Copyright year update in most files of the GDB Project.
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990-1996, 1999-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "dwarf2-frame.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "gdbtypes.h"
26 #include "symtab.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
31 #include "inferior.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "osabi.h"
35 #include "dis-asm.h"
36 #include "target-descriptions.h"
37
38 #include "m68k-tdep.h"
39 \f
40
41 #define P_LINKL_FP 0x480e
42 #define P_LINKW_FP 0x4e56
43 #define P_PEA_FP 0x4856
44 #define P_MOVEAL_SP_FP 0x2c4f
45 #define P_ADDAW_SP 0xdefc
46 #define P_ADDAL_SP 0xdffc
47 #define P_SUBQW_SP 0x514f
48 #define P_SUBQL_SP 0x518f
49 #define P_LEA_SP_SP 0x4fef
50 #define P_LEA_PC_A5 0x4bfb0170
51 #define P_FMOVEMX_SP 0xf227
52 #define P_MOVEL_SP 0x2f00
53 #define P_MOVEML_SP 0x48e7
54
55 /* Offset from SP to first arg on stack at first instruction of a function. */
56 #define SP_ARG0 (1 * 4)
57
58 #if !defined (BPT_VECTOR)
59 #define BPT_VECTOR 0xf
60 #endif
61
62 static const gdb_byte *
63 m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
64 CORE_ADDR *pcptr, int *lenptr)
65 {
66 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
67 *lenptr = sizeof (break_insn);
68 return break_insn;
69 }
70 \f
71
72 /* Construct types for ISA-specific registers. */
73 static struct type *
74 m68k_ps_type (struct gdbarch *gdbarch)
75 {
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->m68k_ps_type)
79 {
80 struct type *type;
81
82 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
83 append_flags_type_flag (type, 0, "C");
84 append_flags_type_flag (type, 1, "V");
85 append_flags_type_flag (type, 2, "Z");
86 append_flags_type_flag (type, 3, "N");
87 append_flags_type_flag (type, 4, "X");
88 append_flags_type_flag (type, 8, "I0");
89 append_flags_type_flag (type, 9, "I1");
90 append_flags_type_flag (type, 10, "I2");
91 append_flags_type_flag (type, 12, "M");
92 append_flags_type_flag (type, 13, "S");
93 append_flags_type_flag (type, 14, "T0");
94 append_flags_type_flag (type, 15, "T1");
95
96 tdep->m68k_ps_type = type;
97 }
98
99 return tdep->m68k_ps_type;
100 }
101
102 static struct type *
103 m68881_ext_type (struct gdbarch *gdbarch)
104 {
105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
106
107 if (!tdep->m68881_ext_type)
108 tdep->m68881_ext_type
109 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
110 floatformats_m68881_ext);
111
112 return tdep->m68881_ext_type;
113 }
114
115 /* Return the GDB type object for the "standard" data type of data in
116 register N. This should be int for D0-D7, SR, FPCONTROL and
117 FPSTATUS, long double for FP0-FP7, and void pointer for all others
118 (A0-A7, PC, FPIADDR). Note, for registers which contain
119 addresses return pointer to void, not pointer to char, because we
120 don't want to attempt to print the string after printing the
121 address. */
122
123 static struct type *
124 m68k_register_type (struct gdbarch *gdbarch, int regnum)
125 {
126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
127
128 if (tdep->fpregs_present)
129 {
130 if (regnum >= gdbarch_fp0_regnum (gdbarch)
131 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
132 {
133 if (tdep->flavour == m68k_coldfire_flavour)
134 return builtin_type (gdbarch)->builtin_double;
135 else
136 return m68881_ext_type (gdbarch);
137 }
138
139 if (regnum == M68K_FPI_REGNUM)
140 return builtin_type (gdbarch)->builtin_func_ptr;
141
142 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
143 return builtin_type (gdbarch)->builtin_int32;
144 }
145 else
146 {
147 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
148 return builtin_type (gdbarch)->builtin_int0;
149 }
150
151 if (regnum == gdbarch_pc_regnum (gdbarch))
152 return builtin_type (gdbarch)->builtin_func_ptr;
153
154 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
155 return builtin_type (gdbarch)->builtin_data_ptr;
156
157 if (regnum == M68K_PS_REGNUM)
158 return m68k_ps_type (gdbarch);
159
160 return builtin_type (gdbarch)->builtin_int32;
161 }
162
163 static const char *m68k_register_names[] = {
164 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
165 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
166 "ps", "pc",
167 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
168 "fpcontrol", "fpstatus", "fpiaddr"
169 };
170
171 /* Function: m68k_register_name
172 Returns the name of the standard m68k register regnum. */
173
174 static const char *
175 m68k_register_name (struct gdbarch *gdbarch, int regnum)
176 {
177 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
178 internal_error (__FILE__, __LINE__,
179 _("m68k_register_name: illegal register number %d"),
180 regnum);
181 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
182 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
183 return "";
184 else
185 return m68k_register_names[regnum];
186 }
187 \f
188 /* Return nonzero if a value of type TYPE stored in register REGNUM
189 needs any special handling. */
190
191 static int
192 m68k_convert_register_p (struct gdbarch *gdbarch,
193 int regnum, struct type *type)
194 {
195 if (!gdbarch_tdep (gdbarch)->fpregs_present)
196 return 0;
197 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
198 && type != register_type (gdbarch, M68K_FP0_REGNUM));
199 }
200
201 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
202 return its contents in TO. */
203
204 static int
205 m68k_register_to_value (struct frame_info *frame, int regnum,
206 struct type *type, gdb_byte *to,
207 int *optimizedp, int *unavailablep)
208 {
209 gdb_byte from[M68K_MAX_REGISTER_SIZE];
210 struct type *fpreg_type = register_type (get_frame_arch (frame),
211 M68K_FP0_REGNUM);
212
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
215 {
216 warning (_("Cannot convert floating-point register value "
217 "to non-floating-point type."));
218 *optimizedp = *unavailablep = 0;
219 return 0;
220 }
221
222 /* Convert to TYPE. */
223
224 /* Convert to TYPE. */
225 if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type),
226 from, optimizedp, unavailablep))
227 return 0;
228
229 convert_typed_floating (from, fpreg_type, to, type);
230 *optimizedp = *unavailablep = 0;
231 return 1;
232 }
233
234 /* Write the contents FROM of a value of type TYPE into register
235 REGNUM in frame FRAME. */
236
237 static void
238 m68k_value_to_register (struct frame_info *frame, int regnum,
239 struct type *type, const gdb_byte *from)
240 {
241 gdb_byte to[M68K_MAX_REGISTER_SIZE];
242 struct type *fpreg_type = register_type (get_frame_arch (frame),
243 M68K_FP0_REGNUM);
244
245 /* We only support floating-point values. */
246 if (TYPE_CODE (type) != TYPE_CODE_FLT)
247 {
248 warning (_("Cannot convert non-floating-point type "
249 "to floating-point register value."));
250 return;
251 }
252
253 /* Convert from TYPE. */
254 convert_typed_floating (from, type, to, fpreg_type);
255 put_frame_register (frame, regnum, to);
256 }
257
258 \f
259 /* There is a fair number of calling conventions that are in somewhat
260 wide use. The 68000/08/10 don't support an FPU, not even as a
261 coprocessor. All function return values are stored in %d0/%d1.
262 Structures are returned in a static buffer, a pointer to which is
263 returned in %d0. This means that functions returning a structure
264 are not re-entrant. To avoid this problem some systems use a
265 convention where the caller passes a pointer to a buffer in %a1
266 where the return values is to be stored. This convention is the
267 default, and is implemented in the function m68k_return_value.
268
269 The 68020/030/040/060 do support an FPU, either as a coprocessor
270 (68881/2) or built-in (68040/68060). That's why System V release 4
271 (SVR4) instroduces a new calling convention specified by the SVR4
272 psABI. Integer values are returned in %d0/%d1, pointer return
273 values in %a0 and floating values in %fp0. When calling functions
274 returning a structure the caller should pass a pointer to a buffer
275 for the return value in %a0. This convention is implemented in the
276 function m68k_svr4_return_value, and by appropriately setting the
277 struct_value_regnum member of `struct gdbarch_tdep'.
278
279 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
280 for passing the structure return value buffer.
281
282 GCC can also generate code where small structures are returned in
283 %d0/%d1 instead of in memory by using -freg-struct-return. This is
284 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
285 embedded systems. This convention is implemented by setting the
286 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
287
288 /* Read a function return value of TYPE from REGCACHE, and copy that
289 into VALBUF. */
290
291 static void
292 m68k_extract_return_value (struct type *type, struct regcache *regcache,
293 gdb_byte *valbuf)
294 {
295 int len = TYPE_LENGTH (type);
296 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
297
298 if (len <= 4)
299 {
300 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
301 memcpy (valbuf, buf + (4 - len), len);
302 }
303 else if (len <= 8)
304 {
305 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
306 memcpy (valbuf, buf + (8 - len), len - 4);
307 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
308 }
309 else
310 internal_error (__FILE__, __LINE__,
311 _("Cannot extract return value of %d bytes long."), len);
312 }
313
314 static void
315 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
316 gdb_byte *valbuf)
317 {
318 int len = TYPE_LENGTH (type);
319 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
320 struct gdbarch *gdbarch = get_regcache_arch (regcache);
321 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
322
323 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
324 {
325 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
326 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
327 convert_typed_floating (buf, fpreg_type, valbuf, type);
328 }
329 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
330 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
331 else
332 m68k_extract_return_value (type, regcache, valbuf);
333 }
334
335 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
336
337 static void
338 m68k_store_return_value (struct type *type, struct regcache *regcache,
339 const gdb_byte *valbuf)
340 {
341 int len = TYPE_LENGTH (type);
342
343 if (len <= 4)
344 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
345 else if (len <= 8)
346 {
347 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
348 len - 4, valbuf);
349 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
350 }
351 else
352 internal_error (__FILE__, __LINE__,
353 _("Cannot store return value of %d bytes long."), len);
354 }
355
356 static void
357 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
358 const gdb_byte *valbuf)
359 {
360 int len = TYPE_LENGTH (type);
361 struct gdbarch *gdbarch = get_regcache_arch (regcache);
362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
363
364 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
365 {
366 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
367 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
368 convert_typed_floating (valbuf, type, buf, fpreg_type);
369 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
370 }
371 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
372 {
373 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
374 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
375 }
376 else
377 m68k_store_return_value (type, regcache, valbuf);
378 }
379
380 /* Return non-zero if TYPE, which is assumed to be a structure or
381 union type, should be returned in registers for architecture
382 GDBARCH. */
383
384 static int
385 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
386 {
387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
388 enum type_code code = TYPE_CODE (type);
389 int len = TYPE_LENGTH (type);
390
391 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
392
393 if (tdep->struct_return == pcc_struct_return)
394 return 0;
395
396 return (len == 1 || len == 2 || len == 4 || len == 8);
397 }
398
399 /* Determine, for architecture GDBARCH, how a return value of TYPE
400 should be returned. If it is supposed to be returned in registers,
401 and READBUF is non-zero, read the appropriate value from REGCACHE,
402 and copy it into READBUF. If WRITEBUF is non-zero, write the value
403 from WRITEBUF into REGCACHE. */
404
405 static enum return_value_convention
406 m68k_return_value (struct gdbarch *gdbarch, struct type *func_type,
407 struct type *type, struct regcache *regcache,
408 gdb_byte *readbuf, const gdb_byte *writebuf)
409 {
410 enum type_code code = TYPE_CODE (type);
411
412 /* GCC returns a `long double' in memory too. */
413 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
414 && !m68k_reg_struct_return_p (gdbarch, type))
415 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
416 {
417 /* The default on m68k is to return structures in static memory.
418 Consequently a function must return the address where we can
419 find the return value. */
420
421 if (readbuf)
422 {
423 ULONGEST addr;
424
425 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
426 read_memory (addr, readbuf, TYPE_LENGTH (type));
427 }
428
429 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
430 }
431
432 if (readbuf)
433 m68k_extract_return_value (type, regcache, readbuf);
434 if (writebuf)
435 m68k_store_return_value (type, regcache, writebuf);
436
437 return RETURN_VALUE_REGISTER_CONVENTION;
438 }
439
440 static enum return_value_convention
441 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *func_type,
442 struct type *type, struct regcache *regcache,
443 gdb_byte *readbuf, const gdb_byte *writebuf)
444 {
445 enum type_code code = TYPE_CODE (type);
446
447 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
448 && !m68k_reg_struct_return_p (gdbarch, type))
449 {
450 /* The System V ABI says that:
451
452 "A function returning a structure or union also sets %a0 to
453 the value it finds in %a0. Thus when the caller receives
454 control again, the address of the returned object resides in
455 register %a0."
456
457 So the ABI guarantees that we can always find the return
458 value just after the function has returned. */
459
460 if (readbuf)
461 {
462 ULONGEST addr;
463
464 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
465 read_memory (addr, readbuf, TYPE_LENGTH (type));
466 }
467
468 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
469 }
470
471 /* This special case is for structures consisting of a single
472 `float' or `double' member. These structures are returned in
473 %fp0. For these structures, we call ourselves recursively,
474 changing TYPE into the type of the first member of the structure.
475 Since that should work for all structures that have only one
476 member, we don't bother to check the member's type here. */
477 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
478 {
479 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
480 return m68k_svr4_return_value (gdbarch, func_type, type, regcache,
481 readbuf, writebuf);
482 }
483
484 if (readbuf)
485 m68k_svr4_extract_return_value (type, regcache, readbuf);
486 if (writebuf)
487 m68k_svr4_store_return_value (type, regcache, writebuf);
488
489 return RETURN_VALUE_REGISTER_CONVENTION;
490 }
491 \f
492
493 /* Always align the frame to a 4-byte boundary. This is required on
494 coldfire and harmless on the rest. */
495
496 static CORE_ADDR
497 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
498 {
499 /* Align the stack to four bytes. */
500 return sp & ~3;
501 }
502
503 static CORE_ADDR
504 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
505 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
506 struct value **args, CORE_ADDR sp, int struct_return,
507 CORE_ADDR struct_addr)
508 {
509 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
511 gdb_byte buf[4];
512 int i;
513
514 /* Push arguments in reverse order. */
515 for (i = nargs - 1; i >= 0; i--)
516 {
517 struct type *value_type = value_enclosing_type (args[i]);
518 int len = TYPE_LENGTH (value_type);
519 int container_len = (len + 3) & ~3;
520 int offset;
521
522 /* Non-scalars bigger than 4 bytes are left aligned, others are
523 right aligned. */
524 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
525 || TYPE_CODE (value_type) == TYPE_CODE_UNION
526 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
527 && len > 4)
528 offset = 0;
529 else
530 offset = container_len - len;
531 sp -= container_len;
532 write_memory (sp + offset, value_contents_all (args[i]), len);
533 }
534
535 /* Store struct value address. */
536 if (struct_return)
537 {
538 store_unsigned_integer (buf, 4, byte_order, struct_addr);
539 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
540 }
541
542 /* Store return address. */
543 sp -= 4;
544 store_unsigned_integer (buf, 4, byte_order, bp_addr);
545 write_memory (sp, buf, 4);
546
547 /* Finally, update the stack pointer... */
548 store_unsigned_integer (buf, 4, byte_order, sp);
549 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
550
551 /* ...and fake a frame pointer. */
552 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
553
554 /* DWARF2/GCC uses the stack address *before* the function call as a
555 frame's CFA. */
556 return sp + 8;
557 }
558
559 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
560
561 static int
562 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
563 {
564 if (num < 8)
565 /* d0..7 */
566 return (num - 0) + M68K_D0_REGNUM;
567 else if (num < 16)
568 /* a0..7 */
569 return (num - 8) + M68K_A0_REGNUM;
570 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
571 /* fp0..7 */
572 return (num - 16) + M68K_FP0_REGNUM;
573 else if (num == 25)
574 /* pc */
575 return M68K_PC_REGNUM;
576 else
577 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
578 }
579
580 \f
581 struct m68k_frame_cache
582 {
583 /* Base address. */
584 CORE_ADDR base;
585 CORE_ADDR sp_offset;
586 CORE_ADDR pc;
587
588 /* Saved registers. */
589 CORE_ADDR saved_regs[M68K_NUM_REGS];
590 CORE_ADDR saved_sp;
591
592 /* Stack space reserved for local variables. */
593 long locals;
594 };
595
596 /* Allocate and initialize a frame cache. */
597
598 static struct m68k_frame_cache *
599 m68k_alloc_frame_cache (void)
600 {
601 struct m68k_frame_cache *cache;
602 int i;
603
604 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
605
606 /* Base address. */
607 cache->base = 0;
608 cache->sp_offset = -4;
609 cache->pc = 0;
610
611 /* Saved registers. We initialize these to -1 since zero is a valid
612 offset (that's where %fp is supposed to be stored). */
613 for (i = 0; i < M68K_NUM_REGS; i++)
614 cache->saved_regs[i] = -1;
615
616 /* Frameless until proven otherwise. */
617 cache->locals = -1;
618
619 return cache;
620 }
621
622 /* Check whether PC points at a code that sets up a new stack frame.
623 If so, it updates CACHE and returns the address of the first
624 instruction after the sequence that sets removes the "hidden"
625 argument from the stack or CURRENT_PC, whichever is smaller.
626 Otherwise, return PC. */
627
628 static CORE_ADDR
629 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
630 CORE_ADDR pc, CORE_ADDR current_pc,
631 struct m68k_frame_cache *cache)
632 {
633 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
634 int op;
635
636 if (pc >= current_pc)
637 return current_pc;
638
639 op = read_memory_unsigned_integer (pc, 2, byte_order);
640
641 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
642 {
643 cache->saved_regs[M68K_FP_REGNUM] = 0;
644 cache->sp_offset += 4;
645 if (op == P_LINKW_FP)
646 {
647 /* link.w %fp, #-N */
648 /* link.w %fp, #0; adda.l #-N, %sp */
649 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
650
651 if (pc + 4 < current_pc && cache->locals == 0)
652 {
653 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
654 if (op == P_ADDAL_SP)
655 {
656 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
657 return pc + 10;
658 }
659 }
660
661 return pc + 4;
662 }
663 else if (op == P_LINKL_FP)
664 {
665 /* link.l %fp, #-N */
666 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
667 return pc + 6;
668 }
669 else
670 {
671 /* pea (%fp); movea.l %sp, %fp */
672 cache->locals = 0;
673
674 if (pc + 2 < current_pc)
675 {
676 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
677
678 if (op == P_MOVEAL_SP_FP)
679 {
680 /* move.l %sp, %fp */
681 return pc + 4;
682 }
683 }
684
685 return pc + 2;
686 }
687 }
688 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
689 {
690 /* subq.[wl] #N,%sp */
691 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
692 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
693 if (pc + 2 < current_pc)
694 {
695 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
696 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
697 {
698 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
699 return pc + 4;
700 }
701 }
702 return pc + 2;
703 }
704 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
705 {
706 /* adda.w #-N,%sp */
707 /* lea (-N,%sp),%sp */
708 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
709 return pc + 4;
710 }
711 else if (op == P_ADDAL_SP)
712 {
713 /* adda.l #-N,%sp */
714 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
715 return pc + 6;
716 }
717
718 return pc;
719 }
720
721 /* Check whether PC points at code that saves registers on the stack.
722 If so, it updates CACHE and returns the address of the first
723 instruction after the register saves or CURRENT_PC, whichever is
724 smaller. Otherwise, return PC. */
725
726 static CORE_ADDR
727 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
728 CORE_ADDR current_pc,
729 struct m68k_frame_cache *cache)
730 {
731 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
732
733 if (cache->locals >= 0)
734 {
735 CORE_ADDR offset;
736 int op;
737 int i, mask, regno;
738
739 offset = -4 - cache->locals;
740 while (pc < current_pc)
741 {
742 op = read_memory_unsigned_integer (pc, 2, byte_order);
743 if (op == P_FMOVEMX_SP
744 && gdbarch_tdep (gdbarch)->fpregs_present)
745 {
746 /* fmovem.x REGS,-(%sp) */
747 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
748 if ((op & 0xff00) == 0xe000)
749 {
750 mask = op & 0xff;
751 for (i = 0; i < 16; i++, mask >>= 1)
752 {
753 if (mask & 1)
754 {
755 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
756 offset -= 12;
757 }
758 }
759 pc += 4;
760 }
761 else
762 break;
763 }
764 else if ((op & 0177760) == P_MOVEL_SP)
765 {
766 /* move.l %R,-(%sp) */
767 regno = op & 017;
768 cache->saved_regs[regno] = offset;
769 offset -= 4;
770 pc += 2;
771 }
772 else if (op == P_MOVEML_SP)
773 {
774 /* movem.l REGS,-(%sp) */
775 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
776 for (i = 0; i < 16; i++, mask >>= 1)
777 {
778 if (mask & 1)
779 {
780 cache->saved_regs[15 - i] = offset;
781 offset -= 4;
782 }
783 }
784 pc += 4;
785 }
786 else
787 break;
788 }
789 }
790
791 return pc;
792 }
793
794
795 /* Do a full analysis of the prologue at PC and update CACHE
796 accordingly. Bail out early if CURRENT_PC is reached. Return the
797 address where the analysis stopped.
798
799 We handle all cases that can be generated by gcc.
800
801 For allocating a stack frame:
802
803 link.w %a6,#-N
804 link.l %a6,#-N
805 pea (%fp); move.l %sp,%fp
806 link.w %a6,#0; add.l #-N,%sp
807 subq.l #N,%sp
808 subq.w #N,%sp
809 subq.w #8,%sp; subq.w #N-8,%sp
810 add.w #-N,%sp
811 lea (-N,%sp),%sp
812 add.l #-N,%sp
813
814 For saving registers:
815
816 fmovem.x REGS,-(%sp)
817 move.l R1,-(%sp)
818 move.l R1,-(%sp); move.l R2,-(%sp)
819 movem.l REGS,-(%sp)
820
821 For setting up the PIC register:
822
823 lea (%pc,N),%a5
824
825 */
826
827 static CORE_ADDR
828 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
829 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
830 {
831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
832 unsigned int op;
833
834 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
835 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
836 if (pc >= current_pc)
837 return current_pc;
838
839 /* Check for GOT setup. */
840 op = read_memory_unsigned_integer (pc, 4, byte_order);
841 if (op == P_LEA_PC_A5)
842 {
843 /* lea (%pc,N),%a5 */
844 return pc + 8;
845 }
846
847 return pc;
848 }
849
850 /* Return PC of first real instruction. */
851
852 static CORE_ADDR
853 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
854 {
855 struct m68k_frame_cache cache;
856 CORE_ADDR pc;
857 int op;
858
859 cache.locals = -1;
860 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
861 if (cache.locals < 0)
862 return start_pc;
863 return pc;
864 }
865
866 static CORE_ADDR
867 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
868 {
869 gdb_byte buf[8];
870
871 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
872 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
873 }
874 \f
875 /* Normal frames. */
876
877 static struct m68k_frame_cache *
878 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
879 {
880 struct gdbarch *gdbarch = get_frame_arch (this_frame);
881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
882 struct m68k_frame_cache *cache;
883 gdb_byte buf[4];
884 int i;
885
886 if (*this_cache)
887 return *this_cache;
888
889 cache = m68k_alloc_frame_cache ();
890 *this_cache = cache;
891
892 /* In principle, for normal frames, %fp holds the frame pointer,
893 which holds the base address for the current stack frame.
894 However, for functions that don't need it, the frame pointer is
895 optional. For these "frameless" functions the frame pointer is
896 actually the frame pointer of the calling frame. Signal
897 trampolines are just a special case of a "frameless" function.
898 They (usually) share their frame pointer with the frame that was
899 in progress when the signal occurred. */
900
901 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
902 cache->base = extract_unsigned_integer (buf, 4, byte_order);
903 if (cache->base == 0)
904 return cache;
905
906 /* For normal frames, %pc is stored at 4(%fp). */
907 cache->saved_regs[M68K_PC_REGNUM] = 4;
908
909 cache->pc = get_frame_func (this_frame);
910 if (cache->pc != 0)
911 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
912 get_frame_pc (this_frame), cache);
913
914 if (cache->locals < 0)
915 {
916 /* We didn't find a valid frame, which means that CACHE->base
917 currently holds the frame pointer for our calling frame. If
918 we're at the start of a function, or somewhere half-way its
919 prologue, the function's frame probably hasn't been fully
920 setup yet. Try to reconstruct the base address for the stack
921 frame by looking at the stack pointer. For truly "frameless"
922 functions this might work too. */
923
924 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
925 cache->base = extract_unsigned_integer (buf, 4, byte_order)
926 + cache->sp_offset;
927 }
928
929 /* Now that we have the base address for the stack frame we can
930 calculate the value of %sp in the calling frame. */
931 cache->saved_sp = cache->base + 8;
932
933 /* Adjust all the saved registers such that they contain addresses
934 instead of offsets. */
935 for (i = 0; i < M68K_NUM_REGS; i++)
936 if (cache->saved_regs[i] != -1)
937 cache->saved_regs[i] += cache->base;
938
939 return cache;
940 }
941
942 static void
943 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
944 struct frame_id *this_id)
945 {
946 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
947
948 /* This marks the outermost frame. */
949 if (cache->base == 0)
950 return;
951
952 /* See the end of m68k_push_dummy_call. */
953 *this_id = frame_id_build (cache->base + 8, cache->pc);
954 }
955
956 static struct value *
957 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
958 int regnum)
959 {
960 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
961
962 gdb_assert (regnum >= 0);
963
964 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
965 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
966
967 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
968 return frame_unwind_got_memory (this_frame, regnum,
969 cache->saved_regs[regnum]);
970
971 return frame_unwind_got_register (this_frame, regnum, regnum);
972 }
973
974 static const struct frame_unwind m68k_frame_unwind =
975 {
976 NORMAL_FRAME,
977 default_frame_unwind_stop_reason,
978 m68k_frame_this_id,
979 m68k_frame_prev_register,
980 NULL,
981 default_frame_sniffer
982 };
983 \f
984 static CORE_ADDR
985 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
986 {
987 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
988
989 return cache->base;
990 }
991
992 static const struct frame_base m68k_frame_base =
993 {
994 &m68k_frame_unwind,
995 m68k_frame_base_address,
996 m68k_frame_base_address,
997 m68k_frame_base_address
998 };
999
1000 static struct frame_id
1001 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1002 {
1003 CORE_ADDR fp;
1004
1005 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
1006
1007 /* See the end of m68k_push_dummy_call. */
1008 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1009 }
1010 \f
1011
1012 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1013 We expect the first arg to be a pointer to the jmp_buf structure from which
1014 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1015 This routine returns true on success. */
1016
1017 static int
1018 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1019 {
1020 gdb_byte *buf;
1021 CORE_ADDR sp, jb_addr;
1022 struct gdbarch *gdbarch = get_frame_arch (frame);
1023 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1025
1026 if (tdep->jb_pc < 0)
1027 {
1028 internal_error (__FILE__, __LINE__,
1029 _("m68k_get_longjmp_target: not implemented"));
1030 return 0;
1031 }
1032
1033 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1034 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1035
1036 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
1037 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1038 return 0;
1039
1040 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1041 / TARGET_CHAR_BIT, byte_order);
1042
1043 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1044 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1045 byte_order)
1046 return 0;
1047
1048 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1049 / TARGET_CHAR_BIT, byte_order);
1050 return 1;
1051 }
1052 \f
1053
1054 /* System V Release 4 (SVR4). */
1055
1056 void
1057 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1058 {
1059 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1060
1061 /* SVR4 uses a different calling convention. */
1062 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1063
1064 /* SVR4 uses %a0 instead of %a1. */
1065 tdep->struct_value_regnum = M68K_A0_REGNUM;
1066 }
1067 \f
1068
1069 /* Function: m68k_gdbarch_init
1070 Initializer function for the m68k gdbarch vector.
1071 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1072
1073 static struct gdbarch *
1074 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1075 {
1076 struct gdbarch_tdep *tdep = NULL;
1077 struct gdbarch *gdbarch;
1078 struct gdbarch_list *best_arch;
1079 struct tdesc_arch_data *tdesc_data = NULL;
1080 int i;
1081 enum m68k_flavour flavour = m68k_no_flavour;
1082 int has_fp = 1;
1083 const struct floatformat **long_double_format = floatformats_m68881_ext;
1084
1085 /* Check any target description for validity. */
1086 if (tdesc_has_registers (info.target_desc))
1087 {
1088 const struct tdesc_feature *feature;
1089 int valid_p;
1090
1091 feature = tdesc_find_feature (info.target_desc,
1092 "org.gnu.gdb.m68k.core");
1093 if (feature != NULL)
1094 /* Do nothing. */
1095 ;
1096
1097 if (feature == NULL)
1098 {
1099 feature = tdesc_find_feature (info.target_desc,
1100 "org.gnu.gdb.coldfire.core");
1101 if (feature != NULL)
1102 flavour = m68k_coldfire_flavour;
1103 }
1104
1105 if (feature == NULL)
1106 {
1107 feature = tdesc_find_feature (info.target_desc,
1108 "org.gnu.gdb.fido.core");
1109 if (feature != NULL)
1110 flavour = m68k_fido_flavour;
1111 }
1112
1113 if (feature == NULL)
1114 return NULL;
1115
1116 tdesc_data = tdesc_data_alloc ();
1117
1118 valid_p = 1;
1119 for (i = 0; i <= M68K_PC_REGNUM; i++)
1120 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1121 m68k_register_names[i]);
1122
1123 if (!valid_p)
1124 {
1125 tdesc_data_cleanup (tdesc_data);
1126 return NULL;
1127 }
1128
1129 feature = tdesc_find_feature (info.target_desc,
1130 "org.gnu.gdb.coldfire.fp");
1131 if (feature != NULL)
1132 {
1133 valid_p = 1;
1134 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1135 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1136 m68k_register_names[i]);
1137 if (!valid_p)
1138 {
1139 tdesc_data_cleanup (tdesc_data);
1140 return NULL;
1141 }
1142 }
1143 else
1144 has_fp = 0;
1145 }
1146
1147 /* The mechanism for returning floating values from function
1148 and the type of long double depend on whether we're
1149 on ColdFire or standard m68k. */
1150
1151 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1152 {
1153 const bfd_arch_info_type *coldfire_arch =
1154 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1155
1156 if (coldfire_arch
1157 && ((*info.bfd_arch_info->compatible)
1158 (info.bfd_arch_info, coldfire_arch)))
1159 flavour = m68k_coldfire_flavour;
1160 }
1161
1162 /* If there is already a candidate, use it. */
1163 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1164 best_arch != NULL;
1165 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1166 {
1167 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1168 continue;
1169
1170 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1171 continue;
1172
1173 break;
1174 }
1175
1176 if (best_arch != NULL)
1177 {
1178 if (tdesc_data != NULL)
1179 tdesc_data_cleanup (tdesc_data);
1180 return best_arch->gdbarch;
1181 }
1182
1183 tdep = xzalloc (sizeof (struct gdbarch_tdep));
1184 gdbarch = gdbarch_alloc (&info, tdep);
1185 tdep->fpregs_present = has_fp;
1186 tdep->flavour = flavour;
1187
1188 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1189 long_double_format = floatformats_ieee_double;
1190 set_gdbarch_long_double_format (gdbarch, long_double_format);
1191 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1192
1193 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1194 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1195
1196 /* Stack grows down. */
1197 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1198 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1199
1200 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1201 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1202 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1203
1204 set_gdbarch_frame_args_skip (gdbarch, 8);
1205 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1206
1207 set_gdbarch_register_type (gdbarch, m68k_register_type);
1208 set_gdbarch_register_name (gdbarch, m68k_register_name);
1209 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1210 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1211 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1212 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1213 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1214 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1215 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1216
1217 if (has_fp)
1218 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1219
1220 /* Try to figure out if the arch uses floating registers to return
1221 floating point values from functions. */
1222 if (has_fp)
1223 {
1224 /* On ColdFire, floating point values are returned in D0. */
1225 if (flavour == m68k_coldfire_flavour)
1226 tdep->float_return = 0;
1227 else
1228 tdep->float_return = 1;
1229 }
1230 else
1231 {
1232 /* No floating registers, so can't use them for returning values. */
1233 tdep->float_return = 0;
1234 }
1235
1236 /* Function call & return. */
1237 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1238 set_gdbarch_return_value (gdbarch, m68k_return_value);
1239
1240
1241 /* Disassembler. */
1242 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1243
1244 #if defined JB_PC && defined JB_ELEMENT_SIZE
1245 tdep->jb_pc = JB_PC;
1246 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1247 #else
1248 tdep->jb_pc = -1;
1249 #endif
1250 tdep->struct_value_regnum = M68K_A1_REGNUM;
1251 tdep->struct_return = reg_struct_return;
1252
1253 /* Frame unwinder. */
1254 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1255 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1256
1257 /* Hook in the DWARF CFI frame unwinder. */
1258 dwarf2_append_unwinders (gdbarch);
1259
1260 frame_base_set_default (gdbarch, &m68k_frame_base);
1261
1262 /* Hook in ABI-specific overrides, if they have been registered. */
1263 gdbarch_init_osabi (info, gdbarch);
1264
1265 /* Now we have tuned the configuration, set a few final things,
1266 based on what the OS ABI has told us. */
1267
1268 if (tdep->jb_pc >= 0)
1269 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1270
1271 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1272
1273 if (tdesc_data)
1274 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1275
1276 return gdbarch;
1277 }
1278
1279
1280 static void
1281 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1282 {
1283 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1284
1285 if (tdep == NULL)
1286 return;
1287 }
1288
1289 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1290
1291 void
1292 _initialize_m68k_tdep (void)
1293 {
1294 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1295 }
This page took 0.112395 seconds and 5 git commands to generate.