gdb
[deliverable/binutils-gdb.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002, 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "bcache.h"
23 #include "macrotab.h"
24 #include "macroexp.h"
25 #include "gdb_assert.h"
26
27
28 \f
29 /* A resizeable, substringable string type. */
30
31
32 /* A string type that we can resize, quickly append to, and use to
33 refer to substrings of other strings. */
34 struct macro_buffer
35 {
36 /* An array of characters. The first LEN bytes are the real text,
37 but there are SIZE bytes allocated to the array. If SIZE is
38 zero, then this doesn't point to a malloc'ed block. If SHARED is
39 non-zero, then this buffer is actually a pointer into some larger
40 string, and we shouldn't append characters to it, etc. Because
41 of sharing, we can't assume in general that the text is
42 null-terminated. */
43 char *text;
44
45 /* The number of characters in the string. */
46 int len;
47
48 /* The number of characters allocated to the string. If SHARED is
49 non-zero, this is meaningless; in this case, we set it to zero so
50 that any "do we have room to append something?" tests will fail,
51 so we don't always have to check SHARED before using this field. */
52 int size;
53
54 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
55 block). Non-zero if TEXT is actually pointing into the middle of
56 some other block, and we shouldn't reallocate it. */
57 int shared;
58
59 /* For detecting token splicing.
60
61 This is the index in TEXT of the first character of the token
62 that abuts the end of TEXT. If TEXT contains no tokens, then we
63 set this equal to LEN. If TEXT ends in whitespace, then there is
64 no token abutting the end of TEXT (it's just whitespace), and
65 again, we set this equal to LEN. We set this to -1 if we don't
66 know the nature of TEXT. */
67 int last_token;
68
69 /* If this buffer is holding the result from get_token, then this
70 is non-zero if it is an identifier token, zero otherwise. */
71 int is_identifier;
72 };
73
74
75 /* Set the macro buffer *B to the empty string, guessing that its
76 final contents will fit in N bytes. (It'll get resized if it
77 doesn't, so the guess doesn't have to be right.) Allocate the
78 initial storage with xmalloc. */
79 static void
80 init_buffer (struct macro_buffer *b, int n)
81 {
82 b->size = n;
83 if (n > 0)
84 b->text = (char *) xmalloc (n);
85 else
86 b->text = NULL;
87 b->len = 0;
88 b->shared = 0;
89 b->last_token = -1;
90 }
91
92
93 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
94 shared substring. */
95 static void
96 init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
97 {
98 buf->text = addr;
99 buf->len = len;
100 buf->shared = 1;
101 buf->size = 0;
102 buf->last_token = -1;
103 }
104
105
106 /* Free the text of the buffer B. Raise an error if B is shared. */
107 static void
108 free_buffer (struct macro_buffer *b)
109 {
110 gdb_assert (! b->shared);
111 if (b->size)
112 xfree (b->text);
113 }
114
115
116 /* A cleanup function for macro buffers. */
117 static void
118 cleanup_macro_buffer (void *untyped_buf)
119 {
120 free_buffer ((struct macro_buffer *) untyped_buf);
121 }
122
123
124 /* Resize the buffer B to be at least N bytes long. Raise an error if
125 B shouldn't be resized. */
126 static void
127 resize_buffer (struct macro_buffer *b, int n)
128 {
129 /* We shouldn't be trying to resize shared strings. */
130 gdb_assert (! b->shared);
131
132 if (b->size == 0)
133 b->size = n;
134 else
135 while (b->size <= n)
136 b->size *= 2;
137
138 b->text = xrealloc (b->text, b->size);
139 }
140
141
142 /* Append the character C to the buffer B. */
143 static void
144 appendc (struct macro_buffer *b, int c)
145 {
146 int new_len = b->len + 1;
147
148 if (new_len > b->size)
149 resize_buffer (b, new_len);
150
151 b->text[b->len] = c;
152 b->len = new_len;
153 }
154
155
156 /* Append the LEN bytes at ADDR to the buffer B. */
157 static void
158 appendmem (struct macro_buffer *b, char *addr, int len)
159 {
160 int new_len = b->len + len;
161
162 if (new_len > b->size)
163 resize_buffer (b, new_len);
164
165 memcpy (b->text + b->len, addr, len);
166 b->len = new_len;
167 }
168
169
170 \f
171 /* Recognizing preprocessor tokens. */
172
173
174 int
175 macro_is_whitespace (int c)
176 {
177 return (c == ' '
178 || c == '\t'
179 || c == '\n'
180 || c == '\v'
181 || c == '\f');
182 }
183
184
185 int
186 macro_is_digit (int c)
187 {
188 return ('0' <= c && c <= '9');
189 }
190
191
192 int
193 macro_is_identifier_nondigit (int c)
194 {
195 return (c == '_'
196 || ('a' <= c && c <= 'z')
197 || ('A' <= c && c <= 'Z'));
198 }
199
200
201 static void
202 set_token (struct macro_buffer *tok, char *start, char *end)
203 {
204 init_shared_buffer (tok, start, end - start);
205 tok->last_token = 0;
206
207 /* Presumed; get_identifier may overwrite this. */
208 tok->is_identifier = 0;
209 }
210
211
212 static int
213 get_comment (struct macro_buffer *tok, char *p, char *end)
214 {
215 if (p + 2 > end)
216 return 0;
217 else if (p[0] == '/'
218 && p[1] == '*')
219 {
220 char *tok_start = p;
221
222 p += 2;
223
224 for (; p < end; p++)
225 if (p + 2 <= end
226 && p[0] == '*'
227 && p[1] == '/')
228 {
229 p += 2;
230 set_token (tok, tok_start, p);
231 return 1;
232 }
233
234 error (_("Unterminated comment in macro expansion."));
235 }
236 else if (p[0] == '/'
237 && p[1] == '/')
238 {
239 char *tok_start = p;
240
241 p += 2;
242 for (; p < end; p++)
243 if (*p == '\n')
244 break;
245
246 set_token (tok, tok_start, p);
247 return 1;
248 }
249 else
250 return 0;
251 }
252
253
254 static int
255 get_identifier (struct macro_buffer *tok, char *p, char *end)
256 {
257 if (p < end
258 && macro_is_identifier_nondigit (*p))
259 {
260 char *tok_start = p;
261
262 while (p < end
263 && (macro_is_identifier_nondigit (*p)
264 || macro_is_digit (*p)))
265 p++;
266
267 set_token (tok, tok_start, p);
268 tok->is_identifier = 1;
269 return 1;
270 }
271 else
272 return 0;
273 }
274
275
276 static int
277 get_pp_number (struct macro_buffer *tok, char *p, char *end)
278 {
279 if (p < end
280 && (macro_is_digit (*p)
281 || *p == '.'))
282 {
283 char *tok_start = p;
284
285 while (p < end)
286 {
287 if (macro_is_digit (*p)
288 || macro_is_identifier_nondigit (*p)
289 || *p == '.')
290 p++;
291 else if (p + 2 <= end
292 && strchr ("eEpP.", *p)
293 && (p[1] == '+' || p[1] == '-'))
294 p += 2;
295 else
296 break;
297 }
298
299 set_token (tok, tok_start, p);
300 return 1;
301 }
302 else
303 return 0;
304 }
305
306
307
308 /* If the text starting at P going up to (but not including) END
309 starts with a character constant, set *TOK to point to that
310 character constant, and return 1. Otherwise, return zero.
311 Signal an error if it contains a malformed or incomplete character
312 constant. */
313 static int
314 get_character_constant (struct macro_buffer *tok, char *p, char *end)
315 {
316 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
317 But of course, what really matters is that we handle it the same
318 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
319 to handle escape sequences. */
320 if ((p + 1 <= end && *p == '\'')
321 || (p + 2 <= end && p[0] == 'L' && p[1] == '\''))
322 {
323 char *tok_start = p;
324 char *body_start;
325
326 if (*p == '\'')
327 p++;
328 else if (*p == 'L')
329 p += 2;
330 else
331 gdb_assert (0);
332
333 body_start = p;
334 for (;;)
335 {
336 if (p >= end)
337 error (_("Unmatched single quote."));
338 else if (*p == '\'')
339 {
340 if (p == body_start)
341 error (_("A character constant must contain at least one "
342 "character."));
343 p++;
344 break;
345 }
346 else if (*p == '\\')
347 {
348 p++;
349 parse_escape (&p);
350 }
351 else
352 p++;
353 }
354
355 set_token (tok, tok_start, p);
356 return 1;
357 }
358 else
359 return 0;
360 }
361
362
363 /* If the text starting at P going up to (but not including) END
364 starts with a string literal, set *TOK to point to that string
365 literal, and return 1. Otherwise, return zero. Signal an error if
366 it contains a malformed or incomplete string literal. */
367 static int
368 get_string_literal (struct macro_buffer *tok, char *p, char *end)
369 {
370 if ((p + 1 <= end
371 && *p == '\"')
372 || (p + 2 <= end
373 && p[0] == 'L'
374 && p[1] == '\"'))
375 {
376 char *tok_start = p;
377
378 if (*p == '\"')
379 p++;
380 else if (*p == 'L')
381 p += 2;
382 else
383 gdb_assert (0);
384
385 for (;;)
386 {
387 if (p >= end)
388 error (_("Unterminated string in expression."));
389 else if (*p == '\"')
390 {
391 p++;
392 break;
393 }
394 else if (*p == '\n')
395 error (_("Newline characters may not appear in string "
396 "constants."));
397 else if (*p == '\\')
398 {
399 p++;
400 parse_escape (&p);
401 }
402 else
403 p++;
404 }
405
406 set_token (tok, tok_start, p);
407 return 1;
408 }
409 else
410 return 0;
411 }
412
413
414 static int
415 get_punctuator (struct macro_buffer *tok, char *p, char *end)
416 {
417 /* Here, speed is much less important than correctness and clarity. */
418
419 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
420 Note that this table is ordered in a special way. A punctuator
421 which is a prefix of another punctuator must appear after its
422 "extension". Otherwise, the wrong token will be returned. */
423 static const char * const punctuators[] = {
424 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
425 "...", ".",
426 "->", "--", "-=", "-",
427 "++", "+=", "+",
428 "*=", "*",
429 "!=", "!",
430 "&&", "&=", "&",
431 "/=", "/",
432 "%>", "%:%:", "%:", "%=", "%",
433 "^=", "^",
434 "##", "#",
435 ":>", ":",
436 "||", "|=", "|",
437 "<<=", "<<", "<=", "<:", "<%", "<",
438 ">>=", ">>", ">=", ">",
439 "==", "=",
440 0
441 };
442
443 int i;
444
445 if (p + 1 <= end)
446 {
447 for (i = 0; punctuators[i]; i++)
448 {
449 const char *punctuator = punctuators[i];
450
451 if (p[0] == punctuator[0])
452 {
453 int len = strlen (punctuator);
454
455 if (p + len <= end
456 && ! memcmp (p, punctuator, len))
457 {
458 set_token (tok, p, p + len);
459 return 1;
460 }
461 }
462 }
463 }
464
465 return 0;
466 }
467
468
469 /* Peel the next preprocessor token off of SRC, and put it in TOK.
470 Mutate TOK to refer to the first token in SRC, and mutate SRC to
471 refer to the text after that token. SRC must be a shared buffer;
472 the resulting TOK will be shared, pointing into the same string SRC
473 does. Initialize TOK's last_token field. Return non-zero if we
474 succeed, or 0 if we didn't find any more tokens in SRC. */
475 static int
476 get_token (struct macro_buffer *tok,
477 struct macro_buffer *src)
478 {
479 char *p = src->text;
480 char *end = p + src->len;
481
482 gdb_assert (src->shared);
483
484 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
485
486 preprocessing-token:
487 header-name
488 identifier
489 pp-number
490 character-constant
491 string-literal
492 punctuator
493 each non-white-space character that cannot be one of the above
494
495 We don't have to deal with header-name tokens, since those can
496 only occur after a #include, which we will never see. */
497
498 while (p < end)
499 if (macro_is_whitespace (*p))
500 p++;
501 else if (get_comment (tok, p, end))
502 p += tok->len;
503 else if (get_pp_number (tok, p, end)
504 || get_character_constant (tok, p, end)
505 || get_string_literal (tok, p, end)
506 /* Note: the grammar in the standard seems to be
507 ambiguous: L'x' can be either a wide character
508 constant, or an identifier followed by a normal
509 character constant. By trying `get_identifier' after
510 we try get_character_constant and get_string_literal,
511 we give the wide character syntax precedence. Now,
512 since GDB doesn't handle wide character constants
513 anyway, is this the right thing to do? */
514 || get_identifier (tok, p, end)
515 || get_punctuator (tok, p, end))
516 {
517 /* How many characters did we consume, including whitespace? */
518 int consumed = p - src->text + tok->len;
519 src->text += consumed;
520 src->len -= consumed;
521 return 1;
522 }
523 else
524 {
525 /* We have found a "non-whitespace character that cannot be
526 one of the above." Make a token out of it. */
527 int consumed;
528
529 set_token (tok, p, p + 1);
530 consumed = p - src->text + tok->len;
531 src->text += consumed;
532 src->len -= consumed;
533 return 1;
534 }
535
536 return 0;
537 }
538
539
540 \f
541 /* Appending token strings, with and without splicing */
542
543
544 /* Append the macro buffer SRC to the end of DEST, and ensure that
545 doing so doesn't splice the token at the end of SRC with the token
546 at the beginning of DEST. SRC and DEST must have their last_token
547 fields set. Upon return, DEST's last_token field is set correctly.
548
549 For example:
550
551 If DEST is "(" and SRC is "y", then we can return with
552 DEST set to "(y" --- we've simply appended the two buffers.
553
554 However, if DEST is "x" and SRC is "y", then we must not return
555 with DEST set to "xy" --- that would splice the two tokens "x" and
556 "y" together to make a single token "xy". However, it would be
557 fine to return with DEST set to "x y". Similarly, "<" and "<" must
558 yield "< <", not "<<", etc. */
559 static void
560 append_tokens_without_splicing (struct macro_buffer *dest,
561 struct macro_buffer *src)
562 {
563 int original_dest_len = dest->len;
564 struct macro_buffer dest_tail, new_token;
565
566 gdb_assert (src->last_token != -1);
567 gdb_assert (dest->last_token != -1);
568
569 /* First, just try appending the two, and call get_token to see if
570 we got a splice. */
571 appendmem (dest, src->text, src->len);
572
573 /* If DEST originally had no token abutting its end, then we can't
574 have spliced anything, so we're done. */
575 if (dest->last_token == original_dest_len)
576 {
577 dest->last_token = original_dest_len + src->last_token;
578 return;
579 }
580
581 /* Set DEST_TAIL to point to the last token in DEST, followed by
582 all the stuff we just appended. */
583 init_shared_buffer (&dest_tail,
584 dest->text + dest->last_token,
585 dest->len - dest->last_token);
586
587 /* Re-parse DEST's last token. We know that DEST used to contain
588 at least one token, so if it doesn't contain any after the
589 append, then we must have spliced "/" and "*" or "/" and "/" to
590 make a comment start. (Just for the record, I got this right
591 the first time. This is not a bug fix.) */
592 if (get_token (&new_token, &dest_tail)
593 && (new_token.text + new_token.len
594 == dest->text + original_dest_len))
595 {
596 /* No splice, so we're done. */
597 dest->last_token = original_dest_len + src->last_token;
598 return;
599 }
600
601 /* Okay, a simple append caused a splice. Let's chop dest back to
602 its original length and try again, but separate the texts with a
603 space. */
604 dest->len = original_dest_len;
605 appendc (dest, ' ');
606 appendmem (dest, src->text, src->len);
607
608 init_shared_buffer (&dest_tail,
609 dest->text + dest->last_token,
610 dest->len - dest->last_token);
611
612 /* Try to re-parse DEST's last token, as above. */
613 if (get_token (&new_token, &dest_tail)
614 && (new_token.text + new_token.len
615 == dest->text + original_dest_len))
616 {
617 /* No splice, so we're done. */
618 dest->last_token = original_dest_len + 1 + src->last_token;
619 return;
620 }
621
622 /* As far as I know, there's no case where inserting a space isn't
623 enough to prevent a splice. */
624 internal_error (__FILE__, __LINE__,
625 _("unable to avoid splicing tokens during macro expansion"));
626 }
627
628 /* Stringify an argument, and insert it into DEST. ARG is the text to
629 stringify; it is LEN bytes long. */
630
631 static void
632 stringify (struct macro_buffer *dest, char *arg, int len)
633 {
634 /* Trim initial whitespace from ARG. */
635 while (len > 0 && macro_is_whitespace (*arg))
636 {
637 ++arg;
638 --len;
639 }
640
641 /* Trim trailing whitespace from ARG. */
642 while (len > 0 && macro_is_whitespace (arg[len - 1]))
643 --len;
644
645 /* Insert the string. */
646 appendc (dest, '"');
647 while (len > 0)
648 {
649 /* We could try to handle strange cases here, like control
650 characters, but there doesn't seem to be much point. */
651 if (macro_is_whitespace (*arg))
652 {
653 /* Replace a sequence of whitespace with a single space. */
654 appendc (dest, ' ');
655 while (len > 1 && macro_is_whitespace (arg[1]))
656 {
657 ++arg;
658 --len;
659 }
660 }
661 else if (*arg == '\\' || *arg == '"')
662 {
663 appendc (dest, '\\');
664 appendc (dest, *arg);
665 }
666 else
667 appendc (dest, *arg);
668 ++arg;
669 --len;
670 }
671 appendc (dest, '"');
672 dest->last_token = dest->len;
673 }
674
675 \f
676 /* Expanding macros! */
677
678
679 /* A singly-linked list of the names of the macros we are currently
680 expanding --- for detecting expansion loops. */
681 struct macro_name_list {
682 const char *name;
683 struct macro_name_list *next;
684 };
685
686
687 /* Return non-zero if we are currently expanding the macro named NAME,
688 according to LIST; otherwise, return zero.
689
690 You know, it would be possible to get rid of all the NO_LOOP
691 arguments to these functions by simply generating a new lookup
692 function and baton which refuses to find the definition for a
693 particular macro, and otherwise delegates the decision to another
694 function/baton pair. But that makes the linked list of excluded
695 macros chained through untyped baton pointers, which will make it
696 harder to debug. :( */
697 static int
698 currently_rescanning (struct macro_name_list *list, const char *name)
699 {
700 for (; list; list = list->next)
701 if (strcmp (name, list->name) == 0)
702 return 1;
703
704 return 0;
705 }
706
707
708 /* Gather the arguments to a macro expansion.
709
710 NAME is the name of the macro being invoked. (It's only used for
711 printing error messages.)
712
713 Assume that SRC is the text of the macro invocation immediately
714 following the macro name. For example, if we're processing the
715 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
716 baz).
717
718 If SRC doesn't start with an open paren ( token at all, return
719 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
720
721 If SRC doesn't contain a properly terminated argument list, then
722 raise an error.
723
724 For a variadic macro, NARGS holds the number of formal arguments to
725 the macro. For a GNU-style variadic macro, this should be the
726 number of named arguments. For a non-variadic macro, NARGS should
727 be -1.
728
729 Otherwise, return a pointer to the first element of an array of
730 macro buffers referring to the argument texts, and set *ARGC_P to
731 the number of arguments we found --- the number of elements in the
732 array. The macro buffers share their text with SRC, and their
733 last_token fields are initialized. The array is allocated with
734 xmalloc, and the caller is responsible for freeing it.
735
736 NOTE WELL: if SRC starts with a open paren ( token followed
737 immediately by a close paren ) token (e.g., the invocation looks
738 like "foo()"), we treat that as one argument, which happens to be
739 the empty list of tokens. The caller should keep in mind that such
740 a sequence of tokens is a valid way to invoke one-parameter
741 function-like macros, but also a valid way to invoke zero-parameter
742 function-like macros. Eeew.
743
744 Consume the tokens from SRC; after this call, SRC contains the text
745 following the invocation. */
746
747 static struct macro_buffer *
748 gather_arguments (const char *name, struct macro_buffer *src,
749 int nargs, int *argc_p)
750 {
751 struct macro_buffer tok;
752 int args_len, args_size;
753 struct macro_buffer *args = NULL;
754 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
755
756 /* Does SRC start with an opening paren token? Read from a copy of
757 SRC, so SRC itself is unaffected if we don't find an opening
758 paren. */
759 {
760 struct macro_buffer temp;
761 init_shared_buffer (&temp, src->text, src->len);
762
763 if (! get_token (&tok, &temp)
764 || tok.len != 1
765 || tok.text[0] != '(')
766 {
767 discard_cleanups (back_to);
768 return 0;
769 }
770 }
771
772 /* Consume SRC's opening paren. */
773 get_token (&tok, src);
774
775 args_len = 0;
776 args_size = 6;
777 args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size);
778
779 for (;;)
780 {
781 struct macro_buffer *arg;
782 int depth;
783
784 /* Make sure we have room for the next argument. */
785 if (args_len >= args_size)
786 {
787 args_size *= 2;
788 args = xrealloc (args, sizeof (*args) * args_size);
789 }
790
791 /* Initialize the next argument. */
792 arg = &args[args_len++];
793 set_token (arg, src->text, src->text);
794
795 /* Gather the argument's tokens. */
796 depth = 0;
797 for (;;)
798 {
799 char *start = src->text;
800
801 if (! get_token (&tok, src))
802 error (_("Malformed argument list for macro `%s'."), name);
803
804 /* Is tok an opening paren? */
805 if (tok.len == 1 && tok.text[0] == '(')
806 depth++;
807
808 /* Is tok is a closing paren? */
809 else if (tok.len == 1 && tok.text[0] == ')')
810 {
811 /* If it's a closing paren at the top level, then that's
812 the end of the argument list. */
813 if (depth == 0)
814 {
815 /* In the varargs case, the last argument may be
816 missing. Add an empty argument in this case. */
817 if (nargs != -1 && args_len == nargs - 1)
818 {
819 /* Make sure we have room for the argument. */
820 if (args_len >= args_size)
821 {
822 args_size++;
823 args = xrealloc (args, sizeof (*args) * args_size);
824 }
825 arg = &args[args_len++];
826 set_token (arg, src->text, src->text);
827 }
828
829 discard_cleanups (back_to);
830 *argc_p = args_len;
831 return args;
832 }
833
834 depth--;
835 }
836
837 /* If tok is a comma at top level, then that's the end of
838 the current argument. However, if we are handling a
839 variadic macro and we are computing the last argument, we
840 want to include the comma and remaining tokens. */
841 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
842 && (nargs == -1 || args_len < nargs))
843 break;
844
845 /* Extend the current argument to enclose this token. If
846 this is the current argument's first token, leave out any
847 leading whitespace, just for aesthetics. */
848 if (arg->len == 0)
849 {
850 arg->text = tok.text;
851 arg->len = tok.len;
852 arg->last_token = 0;
853 }
854 else
855 {
856 arg->len = (tok.text + tok.len) - arg->text;
857 arg->last_token = tok.text - arg->text;
858 }
859 }
860 }
861 }
862
863
864 /* The `expand' and `substitute_args' functions both invoke `scan'
865 recursively, so we need a forward declaration somewhere. */
866 static void scan (struct macro_buffer *dest,
867 struct macro_buffer *src,
868 struct macro_name_list *no_loop,
869 macro_lookup_ftype *lookup_func,
870 void *lookup_baton);
871
872
873 /* A helper function for substitute_args.
874
875 ARGV is a vector of all the arguments; ARGC is the number of
876 arguments. IS_VARARGS is true if the macro being substituted is a
877 varargs macro; in this case VA_ARG_NAME is the name of the
878 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
879 false.
880
881 If the token TOK is the name of a parameter, return the parameter's
882 index. If TOK is not an argument, return -1. */
883
884 static int
885 find_parameter (const struct macro_buffer *tok,
886 int is_varargs, const struct macro_buffer *va_arg_name,
887 int argc, const char * const *argv)
888 {
889 int i;
890
891 if (! tok->is_identifier)
892 return -1;
893
894 for (i = 0; i < argc; ++i)
895 if (tok->len == strlen (argv[i]) && ! memcmp (tok->text, argv[i], tok->len))
896 return i;
897
898 if (is_varargs && tok->len == va_arg_name->len
899 && ! memcmp (tok->text, va_arg_name->text, tok->len))
900 return argc - 1;
901
902 return -1;
903 }
904
905 /* Given the macro definition DEF, being invoked with the actual
906 arguments given by ARGC and ARGV, substitute the arguments into the
907 replacement list, and store the result in DEST.
908
909 IS_VARARGS should be true if DEF is a varargs macro. In this case,
910 VA_ARG_NAME should be the name of the "variable" argument -- either
911 __VA_ARGS__ for c99-style varargs, or the final argument name, for
912 GNU-style varargs. If IS_VARARGS is false, this parameter is
913 ignored.
914
915 If it is necessary to expand macro invocations in one of the
916 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
917 definitions, and don't expand invocations of the macros listed in
918 NO_LOOP. */
919
920 static void
921 substitute_args (struct macro_buffer *dest,
922 struct macro_definition *def,
923 int is_varargs, const struct macro_buffer *va_arg_name,
924 int argc, struct macro_buffer *argv,
925 struct macro_name_list *no_loop,
926 macro_lookup_ftype *lookup_func,
927 void *lookup_baton)
928 {
929 /* A macro buffer for the macro's replacement list. */
930 struct macro_buffer replacement_list;
931 /* The token we are currently considering. */
932 struct macro_buffer tok;
933 /* The replacement list's pointer from just before TOK was lexed. */
934 char *original_rl_start;
935 /* We have a single lookahead token to handle token splicing. */
936 struct macro_buffer lookahead;
937 /* The lookahead token might not be valid. */
938 int lookahead_valid;
939 /* The replacement list's pointer from just before LOOKAHEAD was
940 lexed. */
941 char *lookahead_rl_start;
942
943 init_shared_buffer (&replacement_list, (char *) def->replacement,
944 strlen (def->replacement));
945
946 gdb_assert (dest->len == 0);
947 dest->last_token = 0;
948
949 original_rl_start = replacement_list.text;
950 if (! get_token (&tok, &replacement_list))
951 return;
952 lookahead_rl_start = replacement_list.text;
953 lookahead_valid = get_token (&lookahead, &replacement_list);
954
955 for (;;)
956 {
957 /* Just for aesthetics. If we skipped some whitespace, copy
958 that to DEST. */
959 if (tok.text > original_rl_start)
960 {
961 appendmem (dest, original_rl_start, tok.text - original_rl_start);
962 dest->last_token = dest->len;
963 }
964
965 /* Is this token the stringification operator? */
966 if (tok.len == 1
967 && tok.text[0] == '#')
968 {
969 int arg;
970
971 if (!lookahead_valid)
972 error (_("Stringification operator requires an argument."));
973
974 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
975 def->argc, def->argv);
976 if (arg == -1)
977 error (_("Argument to stringification operator must name "
978 "a macro parameter."));
979
980 stringify (dest, argv[arg].text, argv[arg].len);
981
982 /* Read one token and let the loop iteration code handle the
983 rest. */
984 lookahead_rl_start = replacement_list.text;
985 lookahead_valid = get_token (&lookahead, &replacement_list);
986 }
987 /* Is this token the splicing operator? */
988 else if (tok.len == 2
989 && tok.text[0] == '#'
990 && tok.text[1] == '#')
991 error (_("Stray splicing operator"));
992 /* Is the next token the splicing operator? */
993 else if (lookahead_valid
994 && lookahead.len == 2
995 && lookahead.text[0] == '#'
996 && lookahead.text[1] == '#')
997 {
998 int arg, finished = 0;
999 int prev_was_comma = 0;
1000
1001 /* Note that GCC warns if the result of splicing is not a
1002 token. In the debugger there doesn't seem to be much
1003 benefit from doing this. */
1004
1005 /* Insert the first token. */
1006 if (tok.len == 1 && tok.text[0] == ',')
1007 prev_was_comma = 1;
1008 else
1009 {
1010 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1011 def->argc, def->argv);
1012 if (arg != -1)
1013 appendmem (dest, argv[arg].text, argv[arg].len);
1014 else
1015 appendmem (dest, tok.text, tok.len);
1016 }
1017
1018 /* Apply a possible sequence of ## operators. */
1019 for (;;)
1020 {
1021 if (! get_token (&tok, &replacement_list))
1022 error (_("Splicing operator at end of macro"));
1023
1024 /* Handle a comma before a ##. If we are handling
1025 varargs, and the token on the right hand side is the
1026 varargs marker, and the final argument is empty or
1027 missing, then drop the comma. This is a GNU
1028 extension. There is one ambiguous case here,
1029 involving pedantic behavior with an empty argument,
1030 but we settle that in favor of GNU-style (GCC uses an
1031 option). If we aren't dealing with varargs, we
1032 simply insert the comma. */
1033 if (prev_was_comma)
1034 {
1035 if (! (is_varargs
1036 && tok.len == va_arg_name->len
1037 && !memcmp (tok.text, va_arg_name->text, tok.len)
1038 && argv[argc - 1].len == 0))
1039 appendmem (dest, ",", 1);
1040 prev_was_comma = 0;
1041 }
1042
1043 /* Insert the token. If it is a parameter, insert the
1044 argument. If it is a comma, treat it specially. */
1045 if (tok.len == 1 && tok.text[0] == ',')
1046 prev_was_comma = 1;
1047 else
1048 {
1049 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1050 def->argc, def->argv);
1051 if (arg != -1)
1052 appendmem (dest, argv[arg].text, argv[arg].len);
1053 else
1054 appendmem (dest, tok.text, tok.len);
1055 }
1056
1057 /* Now read another token. If it is another splice, we
1058 loop. */
1059 original_rl_start = replacement_list.text;
1060 if (! get_token (&tok, &replacement_list))
1061 {
1062 finished = 1;
1063 break;
1064 }
1065
1066 if (! (tok.len == 2
1067 && tok.text[0] == '#'
1068 && tok.text[1] == '#'))
1069 break;
1070 }
1071
1072 if (prev_was_comma)
1073 {
1074 /* We saw a comma. Insert it now. */
1075 appendmem (dest, ",", 1);
1076 }
1077
1078 dest->last_token = dest->len;
1079 if (finished)
1080 lookahead_valid = 0;
1081 else
1082 {
1083 /* Set up for the loop iterator. */
1084 lookahead = tok;
1085 lookahead_rl_start = original_rl_start;
1086 lookahead_valid = 1;
1087 }
1088 }
1089 else
1090 {
1091 /* Is this token an identifier? */
1092 int substituted = 0;
1093 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1094 def->argc, def->argv);
1095
1096 if (arg != -1)
1097 {
1098 struct macro_buffer arg_src;
1099
1100 /* Expand any macro invocations in the argument text,
1101 and append the result to dest. Remember that scan
1102 mutates its source, so we need to scan a new buffer
1103 referring to the argument's text, not the argument
1104 itself. */
1105 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1106 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1107 substituted = 1;
1108 }
1109
1110 /* If it wasn't a parameter, then just copy it across. */
1111 if (! substituted)
1112 append_tokens_without_splicing (dest, &tok);
1113 }
1114
1115 if (! lookahead_valid)
1116 break;
1117
1118 tok = lookahead;
1119 original_rl_start = lookahead_rl_start;
1120
1121 lookahead_rl_start = replacement_list.text;
1122 lookahead_valid = get_token (&lookahead, &replacement_list);
1123 }
1124 }
1125
1126
1127 /* Expand a call to a macro named ID, whose definition is DEF. Append
1128 its expansion to DEST. SRC is the input text following the ID
1129 token. We are currently rescanning the expansions of the macros
1130 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1131 LOOKUP_BATON to find definitions for any nested macro references.
1132
1133 Return 1 if we decided to expand it, zero otherwise. (If it's a
1134 function-like macro name that isn't followed by an argument list,
1135 we don't expand it.) If we return zero, leave SRC unchanged. */
1136 static int
1137 expand (const char *id,
1138 struct macro_definition *def,
1139 struct macro_buffer *dest,
1140 struct macro_buffer *src,
1141 struct macro_name_list *no_loop,
1142 macro_lookup_ftype *lookup_func,
1143 void *lookup_baton)
1144 {
1145 struct macro_name_list new_no_loop;
1146
1147 /* Create a new node to be added to the front of the no-expand list.
1148 This list is appropriate for re-scanning replacement lists, but
1149 it is *not* appropriate for scanning macro arguments; invocations
1150 of the macro whose arguments we are gathering *do* get expanded
1151 there. */
1152 new_no_loop.name = id;
1153 new_no_loop.next = no_loop;
1154
1155 /* What kind of macro are we expanding? */
1156 if (def->kind == macro_object_like)
1157 {
1158 struct macro_buffer replacement_list;
1159
1160 init_shared_buffer (&replacement_list, (char *) def->replacement,
1161 strlen (def->replacement));
1162
1163 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1164 return 1;
1165 }
1166 else if (def->kind == macro_function_like)
1167 {
1168 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1169 int argc = 0;
1170 struct macro_buffer *argv = NULL;
1171 struct macro_buffer substituted;
1172 struct macro_buffer substituted_src;
1173 struct macro_buffer va_arg_name;
1174 int is_varargs = 0;
1175
1176 if (def->argc >= 1)
1177 {
1178 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1179 {
1180 /* In C99-style varargs, substitution is done using
1181 __VA_ARGS__. */
1182 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1183 strlen ("__VA_ARGS__"));
1184 is_varargs = 1;
1185 }
1186 else
1187 {
1188 int len = strlen (def->argv[def->argc - 1]);
1189 if (len > 3
1190 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1191 {
1192 /* In GNU-style varargs, the name of the
1193 substitution parameter is the name of the formal
1194 argument without the "...". */
1195 init_shared_buffer (&va_arg_name,
1196 (char *) def->argv[def->argc - 1],
1197 len - 3);
1198 is_varargs = 1;
1199 }
1200 }
1201 }
1202
1203 make_cleanup (free_current_contents, &argv);
1204 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1205 &argc);
1206
1207 /* If we couldn't find any argument list, then we don't expand
1208 this macro. */
1209 if (! argv)
1210 {
1211 do_cleanups (back_to);
1212 return 0;
1213 }
1214
1215 /* Check that we're passing an acceptable number of arguments for
1216 this macro. */
1217 if (argc != def->argc)
1218 {
1219 if (is_varargs && argc >= def->argc - 1)
1220 {
1221 /* Ok. */
1222 }
1223 /* Remember that a sequence of tokens like "foo()" is a
1224 valid invocation of a macro expecting either zero or one
1225 arguments. */
1226 else if (! (argc == 1
1227 && argv[0].len == 0
1228 && def->argc == 0))
1229 error (_("Wrong number of arguments to macro `%s' "
1230 "(expected %d, got %d)."),
1231 id, def->argc, argc);
1232 }
1233
1234 /* Note that we don't expand macro invocations in the arguments
1235 yet --- we let subst_args take care of that. Parameters that
1236 appear as operands of the stringifying operator "#" or the
1237 splicing operator "##" don't get macro references expanded,
1238 so we can't really tell whether it's appropriate to macro-
1239 expand an argument until we see how it's being used. */
1240 init_buffer (&substituted, 0);
1241 make_cleanup (cleanup_macro_buffer, &substituted);
1242 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1243 argc, argv, no_loop, lookup_func, lookup_baton);
1244
1245 /* Now `substituted' is the macro's replacement list, with all
1246 argument values substituted into it properly. Re-scan it for
1247 macro references, but don't expand invocations of this macro.
1248
1249 We create a new buffer, `substituted_src', which points into
1250 `substituted', and scan that. We can't scan `substituted'
1251 itself, since the tokenization process moves the buffer's
1252 text pointer around, and we still need to be able to find
1253 `substituted's original text buffer after scanning it so we
1254 can free it. */
1255 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1256 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1257
1258 do_cleanups (back_to);
1259
1260 return 1;
1261 }
1262 else
1263 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1264 }
1265
1266
1267 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1268 constitute a macro invokation not forbidden in NO_LOOP, append its
1269 expansion to DEST and return non-zero. Otherwise, return zero, and
1270 leave DEST unchanged.
1271
1272 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1273 SRC_FIRST must be a string built by get_token. */
1274 static int
1275 maybe_expand (struct macro_buffer *dest,
1276 struct macro_buffer *src_first,
1277 struct macro_buffer *src_rest,
1278 struct macro_name_list *no_loop,
1279 macro_lookup_ftype *lookup_func,
1280 void *lookup_baton)
1281 {
1282 gdb_assert (src_first->shared);
1283 gdb_assert (src_rest->shared);
1284 gdb_assert (! dest->shared);
1285
1286 /* Is this token an identifier? */
1287 if (src_first->is_identifier)
1288 {
1289 /* Make a null-terminated copy of it, since that's what our
1290 lookup function expects. */
1291 char *id = xmalloc (src_first->len + 1);
1292 struct cleanup *back_to = make_cleanup (xfree, id);
1293 memcpy (id, src_first->text, src_first->len);
1294 id[src_first->len] = 0;
1295
1296 /* If we're currently re-scanning the result of expanding
1297 this macro, don't expand it again. */
1298 if (! currently_rescanning (no_loop, id))
1299 {
1300 /* Does this identifier have a macro definition in scope? */
1301 struct macro_definition *def = lookup_func (id, lookup_baton);
1302
1303 if (def && expand (id, def, dest, src_rest, no_loop,
1304 lookup_func, lookup_baton))
1305 {
1306 do_cleanups (back_to);
1307 return 1;
1308 }
1309 }
1310
1311 do_cleanups (back_to);
1312 }
1313
1314 return 0;
1315 }
1316
1317
1318 /* Expand macro references in SRC, appending the results to DEST.
1319 Assume we are re-scanning the result of expanding the macros named
1320 in NO_LOOP, and don't try to re-expand references to them.
1321
1322 SRC must be a shared buffer; DEST must not be one. */
1323 static void
1324 scan (struct macro_buffer *dest,
1325 struct macro_buffer *src,
1326 struct macro_name_list *no_loop,
1327 macro_lookup_ftype *lookup_func,
1328 void *lookup_baton)
1329 {
1330 gdb_assert (src->shared);
1331 gdb_assert (! dest->shared);
1332
1333 for (;;)
1334 {
1335 struct macro_buffer tok;
1336 char *original_src_start = src->text;
1337
1338 /* Find the next token in SRC. */
1339 if (! get_token (&tok, src))
1340 break;
1341
1342 /* Just for aesthetics. If we skipped some whitespace, copy
1343 that to DEST. */
1344 if (tok.text > original_src_start)
1345 {
1346 appendmem (dest, original_src_start, tok.text - original_src_start);
1347 dest->last_token = dest->len;
1348 }
1349
1350 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1351 /* We didn't end up expanding tok as a macro reference, so
1352 simply append it to dest. */
1353 append_tokens_without_splicing (dest, &tok);
1354 }
1355
1356 /* Just for aesthetics. If there was any trailing whitespace in
1357 src, copy it to dest. */
1358 if (src->len)
1359 {
1360 appendmem (dest, src->text, src->len);
1361 dest->last_token = dest->len;
1362 }
1363 }
1364
1365
1366 char *
1367 macro_expand (const char *source,
1368 macro_lookup_ftype *lookup_func,
1369 void *lookup_func_baton)
1370 {
1371 struct macro_buffer src, dest;
1372 struct cleanup *back_to;
1373
1374 init_shared_buffer (&src, (char *) source, strlen (source));
1375
1376 init_buffer (&dest, 0);
1377 dest.last_token = 0;
1378 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1379
1380 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1381
1382 appendc (&dest, '\0');
1383
1384 discard_cleanups (back_to);
1385 return dest.text;
1386 }
1387
1388
1389 char *
1390 macro_expand_once (const char *source,
1391 macro_lookup_ftype *lookup_func,
1392 void *lookup_func_baton)
1393 {
1394 error (_("Expand-once not implemented yet."));
1395 }
1396
1397
1398 char *
1399 macro_expand_next (char **lexptr,
1400 macro_lookup_ftype *lookup_func,
1401 void *lookup_baton)
1402 {
1403 struct macro_buffer src, dest, tok;
1404 struct cleanup *back_to;
1405
1406 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1407 init_shared_buffer (&src, *lexptr, strlen (*lexptr));
1408
1409 /* Set up DEST to receive the expansion, if there is one. */
1410 init_buffer (&dest, 0);
1411 dest.last_token = 0;
1412 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1413
1414 /* Get the text's first preprocessing token. */
1415 if (! get_token (&tok, &src))
1416 {
1417 do_cleanups (back_to);
1418 return 0;
1419 }
1420
1421 /* If it's a macro invocation, expand it. */
1422 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1423 {
1424 /* It was a macro invocation! Package up the expansion as a
1425 null-terminated string and return it. Set *lexptr to the
1426 start of the next token in the input. */
1427 appendc (&dest, '\0');
1428 discard_cleanups (back_to);
1429 *lexptr = src.text;
1430 return dest.text;
1431 }
1432 else
1433 {
1434 /* It wasn't a macro invocation. */
1435 do_cleanups (back_to);
1436 return 0;
1437 }
1438 }
This page took 0.058594 seconds and 5 git commands to generate.