Copyright year update in most files of the GDB Project.
[deliverable/binutils-gdb.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002, 2007-2012 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "bcache.h"
23 #include "macrotab.h"
24 #include "macroexp.h"
25 #include "gdb_assert.h"
26 #include "c-lang.h"
27
28
29 \f
30 /* A resizeable, substringable string type. */
31
32
33 /* A string type that we can resize, quickly append to, and use to
34 refer to substrings of other strings. */
35 struct macro_buffer
36 {
37 /* An array of characters. The first LEN bytes are the real text,
38 but there are SIZE bytes allocated to the array. If SIZE is
39 zero, then this doesn't point to a malloc'ed block. If SHARED is
40 non-zero, then this buffer is actually a pointer into some larger
41 string, and we shouldn't append characters to it, etc. Because
42 of sharing, we can't assume in general that the text is
43 null-terminated. */
44 char *text;
45
46 /* The number of characters in the string. */
47 int len;
48
49 /* The number of characters allocated to the string. If SHARED is
50 non-zero, this is meaningless; in this case, we set it to zero so
51 that any "do we have room to append something?" tests will fail,
52 so we don't always have to check SHARED before using this field. */
53 int size;
54
55 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
56 block). Non-zero if TEXT is actually pointing into the middle of
57 some other block, and we shouldn't reallocate it. */
58 int shared;
59
60 /* For detecting token splicing.
61
62 This is the index in TEXT of the first character of the token
63 that abuts the end of TEXT. If TEXT contains no tokens, then we
64 set this equal to LEN. If TEXT ends in whitespace, then there is
65 no token abutting the end of TEXT (it's just whitespace), and
66 again, we set this equal to LEN. We set this to -1 if we don't
67 know the nature of TEXT. */
68 int last_token;
69
70 /* If this buffer is holding the result from get_token, then this
71 is non-zero if it is an identifier token, zero otherwise. */
72 int is_identifier;
73 };
74
75
76 /* Set the macro buffer *B to the empty string, guessing that its
77 final contents will fit in N bytes. (It'll get resized if it
78 doesn't, so the guess doesn't have to be right.) Allocate the
79 initial storage with xmalloc. */
80 static void
81 init_buffer (struct macro_buffer *b, int n)
82 {
83 b->size = n;
84 if (n > 0)
85 b->text = (char *) xmalloc (n);
86 else
87 b->text = NULL;
88 b->len = 0;
89 b->shared = 0;
90 b->last_token = -1;
91 }
92
93
94 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
95 shared substring. */
96 static void
97 init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
98 {
99 buf->text = addr;
100 buf->len = len;
101 buf->shared = 1;
102 buf->size = 0;
103 buf->last_token = -1;
104 }
105
106
107 /* Free the text of the buffer B. Raise an error if B is shared. */
108 static void
109 free_buffer (struct macro_buffer *b)
110 {
111 gdb_assert (! b->shared);
112 if (b->size)
113 xfree (b->text);
114 }
115
116
117 /* A cleanup function for macro buffers. */
118 static void
119 cleanup_macro_buffer (void *untyped_buf)
120 {
121 free_buffer ((struct macro_buffer *) untyped_buf);
122 }
123
124
125 /* Resize the buffer B to be at least N bytes long. Raise an error if
126 B shouldn't be resized. */
127 static void
128 resize_buffer (struct macro_buffer *b, int n)
129 {
130 /* We shouldn't be trying to resize shared strings. */
131 gdb_assert (! b->shared);
132
133 if (b->size == 0)
134 b->size = n;
135 else
136 while (b->size <= n)
137 b->size *= 2;
138
139 b->text = xrealloc (b->text, b->size);
140 }
141
142
143 /* Append the character C to the buffer B. */
144 static void
145 appendc (struct macro_buffer *b, int c)
146 {
147 int new_len = b->len + 1;
148
149 if (new_len > b->size)
150 resize_buffer (b, new_len);
151
152 b->text[b->len] = c;
153 b->len = new_len;
154 }
155
156
157 /* Append the LEN bytes at ADDR to the buffer B. */
158 static void
159 appendmem (struct macro_buffer *b, char *addr, int len)
160 {
161 int new_len = b->len + len;
162
163 if (new_len > b->size)
164 resize_buffer (b, new_len);
165
166 memcpy (b->text + b->len, addr, len);
167 b->len = new_len;
168 }
169
170
171 \f
172 /* Recognizing preprocessor tokens. */
173
174
175 int
176 macro_is_whitespace (int c)
177 {
178 return (c == ' '
179 || c == '\t'
180 || c == '\n'
181 || c == '\v'
182 || c == '\f');
183 }
184
185
186 int
187 macro_is_digit (int c)
188 {
189 return ('0' <= c && c <= '9');
190 }
191
192
193 int
194 macro_is_identifier_nondigit (int c)
195 {
196 return (c == '_'
197 || ('a' <= c && c <= 'z')
198 || ('A' <= c && c <= 'Z'));
199 }
200
201
202 static void
203 set_token (struct macro_buffer *tok, char *start, char *end)
204 {
205 init_shared_buffer (tok, start, end - start);
206 tok->last_token = 0;
207
208 /* Presumed; get_identifier may overwrite this. */
209 tok->is_identifier = 0;
210 }
211
212
213 static int
214 get_comment (struct macro_buffer *tok, char *p, char *end)
215 {
216 if (p + 2 > end)
217 return 0;
218 else if (p[0] == '/'
219 && p[1] == '*')
220 {
221 char *tok_start = p;
222
223 p += 2;
224
225 for (; p < end; p++)
226 if (p + 2 <= end
227 && p[0] == '*'
228 && p[1] == '/')
229 {
230 p += 2;
231 set_token (tok, tok_start, p);
232 return 1;
233 }
234
235 error (_("Unterminated comment in macro expansion."));
236 }
237 else if (p[0] == '/'
238 && p[1] == '/')
239 {
240 char *tok_start = p;
241
242 p += 2;
243 for (; p < end; p++)
244 if (*p == '\n')
245 break;
246
247 set_token (tok, tok_start, p);
248 return 1;
249 }
250 else
251 return 0;
252 }
253
254
255 static int
256 get_identifier (struct macro_buffer *tok, char *p, char *end)
257 {
258 if (p < end
259 && macro_is_identifier_nondigit (*p))
260 {
261 char *tok_start = p;
262
263 while (p < end
264 && (macro_is_identifier_nondigit (*p)
265 || macro_is_digit (*p)))
266 p++;
267
268 set_token (tok, tok_start, p);
269 tok->is_identifier = 1;
270 return 1;
271 }
272 else
273 return 0;
274 }
275
276
277 static int
278 get_pp_number (struct macro_buffer *tok, char *p, char *end)
279 {
280 if (p < end
281 && (macro_is_digit (*p)
282 || (*p == '.'
283 && p + 2 <= end
284 && macro_is_digit (p[1]))))
285 {
286 char *tok_start = p;
287
288 while (p < end)
289 {
290 if (p + 2 <= end
291 && strchr ("eEpP", *p)
292 && (p[1] == '+' || p[1] == '-'))
293 p += 2;
294 else if (macro_is_digit (*p)
295 || macro_is_identifier_nondigit (*p)
296 || *p == '.')
297 p++;
298 else
299 break;
300 }
301
302 set_token (tok, tok_start, p);
303 return 1;
304 }
305 else
306 return 0;
307 }
308
309
310
311 /* If the text starting at P going up to (but not including) END
312 starts with a character constant, set *TOK to point to that
313 character constant, and return 1. Otherwise, return zero.
314 Signal an error if it contains a malformed or incomplete character
315 constant. */
316 static int
317 get_character_constant (struct macro_buffer *tok, char *p, char *end)
318 {
319 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
320 But of course, what really matters is that we handle it the same
321 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
322 to handle escape sequences. */
323 if ((p + 1 <= end && *p == '\'')
324 || (p + 2 <= end
325 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
326 && p[1] == '\''))
327 {
328 char *tok_start = p;
329 char *body_start;
330 int char_count = 0;
331
332 if (*p == '\'')
333 p++;
334 else if (*p == 'L' || *p == 'u' || *p == 'U')
335 p += 2;
336 else
337 gdb_assert_not_reached ("unexpected character constant");
338
339 body_start = p;
340 for (;;)
341 {
342 if (p >= end)
343 error (_("Unmatched single quote."));
344 else if (*p == '\'')
345 {
346 if (!char_count)
347 error (_("A character constant must contain at least one "
348 "character."));
349 p++;
350 break;
351 }
352 else if (*p == '\\')
353 {
354 p++;
355 char_count += c_parse_escape (&p, NULL);
356 }
357 else
358 {
359 p++;
360 char_count++;
361 }
362 }
363
364 set_token (tok, tok_start, p);
365 return 1;
366 }
367 else
368 return 0;
369 }
370
371
372 /* If the text starting at P going up to (but not including) END
373 starts with a string literal, set *TOK to point to that string
374 literal, and return 1. Otherwise, return zero. Signal an error if
375 it contains a malformed or incomplete string literal. */
376 static int
377 get_string_literal (struct macro_buffer *tok, char *p, char *end)
378 {
379 if ((p + 1 <= end
380 && *p == '"')
381 || (p + 2 <= end
382 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
383 && p[1] == '"'))
384 {
385 char *tok_start = p;
386
387 if (*p == '"')
388 p++;
389 else if (*p == 'L' || *p == 'u' || *p == 'U')
390 p += 2;
391 else
392 gdb_assert_not_reached ("unexpected string literal");
393
394 for (;;)
395 {
396 if (p >= end)
397 error (_("Unterminated string in expression."));
398 else if (*p == '"')
399 {
400 p++;
401 break;
402 }
403 else if (*p == '\n')
404 error (_("Newline characters may not appear in string "
405 "constants."));
406 else if (*p == '\\')
407 {
408 p++;
409 c_parse_escape (&p, NULL);
410 }
411 else
412 p++;
413 }
414
415 set_token (tok, tok_start, p);
416 return 1;
417 }
418 else
419 return 0;
420 }
421
422
423 static int
424 get_punctuator (struct macro_buffer *tok, char *p, char *end)
425 {
426 /* Here, speed is much less important than correctness and clarity. */
427
428 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
429 Note that this table is ordered in a special way. A punctuator
430 which is a prefix of another punctuator must appear after its
431 "extension". Otherwise, the wrong token will be returned. */
432 static const char * const punctuators[] = {
433 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
434 "...", ".",
435 "->", "--", "-=", "-",
436 "++", "+=", "+",
437 "*=", "*",
438 "!=", "!",
439 "&&", "&=", "&",
440 "/=", "/",
441 "%>", "%:%:", "%:", "%=", "%",
442 "^=", "^",
443 "##", "#",
444 ":>", ":",
445 "||", "|=", "|",
446 "<<=", "<<", "<=", "<:", "<%", "<",
447 ">>=", ">>", ">=", ">",
448 "==", "=",
449 0
450 };
451
452 int i;
453
454 if (p + 1 <= end)
455 {
456 for (i = 0; punctuators[i]; i++)
457 {
458 const char *punctuator = punctuators[i];
459
460 if (p[0] == punctuator[0])
461 {
462 int len = strlen (punctuator);
463
464 if (p + len <= end
465 && ! memcmp (p, punctuator, len))
466 {
467 set_token (tok, p, p + len);
468 return 1;
469 }
470 }
471 }
472 }
473
474 return 0;
475 }
476
477
478 /* Peel the next preprocessor token off of SRC, and put it in TOK.
479 Mutate TOK to refer to the first token in SRC, and mutate SRC to
480 refer to the text after that token. SRC must be a shared buffer;
481 the resulting TOK will be shared, pointing into the same string SRC
482 does. Initialize TOK's last_token field. Return non-zero if we
483 succeed, or 0 if we didn't find any more tokens in SRC. */
484 static int
485 get_token (struct macro_buffer *tok,
486 struct macro_buffer *src)
487 {
488 char *p = src->text;
489 char *end = p + src->len;
490
491 gdb_assert (src->shared);
492
493 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
494
495 preprocessing-token:
496 header-name
497 identifier
498 pp-number
499 character-constant
500 string-literal
501 punctuator
502 each non-white-space character that cannot be one of the above
503
504 We don't have to deal with header-name tokens, since those can
505 only occur after a #include, which we will never see. */
506
507 while (p < end)
508 if (macro_is_whitespace (*p))
509 p++;
510 else if (get_comment (tok, p, end))
511 p += tok->len;
512 else if (get_pp_number (tok, p, end)
513 || get_character_constant (tok, p, end)
514 || get_string_literal (tok, p, end)
515 /* Note: the grammar in the standard seems to be
516 ambiguous: L'x' can be either a wide character
517 constant, or an identifier followed by a normal
518 character constant. By trying `get_identifier' after
519 we try get_character_constant and get_string_literal,
520 we give the wide character syntax precedence. Now,
521 since GDB doesn't handle wide character constants
522 anyway, is this the right thing to do? */
523 || get_identifier (tok, p, end)
524 || get_punctuator (tok, p, end))
525 {
526 /* How many characters did we consume, including whitespace? */
527 int consumed = p - src->text + tok->len;
528
529 src->text += consumed;
530 src->len -= consumed;
531 return 1;
532 }
533 else
534 {
535 /* We have found a "non-whitespace character that cannot be
536 one of the above." Make a token out of it. */
537 int consumed;
538
539 set_token (tok, p, p + 1);
540 consumed = p - src->text + tok->len;
541 src->text += consumed;
542 src->len -= consumed;
543 return 1;
544 }
545
546 return 0;
547 }
548
549
550 \f
551 /* Appending token strings, with and without splicing */
552
553
554 /* Append the macro buffer SRC to the end of DEST, and ensure that
555 doing so doesn't splice the token at the end of SRC with the token
556 at the beginning of DEST. SRC and DEST must have their last_token
557 fields set. Upon return, DEST's last_token field is set correctly.
558
559 For example:
560
561 If DEST is "(" and SRC is "y", then we can return with
562 DEST set to "(y" --- we've simply appended the two buffers.
563
564 However, if DEST is "x" and SRC is "y", then we must not return
565 with DEST set to "xy" --- that would splice the two tokens "x" and
566 "y" together to make a single token "xy". However, it would be
567 fine to return with DEST set to "x y". Similarly, "<" and "<" must
568 yield "< <", not "<<", etc. */
569 static void
570 append_tokens_without_splicing (struct macro_buffer *dest,
571 struct macro_buffer *src)
572 {
573 int original_dest_len = dest->len;
574 struct macro_buffer dest_tail, new_token;
575
576 gdb_assert (src->last_token != -1);
577 gdb_assert (dest->last_token != -1);
578
579 /* First, just try appending the two, and call get_token to see if
580 we got a splice. */
581 appendmem (dest, src->text, src->len);
582
583 /* If DEST originally had no token abutting its end, then we can't
584 have spliced anything, so we're done. */
585 if (dest->last_token == original_dest_len)
586 {
587 dest->last_token = original_dest_len + src->last_token;
588 return;
589 }
590
591 /* Set DEST_TAIL to point to the last token in DEST, followed by
592 all the stuff we just appended. */
593 init_shared_buffer (&dest_tail,
594 dest->text + dest->last_token,
595 dest->len - dest->last_token);
596
597 /* Re-parse DEST's last token. We know that DEST used to contain
598 at least one token, so if it doesn't contain any after the
599 append, then we must have spliced "/" and "*" or "/" and "/" to
600 make a comment start. (Just for the record, I got this right
601 the first time. This is not a bug fix.) */
602 if (get_token (&new_token, &dest_tail)
603 && (new_token.text + new_token.len
604 == dest->text + original_dest_len))
605 {
606 /* No splice, so we're done. */
607 dest->last_token = original_dest_len + src->last_token;
608 return;
609 }
610
611 /* Okay, a simple append caused a splice. Let's chop dest back to
612 its original length and try again, but separate the texts with a
613 space. */
614 dest->len = original_dest_len;
615 appendc (dest, ' ');
616 appendmem (dest, src->text, src->len);
617
618 init_shared_buffer (&dest_tail,
619 dest->text + dest->last_token,
620 dest->len - dest->last_token);
621
622 /* Try to re-parse DEST's last token, as above. */
623 if (get_token (&new_token, &dest_tail)
624 && (new_token.text + new_token.len
625 == dest->text + original_dest_len))
626 {
627 /* No splice, so we're done. */
628 dest->last_token = original_dest_len + 1 + src->last_token;
629 return;
630 }
631
632 /* As far as I know, there's no case where inserting a space isn't
633 enough to prevent a splice. */
634 internal_error (__FILE__, __LINE__,
635 _("unable to avoid splicing tokens during macro expansion"));
636 }
637
638 /* Stringify an argument, and insert it into DEST. ARG is the text to
639 stringify; it is LEN bytes long. */
640
641 static void
642 stringify (struct macro_buffer *dest, char *arg, int len)
643 {
644 /* Trim initial whitespace from ARG. */
645 while (len > 0 && macro_is_whitespace (*arg))
646 {
647 ++arg;
648 --len;
649 }
650
651 /* Trim trailing whitespace from ARG. */
652 while (len > 0 && macro_is_whitespace (arg[len - 1]))
653 --len;
654
655 /* Insert the string. */
656 appendc (dest, '"');
657 while (len > 0)
658 {
659 /* We could try to handle strange cases here, like control
660 characters, but there doesn't seem to be much point. */
661 if (macro_is_whitespace (*arg))
662 {
663 /* Replace a sequence of whitespace with a single space. */
664 appendc (dest, ' ');
665 while (len > 1 && macro_is_whitespace (arg[1]))
666 {
667 ++arg;
668 --len;
669 }
670 }
671 else if (*arg == '\\' || *arg == '"')
672 {
673 appendc (dest, '\\');
674 appendc (dest, *arg);
675 }
676 else
677 appendc (dest, *arg);
678 ++arg;
679 --len;
680 }
681 appendc (dest, '"');
682 dest->last_token = dest->len;
683 }
684
685 \f
686 /* Expanding macros! */
687
688
689 /* A singly-linked list of the names of the macros we are currently
690 expanding --- for detecting expansion loops. */
691 struct macro_name_list {
692 const char *name;
693 struct macro_name_list *next;
694 };
695
696
697 /* Return non-zero if we are currently expanding the macro named NAME,
698 according to LIST; otherwise, return zero.
699
700 You know, it would be possible to get rid of all the NO_LOOP
701 arguments to these functions by simply generating a new lookup
702 function and baton which refuses to find the definition for a
703 particular macro, and otherwise delegates the decision to another
704 function/baton pair. But that makes the linked list of excluded
705 macros chained through untyped baton pointers, which will make it
706 harder to debug. :( */
707 static int
708 currently_rescanning (struct macro_name_list *list, const char *name)
709 {
710 for (; list; list = list->next)
711 if (strcmp (name, list->name) == 0)
712 return 1;
713
714 return 0;
715 }
716
717
718 /* Gather the arguments to a macro expansion.
719
720 NAME is the name of the macro being invoked. (It's only used for
721 printing error messages.)
722
723 Assume that SRC is the text of the macro invocation immediately
724 following the macro name. For example, if we're processing the
725 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
726 baz).
727
728 If SRC doesn't start with an open paren ( token at all, return
729 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
730
731 If SRC doesn't contain a properly terminated argument list, then
732 raise an error.
733
734 For a variadic macro, NARGS holds the number of formal arguments to
735 the macro. For a GNU-style variadic macro, this should be the
736 number of named arguments. For a non-variadic macro, NARGS should
737 be -1.
738
739 Otherwise, return a pointer to the first element of an array of
740 macro buffers referring to the argument texts, and set *ARGC_P to
741 the number of arguments we found --- the number of elements in the
742 array. The macro buffers share their text with SRC, and their
743 last_token fields are initialized. The array is allocated with
744 xmalloc, and the caller is responsible for freeing it.
745
746 NOTE WELL: if SRC starts with a open paren ( token followed
747 immediately by a close paren ) token (e.g., the invocation looks
748 like "foo()"), we treat that as one argument, which happens to be
749 the empty list of tokens. The caller should keep in mind that such
750 a sequence of tokens is a valid way to invoke one-parameter
751 function-like macros, but also a valid way to invoke zero-parameter
752 function-like macros. Eeew.
753
754 Consume the tokens from SRC; after this call, SRC contains the text
755 following the invocation. */
756
757 static struct macro_buffer *
758 gather_arguments (const char *name, struct macro_buffer *src,
759 int nargs, int *argc_p)
760 {
761 struct macro_buffer tok;
762 int args_len, args_size;
763 struct macro_buffer *args = NULL;
764 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
765
766 /* Does SRC start with an opening paren token? Read from a copy of
767 SRC, so SRC itself is unaffected if we don't find an opening
768 paren. */
769 {
770 struct macro_buffer temp;
771
772 init_shared_buffer (&temp, src->text, src->len);
773
774 if (! get_token (&tok, &temp)
775 || tok.len != 1
776 || tok.text[0] != '(')
777 {
778 discard_cleanups (back_to);
779 return 0;
780 }
781 }
782
783 /* Consume SRC's opening paren. */
784 get_token (&tok, src);
785
786 args_len = 0;
787 args_size = 6;
788 args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size);
789
790 for (;;)
791 {
792 struct macro_buffer *arg;
793 int depth;
794
795 /* Make sure we have room for the next argument. */
796 if (args_len >= args_size)
797 {
798 args_size *= 2;
799 args = xrealloc (args, sizeof (*args) * args_size);
800 }
801
802 /* Initialize the next argument. */
803 arg = &args[args_len++];
804 set_token (arg, src->text, src->text);
805
806 /* Gather the argument's tokens. */
807 depth = 0;
808 for (;;)
809 {
810 if (! get_token (&tok, src))
811 error (_("Malformed argument list for macro `%s'."), name);
812
813 /* Is tok an opening paren? */
814 if (tok.len == 1 && tok.text[0] == '(')
815 depth++;
816
817 /* Is tok is a closing paren? */
818 else if (tok.len == 1 && tok.text[0] == ')')
819 {
820 /* If it's a closing paren at the top level, then that's
821 the end of the argument list. */
822 if (depth == 0)
823 {
824 /* In the varargs case, the last argument may be
825 missing. Add an empty argument in this case. */
826 if (nargs != -1 && args_len == nargs - 1)
827 {
828 /* Make sure we have room for the argument. */
829 if (args_len >= args_size)
830 {
831 args_size++;
832 args = xrealloc (args, sizeof (*args) * args_size);
833 }
834 arg = &args[args_len++];
835 set_token (arg, src->text, src->text);
836 }
837
838 discard_cleanups (back_to);
839 *argc_p = args_len;
840 return args;
841 }
842
843 depth--;
844 }
845
846 /* If tok is a comma at top level, then that's the end of
847 the current argument. However, if we are handling a
848 variadic macro and we are computing the last argument, we
849 want to include the comma and remaining tokens. */
850 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
851 && (nargs == -1 || args_len < nargs))
852 break;
853
854 /* Extend the current argument to enclose this token. If
855 this is the current argument's first token, leave out any
856 leading whitespace, just for aesthetics. */
857 if (arg->len == 0)
858 {
859 arg->text = tok.text;
860 arg->len = tok.len;
861 arg->last_token = 0;
862 }
863 else
864 {
865 arg->len = (tok.text + tok.len) - arg->text;
866 arg->last_token = tok.text - arg->text;
867 }
868 }
869 }
870 }
871
872
873 /* The `expand' and `substitute_args' functions both invoke `scan'
874 recursively, so we need a forward declaration somewhere. */
875 static void scan (struct macro_buffer *dest,
876 struct macro_buffer *src,
877 struct macro_name_list *no_loop,
878 macro_lookup_ftype *lookup_func,
879 void *lookup_baton);
880
881
882 /* A helper function for substitute_args.
883
884 ARGV is a vector of all the arguments; ARGC is the number of
885 arguments. IS_VARARGS is true if the macro being substituted is a
886 varargs macro; in this case VA_ARG_NAME is the name of the
887 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
888 false.
889
890 If the token TOK is the name of a parameter, return the parameter's
891 index. If TOK is not an argument, return -1. */
892
893 static int
894 find_parameter (const struct macro_buffer *tok,
895 int is_varargs, const struct macro_buffer *va_arg_name,
896 int argc, const char * const *argv)
897 {
898 int i;
899
900 if (! tok->is_identifier)
901 return -1;
902
903 for (i = 0; i < argc; ++i)
904 if (tok->len == strlen (argv[i])
905 && !memcmp (tok->text, argv[i], tok->len))
906 return i;
907
908 if (is_varargs && tok->len == va_arg_name->len
909 && ! memcmp (tok->text, va_arg_name->text, tok->len))
910 return argc - 1;
911
912 return -1;
913 }
914
915 /* Given the macro definition DEF, being invoked with the actual
916 arguments given by ARGC and ARGV, substitute the arguments into the
917 replacement list, and store the result in DEST.
918
919 IS_VARARGS should be true if DEF is a varargs macro. In this case,
920 VA_ARG_NAME should be the name of the "variable" argument -- either
921 __VA_ARGS__ for c99-style varargs, or the final argument name, for
922 GNU-style varargs. If IS_VARARGS is false, this parameter is
923 ignored.
924
925 If it is necessary to expand macro invocations in one of the
926 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
927 definitions, and don't expand invocations of the macros listed in
928 NO_LOOP. */
929
930 static void
931 substitute_args (struct macro_buffer *dest,
932 struct macro_definition *def,
933 int is_varargs, const struct macro_buffer *va_arg_name,
934 int argc, struct macro_buffer *argv,
935 struct macro_name_list *no_loop,
936 macro_lookup_ftype *lookup_func,
937 void *lookup_baton)
938 {
939 /* A macro buffer for the macro's replacement list. */
940 struct macro_buffer replacement_list;
941 /* The token we are currently considering. */
942 struct macro_buffer tok;
943 /* The replacement list's pointer from just before TOK was lexed. */
944 char *original_rl_start;
945 /* We have a single lookahead token to handle token splicing. */
946 struct macro_buffer lookahead;
947 /* The lookahead token might not be valid. */
948 int lookahead_valid;
949 /* The replacement list's pointer from just before LOOKAHEAD was
950 lexed. */
951 char *lookahead_rl_start;
952
953 init_shared_buffer (&replacement_list, (char *) def->replacement,
954 strlen (def->replacement));
955
956 gdb_assert (dest->len == 0);
957 dest->last_token = 0;
958
959 original_rl_start = replacement_list.text;
960 if (! get_token (&tok, &replacement_list))
961 return;
962 lookahead_rl_start = replacement_list.text;
963 lookahead_valid = get_token (&lookahead, &replacement_list);
964
965 for (;;)
966 {
967 /* Just for aesthetics. If we skipped some whitespace, copy
968 that to DEST. */
969 if (tok.text > original_rl_start)
970 {
971 appendmem (dest, original_rl_start, tok.text - original_rl_start);
972 dest->last_token = dest->len;
973 }
974
975 /* Is this token the stringification operator? */
976 if (tok.len == 1
977 && tok.text[0] == '#')
978 {
979 int arg;
980
981 if (!lookahead_valid)
982 error (_("Stringification operator requires an argument."));
983
984 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
985 def->argc, def->argv);
986 if (arg == -1)
987 error (_("Argument to stringification operator must name "
988 "a macro parameter."));
989
990 stringify (dest, argv[arg].text, argv[arg].len);
991
992 /* Read one token and let the loop iteration code handle the
993 rest. */
994 lookahead_rl_start = replacement_list.text;
995 lookahead_valid = get_token (&lookahead, &replacement_list);
996 }
997 /* Is this token the splicing operator? */
998 else if (tok.len == 2
999 && tok.text[0] == '#'
1000 && tok.text[1] == '#')
1001 error (_("Stray splicing operator"));
1002 /* Is the next token the splicing operator? */
1003 else if (lookahead_valid
1004 && lookahead.len == 2
1005 && lookahead.text[0] == '#'
1006 && lookahead.text[1] == '#')
1007 {
1008 int finished = 0;
1009 int prev_was_comma = 0;
1010
1011 /* Note that GCC warns if the result of splicing is not a
1012 token. In the debugger there doesn't seem to be much
1013 benefit from doing this. */
1014
1015 /* Insert the first token. */
1016 if (tok.len == 1 && tok.text[0] == ',')
1017 prev_was_comma = 1;
1018 else
1019 {
1020 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1021 def->argc, def->argv);
1022
1023 if (arg != -1)
1024 appendmem (dest, argv[arg].text, argv[arg].len);
1025 else
1026 appendmem (dest, tok.text, tok.len);
1027 }
1028
1029 /* Apply a possible sequence of ## operators. */
1030 for (;;)
1031 {
1032 if (! get_token (&tok, &replacement_list))
1033 error (_("Splicing operator at end of macro"));
1034
1035 /* Handle a comma before a ##. If we are handling
1036 varargs, and the token on the right hand side is the
1037 varargs marker, and the final argument is empty or
1038 missing, then drop the comma. This is a GNU
1039 extension. There is one ambiguous case here,
1040 involving pedantic behavior with an empty argument,
1041 but we settle that in favor of GNU-style (GCC uses an
1042 option). If we aren't dealing with varargs, we
1043 simply insert the comma. */
1044 if (prev_was_comma)
1045 {
1046 if (! (is_varargs
1047 && tok.len == va_arg_name->len
1048 && !memcmp (tok.text, va_arg_name->text, tok.len)
1049 && argv[argc - 1].len == 0))
1050 appendmem (dest, ",", 1);
1051 prev_was_comma = 0;
1052 }
1053
1054 /* Insert the token. If it is a parameter, insert the
1055 argument. If it is a comma, treat it specially. */
1056 if (tok.len == 1 && tok.text[0] == ',')
1057 prev_was_comma = 1;
1058 else
1059 {
1060 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1061 def->argc, def->argv);
1062
1063 if (arg != -1)
1064 appendmem (dest, argv[arg].text, argv[arg].len);
1065 else
1066 appendmem (dest, tok.text, tok.len);
1067 }
1068
1069 /* Now read another token. If it is another splice, we
1070 loop. */
1071 original_rl_start = replacement_list.text;
1072 if (! get_token (&tok, &replacement_list))
1073 {
1074 finished = 1;
1075 break;
1076 }
1077
1078 if (! (tok.len == 2
1079 && tok.text[0] == '#'
1080 && tok.text[1] == '#'))
1081 break;
1082 }
1083
1084 if (prev_was_comma)
1085 {
1086 /* We saw a comma. Insert it now. */
1087 appendmem (dest, ",", 1);
1088 }
1089
1090 dest->last_token = dest->len;
1091 if (finished)
1092 lookahead_valid = 0;
1093 else
1094 {
1095 /* Set up for the loop iterator. */
1096 lookahead = tok;
1097 lookahead_rl_start = original_rl_start;
1098 lookahead_valid = 1;
1099 }
1100 }
1101 else
1102 {
1103 /* Is this token an identifier? */
1104 int substituted = 0;
1105 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1106 def->argc, def->argv);
1107
1108 if (arg != -1)
1109 {
1110 struct macro_buffer arg_src;
1111
1112 /* Expand any macro invocations in the argument text,
1113 and append the result to dest. Remember that scan
1114 mutates its source, so we need to scan a new buffer
1115 referring to the argument's text, not the argument
1116 itself. */
1117 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1118 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1119 substituted = 1;
1120 }
1121
1122 /* If it wasn't a parameter, then just copy it across. */
1123 if (! substituted)
1124 append_tokens_without_splicing (dest, &tok);
1125 }
1126
1127 if (! lookahead_valid)
1128 break;
1129
1130 tok = lookahead;
1131 original_rl_start = lookahead_rl_start;
1132
1133 lookahead_rl_start = replacement_list.text;
1134 lookahead_valid = get_token (&lookahead, &replacement_list);
1135 }
1136 }
1137
1138
1139 /* Expand a call to a macro named ID, whose definition is DEF. Append
1140 its expansion to DEST. SRC is the input text following the ID
1141 token. We are currently rescanning the expansions of the macros
1142 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1143 LOOKUP_BATON to find definitions for any nested macro references.
1144
1145 Return 1 if we decided to expand it, zero otherwise. (If it's a
1146 function-like macro name that isn't followed by an argument list,
1147 we don't expand it.) If we return zero, leave SRC unchanged. */
1148 static int
1149 expand (const char *id,
1150 struct macro_definition *def,
1151 struct macro_buffer *dest,
1152 struct macro_buffer *src,
1153 struct macro_name_list *no_loop,
1154 macro_lookup_ftype *lookup_func,
1155 void *lookup_baton)
1156 {
1157 struct macro_name_list new_no_loop;
1158
1159 /* Create a new node to be added to the front of the no-expand list.
1160 This list is appropriate for re-scanning replacement lists, but
1161 it is *not* appropriate for scanning macro arguments; invocations
1162 of the macro whose arguments we are gathering *do* get expanded
1163 there. */
1164 new_no_loop.name = id;
1165 new_no_loop.next = no_loop;
1166
1167 /* What kind of macro are we expanding? */
1168 if (def->kind == macro_object_like)
1169 {
1170 struct macro_buffer replacement_list;
1171
1172 init_shared_buffer (&replacement_list, (char *) def->replacement,
1173 strlen (def->replacement));
1174
1175 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1176 return 1;
1177 }
1178 else if (def->kind == macro_function_like)
1179 {
1180 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1181 int argc = 0;
1182 struct macro_buffer *argv = NULL;
1183 struct macro_buffer substituted;
1184 struct macro_buffer substituted_src;
1185 struct macro_buffer va_arg_name = {0};
1186 int is_varargs = 0;
1187
1188 if (def->argc >= 1)
1189 {
1190 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1191 {
1192 /* In C99-style varargs, substitution is done using
1193 __VA_ARGS__. */
1194 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1195 strlen ("__VA_ARGS__"));
1196 is_varargs = 1;
1197 }
1198 else
1199 {
1200 int len = strlen (def->argv[def->argc - 1]);
1201
1202 if (len > 3
1203 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1204 {
1205 /* In GNU-style varargs, the name of the
1206 substitution parameter is the name of the formal
1207 argument without the "...". */
1208 init_shared_buffer (&va_arg_name,
1209 (char *) def->argv[def->argc - 1],
1210 len - 3);
1211 is_varargs = 1;
1212 }
1213 }
1214 }
1215
1216 make_cleanup (free_current_contents, &argv);
1217 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1218 &argc);
1219
1220 /* If we couldn't find any argument list, then we don't expand
1221 this macro. */
1222 if (! argv)
1223 {
1224 do_cleanups (back_to);
1225 return 0;
1226 }
1227
1228 /* Check that we're passing an acceptable number of arguments for
1229 this macro. */
1230 if (argc != def->argc)
1231 {
1232 if (is_varargs && argc >= def->argc - 1)
1233 {
1234 /* Ok. */
1235 }
1236 /* Remember that a sequence of tokens like "foo()" is a
1237 valid invocation of a macro expecting either zero or one
1238 arguments. */
1239 else if (! (argc == 1
1240 && argv[0].len == 0
1241 && def->argc == 0))
1242 error (_("Wrong number of arguments to macro `%s' "
1243 "(expected %d, got %d)."),
1244 id, def->argc, argc);
1245 }
1246
1247 /* Note that we don't expand macro invocations in the arguments
1248 yet --- we let subst_args take care of that. Parameters that
1249 appear as operands of the stringifying operator "#" or the
1250 splicing operator "##" don't get macro references expanded,
1251 so we can't really tell whether it's appropriate to macro-
1252 expand an argument until we see how it's being used. */
1253 init_buffer (&substituted, 0);
1254 make_cleanup (cleanup_macro_buffer, &substituted);
1255 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1256 argc, argv, no_loop, lookup_func, lookup_baton);
1257
1258 /* Now `substituted' is the macro's replacement list, with all
1259 argument values substituted into it properly. Re-scan it for
1260 macro references, but don't expand invocations of this macro.
1261
1262 We create a new buffer, `substituted_src', which points into
1263 `substituted', and scan that. We can't scan `substituted'
1264 itself, since the tokenization process moves the buffer's
1265 text pointer around, and we still need to be able to find
1266 `substituted's original text buffer after scanning it so we
1267 can free it. */
1268 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1269 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1270
1271 do_cleanups (back_to);
1272
1273 return 1;
1274 }
1275 else
1276 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1277 }
1278
1279
1280 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1281 constitute a macro invokation not forbidden in NO_LOOP, append its
1282 expansion to DEST and return non-zero. Otherwise, return zero, and
1283 leave DEST unchanged.
1284
1285 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1286 SRC_FIRST must be a string built by get_token. */
1287 static int
1288 maybe_expand (struct macro_buffer *dest,
1289 struct macro_buffer *src_first,
1290 struct macro_buffer *src_rest,
1291 struct macro_name_list *no_loop,
1292 macro_lookup_ftype *lookup_func,
1293 void *lookup_baton)
1294 {
1295 gdb_assert (src_first->shared);
1296 gdb_assert (src_rest->shared);
1297 gdb_assert (! dest->shared);
1298
1299 /* Is this token an identifier? */
1300 if (src_first->is_identifier)
1301 {
1302 /* Make a null-terminated copy of it, since that's what our
1303 lookup function expects. */
1304 char *id = xmalloc (src_first->len + 1);
1305 struct cleanup *back_to = make_cleanup (xfree, id);
1306
1307 memcpy (id, src_first->text, src_first->len);
1308 id[src_first->len] = 0;
1309
1310 /* If we're currently re-scanning the result of expanding
1311 this macro, don't expand it again. */
1312 if (! currently_rescanning (no_loop, id))
1313 {
1314 /* Does this identifier have a macro definition in scope? */
1315 struct macro_definition *def = lookup_func (id, lookup_baton);
1316
1317 if (def && expand (id, def, dest, src_rest, no_loop,
1318 lookup_func, lookup_baton))
1319 {
1320 do_cleanups (back_to);
1321 return 1;
1322 }
1323 }
1324
1325 do_cleanups (back_to);
1326 }
1327
1328 return 0;
1329 }
1330
1331
1332 /* Expand macro references in SRC, appending the results to DEST.
1333 Assume we are re-scanning the result of expanding the macros named
1334 in NO_LOOP, and don't try to re-expand references to them.
1335
1336 SRC must be a shared buffer; DEST must not be one. */
1337 static void
1338 scan (struct macro_buffer *dest,
1339 struct macro_buffer *src,
1340 struct macro_name_list *no_loop,
1341 macro_lookup_ftype *lookup_func,
1342 void *lookup_baton)
1343 {
1344 gdb_assert (src->shared);
1345 gdb_assert (! dest->shared);
1346
1347 for (;;)
1348 {
1349 struct macro_buffer tok;
1350 char *original_src_start = src->text;
1351
1352 /* Find the next token in SRC. */
1353 if (! get_token (&tok, src))
1354 break;
1355
1356 /* Just for aesthetics. If we skipped some whitespace, copy
1357 that to DEST. */
1358 if (tok.text > original_src_start)
1359 {
1360 appendmem (dest, original_src_start, tok.text - original_src_start);
1361 dest->last_token = dest->len;
1362 }
1363
1364 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1365 /* We didn't end up expanding tok as a macro reference, so
1366 simply append it to dest. */
1367 append_tokens_without_splicing (dest, &tok);
1368 }
1369
1370 /* Just for aesthetics. If there was any trailing whitespace in
1371 src, copy it to dest. */
1372 if (src->len)
1373 {
1374 appendmem (dest, src->text, src->len);
1375 dest->last_token = dest->len;
1376 }
1377 }
1378
1379
1380 char *
1381 macro_expand (const char *source,
1382 macro_lookup_ftype *lookup_func,
1383 void *lookup_func_baton)
1384 {
1385 struct macro_buffer src, dest;
1386 struct cleanup *back_to;
1387
1388 init_shared_buffer (&src, (char *) source, strlen (source));
1389
1390 init_buffer (&dest, 0);
1391 dest.last_token = 0;
1392 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1393
1394 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1395
1396 appendc (&dest, '\0');
1397
1398 discard_cleanups (back_to);
1399 return dest.text;
1400 }
1401
1402
1403 char *
1404 macro_expand_once (const char *source,
1405 macro_lookup_ftype *lookup_func,
1406 void *lookup_func_baton)
1407 {
1408 error (_("Expand-once not implemented yet."));
1409 }
1410
1411
1412 char *
1413 macro_expand_next (char **lexptr,
1414 macro_lookup_ftype *lookup_func,
1415 void *lookup_baton)
1416 {
1417 struct macro_buffer src, dest, tok;
1418 struct cleanup *back_to;
1419
1420 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1421 init_shared_buffer (&src, *lexptr, strlen (*lexptr));
1422
1423 /* Set up DEST to receive the expansion, if there is one. */
1424 init_buffer (&dest, 0);
1425 dest.last_token = 0;
1426 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1427
1428 /* Get the text's first preprocessing token. */
1429 if (! get_token (&tok, &src))
1430 {
1431 do_cleanups (back_to);
1432 return 0;
1433 }
1434
1435 /* If it's a macro invocation, expand it. */
1436 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1437 {
1438 /* It was a macro invocation! Package up the expansion as a
1439 null-terminated string and return it. Set *lexptr to the
1440 start of the next token in the input. */
1441 appendc (&dest, '\0');
1442 discard_cleanups (back_to);
1443 *lexptr = src.text;
1444 return dest.text;
1445 }
1446 else
1447 {
1448 /* It wasn't a macro invocation. */
1449 do_cleanups (back_to);
1450 return 0;
1451 }
1452 }
This page took 0.059637 seconds and 5 git commands to generate.