved_sp = cache->base + 8;
811
812 /* Adjust all the saved registers such that they contain addresses
813 instead of offsets. */
814 for (i = 0; i < M68K_NUM_REGS; i++)
815 if (cache->saved_regs[i] != -1)
816 cache->saved_regs[i] += cache->base;
817
818 return cache;
819 }
820
821 static void
822 m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
823 struct frame_id *this_id)
824 {
825 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
826
827 /* This marks the outermost frame. */
828 if (cache->base == 0)
829 return;
830
831 /* See the end of m68k_push_dummy_call. */
832 *this_id = frame_id_build (cache->base + 8, cache->pc);
833 }
834
835 static void
836 m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
837 int regnum, int *optimizedp,
838 enum lval_type *lvalp, CORE_ADDR *addrp,
839 int *realnump, gdb_byte *valuep)
840 {
841 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
842
843 gdb_assert (regnum >= 0);
844
845 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
846 {
847 *optimizedp = 0;
848 *lvalp = not_lval;
849 *addrp = 0;
850 *realnump = -1;
851 if (valuep)
852 {
853 /* Store the value. */
854 store_unsigned_integer (valuep, 4, cache->saved_sp);
855 }
856 return;
857 }
858
859 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
860 {
861 *optimizedp = 0;
862 *lvalp = lval_memory;
863 *addrp = cache->saved_regs[regnum];
864 *realnump = -1;
865 if (valuep)
866 {
867 /* Read the value in from memory. */
868 read_memory (*addrp, valuep,
869 register_size (current_gdbarch, regnum));
870 }
871 return;
872 }
873
874 *optimizedp = 0;
875 *lvalp = lval_register;
876 *addrp = 0;
877 *realnump = regnum;
878 if (valuep)
879 frame_unwind_register (next_frame, (*realnump), valuep);
880 }
881
882 static const struct frame_unwind m68k_frame_unwind =
883 {
884 NORMAL_FRAME,
885 m68k_frame_this_id,
886 m68k_frame_prev_register
887 };
888
889 static const struct frame_unwind *
890 m68k_frame_sniffer (struct frame_info *next_frame)
891 {
892 return &m68k_frame_unwind;
893 }
894 \f
895 static CORE_ADDR
896 m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
897 {
898 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
899
900 return cache->base;
901 }
902
903 static const struct frame_base m68k_frame_base =
904 {
905 &m68k_frame_unwind,
906 m68k_frame_base_address,
907 m68k_frame_base_address,
908 m68k_frame_base_address
909 };
910
911 static struct frame_id
912 m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
913 {
914 gdb_byte buf[4];
915 CORE_ADDR fp;
916
917 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
918 fp = extract_unsigned_integer (buf, 4);
919
920 /* See the end of m68k_push_dummy_call. */
921 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
922 }
923 \f
924 #ifdef USE_PROC_FS /* Target dependent support for /proc */
925
926 #include <sys/procfs.h>
927
928 /* Prototypes for supply_gregset etc. */
929 #include "gregset.h"
930
931 /* The /proc interface divides the target machine's register set up into
932 two different sets, the general register set (gregset) and the floating
933 point register set (fpregset). For each set, there is an ioctl to get
934 the current register set and another ioctl to set the current values.
935
936 The actual structure passed through the ioctl interface is, of course,
937 naturally machine dependent, and is different for each set of registers.
938 For the m68k for example, the general register set is typically defined
939 by:
940
941 typedef int gregset_t[18];
942
943 #define R_D0 0
944 ...
945 #define R_PS 17
946
947 and the floating point set by:
948
949 typedef struct fpregset {
950 int f_pcr;
951 int f_psr;
952 int f_fpiaddr;
953 int f_fpregs[8][3]; (8 regs, 96 bits each)
954 } fpregset_t;
955
956 These routines provide the packing and unpacking of gregset_t and
957 fpregset_t formatted data.
958
959 */
960
961 /* Atari SVR4 has R_SR but not R_PS */
962
963 #if !defined (R_PS) && defined (R_SR)
964 #define R_PS R_SR
965 #endif
966
967 /* Given a pointer to a general register set in /proc format (gregset_t *),
968 unpack the register contents and supply them as gdb's idea of the current
969 register values. */
970
971 void
972 supply_gregset (gregset_t *gregsetp)
973 {
974 int regi;
975 greg_t *regp = (greg_t *) gregsetp;
976
977 for (regi = 0; regi < R_PC; regi++)
978 {
979 regcache_raw_supply (current_regcache, regi, (char *) (regp + regi));
980 }
981 regcache_raw_supply (current_regcache, PS_REGNUM, (char *) (regp + R_PS));
982 regcache_raw_supply (current_regcache, PC_REGNUM, (char *) (regp + R_PC));
983 }
984
985 void
986 fill_gregset (gregset_t *gregsetp, int regno)
987 {
988 int regi;
989 greg_t *regp = (greg_t *) gregsetp;
990
991 for (regi = 0; regi < R_PC; regi++)
992 {
993 if (regno == -1 || regno == regi)
994 regcache_raw_collect (current_regcache, regi, regp + regi);
995 }
996 if (regno == -1 || regno == PS_REGNUM)
997 regcache_raw_collect (current_regcache, PS_REGNUM, regp + R_PS);
998 if (regno == -1 || regno == PC_REGNUM)
999 regcache_raw_collect (current_regcache, PC_REGNUM, regp + R_PC);
1000 }
1001
1002 #if defined (FP0_REGNUM)
1003
1004 /* Given a pointer to a floating point register set in /proc format
1005 (fpregset_t *), unpack the register contents and supply them as gdb's
1006 idea of the current floating point register values. */
1007
1008 void
1009 supply_fpregset (fpregset_t *fpregsetp)
1010 {
1011 int regi;
1012 char *from;
1013
1014 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
1015 {
1016 from = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
1017 regcache_raw_supply (current_regcache, regi, from);
1018 }
1019 regcache_raw_supply (current_regcache, M68K_FPC_REGNUM,
1020 (char *) &(fpregsetp->f_pcr));
1021 regcache_raw_supply (current_regcache, M68K_FPS_REGNUM,
1022 (char *) &(fpregsetp->f_psr));
1023 regcache_raw_supply (current_regcache, M68K_FPI_REGNUM,
1024 (char *) &(fpregsetp->f_fpiaddr));
1025 }
1026
1027 /* Given a pointer to a floating point register set in /proc format
1028 (fpregset_t *), update the register specified by REGNO from gdb's idea
1029 of the current floating point register set. If REGNO is -1, update
1030 them all. */
1031
1032 void
1033 fill_fpregset (fpregset_t *fpregsetp, int regno)
1034 {
1035 int regi;
1036
1037 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
1038 {
1039 if (regno == -1 || regno == regi)
1040 regcache_raw_collect (current_regcache, regi,
1041 &fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
1042 }
1043 if (regno == -1 || regno == M68K_FPC_REGNUM)
1044 regcache_raw_collect (current_regcache, M68K_FPC_REGNUM,
1045 &fpregsetp->f_pcr);
1046 if (regno == -1 || regno == M68K_FPS_REGNUM)
1047 regcache_raw_collect (current_regcache, M68K_FPS_REGNUM,
1048 &fpregsetp->f_psr);
1049 if (regno == -1 || regno == M68K_FPI_REGNUM)
1050 regcache_raw_collect (current_regcache, M68K_FPI_REGNUM,
1051 &fpregsetp->f_fpiaddr);
1052 }
1053
1054 #endif /* defined (FP0_REGNUM) */
1055
1056 #endif /* USE_PROC_FS */
1057
1058 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1059 We expect the first arg to be a pointer to the jmp_buf structure from which
1060 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1061 This routine returns true on success. */
1062
1063 static int
1064 m68k_get_longjmp_target (CORE_ADDR *pc)
1065 {
1066 gdb_byte *buf;
1067 CORE_ADDR sp, jb_addr;
1068 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1069
1070 if (tdep->jb_pc < 0)
1071 {
1072 internal_error (__FILE__, __LINE__,
1073 _("m68k_get_longjmp_target: not implemented"));
1074 return 0;
1075 }
1076
1077 buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
1078 sp = read_register (SP_REGNUM);
1079
1080 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1081 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
1082 return 0;
1083
1084 jb_addr = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1085
1086 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1087 TARGET_PTR_BIT / TARGET_CHAR_BIT))
1088 return 0;
1089
1090 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1091 return 1;
1092 }
1093 \f
1094
1095 /* System V Release 4 (SVR4). */
1096
1097 void
1098 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1099 {
1100 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1101
1102 /* SVR4 uses a different calling convention. */
1103 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1104
1105 /* SVR4 uses %a0 instead of %a1. */
1106 tdep->struct_value_regnum = M68K_A0_REGNUM;
1107 }
1108 \f
1109
1110 /* Function: m68k_gdbarch_init
1111 Initializer function for the m68k gdbarch vector.
1112 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1113
1114 static struct gdbarch *
1115 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1116 {
1117 struct gdbarch_tdep *tdep = NULL;
1118 struct gdbarch *gdbarch;
1119
1120 /* find a candidate among the list of pre-declared architectures. */
1121 arches = gdbarch_list_lookup_by_info (arches, &info);
1122 if (arches != NULL)
1123 return (arches->gdbarch);
1124
1125 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1126 gdbarch = gdbarch_alloc (&info, tdep);
1127
1128 set_gdbarch_long_double_format (gdbarch, &floatformat_m68881_ext);
1129 set_gdbarch_long_double_bit (gdbarch, 96);
1130
1131 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1132 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1133
1134 /* Stack grows down. */
1135 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1136
1137 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1138 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1139
1140 set_gdbarch_frame_args_skip (gdbarch, 8);
1141
1142 set_gdbarch_register_type (gdbarch, m68k_register_type);
1143 set_gdbarch_register_name (gdbarch, m68k_register_name);
1144 set_gdbarch_num_regs (gdbarch, 29);
1145 set_gdbarch_register_bytes_ok (gdbarch, m68k_register_bytes_ok);
1146 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1147 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1148 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1149 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1150 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1151 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1152 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1153
1154 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1155 set_gdbarch_return_value (gdbarch, m68k_return_value);
1156
1157 /* Disassembler. */
1158 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1159
1160 #if defined JB_PC && defined JB_ELEMENT_SIZE
1161 tdep->jb_pc = JB_PC;
1162 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1163 #else
1164 tdep->jb_pc = -1;
1165 #endif
1166 tdep->struct_value_regnum = M68K_A1_REGNUM;
1167 tdep->struct_return = reg_struct_return;
1168
1169 /* Frame unwinder. */
1170 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1171 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1172
1173 /* Hook in the DWARF CFI frame unwinder. */
1174 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1175
1176 frame_base_set_default (gdbarch, &m68k_frame_base);
1177
1178 /* Hook in ABI-specific overrides, if they have been registered. */
1179 gdbarch_init_osabi (info, gdbarch);
1180
1181 /* Now we have tuned the configuration, set a few final things,
1182 based on what the OS ABI has told us. */
1183
1184 if (tdep->jb_pc >= 0)
1185 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1186
1187 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
1188
1189 return gdbarch;
1190 }
1191
1192
1193 static void
1194 m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1195 {
1196 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1197
1198 if (tdep == NULL)
1199 return;
1200 }
1201
1202 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1203
1204 void
1205 _initialize_m68k_tdep (void)
1206 {
1207 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1208 }
This page took 0.06472 seconds and 5 git commands to generate.