Use std::string in maybe_expand
[deliverable/binutils-gdb.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002-2018 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "bcache.h"
23 #include "macrotab.h"
24 #include "macroexp.h"
25 #include "c-lang.h"
26
27
28 \f
29 /* A resizeable, substringable string type. */
30
31
32 /* A string type that we can resize, quickly append to, and use to
33 refer to substrings of other strings. */
34 struct macro_buffer
35 {
36 /* An array of characters. The first LEN bytes are the real text,
37 but there are SIZE bytes allocated to the array. If SIZE is
38 zero, then this doesn't point to a malloc'ed block. If SHARED is
39 non-zero, then this buffer is actually a pointer into some larger
40 string, and we shouldn't append characters to it, etc. Because
41 of sharing, we can't assume in general that the text is
42 null-terminated. */
43 char *text;
44
45 /* The number of characters in the string. */
46 int len;
47
48 /* The number of characters allocated to the string. If SHARED is
49 non-zero, this is meaningless; in this case, we set it to zero so
50 that any "do we have room to append something?" tests will fail,
51 so we don't always have to check SHARED before using this field. */
52 int size;
53
54 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
55 block). Non-zero if TEXT is actually pointing into the middle of
56 some other block, or to a string literal, and we shouldn't
57 reallocate it. */
58 bool shared;
59
60 /* For detecting token splicing.
61
62 This is the index in TEXT of the first character of the token
63 that abuts the end of TEXT. If TEXT contains no tokens, then we
64 set this equal to LEN. If TEXT ends in whitespace, then there is
65 no token abutting the end of TEXT (it's just whitespace), and
66 again, we set this equal to LEN. We set this to -1 if we don't
67 know the nature of TEXT. */
68 int last_token = -1;
69
70 /* If this buffer is holding the result from get_token, then this
71 is non-zero if it is an identifier token, zero otherwise. */
72 int is_identifier = 0;
73
74
75 macro_buffer ()
76 : text (NULL),
77 len (0),
78 size (0),
79 shared (false)
80 {
81 }
82
83 /* Set the macro buffer to the empty string, guessing that its
84 final contents will fit in N bytes. (It'll get resized if it
85 doesn't, so the guess doesn't have to be right.) Allocate the
86 initial storage with xmalloc. */
87 explicit macro_buffer (int n)
88 : len (0),
89 size (n),
90 shared (false)
91 {
92 if (n > 0)
93 text = (char *) xmalloc (n);
94 else
95 text = NULL;
96 }
97
98 /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
99 shared substring. */
100 macro_buffer (const char *addr, int len)
101 {
102 set_shared (addr, len);
103 }
104
105 /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
106 shared substring. */
107 void set_shared (const char *addr, int len_)
108 {
109 text = (char *) addr;
110 len = len_;
111 size = 0;
112 shared = true;
113 }
114
115 ~macro_buffer ()
116 {
117 if (! shared && size)
118 xfree (text);
119 }
120
121 /* Release the text of the buffer to the caller, which is now
122 responsible for freeing it. */
123 char *release ()
124 {
125 gdb_assert (! shared);
126 gdb_assert (size);
127 char *result = text;
128 text = NULL;
129 return result;
130 }
131
132 /* Resize the buffer to be at least N bytes long. Raise an error if
133 the buffer shouldn't be resized. */
134 void resize_buffer (int n)
135 {
136 /* We shouldn't be trying to resize shared strings. */
137 gdb_assert (! shared);
138
139 if (size == 0)
140 size = n;
141 else
142 while (size <= n)
143 size *= 2;
144
145 text = (char *) xrealloc (text, size);
146 }
147
148 /* Append the character C to the buffer. */
149 void appendc (int c)
150 {
151 int new_len = len + 1;
152
153 if (new_len > size)
154 resize_buffer (new_len);
155
156 text[len] = c;
157 len = new_len;
158 }
159
160 /* Append the COUNT bytes at ADDR to the buffer. */
161 void appendmem (const char *addr, int count)
162 {
163 int new_len = len + count;
164
165 if (new_len > size)
166 resize_buffer (new_len);
167
168 memcpy (text + len, addr, count);
169 len = new_len;
170 }
171 };
172
173
174 \f
175 /* Recognizing preprocessor tokens. */
176
177
178 int
179 macro_is_whitespace (int c)
180 {
181 return (c == ' '
182 || c == '\t'
183 || c == '\n'
184 || c == '\v'
185 || c == '\f');
186 }
187
188
189 int
190 macro_is_digit (int c)
191 {
192 return ('0' <= c && c <= '9');
193 }
194
195
196 int
197 macro_is_identifier_nondigit (int c)
198 {
199 return (c == '_'
200 || ('a' <= c && c <= 'z')
201 || ('A' <= c && c <= 'Z'));
202 }
203
204
205 static void
206 set_token (struct macro_buffer *tok, char *start, char *end)
207 {
208 tok->set_shared (start, end - start);
209 tok->last_token = 0;
210
211 /* Presumed; get_identifier may overwrite this. */
212 tok->is_identifier = 0;
213 }
214
215
216 static int
217 get_comment (struct macro_buffer *tok, char *p, char *end)
218 {
219 if (p + 2 > end)
220 return 0;
221 else if (p[0] == '/'
222 && p[1] == '*')
223 {
224 char *tok_start = p;
225
226 p += 2;
227
228 for (; p < end; p++)
229 if (p + 2 <= end
230 && p[0] == '*'
231 && p[1] == '/')
232 {
233 p += 2;
234 set_token (tok, tok_start, p);
235 return 1;
236 }
237
238 error (_("Unterminated comment in macro expansion."));
239 }
240 else if (p[0] == '/'
241 && p[1] == '/')
242 {
243 char *tok_start = p;
244
245 p += 2;
246 for (; p < end; p++)
247 if (*p == '\n')
248 break;
249
250 set_token (tok, tok_start, p);
251 return 1;
252 }
253 else
254 return 0;
255 }
256
257
258 static int
259 get_identifier (struct macro_buffer *tok, char *p, char *end)
260 {
261 if (p < end
262 && macro_is_identifier_nondigit (*p))
263 {
264 char *tok_start = p;
265
266 while (p < end
267 && (macro_is_identifier_nondigit (*p)
268 || macro_is_digit (*p)))
269 p++;
270
271 set_token (tok, tok_start, p);
272 tok->is_identifier = 1;
273 return 1;
274 }
275 else
276 return 0;
277 }
278
279
280 static int
281 get_pp_number (struct macro_buffer *tok, char *p, char *end)
282 {
283 if (p < end
284 && (macro_is_digit (*p)
285 || (*p == '.'
286 && p + 2 <= end
287 && macro_is_digit (p[1]))))
288 {
289 char *tok_start = p;
290
291 while (p < end)
292 {
293 if (p + 2 <= end
294 && strchr ("eEpP", *p)
295 && (p[1] == '+' || p[1] == '-'))
296 p += 2;
297 else if (macro_is_digit (*p)
298 || macro_is_identifier_nondigit (*p)
299 || *p == '.')
300 p++;
301 else
302 break;
303 }
304
305 set_token (tok, tok_start, p);
306 return 1;
307 }
308 else
309 return 0;
310 }
311
312
313
314 /* If the text starting at P going up to (but not including) END
315 starts with a character constant, set *TOK to point to that
316 character constant, and return 1. Otherwise, return zero.
317 Signal an error if it contains a malformed or incomplete character
318 constant. */
319 static int
320 get_character_constant (struct macro_buffer *tok, char *p, char *end)
321 {
322 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
323 But of course, what really matters is that we handle it the same
324 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
325 to handle escape sequences. */
326 if ((p + 1 <= end && *p == '\'')
327 || (p + 2 <= end
328 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
329 && p[1] == '\''))
330 {
331 char *tok_start = p;
332 int char_count = 0;
333
334 if (*p == '\'')
335 p++;
336 else if (*p == 'L' || *p == 'u' || *p == 'U')
337 p += 2;
338 else
339 gdb_assert_not_reached ("unexpected character constant");
340
341 for (;;)
342 {
343 if (p >= end)
344 error (_("Unmatched single quote."));
345 else if (*p == '\'')
346 {
347 if (!char_count)
348 error (_("A character constant must contain at least one "
349 "character."));
350 p++;
351 break;
352 }
353 else if (*p == '\\')
354 {
355 const char *s, *o;
356
357 s = o = ++p;
358 char_count += c_parse_escape (&s, NULL);
359 p += s - o;
360 }
361 else
362 {
363 p++;
364 char_count++;
365 }
366 }
367
368 set_token (tok, tok_start, p);
369 return 1;
370 }
371 else
372 return 0;
373 }
374
375
376 /* If the text starting at P going up to (but not including) END
377 starts with a string literal, set *TOK to point to that string
378 literal, and return 1. Otherwise, return zero. Signal an error if
379 it contains a malformed or incomplete string literal. */
380 static int
381 get_string_literal (struct macro_buffer *tok, char *p, char *end)
382 {
383 if ((p + 1 <= end
384 && *p == '"')
385 || (p + 2 <= end
386 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
387 && p[1] == '"'))
388 {
389 char *tok_start = p;
390
391 if (*p == '"')
392 p++;
393 else if (*p == 'L' || *p == 'u' || *p == 'U')
394 p += 2;
395 else
396 gdb_assert_not_reached ("unexpected string literal");
397
398 for (;;)
399 {
400 if (p >= end)
401 error (_("Unterminated string in expression."));
402 else if (*p == '"')
403 {
404 p++;
405 break;
406 }
407 else if (*p == '\n')
408 error (_("Newline characters may not appear in string "
409 "constants."));
410 else if (*p == '\\')
411 {
412 const char *s, *o;
413
414 s = o = ++p;
415 c_parse_escape (&s, NULL);
416 p += s - o;
417 }
418 else
419 p++;
420 }
421
422 set_token (tok, tok_start, p);
423 return 1;
424 }
425 else
426 return 0;
427 }
428
429
430 static int
431 get_punctuator (struct macro_buffer *tok, char *p, char *end)
432 {
433 /* Here, speed is much less important than correctness and clarity. */
434
435 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
436 Note that this table is ordered in a special way. A punctuator
437 which is a prefix of another punctuator must appear after its
438 "extension". Otherwise, the wrong token will be returned. */
439 static const char * const punctuators[] = {
440 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
441 "...", ".",
442 "->", "--", "-=", "-",
443 "++", "+=", "+",
444 "*=", "*",
445 "!=", "!",
446 "&&", "&=", "&",
447 "/=", "/",
448 "%>", "%:%:", "%:", "%=", "%",
449 "^=", "^",
450 "##", "#",
451 ":>", ":",
452 "||", "|=", "|",
453 "<<=", "<<", "<=", "<:", "<%", "<",
454 ">>=", ">>", ">=", ">",
455 "==", "=",
456 0
457 };
458
459 int i;
460
461 if (p + 1 <= end)
462 {
463 for (i = 0; punctuators[i]; i++)
464 {
465 const char *punctuator = punctuators[i];
466
467 if (p[0] == punctuator[0])
468 {
469 int len = strlen (punctuator);
470
471 if (p + len <= end
472 && ! memcmp (p, punctuator, len))
473 {
474 set_token (tok, p, p + len);
475 return 1;
476 }
477 }
478 }
479 }
480
481 return 0;
482 }
483
484
485 /* Peel the next preprocessor token off of SRC, and put it in TOK.
486 Mutate TOK to refer to the first token in SRC, and mutate SRC to
487 refer to the text after that token. SRC must be a shared buffer;
488 the resulting TOK will be shared, pointing into the same string SRC
489 does. Initialize TOK's last_token field. Return non-zero if we
490 succeed, or 0 if we didn't find any more tokens in SRC. */
491 static int
492 get_token (struct macro_buffer *tok,
493 struct macro_buffer *src)
494 {
495 char *p = src->text;
496 char *end = p + src->len;
497
498 gdb_assert (src->shared);
499
500 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
501
502 preprocessing-token:
503 header-name
504 identifier
505 pp-number
506 character-constant
507 string-literal
508 punctuator
509 each non-white-space character that cannot be one of the above
510
511 We don't have to deal with header-name tokens, since those can
512 only occur after a #include, which we will never see. */
513
514 while (p < end)
515 if (macro_is_whitespace (*p))
516 p++;
517 else if (get_comment (tok, p, end))
518 p += tok->len;
519 else if (get_pp_number (tok, p, end)
520 || get_character_constant (tok, p, end)
521 || get_string_literal (tok, p, end)
522 /* Note: the grammar in the standard seems to be
523 ambiguous: L'x' can be either a wide character
524 constant, or an identifier followed by a normal
525 character constant. By trying `get_identifier' after
526 we try get_character_constant and get_string_literal,
527 we give the wide character syntax precedence. Now,
528 since GDB doesn't handle wide character constants
529 anyway, is this the right thing to do? */
530 || get_identifier (tok, p, end)
531 || get_punctuator (tok, p, end))
532 {
533 /* How many characters did we consume, including whitespace? */
534 int consumed = p - src->text + tok->len;
535
536 src->text += consumed;
537 src->len -= consumed;
538 return 1;
539 }
540 else
541 {
542 /* We have found a "non-whitespace character that cannot be
543 one of the above." Make a token out of it. */
544 int consumed;
545
546 set_token (tok, p, p + 1);
547 consumed = p - src->text + tok->len;
548 src->text += consumed;
549 src->len -= consumed;
550 return 1;
551 }
552
553 return 0;
554 }
555
556
557 \f
558 /* Appending token strings, with and without splicing */
559
560
561 /* Append the macro buffer SRC to the end of DEST, and ensure that
562 doing so doesn't splice the token at the end of SRC with the token
563 at the beginning of DEST. SRC and DEST must have their last_token
564 fields set. Upon return, DEST's last_token field is set correctly.
565
566 For example:
567
568 If DEST is "(" and SRC is "y", then we can return with
569 DEST set to "(y" --- we've simply appended the two buffers.
570
571 However, if DEST is "x" and SRC is "y", then we must not return
572 with DEST set to "xy" --- that would splice the two tokens "x" and
573 "y" together to make a single token "xy". However, it would be
574 fine to return with DEST set to "x y". Similarly, "<" and "<" must
575 yield "< <", not "<<", etc. */
576 static void
577 append_tokens_without_splicing (struct macro_buffer *dest,
578 struct macro_buffer *src)
579 {
580 int original_dest_len = dest->len;
581 struct macro_buffer dest_tail, new_token;
582
583 gdb_assert (src->last_token != -1);
584 gdb_assert (dest->last_token != -1);
585
586 /* First, just try appending the two, and call get_token to see if
587 we got a splice. */
588 dest->appendmem (src->text, src->len);
589
590 /* If DEST originally had no token abutting its end, then we can't
591 have spliced anything, so we're done. */
592 if (dest->last_token == original_dest_len)
593 {
594 dest->last_token = original_dest_len + src->last_token;
595 return;
596 }
597
598 /* Set DEST_TAIL to point to the last token in DEST, followed by
599 all the stuff we just appended. */
600 dest_tail.set_shared (dest->text + dest->last_token,
601 dest->len - dest->last_token);
602
603 /* Re-parse DEST's last token. We know that DEST used to contain
604 at least one token, so if it doesn't contain any after the
605 append, then we must have spliced "/" and "*" or "/" and "/" to
606 make a comment start. (Just for the record, I got this right
607 the first time. This is not a bug fix.) */
608 if (get_token (&new_token, &dest_tail)
609 && (new_token.text + new_token.len
610 == dest->text + original_dest_len))
611 {
612 /* No splice, so we're done. */
613 dest->last_token = original_dest_len + src->last_token;
614 return;
615 }
616
617 /* Okay, a simple append caused a splice. Let's chop dest back to
618 its original length and try again, but separate the texts with a
619 space. */
620 dest->len = original_dest_len;
621 dest->appendc (' ');
622 dest->appendmem (src->text, src->len);
623
624 dest_tail.set_shared (dest->text + dest->last_token,
625 dest->len - dest->last_token);
626
627 /* Try to re-parse DEST's last token, as above. */
628 if (get_token (&new_token, &dest_tail)
629 && (new_token.text + new_token.len
630 == dest->text + original_dest_len))
631 {
632 /* No splice, so we're done. */
633 dest->last_token = original_dest_len + 1 + src->last_token;
634 return;
635 }
636
637 /* As far as I know, there's no case where inserting a space isn't
638 enough to prevent a splice. */
639 internal_error (__FILE__, __LINE__,
640 _("unable to avoid splicing tokens during macro expansion"));
641 }
642
643 /* Stringify an argument, and insert it into DEST. ARG is the text to
644 stringify; it is LEN bytes long. */
645
646 static void
647 stringify (struct macro_buffer *dest, const char *arg, int len)
648 {
649 /* Trim initial whitespace from ARG. */
650 while (len > 0 && macro_is_whitespace (*arg))
651 {
652 ++arg;
653 --len;
654 }
655
656 /* Trim trailing whitespace from ARG. */
657 while (len > 0 && macro_is_whitespace (arg[len - 1]))
658 --len;
659
660 /* Insert the string. */
661 dest->appendc ('"');
662 while (len > 0)
663 {
664 /* We could try to handle strange cases here, like control
665 characters, but there doesn't seem to be much point. */
666 if (macro_is_whitespace (*arg))
667 {
668 /* Replace a sequence of whitespace with a single space. */
669 dest->appendc (' ');
670 while (len > 1 && macro_is_whitespace (arg[1]))
671 {
672 ++arg;
673 --len;
674 }
675 }
676 else if (*arg == '\\' || *arg == '"')
677 {
678 dest->appendc ('\\');
679 dest->appendc (*arg);
680 }
681 else
682 dest->appendc (*arg);
683 ++arg;
684 --len;
685 }
686 dest->appendc ('"');
687 dest->last_token = dest->len;
688 }
689
690 /* See macroexp.h. */
691
692 char *
693 macro_stringify (const char *str)
694 {
695 int len = strlen (str);
696 struct macro_buffer buffer (len);
697
698 stringify (&buffer, str, len);
699 buffer.appendc ('\0');
700
701 return buffer.release ();
702 }
703
704 \f
705 /* Expanding macros! */
706
707
708 /* A singly-linked list of the names of the macros we are currently
709 expanding --- for detecting expansion loops. */
710 struct macro_name_list {
711 const char *name;
712 struct macro_name_list *next;
713 };
714
715
716 /* Return non-zero if we are currently expanding the macro named NAME,
717 according to LIST; otherwise, return zero.
718
719 You know, it would be possible to get rid of all the NO_LOOP
720 arguments to these functions by simply generating a new lookup
721 function and baton which refuses to find the definition for a
722 particular macro, and otherwise delegates the decision to another
723 function/baton pair. But that makes the linked list of excluded
724 macros chained through untyped baton pointers, which will make it
725 harder to debug. :( */
726 static int
727 currently_rescanning (struct macro_name_list *list, const char *name)
728 {
729 for (; list; list = list->next)
730 if (strcmp (name, list->name) == 0)
731 return 1;
732
733 return 0;
734 }
735
736
737 /* Gather the arguments to a macro expansion.
738
739 NAME is the name of the macro being invoked. (It's only used for
740 printing error messages.)
741
742 Assume that SRC is the text of the macro invocation immediately
743 following the macro name. For example, if we're processing the
744 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
745 baz).
746
747 If SRC doesn't start with an open paren ( token at all, return
748 false, leave SRC unchanged, and don't set *ARGS_PTR to anything.
749
750 If SRC doesn't contain a properly terminated argument list, then
751 raise an error.
752
753 For a variadic macro, NARGS holds the number of formal arguments to
754 the macro. For a GNU-style variadic macro, this should be the
755 number of named arguments. For a non-variadic macro, NARGS should
756 be -1.
757
758 Otherwise, return true and set *ARGS_PTR to a vector of macro
759 buffers referring to the argument texts. The macro buffers share
760 their text with SRC, and their last_token fields are initialized.
761
762 NOTE WELL: if SRC starts with a open paren ( token followed
763 immediately by a close paren ) token (e.g., the invocation looks
764 like "foo()"), we treat that as one argument, which happens to be
765 the empty list of tokens. The caller should keep in mind that such
766 a sequence of tokens is a valid way to invoke one-parameter
767 function-like macros, but also a valid way to invoke zero-parameter
768 function-like macros. Eeew.
769
770 Consume the tokens from SRC; after this call, SRC contains the text
771 following the invocation. */
772
773 static bool
774 gather_arguments (const char *name, struct macro_buffer *src, int nargs,
775 std::vector<struct macro_buffer> *args_ptr)
776 {
777 struct macro_buffer tok;
778 std::vector<struct macro_buffer> args;
779
780 /* Does SRC start with an opening paren token? Read from a copy of
781 SRC, so SRC itself is unaffected if we don't find an opening
782 paren. */
783 {
784 struct macro_buffer temp (src->text, src->len);
785
786 if (! get_token (&tok, &temp)
787 || tok.len != 1
788 || tok.text[0] != '(')
789 return false;
790 }
791
792 /* Consume SRC's opening paren. */
793 get_token (&tok, src);
794
795 for (;;)
796 {
797 struct macro_buffer *arg;
798 int depth;
799
800 /* Initialize the next argument. */
801 args.emplace_back ();
802 arg = &args.back ();
803 set_token (arg, src->text, src->text);
804
805 /* Gather the argument's tokens. */
806 depth = 0;
807 for (;;)
808 {
809 if (! get_token (&tok, src))
810 error (_("Malformed argument list for macro `%s'."), name);
811
812 /* Is tok an opening paren? */
813 if (tok.len == 1 && tok.text[0] == '(')
814 depth++;
815
816 /* Is tok is a closing paren? */
817 else if (tok.len == 1 && tok.text[0] == ')')
818 {
819 /* If it's a closing paren at the top level, then that's
820 the end of the argument list. */
821 if (depth == 0)
822 {
823 /* In the varargs case, the last argument may be
824 missing. Add an empty argument in this case. */
825 if (nargs != -1 && args.size () == nargs - 1)
826 {
827 args.emplace_back ();
828 arg = &args.back ();
829 set_token (arg, src->text, src->text);
830 }
831
832 *args_ptr = std::move (args);
833 return true;
834 }
835
836 depth--;
837 }
838
839 /* If tok is a comma at top level, then that's the end of
840 the current argument. However, if we are handling a
841 variadic macro and we are computing the last argument, we
842 want to include the comma and remaining tokens. */
843 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
844 && (nargs == -1 || args.size () < nargs))
845 break;
846
847 /* Extend the current argument to enclose this token. If
848 this is the current argument's first token, leave out any
849 leading whitespace, just for aesthetics. */
850 if (arg->len == 0)
851 {
852 arg->text = tok.text;
853 arg->len = tok.len;
854 arg->last_token = 0;
855 }
856 else
857 {
858 arg->len = (tok.text + tok.len) - arg->text;
859 arg->last_token = tok.text - arg->text;
860 }
861 }
862 }
863 }
864
865
866 /* The `expand' and `substitute_args' functions both invoke `scan'
867 recursively, so we need a forward declaration somewhere. */
868 static void scan (struct macro_buffer *dest,
869 struct macro_buffer *src,
870 struct macro_name_list *no_loop,
871 macro_lookup_ftype *lookup_func,
872 void *lookup_baton);
873
874
875 /* A helper function for substitute_args.
876
877 ARGV is a vector of all the arguments; ARGC is the number of
878 arguments. IS_VARARGS is true if the macro being substituted is a
879 varargs macro; in this case VA_ARG_NAME is the name of the
880 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
881 false.
882
883 If the token TOK is the name of a parameter, return the parameter's
884 index. If TOK is not an argument, return -1. */
885
886 static int
887 find_parameter (const struct macro_buffer *tok,
888 int is_varargs, const struct macro_buffer *va_arg_name,
889 int argc, const char * const *argv)
890 {
891 int i;
892
893 if (! tok->is_identifier)
894 return -1;
895
896 for (i = 0; i < argc; ++i)
897 if (tok->len == strlen (argv[i])
898 && !memcmp (tok->text, argv[i], tok->len))
899 return i;
900
901 if (is_varargs && tok->len == va_arg_name->len
902 && ! memcmp (tok->text, va_arg_name->text, tok->len))
903 return argc - 1;
904
905 return -1;
906 }
907
908 /* Helper function for substitute_args that gets the next token and
909 updates the passed-in state variables. */
910
911 static void
912 get_next_token_for_substitution (struct macro_buffer *replacement_list,
913 struct macro_buffer *token,
914 char **start,
915 struct macro_buffer *lookahead,
916 char **lookahead_start,
917 int *lookahead_valid,
918 bool *keep_going)
919 {
920 if (!*lookahead_valid)
921 *keep_going = false;
922 else
923 {
924 *keep_going = true;
925 *token = *lookahead;
926 *start = *lookahead_start;
927 *lookahead_start = replacement_list->text;
928 *lookahead_valid = get_token (lookahead, replacement_list);
929 }
930 }
931
932 /* Given the macro definition DEF, being invoked with the actual
933 arguments given by ARGV, substitute the arguments into the
934 replacement list, and store the result in DEST.
935
936 IS_VARARGS should be true if DEF is a varargs macro. In this case,
937 VA_ARG_NAME should be the name of the "variable" argument -- either
938 __VA_ARGS__ for c99-style varargs, or the final argument name, for
939 GNU-style varargs. If IS_VARARGS is false, this parameter is
940 ignored.
941
942 If it is necessary to expand macro invocations in one of the
943 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
944 definitions, and don't expand invocations of the macros listed in
945 NO_LOOP. */
946
947 static void
948 substitute_args (struct macro_buffer *dest,
949 struct macro_definition *def,
950 int is_varargs, const struct macro_buffer *va_arg_name,
951 const std::vector<struct macro_buffer> &argv,
952 struct macro_name_list *no_loop,
953 macro_lookup_ftype *lookup_func,
954 void *lookup_baton)
955 {
956 /* The token we are currently considering. */
957 struct macro_buffer tok;
958 /* The replacement list's pointer from just before TOK was lexed. */
959 char *original_rl_start;
960 /* We have a single lookahead token to handle token splicing. */
961 struct macro_buffer lookahead;
962 /* The lookahead token might not be valid. */
963 int lookahead_valid;
964 /* The replacement list's pointer from just before LOOKAHEAD was
965 lexed. */
966 char *lookahead_rl_start;
967
968 /* A macro buffer for the macro's replacement list. */
969 struct macro_buffer replacement_list (def->replacement,
970 strlen (def->replacement));
971
972 gdb_assert (dest->len == 0);
973 dest->last_token = 0;
974
975 original_rl_start = replacement_list.text;
976 if (! get_token (&tok, &replacement_list))
977 return;
978 lookahead_rl_start = replacement_list.text;
979 lookahead_valid = get_token (&lookahead, &replacement_list);
980
981 /* __VA_OPT__ state variable. The states are:
982 0 - nothing happening
983 1 - saw __VA_OPT__
984 >= 2 in __VA_OPT__, the value encodes the parenthesis depth. */
985 unsigned vaopt_state = 0;
986
987 for (bool keep_going = true;
988 keep_going;
989 get_next_token_for_substitution (&replacement_list,
990 &tok,
991 &original_rl_start,
992 &lookahead,
993 &lookahead_rl_start,
994 &lookahead_valid,
995 &keep_going))
996 {
997 bool token_is_vaopt = (tok.len == 10
998 && strncmp (tok.text, "__VA_OPT__", 10) == 0);
999
1000 if (vaopt_state > 0)
1001 {
1002 if (token_is_vaopt)
1003 error (_("__VA_OPT__ cannot appear inside __VA_OPT__"));
1004 else if (tok.len == 1 && tok.text[0] == '(')
1005 {
1006 ++vaopt_state;
1007 /* We just entered __VA_OPT__, so don't emit this
1008 token. */
1009 continue;
1010 }
1011 else if (vaopt_state == 1)
1012 error (_("__VA_OPT__ must be followed by an open parenthesis"));
1013 else if (tok.len == 1 && tok.text[0] == ')')
1014 {
1015 --vaopt_state;
1016 if (vaopt_state == 1)
1017 {
1018 /* Done with __VA_OPT__. */
1019 vaopt_state = 0;
1020 /* Don't emit. */
1021 continue;
1022 }
1023 }
1024
1025 /* If __VA_ARGS__ is empty, then drop the contents of
1026 __VA_OPT__. */
1027 if (argv.back ().len == 0)
1028 continue;
1029 }
1030 else if (token_is_vaopt)
1031 {
1032 if (!is_varargs)
1033 error (_("__VA_OPT__ is only valid in a variadic macro"));
1034 vaopt_state = 1;
1035 /* Don't emit this token. */
1036 continue;
1037 }
1038
1039 /* Just for aesthetics. If we skipped some whitespace, copy
1040 that to DEST. */
1041 if (tok.text > original_rl_start)
1042 {
1043 dest->appendmem (original_rl_start, tok.text - original_rl_start);
1044 dest->last_token = dest->len;
1045 }
1046
1047 /* Is this token the stringification operator? */
1048 if (tok.len == 1
1049 && tok.text[0] == '#')
1050 {
1051 int arg;
1052
1053 if (!lookahead_valid)
1054 error (_("Stringification operator requires an argument."));
1055
1056 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1057 def->argc, def->argv);
1058 if (arg == -1)
1059 error (_("Argument to stringification operator must name "
1060 "a macro parameter."));
1061
1062 stringify (dest, argv[arg].text, argv[arg].len);
1063
1064 /* Read one token and let the loop iteration code handle the
1065 rest. */
1066 lookahead_rl_start = replacement_list.text;
1067 lookahead_valid = get_token (&lookahead, &replacement_list);
1068 }
1069 /* Is this token the splicing operator? */
1070 else if (tok.len == 2
1071 && tok.text[0] == '#'
1072 && tok.text[1] == '#')
1073 error (_("Stray splicing operator"));
1074 /* Is the next token the splicing operator? */
1075 else if (lookahead_valid
1076 && lookahead.len == 2
1077 && lookahead.text[0] == '#'
1078 && lookahead.text[1] == '#')
1079 {
1080 int finished = 0;
1081 int prev_was_comma = 0;
1082
1083 /* Note that GCC warns if the result of splicing is not a
1084 token. In the debugger there doesn't seem to be much
1085 benefit from doing this. */
1086
1087 /* Insert the first token. */
1088 if (tok.len == 1 && tok.text[0] == ',')
1089 prev_was_comma = 1;
1090 else
1091 {
1092 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1093 def->argc, def->argv);
1094
1095 if (arg != -1)
1096 dest->appendmem (argv[arg].text, argv[arg].len);
1097 else
1098 dest->appendmem (tok.text, tok.len);
1099 }
1100
1101 /* Apply a possible sequence of ## operators. */
1102 for (;;)
1103 {
1104 if (! get_token (&tok, &replacement_list))
1105 error (_("Splicing operator at end of macro"));
1106
1107 /* Handle a comma before a ##. If we are handling
1108 varargs, and the token on the right hand side is the
1109 varargs marker, and the final argument is empty or
1110 missing, then drop the comma. This is a GNU
1111 extension. There is one ambiguous case here,
1112 involving pedantic behavior with an empty argument,
1113 but we settle that in favor of GNU-style (GCC uses an
1114 option). If we aren't dealing with varargs, we
1115 simply insert the comma. */
1116 if (prev_was_comma)
1117 {
1118 if (! (is_varargs
1119 && tok.len == va_arg_name->len
1120 && !memcmp (tok.text, va_arg_name->text, tok.len)
1121 && argv.back ().len == 0))
1122 dest->appendmem (",", 1);
1123 prev_was_comma = 0;
1124 }
1125
1126 /* Insert the token. If it is a parameter, insert the
1127 argument. If it is a comma, treat it specially. */
1128 if (tok.len == 1 && tok.text[0] == ',')
1129 prev_was_comma = 1;
1130 else
1131 {
1132 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1133 def->argc, def->argv);
1134
1135 if (arg != -1)
1136 dest->appendmem (argv[arg].text, argv[arg].len);
1137 else
1138 dest->appendmem (tok.text, tok.len);
1139 }
1140
1141 /* Now read another token. If it is another splice, we
1142 loop. */
1143 original_rl_start = replacement_list.text;
1144 if (! get_token (&tok, &replacement_list))
1145 {
1146 finished = 1;
1147 break;
1148 }
1149
1150 if (! (tok.len == 2
1151 && tok.text[0] == '#'
1152 && tok.text[1] == '#'))
1153 break;
1154 }
1155
1156 if (prev_was_comma)
1157 {
1158 /* We saw a comma. Insert it now. */
1159 dest->appendmem (",", 1);
1160 }
1161
1162 dest->last_token = dest->len;
1163 if (finished)
1164 lookahead_valid = 0;
1165 else
1166 {
1167 /* Set up for the loop iterator. */
1168 lookahead = tok;
1169 lookahead_rl_start = original_rl_start;
1170 lookahead_valid = 1;
1171 }
1172 }
1173 else
1174 {
1175 /* Is this token an identifier? */
1176 int substituted = 0;
1177 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1178 def->argc, def->argv);
1179
1180 if (arg != -1)
1181 {
1182 /* Expand any macro invocations in the argument text,
1183 and append the result to dest. Remember that scan
1184 mutates its source, so we need to scan a new buffer
1185 referring to the argument's text, not the argument
1186 itself. */
1187 struct macro_buffer arg_src (argv[arg].text, argv[arg].len);
1188 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1189 substituted = 1;
1190 }
1191
1192 /* If it wasn't a parameter, then just copy it across. */
1193 if (! substituted)
1194 append_tokens_without_splicing (dest, &tok);
1195 }
1196 }
1197
1198 if (vaopt_state > 0)
1199 error (_("Unterminated __VA_OPT__"));
1200 }
1201
1202
1203 /* Expand a call to a macro named ID, whose definition is DEF. Append
1204 its expansion to DEST. SRC is the input text following the ID
1205 token. We are currently rescanning the expansions of the macros
1206 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1207 LOOKUP_BATON to find definitions for any nested macro references.
1208
1209 Return 1 if we decided to expand it, zero otherwise. (If it's a
1210 function-like macro name that isn't followed by an argument list,
1211 we don't expand it.) If we return zero, leave SRC unchanged. */
1212 static int
1213 expand (const char *id,
1214 struct macro_definition *def,
1215 struct macro_buffer *dest,
1216 struct macro_buffer *src,
1217 struct macro_name_list *no_loop,
1218 macro_lookup_ftype *lookup_func,
1219 void *lookup_baton)
1220 {
1221 struct macro_name_list new_no_loop;
1222
1223 /* Create a new node to be added to the front of the no-expand list.
1224 This list is appropriate for re-scanning replacement lists, but
1225 it is *not* appropriate for scanning macro arguments; invocations
1226 of the macro whose arguments we are gathering *do* get expanded
1227 there. */
1228 new_no_loop.name = id;
1229 new_no_loop.next = no_loop;
1230
1231 /* What kind of macro are we expanding? */
1232 if (def->kind == macro_object_like)
1233 {
1234 struct macro_buffer replacement_list (def->replacement,
1235 strlen (def->replacement));
1236
1237 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1238 return 1;
1239 }
1240 else if (def->kind == macro_function_like)
1241 {
1242 struct macro_buffer va_arg_name;
1243 int is_varargs = 0;
1244
1245 if (def->argc >= 1)
1246 {
1247 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1248 {
1249 /* In C99-style varargs, substitution is done using
1250 __VA_ARGS__. */
1251 va_arg_name.set_shared ("__VA_ARGS__", strlen ("__VA_ARGS__"));
1252 is_varargs = 1;
1253 }
1254 else
1255 {
1256 int len = strlen (def->argv[def->argc - 1]);
1257
1258 if (len > 3
1259 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1260 {
1261 /* In GNU-style varargs, the name of the
1262 substitution parameter is the name of the formal
1263 argument without the "...". */
1264 va_arg_name.set_shared (def->argv[def->argc - 1], len - 3);
1265 is_varargs = 1;
1266 }
1267 }
1268 }
1269
1270 std::vector<struct macro_buffer> argv;
1271 /* If we couldn't find any argument list, then we don't expand
1272 this macro. */
1273 if (!gather_arguments (id, src, is_varargs ? def->argc : -1,
1274 &argv))
1275 return 0;
1276
1277 /* Check that we're passing an acceptable number of arguments for
1278 this macro. */
1279 if (argv.size () != def->argc)
1280 {
1281 if (is_varargs && argv.size () >= def->argc - 1)
1282 {
1283 /* Ok. */
1284 }
1285 /* Remember that a sequence of tokens like "foo()" is a
1286 valid invocation of a macro expecting either zero or one
1287 arguments. */
1288 else if (! (argv.size () == 1
1289 && argv[0].len == 0
1290 && def->argc == 0))
1291 error (_("Wrong number of arguments to macro `%s' "
1292 "(expected %d, got %d)."),
1293 id, def->argc, int (argv.size ()));
1294 }
1295
1296 /* Note that we don't expand macro invocations in the arguments
1297 yet --- we let subst_args take care of that. Parameters that
1298 appear as operands of the stringifying operator "#" or the
1299 splicing operator "##" don't get macro references expanded,
1300 so we can't really tell whether it's appropriate to macro-
1301 expand an argument until we see how it's being used. */
1302 struct macro_buffer substituted (0);
1303 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1304 argv, no_loop, lookup_func, lookup_baton);
1305
1306 /* Now `substituted' is the macro's replacement list, with all
1307 argument values substituted into it properly. Re-scan it for
1308 macro references, but don't expand invocations of this macro.
1309
1310 We create a new buffer, `substituted_src', which points into
1311 `substituted', and scan that. We can't scan `substituted'
1312 itself, since the tokenization process moves the buffer's
1313 text pointer around, and we still need to be able to find
1314 `substituted's original text buffer after scanning it so we
1315 can free it. */
1316 struct macro_buffer substituted_src (substituted.text, substituted.len);
1317 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1318
1319 return 1;
1320 }
1321 else
1322 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1323 }
1324
1325
1326 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1327 constitute a macro invokation not forbidden in NO_LOOP, append its
1328 expansion to DEST and return non-zero. Otherwise, return zero, and
1329 leave DEST unchanged.
1330
1331 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1332 SRC_FIRST must be a string built by get_token. */
1333 static int
1334 maybe_expand (struct macro_buffer *dest,
1335 struct macro_buffer *src_first,
1336 struct macro_buffer *src_rest,
1337 struct macro_name_list *no_loop,
1338 macro_lookup_ftype *lookup_func,
1339 void *lookup_baton)
1340 {
1341 gdb_assert (src_first->shared);
1342 gdb_assert (src_rest->shared);
1343 gdb_assert (! dest->shared);
1344
1345 /* Is this token an identifier? */
1346 if (src_first->is_identifier)
1347 {
1348 /* Make a null-terminated copy of it, since that's what our
1349 lookup function expects. */
1350 std::string id (src_first->text, src_first->len);
1351
1352 /* If we're currently re-scanning the result of expanding
1353 this macro, don't expand it again. */
1354 if (! currently_rescanning (no_loop, id.c_str ()))
1355 {
1356 /* Does this identifier have a macro definition in scope? */
1357 struct macro_definition *def = lookup_func (id.c_str (),
1358 lookup_baton);
1359
1360 if (def && expand (id.c_str (), def, dest, src_rest, no_loop,
1361 lookup_func, lookup_baton))
1362 return 1;
1363 }
1364 }
1365
1366 return 0;
1367 }
1368
1369
1370 /* Expand macro references in SRC, appending the results to DEST.
1371 Assume we are re-scanning the result of expanding the macros named
1372 in NO_LOOP, and don't try to re-expand references to them.
1373
1374 SRC must be a shared buffer; DEST must not be one. */
1375 static void
1376 scan (struct macro_buffer *dest,
1377 struct macro_buffer *src,
1378 struct macro_name_list *no_loop,
1379 macro_lookup_ftype *lookup_func,
1380 void *lookup_baton)
1381 {
1382 gdb_assert (src->shared);
1383 gdb_assert (! dest->shared);
1384
1385 for (;;)
1386 {
1387 struct macro_buffer tok;
1388 char *original_src_start = src->text;
1389
1390 /* Find the next token in SRC. */
1391 if (! get_token (&tok, src))
1392 break;
1393
1394 /* Just for aesthetics. If we skipped some whitespace, copy
1395 that to DEST. */
1396 if (tok.text > original_src_start)
1397 {
1398 dest->appendmem (original_src_start, tok.text - original_src_start);
1399 dest->last_token = dest->len;
1400 }
1401
1402 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1403 /* We didn't end up expanding tok as a macro reference, so
1404 simply append it to dest. */
1405 append_tokens_without_splicing (dest, &tok);
1406 }
1407
1408 /* Just for aesthetics. If there was any trailing whitespace in
1409 src, copy it to dest. */
1410 if (src->len)
1411 {
1412 dest->appendmem (src->text, src->len);
1413 dest->last_token = dest->len;
1414 }
1415 }
1416
1417
1418 gdb::unique_xmalloc_ptr<char>
1419 macro_expand (const char *source,
1420 macro_lookup_ftype *lookup_func,
1421 void *lookup_func_baton)
1422 {
1423 struct macro_buffer src (source, strlen (source));
1424
1425 struct macro_buffer dest (0);
1426 dest.last_token = 0;
1427
1428 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1429
1430 dest.appendc ('\0');
1431
1432 return gdb::unique_xmalloc_ptr<char> (dest.release ());
1433 }
1434
1435
1436 gdb::unique_xmalloc_ptr<char>
1437 macro_expand_once (const char *source,
1438 macro_lookup_ftype *lookup_func,
1439 void *lookup_func_baton)
1440 {
1441 error (_("Expand-once not implemented yet."));
1442 }
1443
1444
1445 char *
1446 macro_expand_next (const char **lexptr,
1447 macro_lookup_ftype *lookup_func,
1448 void *lookup_baton)
1449 {
1450 struct macro_buffer tok;
1451
1452 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1453 struct macro_buffer src (*lexptr, strlen (*lexptr));
1454
1455 /* Set up DEST to receive the expansion, if there is one. */
1456 struct macro_buffer dest (0);
1457 dest.last_token = 0;
1458
1459 /* Get the text's first preprocessing token. */
1460 if (! get_token (&tok, &src))
1461 return 0;
1462
1463 /* If it's a macro invocation, expand it. */
1464 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1465 {
1466 /* It was a macro invocation! Package up the expansion as a
1467 null-terminated string and return it. Set *lexptr to the
1468 start of the next token in the input. */
1469 dest.appendc ('\0');
1470 *lexptr = src.text;
1471 return dest.release ();
1472 }
1473 else
1474 {
1475 /* It wasn't a macro invocation. */
1476 return 0;
1477 }
1478 }
This page took 0.066707 seconds and 5 git commands to generate.