1ece8d5d5be580a797029a09e36f2161154cfe0f
[deliverable/binutils-gdb.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002-2021 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "macrotab.h"
23 #include "macroexp.h"
24 #include "macroscope.h"
25 #include "c-lang.h"
26
27
28 \f
29
30 /* A string type that we can use to refer to substrings of other
31 strings. */
32
33 struct shared_macro_buffer
34 {
35 /* An array of characters. This buffer is a pointer into some
36 larger string and thus we can't assume in that the text is
37 null-terminated. */
38 const char *text;
39
40 /* The number of characters in the string. */
41 int len;
42
43 /* For detecting token splicing.
44
45 This is the index in TEXT of the first character of the token
46 that abuts the end of TEXT. If TEXT contains no tokens, then we
47 set this equal to LEN. If TEXT ends in whitespace, then there is
48 no token abutting the end of TEXT (it's just whitespace), and
49 again, we set this equal to LEN. We set this to -1 if we don't
50 know the nature of TEXT. */
51 int last_token = -1;
52
53 /* If this buffer is holding the result from get_token, then this
54 is non-zero if it is an identifier token, zero otherwise. */
55 int is_identifier = 0;
56
57 shared_macro_buffer ()
58 : text (NULL),
59 len (0)
60 {
61 }
62
63 /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
64 shared substring. */
65 shared_macro_buffer (const char *addr, int len)
66 {
67 set_shared (addr, len);
68 }
69
70 /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
71 shared substring. */
72 void set_shared (const char *addr, int len_)
73 {
74 text = addr;
75 len = len_;
76 }
77 };
78
79 /* A string type that we can resize and quickly append to. */
80
81 struct growable_macro_buffer
82 {
83 /* An array of characters. The first LEN bytes are the real text,
84 but there are SIZE bytes allocated to the array. */
85 char *text;
86
87 /* The number of characters in the string. */
88 int len;
89
90 /* The number of characters allocated to the string. */
91 int size;
92
93 /* For detecting token splicing.
94
95 This is the index in TEXT of the first character of the token
96 that abuts the end of TEXT. If TEXT contains no tokens, then we
97 set this equal to LEN. If TEXT ends in whitespace, then there is
98 no token abutting the end of TEXT (it's just whitespace), and
99 again, we set this equal to LEN. We set this to -1 if we don't
100 know the nature of TEXT. */
101 int last_token = -1;
102
103 /* Set the macro buffer to the empty string, guessing that its
104 final contents will fit in N bytes. (It'll get resized if it
105 doesn't, so the guess doesn't have to be right.) Allocate the
106 initial storage with xmalloc. */
107 explicit growable_macro_buffer (int n)
108 : len (0),
109 size (n)
110 {
111 if (n > 0)
112 text = (char *) xmalloc (n);
113 else
114 text = NULL;
115 }
116
117 DISABLE_COPY_AND_ASSIGN (growable_macro_buffer);
118
119 ~growable_macro_buffer ()
120 {
121 xfree (text);
122 }
123
124 /* Release the text of the buffer to the caller. */
125 gdb::unique_xmalloc_ptr<char> release ()
126 {
127 gdb_assert (size);
128 char *result = text;
129 text = NULL;
130 return gdb::unique_xmalloc_ptr<char> (result);
131 }
132
133 /* Resize the buffer to be at least N bytes long. */
134 void resize_buffer (int n)
135 {
136 if (size == 0)
137 size = n;
138 else
139 while (size <= n)
140 size *= 2;
141
142 text = (char *) xrealloc (text, size);
143 }
144
145 /* Append the character C to the buffer. */
146 void appendc (int c)
147 {
148 int new_len = len + 1;
149
150 if (new_len > size)
151 resize_buffer (new_len);
152
153 text[len] = c;
154 len = new_len;
155 }
156
157 /* Append the COUNT bytes at ADDR to the buffer. */
158 void appendmem (const char *addr, int count)
159 {
160 int new_len = len + count;
161
162 if (new_len > size)
163 resize_buffer (new_len);
164
165 memcpy (text + len, addr, count);
166 len = new_len;
167 }
168 };
169
170
171 \f
172 /* Recognizing preprocessor tokens. */
173
174
175 int
176 macro_is_whitespace (int c)
177 {
178 return (c == ' '
179 || c == '\t'
180 || c == '\n'
181 || c == '\v'
182 || c == '\f');
183 }
184
185
186 int
187 macro_is_digit (int c)
188 {
189 return ('0' <= c && c <= '9');
190 }
191
192
193 int
194 macro_is_identifier_nondigit (int c)
195 {
196 return (c == '_'
197 || ('a' <= c && c <= 'z')
198 || ('A' <= c && c <= 'Z'));
199 }
200
201
202 static void
203 set_token (shared_macro_buffer *tok, const char *start, const char *end)
204 {
205 tok->set_shared (start, end - start);
206 tok->last_token = 0;
207
208 /* Presumed; get_identifier may overwrite this. */
209 tok->is_identifier = 0;
210 }
211
212
213 static int
214 get_comment (shared_macro_buffer *tok, const char *p, const char *end)
215 {
216 if (p + 2 > end)
217 return 0;
218 else if (p[0] == '/'
219 && p[1] == '*')
220 {
221 const char *tok_start = p;
222
223 p += 2;
224
225 for (; p < end; p++)
226 if (p + 2 <= end
227 && p[0] == '*'
228 && p[1] == '/')
229 {
230 p += 2;
231 set_token (tok, tok_start, p);
232 return 1;
233 }
234
235 error (_("Unterminated comment in macro expansion."));
236 }
237 else if (p[0] == '/'
238 && p[1] == '/')
239 {
240 const char *tok_start = p;
241
242 p += 2;
243 for (; p < end; p++)
244 if (*p == '\n')
245 break;
246
247 set_token (tok, tok_start, p);
248 return 1;
249 }
250 else
251 return 0;
252 }
253
254
255 static int
256 get_identifier (shared_macro_buffer *tok, const char *p, const char *end)
257 {
258 if (p < end
259 && macro_is_identifier_nondigit (*p))
260 {
261 const char *tok_start = p;
262
263 while (p < end
264 && (macro_is_identifier_nondigit (*p)
265 || macro_is_digit (*p)))
266 p++;
267
268 set_token (tok, tok_start, p);
269 tok->is_identifier = 1;
270 return 1;
271 }
272 else
273 return 0;
274 }
275
276
277 static int
278 get_pp_number (shared_macro_buffer *tok, const char *p, const char *end)
279 {
280 if (p < end
281 && (macro_is_digit (*p)
282 || (*p == '.'
283 && p + 2 <= end
284 && macro_is_digit (p[1]))))
285 {
286 const char *tok_start = p;
287
288 while (p < end)
289 {
290 if (p + 2 <= end
291 && strchr ("eEpP", *p)
292 && (p[1] == '+' || p[1] == '-'))
293 p += 2;
294 else if (macro_is_digit (*p)
295 || macro_is_identifier_nondigit (*p)
296 || *p == '.')
297 p++;
298 else
299 break;
300 }
301
302 set_token (tok, tok_start, p);
303 return 1;
304 }
305 else
306 return 0;
307 }
308
309
310
311 /* If the text starting at P going up to (but not including) END
312 starts with a character constant, set *TOK to point to that
313 character constant, and return 1. Otherwise, return zero.
314 Signal an error if it contains a malformed or incomplete character
315 constant. */
316 static int
317 get_character_constant (shared_macro_buffer *tok,
318 const char *p, const char *end)
319 {
320 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
321 But of course, what really matters is that we handle it the same
322 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
323 to handle escape sequences. */
324 if ((p + 1 <= end && *p == '\'')
325 || (p + 2 <= end
326 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
327 && p[1] == '\''))
328 {
329 const char *tok_start = p;
330 int char_count = 0;
331
332 if (*p == '\'')
333 p++;
334 else if (*p == 'L' || *p == 'u' || *p == 'U')
335 p += 2;
336 else
337 gdb_assert_not_reached ("unexpected character constant");
338
339 for (;;)
340 {
341 if (p >= end)
342 error (_("Unmatched single quote."));
343 else if (*p == '\'')
344 {
345 if (!char_count)
346 error (_("A character constant must contain at least one "
347 "character."));
348 p++;
349 break;
350 }
351 else if (*p == '\\')
352 {
353 const char *s, *o;
354
355 s = o = ++p;
356 char_count += c_parse_escape (&s, NULL);
357 p += s - o;
358 }
359 else
360 {
361 p++;
362 char_count++;
363 }
364 }
365
366 set_token (tok, tok_start, p);
367 return 1;
368 }
369 else
370 return 0;
371 }
372
373
374 /* If the text starting at P going up to (but not including) END
375 starts with a string literal, set *TOK to point to that string
376 literal, and return 1. Otherwise, return zero. Signal an error if
377 it contains a malformed or incomplete string literal. */
378 static int
379 get_string_literal (shared_macro_buffer *tok, const char *p, const char *end)
380 {
381 if ((p + 1 <= end
382 && *p == '"')
383 || (p + 2 <= end
384 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
385 && p[1] == '"'))
386 {
387 const char *tok_start = p;
388
389 if (*p == '"')
390 p++;
391 else if (*p == 'L' || *p == 'u' || *p == 'U')
392 p += 2;
393 else
394 gdb_assert_not_reached ("unexpected string literal");
395
396 for (;;)
397 {
398 if (p >= end)
399 error (_("Unterminated string in expression."));
400 else if (*p == '"')
401 {
402 p++;
403 break;
404 }
405 else if (*p == '\n')
406 error (_("Newline characters may not appear in string "
407 "constants."));
408 else if (*p == '\\')
409 {
410 const char *s, *o;
411
412 s = o = ++p;
413 c_parse_escape (&s, NULL);
414 p += s - o;
415 }
416 else
417 p++;
418 }
419
420 set_token (tok, tok_start, p);
421 return 1;
422 }
423 else
424 return 0;
425 }
426
427
428 static int
429 get_punctuator (shared_macro_buffer *tok, const char *p, const char *end)
430 {
431 /* Here, speed is much less important than correctness and clarity. */
432
433 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
434 Note that this table is ordered in a special way. A punctuator
435 which is a prefix of another punctuator must appear after its
436 "extension". Otherwise, the wrong token will be returned. */
437 static const char * const punctuators[] = {
438 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
439 "...", ".",
440 "->", "--", "-=", "-",
441 "++", "+=", "+",
442 "*=", "*",
443 "!=", "!",
444 "&&", "&=", "&",
445 "/=", "/",
446 "%>", "%:%:", "%:", "%=", "%",
447 "^=", "^",
448 "##", "#",
449 ":>", ":",
450 "||", "|=", "|",
451 "<<=", "<<", "<=", "<:", "<%", "<",
452 ">>=", ">>", ">=", ">",
453 "==", "=",
454 0
455 };
456
457 int i;
458
459 if (p + 1 <= end)
460 {
461 for (i = 0; punctuators[i]; i++)
462 {
463 const char *punctuator = punctuators[i];
464
465 if (p[0] == punctuator[0])
466 {
467 int len = strlen (punctuator);
468
469 if (p + len <= end
470 && ! memcmp (p, punctuator, len))
471 {
472 set_token (tok, p, p + len);
473 return 1;
474 }
475 }
476 }
477 }
478
479 return 0;
480 }
481
482
483 /* Peel the next preprocessor token off of SRC, and put it in TOK.
484 Mutate TOK to refer to the first token in SRC, and mutate SRC to
485 refer to the text after that token. The resulting TOK will point
486 into the same string SRC does. Initialize TOK's last_token field.
487 Return non-zero if we succeed, or 0 if we didn't find any more
488 tokens in SRC. */
489
490 static int
491 get_token (shared_macro_buffer *tok, shared_macro_buffer *src)
492 {
493 const char *p = src->text;
494 const char *end = p + src->len;
495
496 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
497
498 preprocessing-token:
499 header-name
500 identifier
501 pp-number
502 character-constant
503 string-literal
504 punctuator
505 each non-white-space character that cannot be one of the above
506
507 We don't have to deal with header-name tokens, since those can
508 only occur after a #include, which we will never see. */
509
510 while (p < end)
511 if (macro_is_whitespace (*p))
512 p++;
513 else if (get_comment (tok, p, end))
514 p += tok->len;
515 else if (get_pp_number (tok, p, end)
516 || get_character_constant (tok, p, end)
517 || get_string_literal (tok, p, end)
518 /* Note: the grammar in the standard seems to be
519 ambiguous: L'x' can be either a wide character
520 constant, or an identifier followed by a normal
521 character constant. By trying `get_identifier' after
522 we try get_character_constant and get_string_literal,
523 we give the wide character syntax precedence. Now,
524 since GDB doesn't handle wide character constants
525 anyway, is this the right thing to do? */
526 || get_identifier (tok, p, end)
527 || get_punctuator (tok, p, end))
528 {
529 /* How many characters did we consume, including whitespace? */
530 int consumed = p - src->text + tok->len;
531
532 src->text += consumed;
533 src->len -= consumed;
534 return 1;
535 }
536 else
537 {
538 /* We have found a "non-whitespace character that cannot be
539 one of the above." Make a token out of it. */
540 int consumed;
541
542 set_token (tok, p, p + 1);
543 consumed = p - src->text + tok->len;
544 src->text += consumed;
545 src->len -= consumed;
546 return 1;
547 }
548
549 return 0;
550 }
551
552
553 \f
554 /* Appending token strings, with and without splicing */
555
556
557 /* Append the macro buffer SRC to the end of DEST, and ensure that
558 doing so doesn't splice the token at the end of SRC with the token
559 at the beginning of DEST. SRC and DEST must have their last_token
560 fields set. Upon return, DEST's last_token field is set correctly.
561
562 For example:
563
564 If DEST is "(" and SRC is "y", then we can return with
565 DEST set to "(y" --- we've simply appended the two buffers.
566
567 However, if DEST is "x" and SRC is "y", then we must not return
568 with DEST set to "xy" --- that would splice the two tokens "x" and
569 "y" together to make a single token "xy". However, it would be
570 fine to return with DEST set to "x y". Similarly, "<" and "<" must
571 yield "< <", not "<<", etc. */
572 static void
573 append_tokens_without_splicing (growable_macro_buffer *dest,
574 shared_macro_buffer *src)
575 {
576 int original_dest_len = dest->len;
577 shared_macro_buffer dest_tail, new_token;
578
579 gdb_assert (src->last_token != -1);
580 gdb_assert (dest->last_token != -1);
581
582 /* First, just try appending the two, and call get_token to see if
583 we got a splice. */
584 dest->appendmem (src->text, src->len);
585
586 /* If DEST originally had no token abutting its end, then we can't
587 have spliced anything, so we're done. */
588 if (dest->last_token == original_dest_len)
589 {
590 dest->last_token = original_dest_len + src->last_token;
591 return;
592 }
593
594 /* Set DEST_TAIL to point to the last token in DEST, followed by
595 all the stuff we just appended. */
596 dest_tail.set_shared (dest->text + dest->last_token,
597 dest->len - dest->last_token);
598
599 /* Re-parse DEST's last token. We know that DEST used to contain
600 at least one token, so if it doesn't contain any after the
601 append, then we must have spliced "/" and "*" or "/" and "/" to
602 make a comment start. (Just for the record, I got this right
603 the first time. This is not a bug fix.) */
604 if (get_token (&new_token, &dest_tail)
605 && (new_token.text + new_token.len
606 == dest->text + original_dest_len))
607 {
608 /* No splice, so we're done. */
609 dest->last_token = original_dest_len + src->last_token;
610 return;
611 }
612
613 /* Okay, a simple append caused a splice. Let's chop dest back to
614 its original length and try again, but separate the texts with a
615 space. */
616 dest->len = original_dest_len;
617 dest->appendc (' ');
618 dest->appendmem (src->text, src->len);
619
620 dest_tail.set_shared (dest->text + dest->last_token,
621 dest->len - dest->last_token);
622
623 /* Try to re-parse DEST's last token, as above. */
624 if (get_token (&new_token, &dest_tail)
625 && (new_token.text + new_token.len
626 == dest->text + original_dest_len))
627 {
628 /* No splice, so we're done. */
629 dest->last_token = original_dest_len + 1 + src->last_token;
630 return;
631 }
632
633 /* As far as I know, there's no case where inserting a space isn't
634 enough to prevent a splice. */
635 internal_error (__FILE__, __LINE__,
636 _("unable to avoid splicing tokens during macro expansion"));
637 }
638
639 /* Stringify an argument, and insert it into DEST. ARG is the text to
640 stringify; it is LEN bytes long. */
641
642 static void
643 stringify (growable_macro_buffer *dest, const char *arg, int len)
644 {
645 /* Trim initial whitespace from ARG. */
646 while (len > 0 && macro_is_whitespace (*arg))
647 {
648 ++arg;
649 --len;
650 }
651
652 /* Trim trailing whitespace from ARG. */
653 while (len > 0 && macro_is_whitespace (arg[len - 1]))
654 --len;
655
656 /* Insert the string. */
657 dest->appendc ('"');
658 while (len > 0)
659 {
660 /* We could try to handle strange cases here, like control
661 characters, but there doesn't seem to be much point. */
662 if (macro_is_whitespace (*arg))
663 {
664 /* Replace a sequence of whitespace with a single space. */
665 dest->appendc (' ');
666 while (len > 1 && macro_is_whitespace (arg[1]))
667 {
668 ++arg;
669 --len;
670 }
671 }
672 else if (*arg == '\\' || *arg == '"')
673 {
674 dest->appendc ('\\');
675 dest->appendc (*arg);
676 }
677 else
678 dest->appendc (*arg);
679 ++arg;
680 --len;
681 }
682 dest->appendc ('"');
683 dest->last_token = dest->len;
684 }
685
686 /* See macroexp.h. */
687
688 gdb::unique_xmalloc_ptr<char>
689 macro_stringify (const char *str)
690 {
691 int len = strlen (str);
692 growable_macro_buffer buffer (len);
693
694 stringify (&buffer, str, len);
695 buffer.appendc ('\0');
696
697 return buffer.release ();
698 }
699
700 \f
701 /* Expanding macros! */
702
703
704 /* A singly-linked list of the names of the macros we are currently
705 expanding --- for detecting expansion loops. */
706 struct macro_name_list {
707 const char *name;
708 struct macro_name_list *next;
709 };
710
711
712 /* Return non-zero if we are currently expanding the macro named NAME,
713 according to LIST; otherwise, return zero.
714
715 You know, it would be possible to get rid of all the NO_LOOP
716 arguments to these functions by simply generating a new lookup
717 function and baton which refuses to find the definition for a
718 particular macro, and otherwise delegates the decision to another
719 function/baton pair. But that makes the linked list of excluded
720 macros chained through untyped baton pointers, which will make it
721 harder to debug. :( */
722 static int
723 currently_rescanning (struct macro_name_list *list, const char *name)
724 {
725 for (; list; list = list->next)
726 if (strcmp (name, list->name) == 0)
727 return 1;
728
729 return 0;
730 }
731
732
733 /* Gather the arguments to a macro expansion.
734
735 NAME is the name of the macro being invoked. (It's only used for
736 printing error messages.)
737
738 Assume that SRC is the text of the macro invocation immediately
739 following the macro name. For example, if we're processing the
740 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
741 baz).
742
743 If SRC doesn't start with an open paren ( token at all, return
744 false, leave SRC unchanged, and don't set *ARGS_PTR to anything.
745
746 If SRC doesn't contain a properly terminated argument list, then
747 raise an error.
748
749 For a variadic macro, NARGS holds the number of formal arguments to
750 the macro. For a GNU-style variadic macro, this should be the
751 number of named arguments. For a non-variadic macro, NARGS should
752 be -1.
753
754 Otherwise, return true and set *ARGS_PTR to a vector of macro
755 buffers referring to the argument texts. The macro buffers share
756 their text with SRC, and their last_token fields are initialized.
757
758 NOTE WELL: if SRC starts with a open paren ( token followed
759 immediately by a close paren ) token (e.g., the invocation looks
760 like "foo()"), we treat that as one argument, which happens to be
761 the empty list of tokens. The caller should keep in mind that such
762 a sequence of tokens is a valid way to invoke one-parameter
763 function-like macros, but also a valid way to invoke zero-parameter
764 function-like macros. Eeew.
765
766 Consume the tokens from SRC; after this call, SRC contains the text
767 following the invocation. */
768
769 static bool
770 gather_arguments (const char *name, shared_macro_buffer *src, int nargs,
771 std::vector<shared_macro_buffer> *args_ptr)
772 {
773 shared_macro_buffer tok;
774 std::vector<shared_macro_buffer> args;
775
776 /* Does SRC start with an opening paren token? Read from a copy of
777 SRC, so SRC itself is unaffected if we don't find an opening
778 paren. */
779 {
780 shared_macro_buffer temp (src->text, src->len);
781
782 if (! get_token (&tok, &temp)
783 || tok.len != 1
784 || tok.text[0] != '(')
785 return false;
786 }
787
788 /* Consume SRC's opening paren. */
789 get_token (&tok, src);
790
791 for (;;)
792 {
793 shared_macro_buffer *arg;
794 int depth;
795
796 /* Initialize the next argument. */
797 args.emplace_back ();
798 arg = &args.back ();
799 set_token (arg, src->text, src->text);
800
801 /* Gather the argument's tokens. */
802 depth = 0;
803 for (;;)
804 {
805 if (! get_token (&tok, src))
806 error (_("Malformed argument list for macro `%s'."), name);
807
808 /* Is tok an opening paren? */
809 if (tok.len == 1 && tok.text[0] == '(')
810 depth++;
811
812 /* Is tok is a closing paren? */
813 else if (tok.len == 1 && tok.text[0] == ')')
814 {
815 /* If it's a closing paren at the top level, then that's
816 the end of the argument list. */
817 if (depth == 0)
818 {
819 /* In the varargs case, the last argument may be
820 missing. Add an empty argument in this case. */
821 if (nargs != -1 && args.size () == nargs - 1)
822 {
823 args.emplace_back ();
824 arg = &args.back ();
825 set_token (arg, src->text, src->text);
826 }
827
828 *args_ptr = std::move (args);
829 return true;
830 }
831
832 depth--;
833 }
834
835 /* If tok is a comma at top level, then that's the end of
836 the current argument. However, if we are handling a
837 variadic macro and we are computing the last argument, we
838 want to include the comma and remaining tokens. */
839 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
840 && (nargs == -1 || args.size () < nargs))
841 break;
842
843 /* Extend the current argument to enclose this token. If
844 this is the current argument's first token, leave out any
845 leading whitespace, just for aesthetics. */
846 if (arg->len == 0)
847 {
848 arg->text = tok.text;
849 arg->len = tok.len;
850 arg->last_token = 0;
851 }
852 else
853 {
854 arg->len = (tok.text + tok.len) - arg->text;
855 arg->last_token = tok.text - arg->text;
856 }
857 }
858 }
859 }
860
861
862 /* The `expand' and `substitute_args' functions both invoke `scan'
863 recursively, so we need a forward declaration somewhere. */
864 static void scan (growable_macro_buffer *dest,
865 shared_macro_buffer *src,
866 struct macro_name_list *no_loop,
867 const macro_scope &scope);
868
869 /* A helper function for substitute_args.
870
871 ARGV is a vector of all the arguments; ARGC is the number of
872 arguments. IS_VARARGS is true if the macro being substituted is a
873 varargs macro; in this case VA_ARG_NAME is the name of the
874 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
875 false.
876
877 If the token TOK is the name of a parameter, return the parameter's
878 index. If TOK is not an argument, return -1. */
879
880 static int
881 find_parameter (const shared_macro_buffer *tok,
882 int is_varargs, const shared_macro_buffer *va_arg_name,
883 int argc, const char * const *argv)
884 {
885 int i;
886
887 if (! tok->is_identifier)
888 return -1;
889
890 for (i = 0; i < argc; ++i)
891 if (tok->len == strlen (argv[i])
892 && !memcmp (tok->text, argv[i], tok->len))
893 return i;
894
895 if (is_varargs && tok->len == va_arg_name->len
896 && ! memcmp (tok->text, va_arg_name->text, tok->len))
897 return argc - 1;
898
899 return -1;
900 }
901
902 /* Helper function for substitute_args that gets the next token and
903 updates the passed-in state variables. */
904
905 static void
906 get_next_token_for_substitution (shared_macro_buffer *replacement_list,
907 shared_macro_buffer *token,
908 const char **start,
909 shared_macro_buffer *lookahead,
910 const char **lookahead_start,
911 int *lookahead_valid,
912 bool *keep_going)
913 {
914 if (!*lookahead_valid)
915 *keep_going = false;
916 else
917 {
918 *keep_going = true;
919 *token = *lookahead;
920 *start = *lookahead_start;
921 *lookahead_start = replacement_list->text;
922 *lookahead_valid = get_token (lookahead, replacement_list);
923 }
924 }
925
926 /* Given the macro definition DEF, being invoked with the actual
927 arguments given by ARGV, substitute the arguments into the
928 replacement list, and store the result in DEST.
929
930 IS_VARARGS should be true if DEF is a varargs macro. In this case,
931 VA_ARG_NAME should be the name of the "variable" argument -- either
932 __VA_ARGS__ for c99-style varargs, or the final argument name, for
933 GNU-style varargs. If IS_VARARGS is false, this parameter is
934 ignored.
935
936 If it is necessary to expand macro invocations in one of the
937 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
938 definitions, and don't expand invocations of the macros listed in
939 NO_LOOP. */
940
941 static void
942 substitute_args (growable_macro_buffer *dest,
943 struct macro_definition *def,
944 int is_varargs, const shared_macro_buffer *va_arg_name,
945 const std::vector<shared_macro_buffer> &argv,
946 struct macro_name_list *no_loop,
947 const macro_scope &scope)
948 {
949 /* The token we are currently considering. */
950 shared_macro_buffer tok;
951 /* The replacement list's pointer from just before TOK was lexed. */
952 const char *original_rl_start;
953 /* We have a single lookahead token to handle token splicing. */
954 shared_macro_buffer lookahead;
955 /* The lookahead token might not be valid. */
956 int lookahead_valid;
957 /* The replacement list's pointer from just before LOOKAHEAD was
958 lexed. */
959 const char *lookahead_rl_start;
960
961 /* A macro buffer for the macro's replacement list. */
962 shared_macro_buffer replacement_list (def->replacement,
963 strlen (def->replacement));
964
965 gdb_assert (dest->len == 0);
966 dest->last_token = 0;
967
968 original_rl_start = replacement_list.text;
969 if (! get_token (&tok, &replacement_list))
970 return;
971 lookahead_rl_start = replacement_list.text;
972 lookahead_valid = get_token (&lookahead, &replacement_list);
973
974 /* __VA_OPT__ state variable. The states are:
975 0 - nothing happening
976 1 - saw __VA_OPT__
977 >= 2 in __VA_OPT__, the value encodes the parenthesis depth. */
978 unsigned vaopt_state = 0;
979
980 for (bool keep_going = true;
981 keep_going;
982 get_next_token_for_substitution (&replacement_list,
983 &tok,
984 &original_rl_start,
985 &lookahead,
986 &lookahead_rl_start,
987 &lookahead_valid,
988 &keep_going))
989 {
990 bool token_is_vaopt = (tok.len == 10
991 && startswith (tok.text, "__VA_OPT__"));
992
993 if (vaopt_state > 0)
994 {
995 if (token_is_vaopt)
996 error (_("__VA_OPT__ cannot appear inside __VA_OPT__"));
997 else if (tok.len == 1 && tok.text[0] == '(')
998 {
999 ++vaopt_state;
1000 /* We just entered __VA_OPT__, so don't emit this
1001 token. */
1002 continue;
1003 }
1004 else if (vaopt_state == 1)
1005 error (_("__VA_OPT__ must be followed by an open parenthesis"));
1006 else if (tok.len == 1 && tok.text[0] == ')')
1007 {
1008 --vaopt_state;
1009 if (vaopt_state == 1)
1010 {
1011 /* Done with __VA_OPT__. */
1012 vaopt_state = 0;
1013 /* Don't emit. */
1014 continue;
1015 }
1016 }
1017
1018 /* If __VA_ARGS__ is empty, then drop the contents of
1019 __VA_OPT__. */
1020 if (argv.back ().len == 0)
1021 continue;
1022 }
1023 else if (token_is_vaopt)
1024 {
1025 if (!is_varargs)
1026 error (_("__VA_OPT__ is only valid in a variadic macro"));
1027 vaopt_state = 1;
1028 /* Don't emit this token. */
1029 continue;
1030 }
1031
1032 /* Just for aesthetics. If we skipped some whitespace, copy
1033 that to DEST. */
1034 if (tok.text > original_rl_start)
1035 {
1036 dest->appendmem (original_rl_start, tok.text - original_rl_start);
1037 dest->last_token = dest->len;
1038 }
1039
1040 /* Is this token the stringification operator? */
1041 if (tok.len == 1
1042 && tok.text[0] == '#')
1043 {
1044 int arg;
1045
1046 if (!lookahead_valid)
1047 error (_("Stringification operator requires an argument."));
1048
1049 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1050 def->argc, def->argv);
1051 if (arg == -1)
1052 error (_("Argument to stringification operator must name "
1053 "a macro parameter."));
1054
1055 stringify (dest, argv[arg].text, argv[arg].len);
1056
1057 /* Read one token and let the loop iteration code handle the
1058 rest. */
1059 lookahead_rl_start = replacement_list.text;
1060 lookahead_valid = get_token (&lookahead, &replacement_list);
1061 }
1062 /* Is this token the splicing operator? */
1063 else if (tok.len == 2
1064 && tok.text[0] == '#'
1065 && tok.text[1] == '#')
1066 error (_("Stray splicing operator"));
1067 /* Is the next token the splicing operator? */
1068 else if (lookahead_valid
1069 && lookahead.len == 2
1070 && lookahead.text[0] == '#'
1071 && lookahead.text[1] == '#')
1072 {
1073 int finished = 0;
1074 int prev_was_comma = 0;
1075
1076 /* Note that GCC warns if the result of splicing is not a
1077 token. In the debugger there doesn't seem to be much
1078 benefit from doing this. */
1079
1080 /* Insert the first token. */
1081 if (tok.len == 1 && tok.text[0] == ',')
1082 prev_was_comma = 1;
1083 else
1084 {
1085 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1086 def->argc, def->argv);
1087
1088 if (arg != -1)
1089 dest->appendmem (argv[arg].text, argv[arg].len);
1090 else
1091 dest->appendmem (tok.text, tok.len);
1092 }
1093
1094 /* Apply a possible sequence of ## operators. */
1095 for (;;)
1096 {
1097 if (! get_token (&tok, &replacement_list))
1098 error (_("Splicing operator at end of macro"));
1099
1100 /* Handle a comma before a ##. If we are handling
1101 varargs, and the token on the right hand side is the
1102 varargs marker, and the final argument is empty or
1103 missing, then drop the comma. This is a GNU
1104 extension. There is one ambiguous case here,
1105 involving pedantic behavior with an empty argument,
1106 but we settle that in favor of GNU-style (GCC uses an
1107 option). If we aren't dealing with varargs, we
1108 simply insert the comma. */
1109 if (prev_was_comma)
1110 {
1111 if (! (is_varargs
1112 && tok.len == va_arg_name->len
1113 && !memcmp (tok.text, va_arg_name->text, tok.len)
1114 && argv.back ().len == 0))
1115 dest->appendmem (",", 1);
1116 prev_was_comma = 0;
1117 }
1118
1119 /* Insert the token. If it is a parameter, insert the
1120 argument. If it is a comma, treat it specially. */
1121 if (tok.len == 1 && tok.text[0] == ',')
1122 prev_was_comma = 1;
1123 else
1124 {
1125 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1126 def->argc, def->argv);
1127
1128 if (arg != -1)
1129 dest->appendmem (argv[arg].text, argv[arg].len);
1130 else
1131 dest->appendmem (tok.text, tok.len);
1132 }
1133
1134 /* Now read another token. If it is another splice, we
1135 loop. */
1136 original_rl_start = replacement_list.text;
1137 if (! get_token (&tok, &replacement_list))
1138 {
1139 finished = 1;
1140 break;
1141 }
1142
1143 if (! (tok.len == 2
1144 && tok.text[0] == '#'
1145 && tok.text[1] == '#'))
1146 break;
1147 }
1148
1149 if (prev_was_comma)
1150 {
1151 /* We saw a comma. Insert it now. */
1152 dest->appendmem (",", 1);
1153 }
1154
1155 dest->last_token = dest->len;
1156 if (finished)
1157 lookahead_valid = 0;
1158 else
1159 {
1160 /* Set up for the loop iterator. */
1161 lookahead = tok;
1162 lookahead_rl_start = original_rl_start;
1163 lookahead_valid = 1;
1164 }
1165 }
1166 else
1167 {
1168 /* Is this token an identifier? */
1169 int substituted = 0;
1170 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1171 def->argc, def->argv);
1172
1173 if (arg != -1)
1174 {
1175 /* Expand any macro invocations in the argument text,
1176 and append the result to dest. Remember that scan
1177 mutates its source, so we need to scan a new buffer
1178 referring to the argument's text, not the argument
1179 itself. */
1180 shared_macro_buffer arg_src (argv[arg].text, argv[arg].len);
1181 scan (dest, &arg_src, no_loop, scope);
1182 substituted = 1;
1183 }
1184
1185 /* If it wasn't a parameter, then just copy it across. */
1186 if (! substituted)
1187 append_tokens_without_splicing (dest, &tok);
1188 }
1189 }
1190
1191 if (vaopt_state > 0)
1192 error (_("Unterminated __VA_OPT__"));
1193 }
1194
1195
1196 /* Expand a call to a macro named ID, whose definition is DEF. Append
1197 its expansion to DEST. SRC is the input text following the ID
1198 token. We are currently rescanning the expansions of the macros
1199 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1200 LOOKUP_BATON to find definitions for any nested macro references.
1201
1202 Return 1 if we decided to expand it, zero otherwise. (If it's a
1203 function-like macro name that isn't followed by an argument list,
1204 we don't expand it.) If we return zero, leave SRC unchanged. */
1205 static int
1206 expand (const char *id,
1207 struct macro_definition *def,
1208 growable_macro_buffer *dest,
1209 shared_macro_buffer *src,
1210 struct macro_name_list *no_loop,
1211 const macro_scope &scope)
1212 {
1213 struct macro_name_list new_no_loop;
1214
1215 /* Create a new node to be added to the front of the no-expand list.
1216 This list is appropriate for re-scanning replacement lists, but
1217 it is *not* appropriate for scanning macro arguments; invocations
1218 of the macro whose arguments we are gathering *do* get expanded
1219 there. */
1220 new_no_loop.name = id;
1221 new_no_loop.next = no_loop;
1222
1223 /* What kind of macro are we expanding? */
1224 if (def->kind == macro_object_like)
1225 {
1226 shared_macro_buffer replacement_list (def->replacement,
1227 strlen (def->replacement));
1228
1229 scan (dest, &replacement_list, &new_no_loop, scope);
1230 return 1;
1231 }
1232 else if (def->kind == macro_function_like)
1233 {
1234 shared_macro_buffer va_arg_name;
1235 int is_varargs = 0;
1236
1237 if (def->argc >= 1)
1238 {
1239 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1240 {
1241 /* In C99-style varargs, substitution is done using
1242 __VA_ARGS__. */
1243 va_arg_name.set_shared ("__VA_ARGS__", strlen ("__VA_ARGS__"));
1244 is_varargs = 1;
1245 }
1246 else
1247 {
1248 int len = strlen (def->argv[def->argc - 1]);
1249
1250 if (len > 3
1251 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1252 {
1253 /* In GNU-style varargs, the name of the
1254 substitution parameter is the name of the formal
1255 argument without the "...". */
1256 va_arg_name.set_shared (def->argv[def->argc - 1], len - 3);
1257 is_varargs = 1;
1258 }
1259 }
1260 }
1261
1262 std::vector<shared_macro_buffer> argv;
1263 /* If we couldn't find any argument list, then we don't expand
1264 this macro. */
1265 if (!gather_arguments (id, src, is_varargs ? def->argc : -1,
1266 &argv))
1267 return 0;
1268
1269 /* Check that we're passing an acceptable number of arguments for
1270 this macro. */
1271 if (argv.size () != def->argc)
1272 {
1273 if (is_varargs && argv.size () >= def->argc - 1)
1274 {
1275 /* Ok. */
1276 }
1277 /* Remember that a sequence of tokens like "foo()" is a
1278 valid invocation of a macro expecting either zero or one
1279 arguments. */
1280 else if (! (argv.size () == 1
1281 && argv[0].len == 0
1282 && def->argc == 0))
1283 error (_("Wrong number of arguments to macro `%s' "
1284 "(expected %d, got %d)."),
1285 id, def->argc, int (argv.size ()));
1286 }
1287
1288 /* Note that we don't expand macro invocations in the arguments
1289 yet --- we let subst_args take care of that. Parameters that
1290 appear as operands of the stringifying operator "#" or the
1291 splicing operator "##" don't get macro references expanded,
1292 so we can't really tell whether it's appropriate to macro-
1293 expand an argument until we see how it's being used. */
1294 growable_macro_buffer substituted (0);
1295 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1296 argv, no_loop, scope);
1297
1298 /* Now `substituted' is the macro's replacement list, with all
1299 argument values substituted into it properly. Re-scan it for
1300 macro references, but don't expand invocations of this macro.
1301
1302 We create a new buffer, `substituted_src', which points into
1303 `substituted', and scan that. We can't scan `substituted'
1304 itself, since the tokenization process moves the buffer's
1305 text pointer around, and we still need to be able to find
1306 `substituted's original text buffer after scanning it so we
1307 can free it. */
1308 shared_macro_buffer substituted_src (substituted.text, substituted.len);
1309 scan (dest, &substituted_src, &new_no_loop, scope);
1310
1311 return 1;
1312 }
1313 else
1314 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1315 }
1316
1317
1318 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1319 constitute a macro invocation not forbidden in NO_LOOP, append its
1320 expansion to DEST and return non-zero. Otherwise, return zero, and
1321 leave DEST unchanged.
1322
1323 SRC_FIRST must be a string built by get_token. */
1324 static int
1325 maybe_expand (growable_macro_buffer *dest,
1326 shared_macro_buffer *src_first,
1327 shared_macro_buffer *src_rest,
1328 struct macro_name_list *no_loop,
1329 const macro_scope &scope)
1330 {
1331 /* Is this token an identifier? */
1332 if (src_first->is_identifier)
1333 {
1334 /* Make a null-terminated copy of it, since that's what our
1335 lookup function expects. */
1336 std::string id (src_first->text, src_first->len);
1337
1338 /* If we're currently re-scanning the result of expanding
1339 this macro, don't expand it again. */
1340 if (! currently_rescanning (no_loop, id.c_str ()))
1341 {
1342 /* Does this identifier have a macro definition in scope? */
1343 macro_definition *def = standard_macro_lookup (id.c_str (), scope);
1344
1345 if (def && expand (id.c_str (), def, dest, src_rest, no_loop, scope))
1346 return 1;
1347 }
1348 }
1349
1350 return 0;
1351 }
1352
1353
1354 /* Expand macro references in SRC, appending the results to DEST.
1355 Assume we are re-scanning the result of expanding the macros named
1356 in NO_LOOP, and don't try to re-expand references to them. */
1357
1358 static void
1359 scan (growable_macro_buffer *dest,
1360 shared_macro_buffer *src,
1361 struct macro_name_list *no_loop,
1362 const macro_scope &scope)
1363 {
1364
1365 for (;;)
1366 {
1367 shared_macro_buffer tok;
1368 const char *original_src_start = src->text;
1369
1370 /* Find the next token in SRC. */
1371 if (! get_token (&tok, src))
1372 break;
1373
1374 /* Just for aesthetics. If we skipped some whitespace, copy
1375 that to DEST. */
1376 if (tok.text > original_src_start)
1377 {
1378 dest->appendmem (original_src_start, tok.text - original_src_start);
1379 dest->last_token = dest->len;
1380 }
1381
1382 if (! maybe_expand (dest, &tok, src, no_loop, scope))
1383 /* We didn't end up expanding tok as a macro reference, so
1384 simply append it to dest. */
1385 append_tokens_without_splicing (dest, &tok);
1386 }
1387
1388 /* Just for aesthetics. If there was any trailing whitespace in
1389 src, copy it to dest. */
1390 if (src->len)
1391 {
1392 dest->appendmem (src->text, src->len);
1393 dest->last_token = dest->len;
1394 }
1395 }
1396
1397
1398 gdb::unique_xmalloc_ptr<char>
1399 macro_expand (const char *source, const macro_scope &scope)
1400 {
1401 shared_macro_buffer src (source, strlen (source));
1402
1403 growable_macro_buffer dest (0);
1404 dest.last_token = 0;
1405
1406 scan (&dest, &src, 0, scope);
1407
1408 dest.appendc ('\0');
1409
1410 return dest.release ();
1411 }
1412
1413
1414 gdb::unique_xmalloc_ptr<char>
1415 macro_expand_once (const char *source, const macro_scope &scope)
1416 {
1417 error (_("Expand-once not implemented yet."));
1418 }
1419
1420 gdb::unique_xmalloc_ptr<char>
1421 macro_expand_next (const char **lexptr, const macro_scope &scope)
1422 {
1423 shared_macro_buffer tok;
1424
1425 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1426 shared_macro_buffer src (*lexptr, strlen (*lexptr));
1427
1428 /* Set up DEST to receive the expansion, if there is one. */
1429 growable_macro_buffer dest (0);
1430 dest.last_token = 0;
1431
1432 /* Get the text's first preprocessing token. */
1433 if (! get_token (&tok, &src))
1434 return nullptr;
1435
1436 /* If it's a macro invocation, expand it. */
1437 if (maybe_expand (&dest, &tok, &src, 0, scope))
1438 {
1439 /* It was a macro invocation! Package up the expansion as a
1440 null-terminated string and return it. Set *lexptr to the
1441 start of the next token in the input. */
1442 dest.appendc ('\0');
1443 *lexptr = src.text;
1444 return dest.release ();
1445 }
1446 else
1447 {
1448 /* It wasn't a macro invocation. */
1449 return nullptr;
1450 }
1451 }
This page took 0.055776 seconds and 3 git commands to generate.