update copyright year range in GDB files
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "dwarf2-frame.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "gdbtypes.h"
26 #include "symtab.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "arch-utils.h"
32 #include "osabi.h"
33 #include "dis-asm.h"
34 #include "target-descriptions.h"
35
36 #include "m68k-tdep.h"
37 \f
38
39 #define P_LINKL_FP 0x480e
40 #define P_LINKW_FP 0x4e56
41 #define P_PEA_FP 0x4856
42 #define P_MOVEAL_SP_FP 0x2c4f
43 #define P_ADDAW_SP 0xdefc
44 #define P_ADDAL_SP 0xdffc
45 #define P_SUBQW_SP 0x514f
46 #define P_SUBQL_SP 0x518f
47 #define P_LEA_SP_SP 0x4fef
48 #define P_LEA_PC_A5 0x4bfb0170
49 #define P_FMOVEMX_SP 0xf227
50 #define P_MOVEL_SP 0x2f00
51 #define P_MOVEML_SP 0x48e7
52
53 /* Offset from SP to first arg on stack at first instruction of a function. */
54 #define SP_ARG0 (1 * 4)
55
56 #if !defined (BPT_VECTOR)
57 #define BPT_VECTOR 0xf
58 #endif
59
60 constexpr gdb_byte m68k_break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
61
62 typedef BP_MANIPULATION (m68k_break_insn) m68k_breakpoint;
63 \f
64
65 /* Construct types for ISA-specific registers. */
66 static struct type *
67 m68k_ps_type (struct gdbarch *gdbarch)
68 {
69 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
70
71 if (!tdep->m68k_ps_type)
72 {
73 struct type *type;
74
75 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
76 append_flags_type_flag (type, 0, "C");
77 append_flags_type_flag (type, 1, "V");
78 append_flags_type_flag (type, 2, "Z");
79 append_flags_type_flag (type, 3, "N");
80 append_flags_type_flag (type, 4, "X");
81 append_flags_type_flag (type, 8, "I0");
82 append_flags_type_flag (type, 9, "I1");
83 append_flags_type_flag (type, 10, "I2");
84 append_flags_type_flag (type, 12, "M");
85 append_flags_type_flag (type, 13, "S");
86 append_flags_type_flag (type, 14, "T0");
87 append_flags_type_flag (type, 15, "T1");
88
89 tdep->m68k_ps_type = type;
90 }
91
92 return tdep->m68k_ps_type;
93 }
94
95 static struct type *
96 m68881_ext_type (struct gdbarch *gdbarch)
97 {
98 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
99
100 if (!tdep->m68881_ext_type)
101 tdep->m68881_ext_type
102 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
103 floatformats_m68881_ext);
104
105 return tdep->m68881_ext_type;
106 }
107
108 /* Return the GDB type object for the "standard" data type of data in
109 register N. This should be int for D0-D7, SR, FPCONTROL and
110 FPSTATUS, long double for FP0-FP7, and void pointer for all others
111 (A0-A7, PC, FPIADDR). Note, for registers which contain
112 addresses return pointer to void, not pointer to char, because we
113 don't want to attempt to print the string after printing the
114 address. */
115
116 static struct type *
117 m68k_register_type (struct gdbarch *gdbarch, int regnum)
118 {
119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
120
121 if (tdep->fpregs_present)
122 {
123 if (regnum >= gdbarch_fp0_regnum (gdbarch)
124 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
125 {
126 if (tdep->flavour == m68k_coldfire_flavour)
127 return builtin_type (gdbarch)->builtin_double;
128 else
129 return m68881_ext_type (gdbarch);
130 }
131
132 if (regnum == M68K_FPI_REGNUM)
133 return builtin_type (gdbarch)->builtin_func_ptr;
134
135 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
136 return builtin_type (gdbarch)->builtin_int32;
137 }
138 else
139 {
140 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
141 return builtin_type (gdbarch)->builtin_int0;
142 }
143
144 if (regnum == gdbarch_pc_regnum (gdbarch))
145 return builtin_type (gdbarch)->builtin_func_ptr;
146
147 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
148 return builtin_type (gdbarch)->builtin_data_ptr;
149
150 if (regnum == M68K_PS_REGNUM)
151 return m68k_ps_type (gdbarch);
152
153 return builtin_type (gdbarch)->builtin_int32;
154 }
155
156 static const char *m68k_register_names[] = {
157 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
158 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
159 "ps", "pc",
160 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
161 "fpcontrol", "fpstatus", "fpiaddr"
162 };
163
164 /* Function: m68k_register_name
165 Returns the name of the standard m68k register regnum. */
166
167 static const char *
168 m68k_register_name (struct gdbarch *gdbarch, int regnum)
169 {
170 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
171 internal_error (__FILE__, __LINE__,
172 _("m68k_register_name: illegal register number %d"),
173 regnum);
174 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
175 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
176 return "";
177 else
178 return m68k_register_names[regnum];
179 }
180 \f
181 /* Return nonzero if a value of type TYPE stored in register REGNUM
182 needs any special handling. */
183
184 static int
185 m68k_convert_register_p (struct gdbarch *gdbarch,
186 int regnum, struct type *type)
187 {
188 if (!gdbarch_tdep (gdbarch)->fpregs_present)
189 return 0;
190 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
191 && type != register_type (gdbarch, M68K_FP0_REGNUM));
192 }
193
194 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
195 return its contents in TO. */
196
197 static int
198 m68k_register_to_value (struct frame_info *frame, int regnum,
199 struct type *type, gdb_byte *to,
200 int *optimizedp, int *unavailablep)
201 {
202 gdb_byte from[M68K_MAX_REGISTER_SIZE];
203 struct type *fpreg_type = register_type (get_frame_arch (frame),
204 M68K_FP0_REGNUM);
205
206 /* We only support floating-point values. */
207 if (TYPE_CODE (type) != TYPE_CODE_FLT)
208 {
209 warning (_("Cannot convert floating-point register value "
210 "to non-floating-point type."));
211 *optimizedp = *unavailablep = 0;
212 return 0;
213 }
214
215 /* Convert to TYPE. */
216
217 /* Convert to TYPE. */
218 if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type),
219 from, optimizedp, unavailablep))
220 return 0;
221
222 convert_typed_floating (from, fpreg_type, to, type);
223 *optimizedp = *unavailablep = 0;
224 return 1;
225 }
226
227 /* Write the contents FROM of a value of type TYPE into register
228 REGNUM in frame FRAME. */
229
230 static void
231 m68k_value_to_register (struct frame_info *frame, int regnum,
232 struct type *type, const gdb_byte *from)
233 {
234 gdb_byte to[M68K_MAX_REGISTER_SIZE];
235 struct type *fpreg_type = register_type (get_frame_arch (frame),
236 M68K_FP0_REGNUM);
237
238 /* We only support floating-point values. */
239 if (TYPE_CODE (type) != TYPE_CODE_FLT)
240 {
241 warning (_("Cannot convert non-floating-point type "
242 "to floating-point register value."));
243 return;
244 }
245
246 /* Convert from TYPE. */
247 convert_typed_floating (from, type, to, fpreg_type);
248 put_frame_register (frame, regnum, to);
249 }
250
251 \f
252 /* There is a fair number of calling conventions that are in somewhat
253 wide use. The 68000/08/10 don't support an FPU, not even as a
254 coprocessor. All function return values are stored in %d0/%d1.
255 Structures are returned in a static buffer, a pointer to which is
256 returned in %d0. This means that functions returning a structure
257 are not re-entrant. To avoid this problem some systems use a
258 convention where the caller passes a pointer to a buffer in %a1
259 where the return values is to be stored. This convention is the
260 default, and is implemented in the function m68k_return_value.
261
262 The 68020/030/040/060 do support an FPU, either as a coprocessor
263 (68881/2) or built-in (68040/68060). That's why System V release 4
264 (SVR4) instroduces a new calling convention specified by the SVR4
265 psABI. Integer values are returned in %d0/%d1, pointer return
266 values in %a0 and floating values in %fp0. When calling functions
267 returning a structure the caller should pass a pointer to a buffer
268 for the return value in %a0. This convention is implemented in the
269 function m68k_svr4_return_value, and by appropriately setting the
270 struct_value_regnum member of `struct gdbarch_tdep'.
271
272 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
273 for passing the structure return value buffer.
274
275 GCC can also generate code where small structures are returned in
276 %d0/%d1 instead of in memory by using -freg-struct-return. This is
277 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
278 embedded systems. This convention is implemented by setting the
279 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
280
281 /* Read a function return value of TYPE from REGCACHE, and copy that
282 into VALBUF. */
283
284 static void
285 m68k_extract_return_value (struct type *type, struct regcache *regcache,
286 gdb_byte *valbuf)
287 {
288 int len = TYPE_LENGTH (type);
289 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
290
291 if (len <= 4)
292 {
293 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
294 memcpy (valbuf, buf + (4 - len), len);
295 }
296 else if (len <= 8)
297 {
298 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
299 memcpy (valbuf, buf + (8 - len), len - 4);
300 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
301 }
302 else
303 internal_error (__FILE__, __LINE__,
304 _("Cannot extract return value of %d bytes long."), len);
305 }
306
307 static void
308 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
309 gdb_byte *valbuf)
310 {
311 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
312 struct gdbarch *gdbarch = get_regcache_arch (regcache);
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314
315 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
316 {
317 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
318 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
319 convert_typed_floating (buf, fpreg_type, valbuf, type);
320 }
321 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
322 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
323 else
324 m68k_extract_return_value (type, regcache, valbuf);
325 }
326
327 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
328
329 static void
330 m68k_store_return_value (struct type *type, struct regcache *regcache,
331 const gdb_byte *valbuf)
332 {
333 int len = TYPE_LENGTH (type);
334
335 if (len <= 4)
336 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
337 else if (len <= 8)
338 {
339 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
340 len - 4, valbuf);
341 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
342 }
343 else
344 internal_error (__FILE__, __LINE__,
345 _("Cannot store return value of %d bytes long."), len);
346 }
347
348 static void
349 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
350 const gdb_byte *valbuf)
351 {
352 struct gdbarch *gdbarch = get_regcache_arch (regcache);
353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
354
355 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
356 {
357 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
358 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
359 convert_typed_floating (valbuf, type, buf, fpreg_type);
360 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
361 }
362 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
363 {
364 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
365 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
366 }
367 else
368 m68k_store_return_value (type, regcache, valbuf);
369 }
370
371 /* Return non-zero if TYPE, which is assumed to be a structure, union or
372 complex type, should be returned in registers for architecture
373 GDBARCH. */
374
375 static int
376 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
377 {
378 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
379 enum type_code code = TYPE_CODE (type);
380 int len = TYPE_LENGTH (type);
381
382 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
383 || code == TYPE_CODE_COMPLEX);
384
385 if (tdep->struct_return == pcc_struct_return)
386 return 0;
387
388 return (len == 1 || len == 2 || len == 4 || len == 8);
389 }
390
391 /* Determine, for architecture GDBARCH, how a return value of TYPE
392 should be returned. If it is supposed to be returned in registers,
393 and READBUF is non-zero, read the appropriate value from REGCACHE,
394 and copy it into READBUF. If WRITEBUF is non-zero, write the value
395 from WRITEBUF into REGCACHE. */
396
397 static enum return_value_convention
398 m68k_return_value (struct gdbarch *gdbarch, struct value *function,
399 struct type *type, struct regcache *regcache,
400 gdb_byte *readbuf, const gdb_byte *writebuf)
401 {
402 enum type_code code = TYPE_CODE (type);
403
404 /* GCC returns a `long double' in memory too. */
405 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
406 || code == TYPE_CODE_COMPLEX)
407 && !m68k_reg_struct_return_p (gdbarch, type))
408 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
409 {
410 /* The default on m68k is to return structures in static memory.
411 Consequently a function must return the address where we can
412 find the return value. */
413
414 if (readbuf)
415 {
416 ULONGEST addr;
417
418 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
419 read_memory (addr, readbuf, TYPE_LENGTH (type));
420 }
421
422 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
423 }
424
425 if (readbuf)
426 m68k_extract_return_value (type, regcache, readbuf);
427 if (writebuf)
428 m68k_store_return_value (type, regcache, writebuf);
429
430 return RETURN_VALUE_REGISTER_CONVENTION;
431 }
432
433 static enum return_value_convention
434 m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
435 struct type *type, struct regcache *regcache,
436 gdb_byte *readbuf, const gdb_byte *writebuf)
437 {
438 enum type_code code = TYPE_CODE (type);
439
440 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
441 || code == TYPE_CODE_COMPLEX)
442 && !m68k_reg_struct_return_p (gdbarch, type))
443 {
444 /* The System V ABI says that:
445
446 "A function returning a structure or union also sets %a0 to
447 the value it finds in %a0. Thus when the caller receives
448 control again, the address of the returned object resides in
449 register %a0."
450
451 So the ABI guarantees that we can always find the return
452 value just after the function has returned. */
453
454 if (readbuf)
455 {
456 ULONGEST addr;
457
458 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
459 read_memory (addr, readbuf, TYPE_LENGTH (type));
460 }
461
462 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
463 }
464
465 /* This special case is for structures consisting of a single
466 `float' or `double' member. These structures are returned in
467 %fp0. For these structures, we call ourselves recursively,
468 changing TYPE into the type of the first member of the structure.
469 Since that should work for all structures that have only one
470 member, we don't bother to check the member's type here. */
471 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
472 {
473 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
474 return m68k_svr4_return_value (gdbarch, function, type, regcache,
475 readbuf, writebuf);
476 }
477
478 if (readbuf)
479 m68k_svr4_extract_return_value (type, regcache, readbuf);
480 if (writebuf)
481 m68k_svr4_store_return_value (type, regcache, writebuf);
482
483 return RETURN_VALUE_REGISTER_CONVENTION;
484 }
485 \f
486
487 /* Always align the frame to a 4-byte boundary. This is required on
488 coldfire and harmless on the rest. */
489
490 static CORE_ADDR
491 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
492 {
493 /* Align the stack to four bytes. */
494 return sp & ~3;
495 }
496
497 static CORE_ADDR
498 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
499 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
500 struct value **args, CORE_ADDR sp, int struct_return,
501 CORE_ADDR struct_addr)
502 {
503 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
504 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
505 gdb_byte buf[4];
506 int i;
507
508 /* Push arguments in reverse order. */
509 for (i = nargs - 1; i >= 0; i--)
510 {
511 struct type *value_type = value_enclosing_type (args[i]);
512 int len = TYPE_LENGTH (value_type);
513 int container_len = (len + 3) & ~3;
514 int offset;
515
516 /* Non-scalars bigger than 4 bytes are left aligned, others are
517 right aligned. */
518 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
519 || TYPE_CODE (value_type) == TYPE_CODE_UNION
520 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
521 && len > 4)
522 offset = 0;
523 else
524 offset = container_len - len;
525 sp -= container_len;
526 write_memory (sp + offset, value_contents_all (args[i]), len);
527 }
528
529 /* Store struct value address. */
530 if (struct_return)
531 {
532 store_unsigned_integer (buf, 4, byte_order, struct_addr);
533 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
534 }
535
536 /* Store return address. */
537 sp -= 4;
538 store_unsigned_integer (buf, 4, byte_order, bp_addr);
539 write_memory (sp, buf, 4);
540
541 /* Finally, update the stack pointer... */
542 store_unsigned_integer (buf, 4, byte_order, sp);
543 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
544
545 /* ...and fake a frame pointer. */
546 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
547
548 /* DWARF2/GCC uses the stack address *before* the function call as a
549 frame's CFA. */
550 return sp + 8;
551 }
552
553 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
554
555 static int
556 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
557 {
558 if (num < 8)
559 /* d0..7 */
560 return (num - 0) + M68K_D0_REGNUM;
561 else if (num < 16)
562 /* a0..7 */
563 return (num - 8) + M68K_A0_REGNUM;
564 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
565 /* fp0..7 */
566 return (num - 16) + M68K_FP0_REGNUM;
567 else if (num == 25)
568 /* pc */
569 return M68K_PC_REGNUM;
570 else
571 return -1;
572 }
573
574 \f
575 struct m68k_frame_cache
576 {
577 /* Base address. */
578 CORE_ADDR base;
579 CORE_ADDR sp_offset;
580 CORE_ADDR pc;
581
582 /* Saved registers. */
583 CORE_ADDR saved_regs[M68K_NUM_REGS];
584 CORE_ADDR saved_sp;
585
586 /* Stack space reserved for local variables. */
587 long locals;
588 };
589
590 /* Allocate and initialize a frame cache. */
591
592 static struct m68k_frame_cache *
593 m68k_alloc_frame_cache (void)
594 {
595 struct m68k_frame_cache *cache;
596 int i;
597
598 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
599
600 /* Base address. */
601 cache->base = 0;
602 cache->sp_offset = -4;
603 cache->pc = 0;
604
605 /* Saved registers. We initialize these to -1 since zero is a valid
606 offset (that's where %fp is supposed to be stored). */
607 for (i = 0; i < M68K_NUM_REGS; i++)
608 cache->saved_regs[i] = -1;
609
610 /* Frameless until proven otherwise. */
611 cache->locals = -1;
612
613 return cache;
614 }
615
616 /* Check whether PC points at a code that sets up a new stack frame.
617 If so, it updates CACHE and returns the address of the first
618 instruction after the sequence that sets removes the "hidden"
619 argument from the stack or CURRENT_PC, whichever is smaller.
620 Otherwise, return PC. */
621
622 static CORE_ADDR
623 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
624 CORE_ADDR pc, CORE_ADDR current_pc,
625 struct m68k_frame_cache *cache)
626 {
627 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
628 int op;
629
630 if (pc >= current_pc)
631 return current_pc;
632
633 op = read_memory_unsigned_integer (pc, 2, byte_order);
634
635 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
636 {
637 cache->saved_regs[M68K_FP_REGNUM] = 0;
638 cache->sp_offset += 4;
639 if (op == P_LINKW_FP)
640 {
641 /* link.w %fp, #-N */
642 /* link.w %fp, #0; adda.l #-N, %sp */
643 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
644
645 if (pc + 4 < current_pc && cache->locals == 0)
646 {
647 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
648 if (op == P_ADDAL_SP)
649 {
650 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
651 return pc + 10;
652 }
653 }
654
655 return pc + 4;
656 }
657 else if (op == P_LINKL_FP)
658 {
659 /* link.l %fp, #-N */
660 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
661 return pc + 6;
662 }
663 else
664 {
665 /* pea (%fp); movea.l %sp, %fp */
666 cache->locals = 0;
667
668 if (pc + 2 < current_pc)
669 {
670 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
671
672 if (op == P_MOVEAL_SP_FP)
673 {
674 /* move.l %sp, %fp */
675 return pc + 4;
676 }
677 }
678
679 return pc + 2;
680 }
681 }
682 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
683 {
684 /* subq.[wl] #N,%sp */
685 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
686 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
687 if (pc + 2 < current_pc)
688 {
689 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
690 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
691 {
692 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
693 return pc + 4;
694 }
695 }
696 return pc + 2;
697 }
698 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
699 {
700 /* adda.w #-N,%sp */
701 /* lea (-N,%sp),%sp */
702 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
703 return pc + 4;
704 }
705 else if (op == P_ADDAL_SP)
706 {
707 /* adda.l #-N,%sp */
708 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
709 return pc + 6;
710 }
711
712 return pc;
713 }
714
715 /* Check whether PC points at code that saves registers on the stack.
716 If so, it updates CACHE and returns the address of the first
717 instruction after the register saves or CURRENT_PC, whichever is
718 smaller. Otherwise, return PC. */
719
720 static CORE_ADDR
721 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
722 CORE_ADDR current_pc,
723 struct m68k_frame_cache *cache)
724 {
725 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
726
727 if (cache->locals >= 0)
728 {
729 CORE_ADDR offset;
730 int op;
731 int i, mask, regno;
732
733 offset = -4 - cache->locals;
734 while (pc < current_pc)
735 {
736 op = read_memory_unsigned_integer (pc, 2, byte_order);
737 if (op == P_FMOVEMX_SP
738 && gdbarch_tdep (gdbarch)->fpregs_present)
739 {
740 /* fmovem.x REGS,-(%sp) */
741 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
742 if ((op & 0xff00) == 0xe000)
743 {
744 mask = op & 0xff;
745 for (i = 0; i < 16; i++, mask >>= 1)
746 {
747 if (mask & 1)
748 {
749 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
750 offset -= 12;
751 }
752 }
753 pc += 4;
754 }
755 else
756 break;
757 }
758 else if ((op & 0177760) == P_MOVEL_SP)
759 {
760 /* move.l %R,-(%sp) */
761 regno = op & 017;
762 cache->saved_regs[regno] = offset;
763 offset -= 4;
764 pc += 2;
765 }
766 else if (op == P_MOVEML_SP)
767 {
768 /* movem.l REGS,-(%sp) */
769 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
770 for (i = 0; i < 16; i++, mask >>= 1)
771 {
772 if (mask & 1)
773 {
774 cache->saved_regs[15 - i] = offset;
775 offset -= 4;
776 }
777 }
778 pc += 4;
779 }
780 else
781 break;
782 }
783 }
784
785 return pc;
786 }
787
788
789 /* Do a full analysis of the prologue at PC and update CACHE
790 accordingly. Bail out early if CURRENT_PC is reached. Return the
791 address where the analysis stopped.
792
793 We handle all cases that can be generated by gcc.
794
795 For allocating a stack frame:
796
797 link.w %a6,#-N
798 link.l %a6,#-N
799 pea (%fp); move.l %sp,%fp
800 link.w %a6,#0; add.l #-N,%sp
801 subq.l #N,%sp
802 subq.w #N,%sp
803 subq.w #8,%sp; subq.w #N-8,%sp
804 add.w #-N,%sp
805 lea (-N,%sp),%sp
806 add.l #-N,%sp
807
808 For saving registers:
809
810 fmovem.x REGS,-(%sp)
811 move.l R1,-(%sp)
812 move.l R1,-(%sp); move.l R2,-(%sp)
813 movem.l REGS,-(%sp)
814
815 For setting up the PIC register:
816
817 lea (%pc,N),%a5
818
819 */
820
821 static CORE_ADDR
822 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
823 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
824 {
825 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
826 unsigned int op;
827
828 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
829 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
830 if (pc >= current_pc)
831 return current_pc;
832
833 /* Check for GOT setup. */
834 op = read_memory_unsigned_integer (pc, 4, byte_order);
835 if (op == P_LEA_PC_A5)
836 {
837 /* lea (%pc,N),%a5 */
838 return pc + 8;
839 }
840
841 return pc;
842 }
843
844 /* Return PC of first real instruction. */
845
846 static CORE_ADDR
847 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
848 {
849 struct m68k_frame_cache cache;
850 CORE_ADDR pc;
851
852 cache.locals = -1;
853 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
854 if (cache.locals < 0)
855 return start_pc;
856 return pc;
857 }
858
859 static CORE_ADDR
860 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
861 {
862 gdb_byte buf[8];
863
864 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
865 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
866 }
867 \f
868 /* Normal frames. */
869
870 static struct m68k_frame_cache *
871 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
872 {
873 struct gdbarch *gdbarch = get_frame_arch (this_frame);
874 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
875 struct m68k_frame_cache *cache;
876 gdb_byte buf[4];
877 int i;
878
879 if (*this_cache)
880 return (struct m68k_frame_cache *) *this_cache;
881
882 cache = m68k_alloc_frame_cache ();
883 *this_cache = cache;
884
885 /* In principle, for normal frames, %fp holds the frame pointer,
886 which holds the base address for the current stack frame.
887 However, for functions that don't need it, the frame pointer is
888 optional. For these "frameless" functions the frame pointer is
889 actually the frame pointer of the calling frame. Signal
890 trampolines are just a special case of a "frameless" function.
891 They (usually) share their frame pointer with the frame that was
892 in progress when the signal occurred. */
893
894 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
895 cache->base = extract_unsigned_integer (buf, 4, byte_order);
896 if (cache->base == 0)
897 return cache;
898
899 /* For normal frames, %pc is stored at 4(%fp). */
900 cache->saved_regs[M68K_PC_REGNUM] = 4;
901
902 cache->pc = get_frame_func (this_frame);
903 if (cache->pc != 0)
904 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
905 get_frame_pc (this_frame), cache);
906
907 if (cache->locals < 0)
908 {
909 /* We didn't find a valid frame, which means that CACHE->base
910 currently holds the frame pointer for our calling frame. If
911 we're at the start of a function, or somewhere half-way its
912 prologue, the function's frame probably hasn't been fully
913 setup yet. Try to reconstruct the base address for the stack
914 frame by looking at the stack pointer. For truly "frameless"
915 functions this might work too. */
916
917 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
918 cache->base = extract_unsigned_integer (buf, 4, byte_order)
919 + cache->sp_offset;
920 }
921
922 /* Now that we have the base address for the stack frame we can
923 calculate the value of %sp in the calling frame. */
924 cache->saved_sp = cache->base + 8;
925
926 /* Adjust all the saved registers such that they contain addresses
927 instead of offsets. */
928 for (i = 0; i < M68K_NUM_REGS; i++)
929 if (cache->saved_regs[i] != -1)
930 cache->saved_regs[i] += cache->base;
931
932 return cache;
933 }
934
935 static void
936 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
937 struct frame_id *this_id)
938 {
939 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
940
941 /* This marks the outermost frame. */
942 if (cache->base == 0)
943 return;
944
945 /* See the end of m68k_push_dummy_call. */
946 *this_id = frame_id_build (cache->base + 8, cache->pc);
947 }
948
949 static struct value *
950 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
951 int regnum)
952 {
953 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
954
955 gdb_assert (regnum >= 0);
956
957 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
958 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
959
960 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
961 return frame_unwind_got_memory (this_frame, regnum,
962 cache->saved_regs[regnum]);
963
964 return frame_unwind_got_register (this_frame, regnum, regnum);
965 }
966
967 static const struct frame_unwind m68k_frame_unwind =
968 {
969 NORMAL_FRAME,
970 default_frame_unwind_stop_reason,
971 m68k_frame_this_id,
972 m68k_frame_prev_register,
973 NULL,
974 default_frame_sniffer
975 };
976 \f
977 static CORE_ADDR
978 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
979 {
980 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
981
982 return cache->base;
983 }
984
985 static const struct frame_base m68k_frame_base =
986 {
987 &m68k_frame_unwind,
988 m68k_frame_base_address,
989 m68k_frame_base_address,
990 m68k_frame_base_address
991 };
992
993 static struct frame_id
994 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
995 {
996 CORE_ADDR fp;
997
998 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
999
1000 /* See the end of m68k_push_dummy_call. */
1001 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1002 }
1003 \f
1004
1005 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1006 We expect the first arg to be a pointer to the jmp_buf structure from which
1007 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1008 This routine returns true on success. */
1009
1010 static int
1011 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1012 {
1013 gdb_byte *buf;
1014 CORE_ADDR sp, jb_addr;
1015 struct gdbarch *gdbarch = get_frame_arch (frame);
1016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1017 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1018
1019 if (tdep->jb_pc < 0)
1020 {
1021 internal_error (__FILE__, __LINE__,
1022 _("m68k_get_longjmp_target: not implemented"));
1023 return 0;
1024 }
1025
1026 buf = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1027 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1028
1029 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
1030 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1031 return 0;
1032
1033 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1034 / TARGET_CHAR_BIT, byte_order);
1035
1036 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1037 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1038 byte_order)
1039 return 0;
1040
1041 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1042 / TARGET_CHAR_BIT, byte_order);
1043 return 1;
1044 }
1045 \f
1046
1047 /* This is the implementation of gdbarch method
1048 return_in_first_hidden_param_p. */
1049
1050 static int
1051 m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1052 struct type *type)
1053 {
1054 return 0;
1055 }
1056
1057 /* System V Release 4 (SVR4). */
1058
1059 void
1060 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1061 {
1062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1063
1064 /* SVR4 uses a different calling convention. */
1065 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1066
1067 /* SVR4 uses %a0 instead of %a1. */
1068 tdep->struct_value_regnum = M68K_A0_REGNUM;
1069 }
1070 \f
1071
1072 /* Function: m68k_gdbarch_init
1073 Initializer function for the m68k gdbarch vector.
1074 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1075
1076 static struct gdbarch *
1077 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1078 {
1079 struct gdbarch_tdep *tdep = NULL;
1080 struct gdbarch *gdbarch;
1081 struct gdbarch_list *best_arch;
1082 struct tdesc_arch_data *tdesc_data = NULL;
1083 int i;
1084 enum m68k_flavour flavour = m68k_no_flavour;
1085 int has_fp = 1;
1086 const struct floatformat **long_double_format = floatformats_m68881_ext;
1087
1088 /* Check any target description for validity. */
1089 if (tdesc_has_registers (info.target_desc))
1090 {
1091 const struct tdesc_feature *feature;
1092 int valid_p;
1093
1094 feature = tdesc_find_feature (info.target_desc,
1095 "org.gnu.gdb.m68k.core");
1096
1097 if (feature == NULL)
1098 {
1099 feature = tdesc_find_feature (info.target_desc,
1100 "org.gnu.gdb.coldfire.core");
1101 if (feature != NULL)
1102 flavour = m68k_coldfire_flavour;
1103 }
1104
1105 if (feature == NULL)
1106 {
1107 feature = tdesc_find_feature (info.target_desc,
1108 "org.gnu.gdb.fido.core");
1109 if (feature != NULL)
1110 flavour = m68k_fido_flavour;
1111 }
1112
1113 if (feature == NULL)
1114 return NULL;
1115
1116 tdesc_data = tdesc_data_alloc ();
1117
1118 valid_p = 1;
1119 for (i = 0; i <= M68K_PC_REGNUM; i++)
1120 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1121 m68k_register_names[i]);
1122
1123 if (!valid_p)
1124 {
1125 tdesc_data_cleanup (tdesc_data);
1126 return NULL;
1127 }
1128
1129 feature = tdesc_find_feature (info.target_desc,
1130 "org.gnu.gdb.coldfire.fp");
1131 if (feature != NULL)
1132 {
1133 valid_p = 1;
1134 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1135 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1136 m68k_register_names[i]);
1137 if (!valid_p)
1138 {
1139 tdesc_data_cleanup (tdesc_data);
1140 return NULL;
1141 }
1142 }
1143 else
1144 has_fp = 0;
1145 }
1146
1147 /* The mechanism for returning floating values from function
1148 and the type of long double depend on whether we're
1149 on ColdFire or standard m68k. */
1150
1151 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1152 {
1153 const bfd_arch_info_type *coldfire_arch =
1154 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1155
1156 if (coldfire_arch
1157 && ((*info.bfd_arch_info->compatible)
1158 (info.bfd_arch_info, coldfire_arch)))
1159 flavour = m68k_coldfire_flavour;
1160 }
1161
1162 /* If there is already a candidate, use it. */
1163 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1164 best_arch != NULL;
1165 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1166 {
1167 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1168 continue;
1169
1170 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1171 continue;
1172
1173 break;
1174 }
1175
1176 if (best_arch != NULL)
1177 {
1178 if (tdesc_data != NULL)
1179 tdesc_data_cleanup (tdesc_data);
1180 return best_arch->gdbarch;
1181 }
1182
1183 tdep = XCNEW (struct gdbarch_tdep);
1184 gdbarch = gdbarch_alloc (&info, tdep);
1185 tdep->fpregs_present = has_fp;
1186 tdep->flavour = flavour;
1187
1188 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1189 long_double_format = floatformats_ieee_double;
1190 set_gdbarch_long_double_format (gdbarch, long_double_format);
1191 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1192
1193 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1194 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m68k_breakpoint::kind_from_pc);
1195 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m68k_breakpoint::bp_from_kind);
1196
1197 /* Stack grows down. */
1198 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1199 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1200
1201 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1202 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1203 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1204
1205 set_gdbarch_frame_args_skip (gdbarch, 8);
1206 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1207
1208 set_gdbarch_register_type (gdbarch, m68k_register_type);
1209 set_gdbarch_register_name (gdbarch, m68k_register_name);
1210 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1211 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1212 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1213 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1214 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1215 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1216 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1217
1218 if (has_fp)
1219 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1220
1221 /* Try to figure out if the arch uses floating registers to return
1222 floating point values from functions. */
1223 if (has_fp)
1224 {
1225 /* On ColdFire, floating point values are returned in D0. */
1226 if (flavour == m68k_coldfire_flavour)
1227 tdep->float_return = 0;
1228 else
1229 tdep->float_return = 1;
1230 }
1231 else
1232 {
1233 /* No floating registers, so can't use them for returning values. */
1234 tdep->float_return = 0;
1235 }
1236
1237 /* Function call & return. */
1238 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1239 set_gdbarch_return_value (gdbarch, m68k_return_value);
1240 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1241 m68k_return_in_first_hidden_param_p);
1242
1243
1244 /* Disassembler. */
1245 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1246
1247 #if defined JB_PC && defined JB_ELEMENT_SIZE
1248 tdep->jb_pc = JB_PC;
1249 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1250 #else
1251 tdep->jb_pc = -1;
1252 #endif
1253 tdep->struct_value_regnum = M68K_A1_REGNUM;
1254 tdep->struct_return = reg_struct_return;
1255
1256 /* Frame unwinder. */
1257 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1258 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1259
1260 /* Hook in the DWARF CFI frame unwinder. */
1261 dwarf2_append_unwinders (gdbarch);
1262
1263 frame_base_set_default (gdbarch, &m68k_frame_base);
1264
1265 /* Hook in ABI-specific overrides, if they have been registered. */
1266 gdbarch_init_osabi (info, gdbarch);
1267
1268 /* Now we have tuned the configuration, set a few final things,
1269 based on what the OS ABI has told us. */
1270
1271 if (tdep->jb_pc >= 0)
1272 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1273
1274 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1275
1276 if (tdesc_data)
1277 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1278
1279 return gdbarch;
1280 }
1281
1282
1283 static void
1284 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1285 {
1286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1287
1288 if (tdep == NULL)
1289 return;
1290 }
1291
1292 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1293
1294 void
1295 _initialize_m68k_tdep (void)
1296 {
1297 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1298 }
This page took 0.097653 seconds and 5 git commands to generate.