Remove regcache_raw_write_part
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "dwarf2-frame.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "gdbtypes.h"
26 #include "symtab.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "arch-utils.h"
32 #include "osabi.h"
33 #include "dis-asm.h"
34 #include "target-descriptions.h"
35 #include "floatformat.h"
36 #include "target-float.h"
37
38 #include "m68k-tdep.h"
39 \f
40
41 #define P_LINKL_FP 0x480e
42 #define P_LINKW_FP 0x4e56
43 #define P_PEA_FP 0x4856
44 #define P_MOVEAL_SP_FP 0x2c4f
45 #define P_ADDAW_SP 0xdefc
46 #define P_ADDAL_SP 0xdffc
47 #define P_SUBQW_SP 0x514f
48 #define P_SUBQL_SP 0x518f
49 #define P_LEA_SP_SP 0x4fef
50 #define P_LEA_PC_A5 0x4bfb0170
51 #define P_FMOVEMX_SP 0xf227
52 #define P_MOVEL_SP 0x2f00
53 #define P_MOVEML_SP 0x48e7
54
55 /* Offset from SP to first arg on stack at first instruction of a function. */
56 #define SP_ARG0 (1 * 4)
57
58 #if !defined (BPT_VECTOR)
59 #define BPT_VECTOR 0xf
60 #endif
61
62 constexpr gdb_byte m68k_break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
63
64 typedef BP_MANIPULATION (m68k_break_insn) m68k_breakpoint;
65 \f
66
67 /* Construct types for ISA-specific registers. */
68 static struct type *
69 m68k_ps_type (struct gdbarch *gdbarch)
70 {
71 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
72
73 if (!tdep->m68k_ps_type)
74 {
75 struct type *type;
76
77 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 32);
78 append_flags_type_flag (type, 0, "C");
79 append_flags_type_flag (type, 1, "V");
80 append_flags_type_flag (type, 2, "Z");
81 append_flags_type_flag (type, 3, "N");
82 append_flags_type_flag (type, 4, "X");
83 append_flags_type_flag (type, 8, "I0");
84 append_flags_type_flag (type, 9, "I1");
85 append_flags_type_flag (type, 10, "I2");
86 append_flags_type_flag (type, 12, "M");
87 append_flags_type_flag (type, 13, "S");
88 append_flags_type_flag (type, 14, "T0");
89 append_flags_type_flag (type, 15, "T1");
90
91 tdep->m68k_ps_type = type;
92 }
93
94 return tdep->m68k_ps_type;
95 }
96
97 static struct type *
98 m68881_ext_type (struct gdbarch *gdbarch)
99 {
100 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
101
102 if (!tdep->m68881_ext_type)
103 tdep->m68881_ext_type
104 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
105 floatformats_m68881_ext);
106
107 return tdep->m68881_ext_type;
108 }
109
110 /* Return the GDB type object for the "standard" data type of data in
111 register N. This should be int for D0-D7, SR, FPCONTROL and
112 FPSTATUS, long double for FP0-FP7, and void pointer for all others
113 (A0-A7, PC, FPIADDR). Note, for registers which contain
114 addresses return pointer to void, not pointer to char, because we
115 don't want to attempt to print the string after printing the
116 address. */
117
118 static struct type *
119 m68k_register_type (struct gdbarch *gdbarch, int regnum)
120 {
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122
123 if (tdep->fpregs_present)
124 {
125 if (regnum >= gdbarch_fp0_regnum (gdbarch)
126 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
127 {
128 if (tdep->flavour == m68k_coldfire_flavour)
129 return builtin_type (gdbarch)->builtin_double;
130 else
131 return m68881_ext_type (gdbarch);
132 }
133
134 if (regnum == M68K_FPI_REGNUM)
135 return builtin_type (gdbarch)->builtin_func_ptr;
136
137 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
138 return builtin_type (gdbarch)->builtin_int32;
139 }
140 else
141 {
142 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
143 return builtin_type (gdbarch)->builtin_int0;
144 }
145
146 if (regnum == gdbarch_pc_regnum (gdbarch))
147 return builtin_type (gdbarch)->builtin_func_ptr;
148
149 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
150 return builtin_type (gdbarch)->builtin_data_ptr;
151
152 if (regnum == M68K_PS_REGNUM)
153 return m68k_ps_type (gdbarch);
154
155 return builtin_type (gdbarch)->builtin_int32;
156 }
157
158 static const char *m68k_register_names[] = {
159 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
160 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
161 "ps", "pc",
162 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
163 "fpcontrol", "fpstatus", "fpiaddr"
164 };
165
166 /* Function: m68k_register_name
167 Returns the name of the standard m68k register regnum. */
168
169 static const char *
170 m68k_register_name (struct gdbarch *gdbarch, int regnum)
171 {
172 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
173 internal_error (__FILE__, __LINE__,
174 _("m68k_register_name: illegal register number %d"),
175 regnum);
176 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
177 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
178 return "";
179 else
180 return m68k_register_names[regnum];
181 }
182 \f
183 /* Return nonzero if a value of type TYPE stored in register REGNUM
184 needs any special handling. */
185
186 static int
187 m68k_convert_register_p (struct gdbarch *gdbarch,
188 int regnum, struct type *type)
189 {
190 if (!gdbarch_tdep (gdbarch)->fpregs_present)
191 return 0;
192 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
193 /* We only support floating-point values. */
194 && TYPE_CODE (type) == TYPE_CODE_FLT
195 && type != register_type (gdbarch, M68K_FP0_REGNUM));
196 }
197
198 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
199 return its contents in TO. */
200
201 static int
202 m68k_register_to_value (struct frame_info *frame, int regnum,
203 struct type *type, gdb_byte *to,
204 int *optimizedp, int *unavailablep)
205 {
206 struct gdbarch *gdbarch = get_frame_arch (frame);
207 gdb_byte from[M68K_MAX_REGISTER_SIZE];
208 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
209
210 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
211
212 /* Convert to TYPE. */
213 if (!get_frame_register_bytes (frame, regnum, 0,
214 register_size (gdbarch, regnum),
215 from, optimizedp, unavailablep))
216 return 0;
217
218 target_float_convert (from, fpreg_type, to, type);
219 *optimizedp = *unavailablep = 0;
220 return 1;
221 }
222
223 /* Write the contents FROM of a value of type TYPE into register
224 REGNUM in frame FRAME. */
225
226 static void
227 m68k_value_to_register (struct frame_info *frame, int regnum,
228 struct type *type, const gdb_byte *from)
229 {
230 gdb_byte to[M68K_MAX_REGISTER_SIZE];
231 struct type *fpreg_type = register_type (get_frame_arch (frame),
232 M68K_FP0_REGNUM);
233
234 /* We only support floating-point values. */
235 if (TYPE_CODE (type) != TYPE_CODE_FLT)
236 {
237 warning (_("Cannot convert non-floating-point type "
238 "to floating-point register value."));
239 return;
240 }
241
242 /* Convert from TYPE. */
243 target_float_convert (from, type, to, fpreg_type);
244 put_frame_register (frame, regnum, to);
245 }
246
247 \f
248 /* There is a fair number of calling conventions that are in somewhat
249 wide use. The 68000/08/10 don't support an FPU, not even as a
250 coprocessor. All function return values are stored in %d0/%d1.
251 Structures are returned in a static buffer, a pointer to which is
252 returned in %d0. This means that functions returning a structure
253 are not re-entrant. To avoid this problem some systems use a
254 convention where the caller passes a pointer to a buffer in %a1
255 where the return values is to be stored. This convention is the
256 default, and is implemented in the function m68k_return_value.
257
258 The 68020/030/040/060 do support an FPU, either as a coprocessor
259 (68881/2) or built-in (68040/68060). That's why System V release 4
260 (SVR4) instroduces a new calling convention specified by the SVR4
261 psABI. Integer values are returned in %d0/%d1, pointer return
262 values in %a0 and floating values in %fp0. When calling functions
263 returning a structure the caller should pass a pointer to a buffer
264 for the return value in %a0. This convention is implemented in the
265 function m68k_svr4_return_value, and by appropriately setting the
266 struct_value_regnum member of `struct gdbarch_tdep'.
267
268 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
269 for passing the structure return value buffer.
270
271 GCC can also generate code where small structures are returned in
272 %d0/%d1 instead of in memory by using -freg-struct-return. This is
273 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
274 embedded systems. This convention is implemented by setting the
275 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
276
277 /* Read a function return value of TYPE from REGCACHE, and copy that
278 into VALBUF. */
279
280 static void
281 m68k_extract_return_value (struct type *type, struct regcache *regcache,
282 gdb_byte *valbuf)
283 {
284 int len = TYPE_LENGTH (type);
285 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
286
287 if (len <= 4)
288 {
289 regcache->raw_read (M68K_D0_REGNUM, buf);
290 memcpy (valbuf, buf + (4 - len), len);
291 }
292 else if (len <= 8)
293 {
294 regcache->raw_read (M68K_D0_REGNUM, buf);
295 memcpy (valbuf, buf + (8 - len), len - 4);
296 regcache->raw_read (M68K_D1_REGNUM, valbuf + (len - 4));
297 }
298 else
299 internal_error (__FILE__, __LINE__,
300 _("Cannot extract return value of %d bytes long."), len);
301 }
302
303 static void
304 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
305 gdb_byte *valbuf)
306 {
307 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
308 struct gdbarch *gdbarch = regcache->arch ();
309 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
310
311 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
312 {
313 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
314 regcache->raw_read (M68K_FP0_REGNUM, buf);
315 target_float_convert (buf, fpreg_type, valbuf, type);
316 }
317 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
318 regcache->raw_read (M68K_A0_REGNUM, valbuf);
319 else
320 m68k_extract_return_value (type, regcache, valbuf);
321 }
322
323 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
324
325 static void
326 m68k_store_return_value (struct type *type, struct regcache *regcache,
327 const gdb_byte *valbuf)
328 {
329 int len = TYPE_LENGTH (type);
330
331 if (len <= 4)
332 regcache->raw_write_part (M68K_D0_REGNUM, 4 - len, len, valbuf);
333 else if (len <= 8)
334 {
335 regcache->raw_write_part (M68K_D0_REGNUM, 8 - len, len - 4, valbuf);
336 regcache->raw_write (M68K_D1_REGNUM, valbuf + (len - 4));
337 }
338 else
339 internal_error (__FILE__, __LINE__,
340 _("Cannot store return value of %d bytes long."), len);
341 }
342
343 static void
344 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
345 const gdb_byte *valbuf)
346 {
347 struct gdbarch *gdbarch = regcache->arch ();
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349
350 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
351 {
352 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
353 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
354 target_float_convert (valbuf, type, buf, fpreg_type);
355 regcache->raw_write (M68K_FP0_REGNUM, buf);
356 }
357 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
358 {
359 regcache->raw_write (M68K_A0_REGNUM, valbuf);
360 regcache->raw_write (M68K_D0_REGNUM, valbuf);
361 }
362 else
363 m68k_store_return_value (type, regcache, valbuf);
364 }
365
366 /* Return non-zero if TYPE, which is assumed to be a structure, union or
367 complex type, should be returned in registers for architecture
368 GDBARCH. */
369
370 static int
371 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
372 {
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374 enum type_code code = TYPE_CODE (type);
375 int len = TYPE_LENGTH (type);
376
377 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
378 || code == TYPE_CODE_COMPLEX);
379
380 if (tdep->struct_return == pcc_struct_return)
381 return 0;
382
383 return (len == 1 || len == 2 || len == 4 || len == 8);
384 }
385
386 /* Determine, for architecture GDBARCH, how a return value of TYPE
387 should be returned. If it is supposed to be returned in registers,
388 and READBUF is non-zero, read the appropriate value from REGCACHE,
389 and copy it into READBUF. If WRITEBUF is non-zero, write the value
390 from WRITEBUF into REGCACHE. */
391
392 static enum return_value_convention
393 m68k_return_value (struct gdbarch *gdbarch, struct value *function,
394 struct type *type, struct regcache *regcache,
395 gdb_byte *readbuf, const gdb_byte *writebuf)
396 {
397 enum type_code code = TYPE_CODE (type);
398
399 /* GCC returns a `long double' in memory too. */
400 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
401 || code == TYPE_CODE_COMPLEX)
402 && !m68k_reg_struct_return_p (gdbarch, type))
403 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
404 {
405 /* The default on m68k is to return structures in static memory.
406 Consequently a function must return the address where we can
407 find the return value. */
408
409 if (readbuf)
410 {
411 ULONGEST addr;
412
413 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
414 read_memory (addr, readbuf, TYPE_LENGTH (type));
415 }
416
417 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
418 }
419
420 if (readbuf)
421 m68k_extract_return_value (type, regcache, readbuf);
422 if (writebuf)
423 m68k_store_return_value (type, regcache, writebuf);
424
425 return RETURN_VALUE_REGISTER_CONVENTION;
426 }
427
428 static enum return_value_convention
429 m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
430 struct type *type, struct regcache *regcache,
431 gdb_byte *readbuf, const gdb_byte *writebuf)
432 {
433 enum type_code code = TYPE_CODE (type);
434
435 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
436 || code == TYPE_CODE_COMPLEX)
437 && !m68k_reg_struct_return_p (gdbarch, type))
438 {
439 /* The System V ABI says that:
440
441 "A function returning a structure or union also sets %a0 to
442 the value it finds in %a0. Thus when the caller receives
443 control again, the address of the returned object resides in
444 register %a0."
445
446 So the ABI guarantees that we can always find the return
447 value just after the function has returned. */
448
449 if (readbuf)
450 {
451 ULONGEST addr;
452
453 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
454 read_memory (addr, readbuf, TYPE_LENGTH (type));
455 }
456
457 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
458 }
459
460 /* This special case is for structures consisting of a single
461 `float' or `double' member. These structures are returned in
462 %fp0. For these structures, we call ourselves recursively,
463 changing TYPE into the type of the first member of the structure.
464 Since that should work for all structures that have only one
465 member, we don't bother to check the member's type here. */
466 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
467 {
468 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
469 return m68k_svr4_return_value (gdbarch, function, type, regcache,
470 readbuf, writebuf);
471 }
472
473 if (readbuf)
474 m68k_svr4_extract_return_value (type, regcache, readbuf);
475 if (writebuf)
476 m68k_svr4_store_return_value (type, regcache, writebuf);
477
478 return RETURN_VALUE_REGISTER_CONVENTION;
479 }
480 \f
481
482 /* Always align the frame to a 4-byte boundary. This is required on
483 coldfire and harmless on the rest. */
484
485 static CORE_ADDR
486 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
487 {
488 /* Align the stack to four bytes. */
489 return sp & ~3;
490 }
491
492 static CORE_ADDR
493 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
494 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
495 struct value **args, CORE_ADDR sp, int struct_return,
496 CORE_ADDR struct_addr)
497 {
498 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
499 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
500 gdb_byte buf[4];
501 int i;
502
503 /* Push arguments in reverse order. */
504 for (i = nargs - 1; i >= 0; i--)
505 {
506 struct type *value_type = value_enclosing_type (args[i]);
507 int len = TYPE_LENGTH (value_type);
508 int container_len = (len + 3) & ~3;
509 int offset;
510
511 /* Non-scalars bigger than 4 bytes are left aligned, others are
512 right aligned. */
513 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
514 || TYPE_CODE (value_type) == TYPE_CODE_UNION
515 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
516 && len > 4)
517 offset = 0;
518 else
519 offset = container_len - len;
520 sp -= container_len;
521 write_memory (sp + offset, value_contents_all (args[i]), len);
522 }
523
524 /* Store struct value address. */
525 if (struct_return)
526 {
527 store_unsigned_integer (buf, 4, byte_order, struct_addr);
528 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
529 }
530
531 /* Store return address. */
532 sp -= 4;
533 store_unsigned_integer (buf, 4, byte_order, bp_addr);
534 write_memory (sp, buf, 4);
535
536 /* Finally, update the stack pointer... */
537 store_unsigned_integer (buf, 4, byte_order, sp);
538 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
539
540 /* ...and fake a frame pointer. */
541 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
542
543 /* DWARF2/GCC uses the stack address *before* the function call as a
544 frame's CFA. */
545 return sp + 8;
546 }
547
548 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
549
550 static int
551 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
552 {
553 if (num < 8)
554 /* d0..7 */
555 return (num - 0) + M68K_D0_REGNUM;
556 else if (num < 16)
557 /* a0..7 */
558 return (num - 8) + M68K_A0_REGNUM;
559 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
560 /* fp0..7 */
561 return (num - 16) + M68K_FP0_REGNUM;
562 else if (num == 25)
563 /* pc */
564 return M68K_PC_REGNUM;
565 else
566 return -1;
567 }
568
569 \f
570 struct m68k_frame_cache
571 {
572 /* Base address. */
573 CORE_ADDR base;
574 CORE_ADDR sp_offset;
575 CORE_ADDR pc;
576
577 /* Saved registers. */
578 CORE_ADDR saved_regs[M68K_NUM_REGS];
579 CORE_ADDR saved_sp;
580
581 /* Stack space reserved for local variables. */
582 long locals;
583 };
584
585 /* Allocate and initialize a frame cache. */
586
587 static struct m68k_frame_cache *
588 m68k_alloc_frame_cache (void)
589 {
590 struct m68k_frame_cache *cache;
591 int i;
592
593 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
594
595 /* Base address. */
596 cache->base = 0;
597 cache->sp_offset = -4;
598 cache->pc = 0;
599
600 /* Saved registers. We initialize these to -1 since zero is a valid
601 offset (that's where %fp is supposed to be stored). */
602 for (i = 0; i < M68K_NUM_REGS; i++)
603 cache->saved_regs[i] = -1;
604
605 /* Frameless until proven otherwise. */
606 cache->locals = -1;
607
608 return cache;
609 }
610
611 /* Check whether PC points at a code that sets up a new stack frame.
612 If so, it updates CACHE and returns the address of the first
613 instruction after the sequence that sets removes the "hidden"
614 argument from the stack or CURRENT_PC, whichever is smaller.
615 Otherwise, return PC. */
616
617 static CORE_ADDR
618 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
619 CORE_ADDR pc, CORE_ADDR current_pc,
620 struct m68k_frame_cache *cache)
621 {
622 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
623 int op;
624
625 if (pc >= current_pc)
626 return current_pc;
627
628 op = read_memory_unsigned_integer (pc, 2, byte_order);
629
630 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
631 {
632 cache->saved_regs[M68K_FP_REGNUM] = 0;
633 cache->sp_offset += 4;
634 if (op == P_LINKW_FP)
635 {
636 /* link.w %fp, #-N */
637 /* link.w %fp, #0; adda.l #-N, %sp */
638 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
639
640 if (pc + 4 < current_pc && cache->locals == 0)
641 {
642 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
643 if (op == P_ADDAL_SP)
644 {
645 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
646 return pc + 10;
647 }
648 }
649
650 return pc + 4;
651 }
652 else if (op == P_LINKL_FP)
653 {
654 /* link.l %fp, #-N */
655 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
656 return pc + 6;
657 }
658 else
659 {
660 /* pea (%fp); movea.l %sp, %fp */
661 cache->locals = 0;
662
663 if (pc + 2 < current_pc)
664 {
665 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
666
667 if (op == P_MOVEAL_SP_FP)
668 {
669 /* move.l %sp, %fp */
670 return pc + 4;
671 }
672 }
673
674 return pc + 2;
675 }
676 }
677 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
678 {
679 /* subq.[wl] #N,%sp */
680 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
681 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
682 if (pc + 2 < current_pc)
683 {
684 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
685 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
686 {
687 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
688 return pc + 4;
689 }
690 }
691 return pc + 2;
692 }
693 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
694 {
695 /* adda.w #-N,%sp */
696 /* lea (-N,%sp),%sp */
697 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
698 return pc + 4;
699 }
700 else if (op == P_ADDAL_SP)
701 {
702 /* adda.l #-N,%sp */
703 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
704 return pc + 6;
705 }
706
707 return pc;
708 }
709
710 /* Check whether PC points at code that saves registers on the stack.
711 If so, it updates CACHE and returns the address of the first
712 instruction after the register saves or CURRENT_PC, whichever is
713 smaller. Otherwise, return PC. */
714
715 static CORE_ADDR
716 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
717 CORE_ADDR current_pc,
718 struct m68k_frame_cache *cache)
719 {
720 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
721
722 if (cache->locals >= 0)
723 {
724 CORE_ADDR offset;
725 int op;
726 int i, mask, regno;
727
728 offset = -4 - cache->locals;
729 while (pc < current_pc)
730 {
731 op = read_memory_unsigned_integer (pc, 2, byte_order);
732 if (op == P_FMOVEMX_SP
733 && gdbarch_tdep (gdbarch)->fpregs_present)
734 {
735 /* fmovem.x REGS,-(%sp) */
736 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
737 if ((op & 0xff00) == 0xe000)
738 {
739 mask = op & 0xff;
740 for (i = 0; i < 16; i++, mask >>= 1)
741 {
742 if (mask & 1)
743 {
744 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
745 offset -= 12;
746 }
747 }
748 pc += 4;
749 }
750 else
751 break;
752 }
753 else if ((op & 0177760) == P_MOVEL_SP)
754 {
755 /* move.l %R,-(%sp) */
756 regno = op & 017;
757 cache->saved_regs[regno] = offset;
758 offset -= 4;
759 pc += 2;
760 }
761 else if (op == P_MOVEML_SP)
762 {
763 /* movem.l REGS,-(%sp) */
764 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
765 for (i = 0; i < 16; i++, mask >>= 1)
766 {
767 if (mask & 1)
768 {
769 cache->saved_regs[15 - i] = offset;
770 offset -= 4;
771 }
772 }
773 pc += 4;
774 }
775 else
776 break;
777 }
778 }
779
780 return pc;
781 }
782
783
784 /* Do a full analysis of the prologue at PC and update CACHE
785 accordingly. Bail out early if CURRENT_PC is reached. Return the
786 address where the analysis stopped.
787
788 We handle all cases that can be generated by gcc.
789
790 For allocating a stack frame:
791
792 link.w %a6,#-N
793 link.l %a6,#-N
794 pea (%fp); move.l %sp,%fp
795 link.w %a6,#0; add.l #-N,%sp
796 subq.l #N,%sp
797 subq.w #N,%sp
798 subq.w #8,%sp; subq.w #N-8,%sp
799 add.w #-N,%sp
800 lea (-N,%sp),%sp
801 add.l #-N,%sp
802
803 For saving registers:
804
805 fmovem.x REGS,-(%sp)
806 move.l R1,-(%sp)
807 move.l R1,-(%sp); move.l R2,-(%sp)
808 movem.l REGS,-(%sp)
809
810 For setting up the PIC register:
811
812 lea (%pc,N),%a5
813
814 */
815
816 static CORE_ADDR
817 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
818 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
819 {
820 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
821 unsigned int op;
822
823 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
824 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
825 if (pc >= current_pc)
826 return current_pc;
827
828 /* Check for GOT setup. */
829 op = read_memory_unsigned_integer (pc, 4, byte_order);
830 if (op == P_LEA_PC_A5)
831 {
832 /* lea (%pc,N),%a5 */
833 return pc + 8;
834 }
835
836 return pc;
837 }
838
839 /* Return PC of first real instruction. */
840
841 static CORE_ADDR
842 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
843 {
844 struct m68k_frame_cache cache;
845 CORE_ADDR pc;
846
847 cache.locals = -1;
848 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
849 if (cache.locals < 0)
850 return start_pc;
851 return pc;
852 }
853
854 static CORE_ADDR
855 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
856 {
857 gdb_byte buf[8];
858
859 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
860 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
861 }
862 \f
863 /* Normal frames. */
864
865 static struct m68k_frame_cache *
866 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
867 {
868 struct gdbarch *gdbarch = get_frame_arch (this_frame);
869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
870 struct m68k_frame_cache *cache;
871 gdb_byte buf[4];
872 int i;
873
874 if (*this_cache)
875 return (struct m68k_frame_cache *) *this_cache;
876
877 cache = m68k_alloc_frame_cache ();
878 *this_cache = cache;
879
880 /* In principle, for normal frames, %fp holds the frame pointer,
881 which holds the base address for the current stack frame.
882 However, for functions that don't need it, the frame pointer is
883 optional. For these "frameless" functions the frame pointer is
884 actually the frame pointer of the calling frame. Signal
885 trampolines are just a special case of a "frameless" function.
886 They (usually) share their frame pointer with the frame that was
887 in progress when the signal occurred. */
888
889 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
890 cache->base = extract_unsigned_integer (buf, 4, byte_order);
891 if (cache->base == 0)
892 return cache;
893
894 /* For normal frames, %pc is stored at 4(%fp). */
895 cache->saved_regs[M68K_PC_REGNUM] = 4;
896
897 cache->pc = get_frame_func (this_frame);
898 if (cache->pc != 0)
899 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
900 get_frame_pc (this_frame), cache);
901
902 if (cache->locals < 0)
903 {
904 /* We didn't find a valid frame, which means that CACHE->base
905 currently holds the frame pointer for our calling frame. If
906 we're at the start of a function, or somewhere half-way its
907 prologue, the function's frame probably hasn't been fully
908 setup yet. Try to reconstruct the base address for the stack
909 frame by looking at the stack pointer. For truly "frameless"
910 functions this might work too. */
911
912 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
913 cache->base = extract_unsigned_integer (buf, 4, byte_order)
914 + cache->sp_offset;
915 }
916
917 /* Now that we have the base address for the stack frame we can
918 calculate the value of %sp in the calling frame. */
919 cache->saved_sp = cache->base + 8;
920
921 /* Adjust all the saved registers such that they contain addresses
922 instead of offsets. */
923 for (i = 0; i < M68K_NUM_REGS; i++)
924 if (cache->saved_regs[i] != -1)
925 cache->saved_regs[i] += cache->base;
926
927 return cache;
928 }
929
930 static void
931 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
932 struct frame_id *this_id)
933 {
934 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
935
936 /* This marks the outermost frame. */
937 if (cache->base == 0)
938 return;
939
940 /* See the end of m68k_push_dummy_call. */
941 *this_id = frame_id_build (cache->base + 8, cache->pc);
942 }
943
944 static struct value *
945 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
946 int regnum)
947 {
948 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
949
950 gdb_assert (regnum >= 0);
951
952 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
953 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
954
955 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
956 return frame_unwind_got_memory (this_frame, regnum,
957 cache->saved_regs[regnum]);
958
959 return frame_unwind_got_register (this_frame, regnum, regnum);
960 }
961
962 static const struct frame_unwind m68k_frame_unwind =
963 {
964 NORMAL_FRAME,
965 default_frame_unwind_stop_reason,
966 m68k_frame_this_id,
967 m68k_frame_prev_register,
968 NULL,
969 default_frame_sniffer
970 };
971 \f
972 static CORE_ADDR
973 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
974 {
975 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
976
977 return cache->base;
978 }
979
980 static const struct frame_base m68k_frame_base =
981 {
982 &m68k_frame_unwind,
983 m68k_frame_base_address,
984 m68k_frame_base_address,
985 m68k_frame_base_address
986 };
987
988 static struct frame_id
989 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
990 {
991 CORE_ADDR fp;
992
993 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
994
995 /* See the end of m68k_push_dummy_call. */
996 return frame_id_build (fp + 8, get_frame_pc (this_frame));
997 }
998 \f
999
1000 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1001 We expect the first arg to be a pointer to the jmp_buf structure from which
1002 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1003 This routine returns true on success. */
1004
1005 static int
1006 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1007 {
1008 gdb_byte *buf;
1009 CORE_ADDR sp, jb_addr;
1010 struct gdbarch *gdbarch = get_frame_arch (frame);
1011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1012 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1013
1014 if (tdep->jb_pc < 0)
1015 {
1016 internal_error (__FILE__, __LINE__,
1017 _("m68k_get_longjmp_target: not implemented"));
1018 return 0;
1019 }
1020
1021 buf = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1022 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1023
1024 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
1025 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1026 return 0;
1027
1028 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1029 / TARGET_CHAR_BIT, byte_order);
1030
1031 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1032 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1033 byte_order)
1034 return 0;
1035
1036 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1037 / TARGET_CHAR_BIT, byte_order);
1038 return 1;
1039 }
1040 \f
1041
1042 /* This is the implementation of gdbarch method
1043 return_in_first_hidden_param_p. */
1044
1045 static int
1046 m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1047 struct type *type)
1048 {
1049 return 0;
1050 }
1051
1052 /* System V Release 4 (SVR4). */
1053
1054 void
1055 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1056 {
1057 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1058
1059 /* SVR4 uses a different calling convention. */
1060 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1061
1062 /* SVR4 uses %a0 instead of %a1. */
1063 tdep->struct_value_regnum = M68K_A0_REGNUM;
1064 }
1065 \f
1066
1067 /* Function: m68k_gdbarch_init
1068 Initializer function for the m68k gdbarch vector.
1069 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1070
1071 static struct gdbarch *
1072 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1073 {
1074 struct gdbarch_tdep *tdep = NULL;
1075 struct gdbarch *gdbarch;
1076 struct gdbarch_list *best_arch;
1077 struct tdesc_arch_data *tdesc_data = NULL;
1078 int i;
1079 enum m68k_flavour flavour = m68k_no_flavour;
1080 int has_fp = 1;
1081 const struct floatformat **long_double_format = floatformats_m68881_ext;
1082
1083 /* Check any target description for validity. */
1084 if (tdesc_has_registers (info.target_desc))
1085 {
1086 const struct tdesc_feature *feature;
1087 int valid_p;
1088
1089 feature = tdesc_find_feature (info.target_desc,
1090 "org.gnu.gdb.m68k.core");
1091
1092 if (feature == NULL)
1093 {
1094 feature = tdesc_find_feature (info.target_desc,
1095 "org.gnu.gdb.coldfire.core");
1096 if (feature != NULL)
1097 flavour = m68k_coldfire_flavour;
1098 }
1099
1100 if (feature == NULL)
1101 {
1102 feature = tdesc_find_feature (info.target_desc,
1103 "org.gnu.gdb.fido.core");
1104 if (feature != NULL)
1105 flavour = m68k_fido_flavour;
1106 }
1107
1108 if (feature == NULL)
1109 return NULL;
1110
1111 tdesc_data = tdesc_data_alloc ();
1112
1113 valid_p = 1;
1114 for (i = 0; i <= M68K_PC_REGNUM; i++)
1115 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1116 m68k_register_names[i]);
1117
1118 if (!valid_p)
1119 {
1120 tdesc_data_cleanup (tdesc_data);
1121 return NULL;
1122 }
1123
1124 feature = tdesc_find_feature (info.target_desc,
1125 "org.gnu.gdb.coldfire.fp");
1126 if (feature != NULL)
1127 {
1128 valid_p = 1;
1129 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1130 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1131 m68k_register_names[i]);
1132 if (!valid_p)
1133 {
1134 tdesc_data_cleanup (tdesc_data);
1135 return NULL;
1136 }
1137 }
1138 else
1139 has_fp = 0;
1140 }
1141
1142 /* The mechanism for returning floating values from function
1143 and the type of long double depend on whether we're
1144 on ColdFire or standard m68k. */
1145
1146 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1147 {
1148 const bfd_arch_info_type *coldfire_arch =
1149 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1150
1151 if (coldfire_arch
1152 && ((*info.bfd_arch_info->compatible)
1153 (info.bfd_arch_info, coldfire_arch)))
1154 flavour = m68k_coldfire_flavour;
1155 }
1156
1157 /* If there is already a candidate, use it. */
1158 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1159 best_arch != NULL;
1160 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1161 {
1162 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1163 continue;
1164
1165 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1166 continue;
1167
1168 break;
1169 }
1170
1171 if (best_arch != NULL)
1172 {
1173 if (tdesc_data != NULL)
1174 tdesc_data_cleanup (tdesc_data);
1175 return best_arch->gdbarch;
1176 }
1177
1178 tdep = XCNEW (struct gdbarch_tdep);
1179 gdbarch = gdbarch_alloc (&info, tdep);
1180 tdep->fpregs_present = has_fp;
1181 tdep->flavour = flavour;
1182
1183 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1184 long_double_format = floatformats_ieee_double;
1185 set_gdbarch_long_double_format (gdbarch, long_double_format);
1186 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1187
1188 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1189 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m68k_breakpoint::kind_from_pc);
1190 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m68k_breakpoint::bp_from_kind);
1191
1192 /* Stack grows down. */
1193 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1194 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1195
1196 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1197 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1198 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1199
1200 set_gdbarch_frame_args_skip (gdbarch, 8);
1201 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1202
1203 set_gdbarch_register_type (gdbarch, m68k_register_type);
1204 set_gdbarch_register_name (gdbarch, m68k_register_name);
1205 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1206 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1207 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1208 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1209 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1210 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1211 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1212
1213 if (has_fp)
1214 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1215
1216 /* Try to figure out if the arch uses floating registers to return
1217 floating point values from functions. */
1218 if (has_fp)
1219 {
1220 /* On ColdFire, floating point values are returned in D0. */
1221 if (flavour == m68k_coldfire_flavour)
1222 tdep->float_return = 0;
1223 else
1224 tdep->float_return = 1;
1225 }
1226 else
1227 {
1228 /* No floating registers, so can't use them for returning values. */
1229 tdep->float_return = 0;
1230 }
1231
1232 /* Function call & return. */
1233 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1234 set_gdbarch_return_value (gdbarch, m68k_return_value);
1235 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1236 m68k_return_in_first_hidden_param_p);
1237
1238 #if defined JB_PC && defined JB_ELEMENT_SIZE
1239 tdep->jb_pc = JB_PC;
1240 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1241 #else
1242 tdep->jb_pc = -1;
1243 #endif
1244 tdep->struct_value_regnum = M68K_A1_REGNUM;
1245 tdep->struct_return = reg_struct_return;
1246
1247 /* Frame unwinder. */
1248 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1249 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1250
1251 /* Hook in the DWARF CFI frame unwinder. */
1252 dwarf2_append_unwinders (gdbarch);
1253
1254 frame_base_set_default (gdbarch, &m68k_frame_base);
1255
1256 /* Hook in ABI-specific overrides, if they have been registered. */
1257 gdbarch_init_osabi (info, gdbarch);
1258
1259 /* Now we have tuned the configuration, set a few final things,
1260 based on what the OS ABI has told us. */
1261
1262 if (tdep->jb_pc >= 0)
1263 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1264
1265 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1266
1267 if (tdesc_data)
1268 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1269
1270 return gdbarch;
1271 }
1272
1273
1274 static void
1275 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1276 {
1277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1278
1279 if (tdep == NULL)
1280 return;
1281 }
1282
1283 void
1284 _initialize_m68k_tdep (void)
1285 {
1286 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1287 }
This page took 0.055614 seconds and 5 git commands to generate.