* gdbarch.sh: Delete dwarf_reg_to_regnum.
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "dwarf2-frame.h"
23 #include "frame.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
26 #include "gdbtypes.h"
27 #include "symtab.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "gdb_string.h"
31 #include "gdb_assert.h"
32 #include "inferior.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "dis-asm.h"
37 #include "target-descriptions.h"
38
39 #include "m68k-tdep.h"
40 \f
41
42 #define P_LINKL_FP 0x480e
43 #define P_LINKW_FP 0x4e56
44 #define P_PEA_FP 0x4856
45 #define P_MOVEAL_SP_FP 0x2c4f
46 #define P_ADDAW_SP 0xdefc
47 #define P_ADDAL_SP 0xdffc
48 #define P_SUBQW_SP 0x514f
49 #define P_SUBQL_SP 0x518f
50 #define P_LEA_SP_SP 0x4fef
51 #define P_LEA_PC_A5 0x4bfb0170
52 #define P_FMOVEMX_SP 0xf227
53 #define P_MOVEL_SP 0x2f00
54 #define P_MOVEML_SP 0x48e7
55
56 /* Offset from SP to first arg on stack at first instruction of a function */
57 #define SP_ARG0 (1 * 4)
58
59 #if !defined (BPT_VECTOR)
60 #define BPT_VECTOR 0xf
61 #endif
62
63 static const gdb_byte *
64 m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
65 CORE_ADDR *pcptr, int *lenptr)
66 {
67 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
68 *lenptr = sizeof (break_insn);
69 return break_insn;
70 }
71 \f
72
73 /* Type for %ps. */
74 struct type *m68k_ps_type;
75
76 /* Construct types for ISA-specific registers. */
77 static void
78 m68k_init_types (void)
79 {
80 struct type *type;
81
82 type = init_flags_type ("builtin_type_m68k_ps", 4);
83 append_flags_type_flag (type, 0, "C");
84 append_flags_type_flag (type, 1, "V");
85 append_flags_type_flag (type, 2, "Z");
86 append_flags_type_flag (type, 3, "N");
87 append_flags_type_flag (type, 4, "X");
88 append_flags_type_flag (type, 8, "I0");
89 append_flags_type_flag (type, 9, "I1");
90 append_flags_type_flag (type, 10, "I2");
91 append_flags_type_flag (type, 12, "M");
92 append_flags_type_flag (type, 13, "S");
93 append_flags_type_flag (type, 14, "T0");
94 append_flags_type_flag (type, 15, "T1");
95 m68k_ps_type = type;
96 }
97
98 /* Return the GDB type object for the "standard" data type of data in
99 register N. This should be int for D0-D7, SR, FPCONTROL and
100 FPSTATUS, long double for FP0-FP7, and void pointer for all others
101 (A0-A7, PC, FPIADDR). Note, for registers which contain
102 addresses return pointer to void, not pointer to char, because we
103 don't want to attempt to print the string after printing the
104 address. */
105
106 static struct type *
107 m68k_register_type (struct gdbarch *gdbarch, int regnum)
108 {
109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
110
111 if (tdep->fpregs_present)
112 {
113 if (regnum >= gdbarch_fp0_regnum (gdbarch)
114 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
115 {
116 if (tdep->flavour == m68k_coldfire_flavour)
117 return builtin_type (gdbarch)->builtin_double;
118 else
119 return builtin_type_m68881_ext;
120 }
121
122 if (regnum == M68K_FPI_REGNUM)
123 return builtin_type_void_func_ptr;
124
125 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
126 return builtin_type_int32;
127 }
128 else
129 {
130 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
131 return builtin_type_int0;
132 }
133
134 if (regnum == gdbarch_pc_regnum (gdbarch))
135 return builtin_type_void_func_ptr;
136
137 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
138 return builtin_type_void_data_ptr;
139
140 if (regnum == M68K_PS_REGNUM)
141 return m68k_ps_type;
142
143 return builtin_type_int32;
144 }
145
146 static const char *m68k_register_names[] = {
147 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
148 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
149 "ps", "pc",
150 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
151 "fpcontrol", "fpstatus", "fpiaddr"
152 };
153
154 /* Function: m68k_register_name
155 Returns the name of the standard m68k register regnum. */
156
157 static const char *
158 m68k_register_name (struct gdbarch *gdbarch, int regnum)
159 {
160 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
161 internal_error (__FILE__, __LINE__,
162 _("m68k_register_name: illegal register number %d"), regnum);
163 else
164 return m68k_register_names[regnum];
165 }
166 \f
167 /* Return nonzero if a value of type TYPE stored in register REGNUM
168 needs any special handling. */
169
170 static int
171 m68k_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
172 {
173 if (!gdbarch_tdep (gdbarch)->fpregs_present)
174 return 0;
175 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
176 && type != builtin_type_m68881_ext);
177 }
178
179 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
180 return its contents in TO. */
181
182 static void
183 m68k_register_to_value (struct frame_info *frame, int regnum,
184 struct type *type, gdb_byte *to)
185 {
186 gdb_byte from[M68K_MAX_REGISTER_SIZE];
187 struct type *fpreg_type = register_type (get_frame_arch (frame),
188 M68K_FP0_REGNUM);
189
190 /* We only support floating-point values. */
191 if (TYPE_CODE (type) != TYPE_CODE_FLT)
192 {
193 warning (_("Cannot convert floating-point register value "
194 "to non-floating-point type."));
195 return;
196 }
197
198 /* Convert to TYPE. */
199 get_frame_register (frame, regnum, from);
200 convert_typed_floating (from, fpreg_type, to, type);
201 }
202
203 /* Write the contents FROM of a value of type TYPE into register
204 REGNUM in frame FRAME. */
205
206 static void
207 m68k_value_to_register (struct frame_info *frame, int regnum,
208 struct type *type, const gdb_byte *from)
209 {
210 gdb_byte to[M68K_MAX_REGISTER_SIZE];
211 struct type *fpreg_type = register_type (get_frame_arch (frame),
212 M68K_FP0_REGNUM);
213
214 /* We only support floating-point values. */
215 if (TYPE_CODE (type) != TYPE_CODE_FLT)
216 {
217 warning (_("Cannot convert non-floating-point type "
218 "to floating-point register value."));
219 return;
220 }
221
222 /* Convert from TYPE. */
223 convert_typed_floating (from, type, to, fpreg_type);
224 put_frame_register (frame, regnum, to);
225 }
226
227 \f
228 /* There is a fair number of calling conventions that are in somewhat
229 wide use. The 68000/08/10 don't support an FPU, not even as a
230 coprocessor. All function return values are stored in %d0/%d1.
231 Structures are returned in a static buffer, a pointer to which is
232 returned in %d0. This means that functions returning a structure
233 are not re-entrant. To avoid this problem some systems use a
234 convention where the caller passes a pointer to a buffer in %a1
235 where the return values is to be stored. This convention is the
236 default, and is implemented in the function m68k_return_value.
237
238 The 68020/030/040/060 do support an FPU, either as a coprocessor
239 (68881/2) or built-in (68040/68060). That's why System V release 4
240 (SVR4) instroduces a new calling convention specified by the SVR4
241 psABI. Integer values are returned in %d0/%d1, pointer return
242 values in %a0 and floating values in %fp0. When calling functions
243 returning a structure the caller should pass a pointer to a buffer
244 for the return value in %a0. This convention is implemented in the
245 function m68k_svr4_return_value, and by appropriately setting the
246 struct_value_regnum member of `struct gdbarch_tdep'.
247
248 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
249 for passing the structure return value buffer.
250
251 GCC can also generate code where small structures are returned in
252 %d0/%d1 instead of in memory by using -freg-struct-return. This is
253 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
254 embedded systems. This convention is implemented by setting the
255 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
256
257 /* Read a function return value of TYPE from REGCACHE, and copy that
258 into VALBUF. */
259
260 static void
261 m68k_extract_return_value (struct type *type, struct regcache *regcache,
262 gdb_byte *valbuf)
263 {
264 int len = TYPE_LENGTH (type);
265 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
266
267 if (len <= 4)
268 {
269 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
270 memcpy (valbuf, buf + (4 - len), len);
271 }
272 else if (len <= 8)
273 {
274 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
275 memcpy (valbuf, buf + (8 - len), len - 4);
276 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
277 }
278 else
279 internal_error (__FILE__, __LINE__,
280 _("Cannot extract return value of %d bytes long."), len);
281 }
282
283 static void
284 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
285 gdb_byte *valbuf)
286 {
287 int len = TYPE_LENGTH (type);
288 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
289 struct gdbarch *gdbarch = get_regcache_arch (regcache);
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291
292 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
293 {
294 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
295 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
296 convert_typed_floating (buf, fpreg_type, valbuf, type);
297 }
298 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
299 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
300 else
301 m68k_extract_return_value (type, regcache, valbuf);
302 }
303
304 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
305
306 static void
307 m68k_store_return_value (struct type *type, struct regcache *regcache,
308 const gdb_byte *valbuf)
309 {
310 int len = TYPE_LENGTH (type);
311
312 if (len <= 4)
313 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
314 else if (len <= 8)
315 {
316 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
317 len - 4, valbuf);
318 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
319 }
320 else
321 internal_error (__FILE__, __LINE__,
322 _("Cannot store return value of %d bytes long."), len);
323 }
324
325 static void
326 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
327 const gdb_byte *valbuf)
328 {
329 int len = TYPE_LENGTH (type);
330 struct gdbarch *gdbarch = get_regcache_arch (regcache);
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332
333 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
334 {
335 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
336 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
337 convert_typed_floating (valbuf, type, buf, fpreg_type);
338 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
339 }
340 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
341 {
342 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
343 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
344 }
345 else
346 m68k_store_return_value (type, regcache, valbuf);
347 }
348
349 /* Return non-zero if TYPE, which is assumed to be a structure or
350 union type, should be returned in registers for architecture
351 GDBARCH. */
352
353 static int
354 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 enum type_code code = TYPE_CODE (type);
358 int len = TYPE_LENGTH (type);
359
360 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
361
362 if (tdep->struct_return == pcc_struct_return)
363 return 0;
364
365 return (len == 1 || len == 2 || len == 4 || len == 8);
366 }
367
368 /* Determine, for architecture GDBARCH, how a return value of TYPE
369 should be returned. If it is supposed to be returned in registers,
370 and READBUF is non-zero, read the appropriate value from REGCACHE,
371 and copy it into READBUF. If WRITEBUF is non-zero, write the value
372 from WRITEBUF into REGCACHE. */
373
374 static enum return_value_convention
375 m68k_return_value (struct gdbarch *gdbarch, struct type *func_type,
376 struct type *type, struct regcache *regcache,
377 gdb_byte *readbuf, const gdb_byte *writebuf)
378 {
379 enum type_code code = TYPE_CODE (type);
380
381 /* GCC returns a `long double' in memory too. */
382 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
383 && !m68k_reg_struct_return_p (gdbarch, type))
384 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
385 {
386 /* The default on m68k is to return structures in static memory.
387 Consequently a function must return the address where we can
388 find the return value. */
389
390 if (readbuf)
391 {
392 ULONGEST addr;
393
394 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
395 read_memory (addr, readbuf, TYPE_LENGTH (type));
396 }
397
398 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
399 }
400
401 if (readbuf)
402 m68k_extract_return_value (type, regcache, readbuf);
403 if (writebuf)
404 m68k_store_return_value (type, regcache, writebuf);
405
406 return RETURN_VALUE_REGISTER_CONVENTION;
407 }
408
409 static enum return_value_convention
410 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *func_type,
411 struct type *type, struct regcache *regcache,
412 gdb_byte *readbuf, const gdb_byte *writebuf)
413 {
414 enum type_code code = TYPE_CODE (type);
415
416 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
417 && !m68k_reg_struct_return_p (gdbarch, type))
418 {
419 /* The System V ABI says that:
420
421 "A function returning a structure or union also sets %a0 to
422 the value it finds in %a0. Thus when the caller receives
423 control again, the address of the returned object resides in
424 register %a0."
425
426 So the ABI guarantees that we can always find the return
427 value just after the function has returned. */
428
429 if (readbuf)
430 {
431 ULONGEST addr;
432
433 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
434 read_memory (addr, readbuf, TYPE_LENGTH (type));
435 }
436
437 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
438 }
439
440 /* This special case is for structures consisting of a single
441 `float' or `double' member. These structures are returned in
442 %fp0. For these structures, we call ourselves recursively,
443 changing TYPE into the type of the first member of the structure.
444 Since that should work for all structures that have only one
445 member, we don't bother to check the member's type here. */
446 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
447 {
448 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
449 return m68k_svr4_return_value (gdbarch, func_type, type, regcache,
450 readbuf, writebuf);
451 }
452
453 if (readbuf)
454 m68k_svr4_extract_return_value (type, regcache, readbuf);
455 if (writebuf)
456 m68k_svr4_store_return_value (type, regcache, writebuf);
457
458 return RETURN_VALUE_REGISTER_CONVENTION;
459 }
460 \f
461
462 /* Always align the frame to a 4-byte boundary. This is required on
463 coldfire and harmless on the rest. */
464
465 static CORE_ADDR
466 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
467 {
468 /* Align the stack to four bytes. */
469 return sp & ~3;
470 }
471
472 static CORE_ADDR
473 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
474 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
475 struct value **args, CORE_ADDR sp, int struct_return,
476 CORE_ADDR struct_addr)
477 {
478 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
479 gdb_byte buf[4];
480 int i;
481
482 /* Push arguments in reverse order. */
483 for (i = nargs - 1; i >= 0; i--)
484 {
485 struct type *value_type = value_enclosing_type (args[i]);
486 int len = TYPE_LENGTH (value_type);
487 int container_len = (len + 3) & ~3;
488 int offset;
489
490 /* Non-scalars bigger than 4 bytes are left aligned, others are
491 right aligned. */
492 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
493 || TYPE_CODE (value_type) == TYPE_CODE_UNION
494 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
495 && len > 4)
496 offset = 0;
497 else
498 offset = container_len - len;
499 sp -= container_len;
500 write_memory (sp + offset, value_contents_all (args[i]), len);
501 }
502
503 /* Store struct value address. */
504 if (struct_return)
505 {
506 store_unsigned_integer (buf, 4, struct_addr);
507 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
508 }
509
510 /* Store return address. */
511 sp -= 4;
512 store_unsigned_integer (buf, 4, bp_addr);
513 write_memory (sp, buf, 4);
514
515 /* Finally, update the stack pointer... */
516 store_unsigned_integer (buf, 4, sp);
517 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
518
519 /* ...and fake a frame pointer. */
520 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
521
522 /* DWARF2/GCC uses the stack address *before* the function call as a
523 frame's CFA. */
524 return sp + 8;
525 }
526
527 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
528
529 static int
530 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
531 {
532 if (num < 8)
533 /* d0..7 */
534 return (num - 0) + M68K_D0_REGNUM;
535 else if (num < 16)
536 /* a0..7 */
537 return (num - 8) + M68K_A0_REGNUM;
538 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
539 /* fp0..7 */
540 return (num - 16) + M68K_FP0_REGNUM;
541 else if (num == 25)
542 /* pc */
543 return M68K_PC_REGNUM;
544 else
545 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
546 }
547
548 \f
549 struct m68k_frame_cache
550 {
551 /* Base address. */
552 CORE_ADDR base;
553 CORE_ADDR sp_offset;
554 CORE_ADDR pc;
555
556 /* Saved registers. */
557 CORE_ADDR saved_regs[M68K_NUM_REGS];
558 CORE_ADDR saved_sp;
559
560 /* Stack space reserved for local variables. */
561 long locals;
562 };
563
564 /* Allocate and initialize a frame cache. */
565
566 static struct m68k_frame_cache *
567 m68k_alloc_frame_cache (void)
568 {
569 struct m68k_frame_cache *cache;
570 int i;
571
572 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
573
574 /* Base address. */
575 cache->base = 0;
576 cache->sp_offset = -4;
577 cache->pc = 0;
578
579 /* Saved registers. We initialize these to -1 since zero is a valid
580 offset (that's where %fp is supposed to be stored). */
581 for (i = 0; i < M68K_NUM_REGS; i++)
582 cache->saved_regs[i] = -1;
583
584 /* Frameless until proven otherwise. */
585 cache->locals = -1;
586
587 return cache;
588 }
589
590 /* Check whether PC points at a code that sets up a new stack frame.
591 If so, it updates CACHE and returns the address of the first
592 instruction after the sequence that sets removes the "hidden"
593 argument from the stack or CURRENT_PC, whichever is smaller.
594 Otherwise, return PC. */
595
596 static CORE_ADDR
597 m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
598 struct m68k_frame_cache *cache)
599 {
600 int op;
601
602 if (pc >= current_pc)
603 return current_pc;
604
605 op = read_memory_unsigned_integer (pc, 2);
606
607 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
608 {
609 cache->saved_regs[M68K_FP_REGNUM] = 0;
610 cache->sp_offset += 4;
611 if (op == P_LINKW_FP)
612 {
613 /* link.w %fp, #-N */
614 /* link.w %fp, #0; adda.l #-N, %sp */
615 cache->locals = -read_memory_integer (pc + 2, 2);
616
617 if (pc + 4 < current_pc && cache->locals == 0)
618 {
619 op = read_memory_unsigned_integer (pc + 4, 2);
620 if (op == P_ADDAL_SP)
621 {
622 cache->locals = read_memory_integer (pc + 6, 4);
623 return pc + 10;
624 }
625 }
626
627 return pc + 4;
628 }
629 else if (op == P_LINKL_FP)
630 {
631 /* link.l %fp, #-N */
632 cache->locals = -read_memory_integer (pc + 2, 4);
633 return pc + 6;
634 }
635 else
636 {
637 /* pea (%fp); movea.l %sp, %fp */
638 cache->locals = 0;
639
640 if (pc + 2 < current_pc)
641 {
642 op = read_memory_unsigned_integer (pc + 2, 2);
643
644 if (op == P_MOVEAL_SP_FP)
645 {
646 /* move.l %sp, %fp */
647 return pc + 4;
648 }
649 }
650
651 return pc + 2;
652 }
653 }
654 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
655 {
656 /* subq.[wl] #N,%sp */
657 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
658 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
659 if (pc + 2 < current_pc)
660 {
661 op = read_memory_unsigned_integer (pc + 2, 2);
662 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
663 {
664 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
665 return pc + 4;
666 }
667 }
668 return pc + 2;
669 }
670 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
671 {
672 /* adda.w #-N,%sp */
673 /* lea (-N,%sp),%sp */
674 cache->locals = -read_memory_integer (pc + 2, 2);
675 return pc + 4;
676 }
677 else if (op == P_ADDAL_SP)
678 {
679 /* adda.l #-N,%sp */
680 cache->locals = -read_memory_integer (pc + 2, 4);
681 return pc + 6;
682 }
683
684 return pc;
685 }
686
687 /* Check whether PC points at code that saves registers on the stack.
688 If so, it updates CACHE and returns the address of the first
689 instruction after the register saves or CURRENT_PC, whichever is
690 smaller. Otherwise, return PC. */
691
692 static CORE_ADDR
693 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
694 CORE_ADDR current_pc,
695 struct m68k_frame_cache *cache)
696 {
697 if (cache->locals >= 0)
698 {
699 CORE_ADDR offset;
700 int op;
701 int i, mask, regno;
702
703 offset = -4 - cache->locals;
704 while (pc < current_pc)
705 {
706 op = read_memory_unsigned_integer (pc, 2);
707 if (op == P_FMOVEMX_SP
708 && gdbarch_tdep (gdbarch)->fpregs_present)
709 {
710 /* fmovem.x REGS,-(%sp) */
711 op = read_memory_unsigned_integer (pc + 2, 2);
712 if ((op & 0xff00) == 0xe000)
713 {
714 mask = op & 0xff;
715 for (i = 0; i < 16; i++, mask >>= 1)
716 {
717 if (mask & 1)
718 {
719 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
720 offset -= 12;
721 }
722 }
723 pc += 4;
724 }
725 else
726 break;
727 }
728 else if ((op & 0177760) == P_MOVEL_SP)
729 {
730 /* move.l %R,-(%sp) */
731 regno = op & 017;
732 cache->saved_regs[regno] = offset;
733 offset -= 4;
734 pc += 2;
735 }
736 else if (op == P_MOVEML_SP)
737 {
738 /* movem.l REGS,-(%sp) */
739 mask = read_memory_unsigned_integer (pc + 2, 2);
740 for (i = 0; i < 16; i++, mask >>= 1)
741 {
742 if (mask & 1)
743 {
744 cache->saved_regs[15 - i] = offset;
745 offset -= 4;
746 }
747 }
748 pc += 4;
749 }
750 else
751 break;
752 }
753 }
754
755 return pc;
756 }
757
758
759 /* Do a full analysis of the prologue at PC and update CACHE
760 accordingly. Bail out early if CURRENT_PC is reached. Return the
761 address where the analysis stopped.
762
763 We handle all cases that can be generated by gcc.
764
765 For allocating a stack frame:
766
767 link.w %a6,#-N
768 link.l %a6,#-N
769 pea (%fp); move.l %sp,%fp
770 link.w %a6,#0; add.l #-N,%sp
771 subq.l #N,%sp
772 subq.w #N,%sp
773 subq.w #8,%sp; subq.w #N-8,%sp
774 add.w #-N,%sp
775 lea (-N,%sp),%sp
776 add.l #-N,%sp
777
778 For saving registers:
779
780 fmovem.x REGS,-(%sp)
781 move.l R1,-(%sp)
782 move.l R1,-(%sp); move.l R2,-(%sp)
783 movem.l REGS,-(%sp)
784
785 For setting up the PIC register:
786
787 lea (%pc,N),%a5
788
789 */
790
791 static CORE_ADDR
792 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
793 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
794 {
795 unsigned int op;
796
797 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
798 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
799 if (pc >= current_pc)
800 return current_pc;
801
802 /* Check for GOT setup. */
803 op = read_memory_unsigned_integer (pc, 4);
804 if (op == P_LEA_PC_A5)
805 {
806 /* lea (%pc,N),%a5 */
807 return pc + 6;
808 }
809
810 return pc;
811 }
812
813 /* Return PC of first real instruction. */
814
815 static CORE_ADDR
816 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
817 {
818 struct m68k_frame_cache cache;
819 CORE_ADDR pc;
820 int op;
821
822 cache.locals = -1;
823 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
824 if (cache.locals < 0)
825 return start_pc;
826 return pc;
827 }
828
829 static CORE_ADDR
830 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
831 {
832 gdb_byte buf[8];
833
834 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
835 return extract_typed_address (buf, builtin_type_void_func_ptr);
836 }
837 \f
838 /* Normal frames. */
839
840 static struct m68k_frame_cache *
841 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
842 {
843 struct m68k_frame_cache *cache;
844 gdb_byte buf[4];
845 int i;
846
847 if (*this_cache)
848 return *this_cache;
849
850 cache = m68k_alloc_frame_cache ();
851 *this_cache = cache;
852
853 /* In principle, for normal frames, %fp holds the frame pointer,
854 which holds the base address for the current stack frame.
855 However, for functions that don't need it, the frame pointer is
856 optional. For these "frameless" functions the frame pointer is
857 actually the frame pointer of the calling frame. Signal
858 trampolines are just a special case of a "frameless" function.
859 They (usually) share their frame pointer with the frame that was
860 in progress when the signal occurred. */
861
862 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
863 cache->base = extract_unsigned_integer (buf, 4);
864 if (cache->base == 0)
865 return cache;
866
867 /* For normal frames, %pc is stored at 4(%fp). */
868 cache->saved_regs[M68K_PC_REGNUM] = 4;
869
870 cache->pc = get_frame_func (this_frame);
871 if (cache->pc != 0)
872 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
873 get_frame_pc (this_frame), cache);
874
875 if (cache->locals < 0)
876 {
877 /* We didn't find a valid frame, which means that CACHE->base
878 currently holds the frame pointer for our calling frame. If
879 we're at the start of a function, or somewhere half-way its
880 prologue, the function's frame probably hasn't been fully
881 setup yet. Try to reconstruct the base address for the stack
882 frame by looking at the stack pointer. For truly "frameless"
883 functions this might work too. */
884
885 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
886 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
887 }
888
889 /* Now that we have the base address for the stack frame we can
890 calculate the value of %sp in the calling frame. */
891 cache->saved_sp = cache->base + 8;
892
893 /* Adjust all the saved registers such that they contain addresses
894 instead of offsets. */
895 for (i = 0; i < M68K_NUM_REGS; i++)
896 if (cache->saved_regs[i] != -1)
897 cache->saved_regs[i] += cache->base;
898
899 return cache;
900 }
901
902 static void
903 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
904 struct frame_id *this_id)
905 {
906 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
907
908 /* This marks the outermost frame. */
909 if (cache->base == 0)
910 return;
911
912 /* See the end of m68k_push_dummy_call. */
913 *this_id = frame_id_build (cache->base + 8, cache->pc);
914 }
915
916 static struct value *
917 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
918 int regnum)
919 {
920 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
921
922 gdb_assert (regnum >= 0);
923
924 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
925 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
926
927 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
928 return frame_unwind_got_memory (this_frame, regnum,
929 cache->saved_regs[regnum]);
930
931 return frame_unwind_got_register (this_frame, regnum, regnum);
932 }
933
934 static const struct frame_unwind m68k_frame_unwind =
935 {
936 NORMAL_FRAME,
937 m68k_frame_this_id,
938 m68k_frame_prev_register,
939 NULL,
940 default_frame_sniffer
941 };
942 \f
943 static CORE_ADDR
944 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
945 {
946 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
947
948 return cache->base;
949 }
950
951 static const struct frame_base m68k_frame_base =
952 {
953 &m68k_frame_unwind,
954 m68k_frame_base_address,
955 m68k_frame_base_address,
956 m68k_frame_base_address
957 };
958
959 static struct frame_id
960 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
961 {
962 CORE_ADDR fp;
963
964 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
965
966 /* See the end of m68k_push_dummy_call. */
967 return frame_id_build (fp + 8, get_frame_pc (this_frame));
968 }
969 \f
970
971 /* Figure out where the longjmp will land. Slurp the args out of the stack.
972 We expect the first arg to be a pointer to the jmp_buf structure from which
973 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
974 This routine returns true on success. */
975
976 static int
977 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
978 {
979 gdb_byte *buf;
980 CORE_ADDR sp, jb_addr;
981 struct gdbarch *gdbarch = get_frame_arch (frame);
982 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
983
984 if (tdep->jb_pc < 0)
985 {
986 internal_error (__FILE__, __LINE__,
987 _("m68k_get_longjmp_target: not implemented"));
988 return 0;
989 }
990
991 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
992 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
993
994 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
995 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
996 return 0;
997
998 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
999 / TARGET_CHAR_BIT);
1000
1001 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1002 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1003 return 0;
1004
1005 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1006 / TARGET_CHAR_BIT);
1007 return 1;
1008 }
1009 \f
1010
1011 /* System V Release 4 (SVR4). */
1012
1013 void
1014 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1015 {
1016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1017
1018 /* SVR4 uses a different calling convention. */
1019 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1020
1021 /* SVR4 uses %a0 instead of %a1. */
1022 tdep->struct_value_regnum = M68K_A0_REGNUM;
1023 }
1024 \f
1025
1026 /* Function: m68k_gdbarch_init
1027 Initializer function for the m68k gdbarch vector.
1028 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1029
1030 static struct gdbarch *
1031 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1032 {
1033 struct gdbarch_tdep *tdep = NULL;
1034 struct gdbarch *gdbarch;
1035 struct gdbarch_list *best_arch;
1036 struct tdesc_arch_data *tdesc_data = NULL;
1037 int i;
1038 enum m68k_flavour flavour = m68k_no_flavour;
1039 int has_fp = 1;
1040 const struct floatformat **long_double_format = floatformats_m68881_ext;
1041
1042 /* Check any target description for validity. */
1043 if (tdesc_has_registers (info.target_desc))
1044 {
1045 const struct tdesc_feature *feature;
1046 int valid_p;
1047
1048 feature = tdesc_find_feature (info.target_desc,
1049 "org.gnu.gdb.m68k.core");
1050 if (feature != NULL)
1051 /* Do nothing. */
1052 ;
1053
1054 if (feature == NULL)
1055 {
1056 feature = tdesc_find_feature (info.target_desc,
1057 "org.gnu.gdb.coldfire.core");
1058 if (feature != NULL)
1059 flavour = m68k_coldfire_flavour;
1060 }
1061
1062 if (feature == NULL)
1063 {
1064 feature = tdesc_find_feature (info.target_desc,
1065 "org.gnu.gdb.fido.core");
1066 if (feature != NULL)
1067 flavour = m68k_fido_flavour;
1068 }
1069
1070 if (feature == NULL)
1071 return NULL;
1072
1073 tdesc_data = tdesc_data_alloc ();
1074
1075 valid_p = 1;
1076 for (i = 0; i <= M68K_PC_REGNUM; i++)
1077 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1078 m68k_register_names[i]);
1079
1080 if (!valid_p)
1081 {
1082 tdesc_data_cleanup (tdesc_data);
1083 return NULL;
1084 }
1085
1086 feature = tdesc_find_feature (info.target_desc,
1087 "org.gnu.gdb.coldfire.fp");
1088 if (feature != NULL)
1089 {
1090 valid_p = 1;
1091 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1092 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1093 m68k_register_names[i]);
1094 if (!valid_p)
1095 {
1096 tdesc_data_cleanup (tdesc_data);
1097 return NULL;
1098 }
1099 }
1100 else
1101 has_fp = 0;
1102 }
1103
1104 /* The mechanism for returning floating values from function
1105 and the type of long double depend on whether we're
1106 on ColdFire or standard m68k. */
1107
1108 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1109 {
1110 const bfd_arch_info_type *coldfire_arch =
1111 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1112
1113 if (coldfire_arch
1114 && ((*info.bfd_arch_info->compatible)
1115 (info.bfd_arch_info, coldfire_arch)))
1116 flavour = m68k_coldfire_flavour;
1117 }
1118
1119 /* If there is already a candidate, use it. */
1120 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1121 best_arch != NULL;
1122 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1123 {
1124 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1125 continue;
1126
1127 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1128 continue;
1129
1130 break;
1131 }
1132
1133 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1134 gdbarch = gdbarch_alloc (&info, tdep);
1135 tdep->fpregs_present = has_fp;
1136 tdep->flavour = flavour;
1137
1138 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1139 long_double_format = floatformats_ieee_double;
1140 set_gdbarch_long_double_format (gdbarch, long_double_format);
1141 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1142
1143 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1144 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1145
1146 /* Stack grows down. */
1147 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1148 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1149
1150 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1151 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1152 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1153
1154 set_gdbarch_frame_args_skip (gdbarch, 8);
1155 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1156
1157 set_gdbarch_register_type (gdbarch, m68k_register_type);
1158 set_gdbarch_register_name (gdbarch, m68k_register_name);
1159 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1160 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1161 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1162 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1163 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1164 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1165 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1166 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1167
1168 if (has_fp)
1169 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1170
1171 /* Try to figure out if the arch uses floating registers to return
1172 floating point values from functions. */
1173 if (has_fp)
1174 {
1175 /* On ColdFire, floating point values are returned in D0. */
1176 if (flavour == m68k_coldfire_flavour)
1177 tdep->float_return = 0;
1178 else
1179 tdep->float_return = 1;
1180 }
1181 else
1182 {
1183 /* No floating registers, so can't use them for returning values. */
1184 tdep->float_return = 0;
1185 }
1186
1187 /* Function call & return */
1188 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1189 set_gdbarch_return_value (gdbarch, m68k_return_value);
1190
1191
1192 /* Disassembler. */
1193 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1194
1195 #if defined JB_PC && defined JB_ELEMENT_SIZE
1196 tdep->jb_pc = JB_PC;
1197 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1198 #else
1199 tdep->jb_pc = -1;
1200 #endif
1201 tdep->struct_value_regnum = M68K_A1_REGNUM;
1202 tdep->struct_return = reg_struct_return;
1203
1204 /* Frame unwinder. */
1205 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1206 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1207
1208 /* Hook in the DWARF CFI frame unwinder. */
1209 dwarf2_append_unwinders (gdbarch);
1210
1211 frame_base_set_default (gdbarch, &m68k_frame_base);
1212
1213 /* Hook in ABI-specific overrides, if they have been registered. */
1214 gdbarch_init_osabi (info, gdbarch);
1215
1216 /* Now we have tuned the configuration, set a few final things,
1217 based on what the OS ABI has told us. */
1218
1219 if (tdep->jb_pc >= 0)
1220 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1221
1222 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1223
1224 if (tdesc_data)
1225 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1226
1227 return gdbarch;
1228 }
1229
1230
1231 static void
1232 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1233 {
1234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1235
1236 if (tdep == NULL)
1237 return;
1238 }
1239
1240 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1241
1242 void
1243 _initialize_m68k_tdep (void)
1244 {
1245 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1246
1247 /* Initialize the m68k-specific register types. */
1248 m68k_init_types ();
1249 }
This page took 0.080177 seconds and 5 git commands to generate.