gdb:
[deliverable/binutils-gdb.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "bcache.h"
23 #include "macrotab.h"
24 #include "macroexp.h"
25 #include "gdb_assert.h"
26 #include "c-lang.h"
27
28
29 \f
30 /* A resizeable, substringable string type. */
31
32
33 /* A string type that we can resize, quickly append to, and use to
34 refer to substrings of other strings. */
35 struct macro_buffer
36 {
37 /* An array of characters. The first LEN bytes are the real text,
38 but there are SIZE bytes allocated to the array. If SIZE is
39 zero, then this doesn't point to a malloc'ed block. If SHARED is
40 non-zero, then this buffer is actually a pointer into some larger
41 string, and we shouldn't append characters to it, etc. Because
42 of sharing, we can't assume in general that the text is
43 null-terminated. */
44 char *text;
45
46 /* The number of characters in the string. */
47 int len;
48
49 /* The number of characters allocated to the string. If SHARED is
50 non-zero, this is meaningless; in this case, we set it to zero so
51 that any "do we have room to append something?" tests will fail,
52 so we don't always have to check SHARED before using this field. */
53 int size;
54
55 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
56 block). Non-zero if TEXT is actually pointing into the middle of
57 some other block, and we shouldn't reallocate it. */
58 int shared;
59
60 /* For detecting token splicing.
61
62 This is the index in TEXT of the first character of the token
63 that abuts the end of TEXT. If TEXT contains no tokens, then we
64 set this equal to LEN. If TEXT ends in whitespace, then there is
65 no token abutting the end of TEXT (it's just whitespace), and
66 again, we set this equal to LEN. We set this to -1 if we don't
67 know the nature of TEXT. */
68 int last_token;
69
70 /* If this buffer is holding the result from get_token, then this
71 is non-zero if it is an identifier token, zero otherwise. */
72 int is_identifier;
73 };
74
75
76 /* Set the macro buffer *B to the empty string, guessing that its
77 final contents will fit in N bytes. (It'll get resized if it
78 doesn't, so the guess doesn't have to be right.) Allocate the
79 initial storage with xmalloc. */
80 static void
81 init_buffer (struct macro_buffer *b, int n)
82 {
83 b->size = n;
84 if (n > 0)
85 b->text = (char *) xmalloc (n);
86 else
87 b->text = NULL;
88 b->len = 0;
89 b->shared = 0;
90 b->last_token = -1;
91 }
92
93
94 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
95 shared substring. */
96 static void
97 init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
98 {
99 buf->text = addr;
100 buf->len = len;
101 buf->shared = 1;
102 buf->size = 0;
103 buf->last_token = -1;
104 }
105
106
107 /* Free the text of the buffer B. Raise an error if B is shared. */
108 static void
109 free_buffer (struct macro_buffer *b)
110 {
111 gdb_assert (! b->shared);
112 if (b->size)
113 xfree (b->text);
114 }
115
116
117 /* A cleanup function for macro buffers. */
118 static void
119 cleanup_macro_buffer (void *untyped_buf)
120 {
121 free_buffer ((struct macro_buffer *) untyped_buf);
122 }
123
124
125 /* Resize the buffer B to be at least N bytes long. Raise an error if
126 B shouldn't be resized. */
127 static void
128 resize_buffer (struct macro_buffer *b, int n)
129 {
130 /* We shouldn't be trying to resize shared strings. */
131 gdb_assert (! b->shared);
132
133 if (b->size == 0)
134 b->size = n;
135 else
136 while (b->size <= n)
137 b->size *= 2;
138
139 b->text = xrealloc (b->text, b->size);
140 }
141
142
143 /* Append the character C to the buffer B. */
144 static void
145 appendc (struct macro_buffer *b, int c)
146 {
147 int new_len = b->len + 1;
148
149 if (new_len > b->size)
150 resize_buffer (b, new_len);
151
152 b->text[b->len] = c;
153 b->len = new_len;
154 }
155
156
157 /* Append the LEN bytes at ADDR to the buffer B. */
158 static void
159 appendmem (struct macro_buffer *b, char *addr, int len)
160 {
161 int new_len = b->len + len;
162
163 if (new_len > b->size)
164 resize_buffer (b, new_len);
165
166 memcpy (b->text + b->len, addr, len);
167 b->len = new_len;
168 }
169
170
171 \f
172 /* Recognizing preprocessor tokens. */
173
174
175 int
176 macro_is_whitespace (int c)
177 {
178 return (c == ' '
179 || c == '\t'
180 || c == '\n'
181 || c == '\v'
182 || c == '\f');
183 }
184
185
186 int
187 macro_is_digit (int c)
188 {
189 return ('0' <= c && c <= '9');
190 }
191
192
193 int
194 macro_is_identifier_nondigit (int c)
195 {
196 return (c == '_'
197 || ('a' <= c && c <= 'z')
198 || ('A' <= c && c <= 'Z'));
199 }
200
201
202 static void
203 set_token (struct macro_buffer *tok, char *start, char *end)
204 {
205 init_shared_buffer (tok, start, end - start);
206 tok->last_token = 0;
207
208 /* Presumed; get_identifier may overwrite this. */
209 tok->is_identifier = 0;
210 }
211
212
213 static int
214 get_comment (struct macro_buffer *tok, char *p, char *end)
215 {
216 if (p + 2 > end)
217 return 0;
218 else if (p[0] == '/'
219 && p[1] == '*')
220 {
221 char *tok_start = p;
222
223 p += 2;
224
225 for (; p < end; p++)
226 if (p + 2 <= end
227 && p[0] == '*'
228 && p[1] == '/')
229 {
230 p += 2;
231 set_token (tok, tok_start, p);
232 return 1;
233 }
234
235 error (_("Unterminated comment in macro expansion."));
236 }
237 else if (p[0] == '/'
238 && p[1] == '/')
239 {
240 char *tok_start = p;
241
242 p += 2;
243 for (; p < end; p++)
244 if (*p == '\n')
245 break;
246
247 set_token (tok, tok_start, p);
248 return 1;
249 }
250 else
251 return 0;
252 }
253
254
255 static int
256 get_identifier (struct macro_buffer *tok, char *p, char *end)
257 {
258 if (p < end
259 && macro_is_identifier_nondigit (*p))
260 {
261 char *tok_start = p;
262
263 while (p < end
264 && (macro_is_identifier_nondigit (*p)
265 || macro_is_digit (*p)))
266 p++;
267
268 set_token (tok, tok_start, p);
269 tok->is_identifier = 1;
270 return 1;
271 }
272 else
273 return 0;
274 }
275
276
277 static int
278 get_pp_number (struct macro_buffer *tok, char *p, char *end)
279 {
280 if (p < end
281 && (macro_is_digit (*p)
282 || (*p == '.'
283 && p + 2 <= end
284 && macro_is_digit (p[1]))))
285 {
286 char *tok_start = p;
287
288 while (p < end)
289 {
290 if (p + 2 <= end
291 && strchr ("eEpP", *p)
292 && (p[1] == '+' || p[1] == '-'))
293 p += 2;
294 else if (macro_is_digit (*p)
295 || macro_is_identifier_nondigit (*p)
296 || *p == '.')
297 p++;
298 else
299 break;
300 }
301
302 set_token (tok, tok_start, p);
303 return 1;
304 }
305 else
306 return 0;
307 }
308
309
310
311 /* If the text starting at P going up to (but not including) END
312 starts with a character constant, set *TOK to point to that
313 character constant, and return 1. Otherwise, return zero.
314 Signal an error if it contains a malformed or incomplete character
315 constant. */
316 static int
317 get_character_constant (struct macro_buffer *tok, char *p, char *end)
318 {
319 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
320 But of course, what really matters is that we handle it the same
321 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
322 to handle escape sequences. */
323 if ((p + 1 <= end && *p == '\'')
324 || (p + 2 <= end
325 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
326 && p[1] == '\''))
327 {
328 char *tok_start = p;
329 char *body_start;
330 int char_count = 0;
331
332 if (*p == '\'')
333 p++;
334 else if (*p == 'L' || *p == 'u' || *p == 'U')
335 p += 2;
336 else
337 gdb_assert (0);
338
339 body_start = p;
340 for (;;)
341 {
342 if (p >= end)
343 error (_("Unmatched single quote."));
344 else if (*p == '\'')
345 {
346 if (!char_count)
347 error (_("A character constant must contain at least one "
348 "character."));
349 p++;
350 break;
351 }
352 else if (*p == '\\')
353 {
354 p++;
355 char_count += c_parse_escape (&p, NULL);
356 }
357 else
358 {
359 p++;
360 char_count++;
361 }
362 }
363
364 set_token (tok, tok_start, p);
365 return 1;
366 }
367 else
368 return 0;
369 }
370
371
372 /* If the text starting at P going up to (but not including) END
373 starts with a string literal, set *TOK to point to that string
374 literal, and return 1. Otherwise, return zero. Signal an error if
375 it contains a malformed or incomplete string literal. */
376 static int
377 get_string_literal (struct macro_buffer *tok, char *p, char *end)
378 {
379 if ((p + 1 <= end
380 && *p == '"')
381 || (p + 2 <= end
382 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
383 && p[1] == '"'))
384 {
385 char *tok_start = p;
386
387 if (*p == '"')
388 p++;
389 else if (*p == 'L' || *p == 'u' || *p == 'U')
390 p += 2;
391 else
392 gdb_assert (0);
393
394 for (;;)
395 {
396 if (p >= end)
397 error (_("Unterminated string in expression."));
398 else if (*p == '"')
399 {
400 p++;
401 break;
402 }
403 else if (*p == '\n')
404 error (_("Newline characters may not appear in string "
405 "constants."));
406 else if (*p == '\\')
407 {
408 p++;
409 c_parse_escape (&p, NULL);
410 }
411 else
412 p++;
413 }
414
415 set_token (tok, tok_start, p);
416 return 1;
417 }
418 else
419 return 0;
420 }
421
422
423 static int
424 get_punctuator (struct macro_buffer *tok, char *p, char *end)
425 {
426 /* Here, speed is much less important than correctness and clarity. */
427
428 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
429 Note that this table is ordered in a special way. A punctuator
430 which is a prefix of another punctuator must appear after its
431 "extension". Otherwise, the wrong token will be returned. */
432 static const char * const punctuators[] = {
433 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
434 "...", ".",
435 "->", "--", "-=", "-",
436 "++", "+=", "+",
437 "*=", "*",
438 "!=", "!",
439 "&&", "&=", "&",
440 "/=", "/",
441 "%>", "%:%:", "%:", "%=", "%",
442 "^=", "^",
443 "##", "#",
444 ":>", ":",
445 "||", "|=", "|",
446 "<<=", "<<", "<=", "<:", "<%", "<",
447 ">>=", ">>", ">=", ">",
448 "==", "=",
449 0
450 };
451
452 int i;
453
454 if (p + 1 <= end)
455 {
456 for (i = 0; punctuators[i]; i++)
457 {
458 const char *punctuator = punctuators[i];
459
460 if (p[0] == punctuator[0])
461 {
462 int len = strlen (punctuator);
463
464 if (p + len <= end
465 && ! memcmp (p, punctuator, len))
466 {
467 set_token (tok, p, p + len);
468 return 1;
469 }
470 }
471 }
472 }
473
474 return 0;
475 }
476
477
478 /* Peel the next preprocessor token off of SRC, and put it in TOK.
479 Mutate TOK to refer to the first token in SRC, and mutate SRC to
480 refer to the text after that token. SRC must be a shared buffer;
481 the resulting TOK will be shared, pointing into the same string SRC
482 does. Initialize TOK's last_token field. Return non-zero if we
483 succeed, or 0 if we didn't find any more tokens in SRC. */
484 static int
485 get_token (struct macro_buffer *tok,
486 struct macro_buffer *src)
487 {
488 char *p = src->text;
489 char *end = p + src->len;
490
491 gdb_assert (src->shared);
492
493 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
494
495 preprocessing-token:
496 header-name
497 identifier
498 pp-number
499 character-constant
500 string-literal
501 punctuator
502 each non-white-space character that cannot be one of the above
503
504 We don't have to deal with header-name tokens, since those can
505 only occur after a #include, which we will never see. */
506
507 while (p < end)
508 if (macro_is_whitespace (*p))
509 p++;
510 else if (get_comment (tok, p, end))
511 p += tok->len;
512 else if (get_pp_number (tok, p, end)
513 || get_character_constant (tok, p, end)
514 || get_string_literal (tok, p, end)
515 /* Note: the grammar in the standard seems to be
516 ambiguous: L'x' can be either a wide character
517 constant, or an identifier followed by a normal
518 character constant. By trying `get_identifier' after
519 we try get_character_constant and get_string_literal,
520 we give the wide character syntax precedence. Now,
521 since GDB doesn't handle wide character constants
522 anyway, is this the right thing to do? */
523 || get_identifier (tok, p, end)
524 || get_punctuator (tok, p, end))
525 {
526 /* How many characters did we consume, including whitespace? */
527 int consumed = p - src->text + tok->len;
528 src->text += consumed;
529 src->len -= consumed;
530 return 1;
531 }
532 else
533 {
534 /* We have found a "non-whitespace character that cannot be
535 one of the above." Make a token out of it. */
536 int consumed;
537
538 set_token (tok, p, p + 1);
539 consumed = p - src->text + tok->len;
540 src->text += consumed;
541 src->len -= consumed;
542 return 1;
543 }
544
545 return 0;
546 }
547
548
549 \f
550 /* Appending token strings, with and without splicing */
551
552
553 /* Append the macro buffer SRC to the end of DEST, and ensure that
554 doing so doesn't splice the token at the end of SRC with the token
555 at the beginning of DEST. SRC and DEST must have their last_token
556 fields set. Upon return, DEST's last_token field is set correctly.
557
558 For example:
559
560 If DEST is "(" and SRC is "y", then we can return with
561 DEST set to "(y" --- we've simply appended the two buffers.
562
563 However, if DEST is "x" and SRC is "y", then we must not return
564 with DEST set to "xy" --- that would splice the two tokens "x" and
565 "y" together to make a single token "xy". However, it would be
566 fine to return with DEST set to "x y". Similarly, "<" and "<" must
567 yield "< <", not "<<", etc. */
568 static void
569 append_tokens_without_splicing (struct macro_buffer *dest,
570 struct macro_buffer *src)
571 {
572 int original_dest_len = dest->len;
573 struct macro_buffer dest_tail, new_token;
574
575 gdb_assert (src->last_token != -1);
576 gdb_assert (dest->last_token != -1);
577
578 /* First, just try appending the two, and call get_token to see if
579 we got a splice. */
580 appendmem (dest, src->text, src->len);
581
582 /* If DEST originally had no token abutting its end, then we can't
583 have spliced anything, so we're done. */
584 if (dest->last_token == original_dest_len)
585 {
586 dest->last_token = original_dest_len + src->last_token;
587 return;
588 }
589
590 /* Set DEST_TAIL to point to the last token in DEST, followed by
591 all the stuff we just appended. */
592 init_shared_buffer (&dest_tail,
593 dest->text + dest->last_token,
594 dest->len - dest->last_token);
595
596 /* Re-parse DEST's last token. We know that DEST used to contain
597 at least one token, so if it doesn't contain any after the
598 append, then we must have spliced "/" and "*" or "/" and "/" to
599 make a comment start. (Just for the record, I got this right
600 the first time. This is not a bug fix.) */
601 if (get_token (&new_token, &dest_tail)
602 && (new_token.text + new_token.len
603 == dest->text + original_dest_len))
604 {
605 /* No splice, so we're done. */
606 dest->last_token = original_dest_len + src->last_token;
607 return;
608 }
609
610 /* Okay, a simple append caused a splice. Let's chop dest back to
611 its original length and try again, but separate the texts with a
612 space. */
613 dest->len = original_dest_len;
614 appendc (dest, ' ');
615 appendmem (dest, src->text, src->len);
616
617 init_shared_buffer (&dest_tail,
618 dest->text + dest->last_token,
619 dest->len - dest->last_token);
620
621 /* Try to re-parse DEST's last token, as above. */
622 if (get_token (&new_token, &dest_tail)
623 && (new_token.text + new_token.len
624 == dest->text + original_dest_len))
625 {
626 /* No splice, so we're done. */
627 dest->last_token = original_dest_len + 1 + src->last_token;
628 return;
629 }
630
631 /* As far as I know, there's no case where inserting a space isn't
632 enough to prevent a splice. */
633 internal_error (__FILE__, __LINE__,
634 _("unable to avoid splicing tokens during macro expansion"));
635 }
636
637 /* Stringify an argument, and insert it into DEST. ARG is the text to
638 stringify; it is LEN bytes long. */
639
640 static void
641 stringify (struct macro_buffer *dest, char *arg, int len)
642 {
643 /* Trim initial whitespace from ARG. */
644 while (len > 0 && macro_is_whitespace (*arg))
645 {
646 ++arg;
647 --len;
648 }
649
650 /* Trim trailing whitespace from ARG. */
651 while (len > 0 && macro_is_whitespace (arg[len - 1]))
652 --len;
653
654 /* Insert the string. */
655 appendc (dest, '"');
656 while (len > 0)
657 {
658 /* We could try to handle strange cases here, like control
659 characters, but there doesn't seem to be much point. */
660 if (macro_is_whitespace (*arg))
661 {
662 /* Replace a sequence of whitespace with a single space. */
663 appendc (dest, ' ');
664 while (len > 1 && macro_is_whitespace (arg[1]))
665 {
666 ++arg;
667 --len;
668 }
669 }
670 else if (*arg == '\\' || *arg == '"')
671 {
672 appendc (dest, '\\');
673 appendc (dest, *arg);
674 }
675 else
676 appendc (dest, *arg);
677 ++arg;
678 --len;
679 }
680 appendc (dest, '"');
681 dest->last_token = dest->len;
682 }
683
684 \f
685 /* Expanding macros! */
686
687
688 /* A singly-linked list of the names of the macros we are currently
689 expanding --- for detecting expansion loops. */
690 struct macro_name_list {
691 const char *name;
692 struct macro_name_list *next;
693 };
694
695
696 /* Return non-zero if we are currently expanding the macro named NAME,
697 according to LIST; otherwise, return zero.
698
699 You know, it would be possible to get rid of all the NO_LOOP
700 arguments to these functions by simply generating a new lookup
701 function and baton which refuses to find the definition for a
702 particular macro, and otherwise delegates the decision to another
703 function/baton pair. But that makes the linked list of excluded
704 macros chained through untyped baton pointers, which will make it
705 harder to debug. :( */
706 static int
707 currently_rescanning (struct macro_name_list *list, const char *name)
708 {
709 for (; list; list = list->next)
710 if (strcmp (name, list->name) == 0)
711 return 1;
712
713 return 0;
714 }
715
716
717 /* Gather the arguments to a macro expansion.
718
719 NAME is the name of the macro being invoked. (It's only used for
720 printing error messages.)
721
722 Assume that SRC is the text of the macro invocation immediately
723 following the macro name. For example, if we're processing the
724 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
725 baz).
726
727 If SRC doesn't start with an open paren ( token at all, return
728 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
729
730 If SRC doesn't contain a properly terminated argument list, then
731 raise an error.
732
733 For a variadic macro, NARGS holds the number of formal arguments to
734 the macro. For a GNU-style variadic macro, this should be the
735 number of named arguments. For a non-variadic macro, NARGS should
736 be -1.
737
738 Otherwise, return a pointer to the first element of an array of
739 macro buffers referring to the argument texts, and set *ARGC_P to
740 the number of arguments we found --- the number of elements in the
741 array. The macro buffers share their text with SRC, and their
742 last_token fields are initialized. The array is allocated with
743 xmalloc, and the caller is responsible for freeing it.
744
745 NOTE WELL: if SRC starts with a open paren ( token followed
746 immediately by a close paren ) token (e.g., the invocation looks
747 like "foo()"), we treat that as one argument, which happens to be
748 the empty list of tokens. The caller should keep in mind that such
749 a sequence of tokens is a valid way to invoke one-parameter
750 function-like macros, but also a valid way to invoke zero-parameter
751 function-like macros. Eeew.
752
753 Consume the tokens from SRC; after this call, SRC contains the text
754 following the invocation. */
755
756 static struct macro_buffer *
757 gather_arguments (const char *name, struct macro_buffer *src,
758 int nargs, int *argc_p)
759 {
760 struct macro_buffer tok;
761 int args_len, args_size;
762 struct macro_buffer *args = NULL;
763 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
764
765 /* Does SRC start with an opening paren token? Read from a copy of
766 SRC, so SRC itself is unaffected if we don't find an opening
767 paren. */
768 {
769 struct macro_buffer temp;
770 init_shared_buffer (&temp, src->text, src->len);
771
772 if (! get_token (&tok, &temp)
773 || tok.len != 1
774 || tok.text[0] != '(')
775 {
776 discard_cleanups (back_to);
777 return 0;
778 }
779 }
780
781 /* Consume SRC's opening paren. */
782 get_token (&tok, src);
783
784 args_len = 0;
785 args_size = 6;
786 args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size);
787
788 for (;;)
789 {
790 struct macro_buffer *arg;
791 int depth;
792
793 /* Make sure we have room for the next argument. */
794 if (args_len >= args_size)
795 {
796 args_size *= 2;
797 args = xrealloc (args, sizeof (*args) * args_size);
798 }
799
800 /* Initialize the next argument. */
801 arg = &args[args_len++];
802 set_token (arg, src->text, src->text);
803
804 /* Gather the argument's tokens. */
805 depth = 0;
806 for (;;)
807 {
808 char *start = src->text;
809
810 if (! get_token (&tok, src))
811 error (_("Malformed argument list for macro `%s'."), name);
812
813 /* Is tok an opening paren? */
814 if (tok.len == 1 && tok.text[0] == '(')
815 depth++;
816
817 /* Is tok is a closing paren? */
818 else if (tok.len == 1 && tok.text[0] == ')')
819 {
820 /* If it's a closing paren at the top level, then that's
821 the end of the argument list. */
822 if (depth == 0)
823 {
824 /* In the varargs case, the last argument may be
825 missing. Add an empty argument in this case. */
826 if (nargs != -1 && args_len == nargs - 1)
827 {
828 /* Make sure we have room for the argument. */
829 if (args_len >= args_size)
830 {
831 args_size++;
832 args = xrealloc (args, sizeof (*args) * args_size);
833 }
834 arg = &args[args_len++];
835 set_token (arg, src->text, src->text);
836 }
837
838 discard_cleanups (back_to);
839 *argc_p = args_len;
840 return args;
841 }
842
843 depth--;
844 }
845
846 /* If tok is a comma at top level, then that's the end of
847 the current argument. However, if we are handling a
848 variadic macro and we are computing the last argument, we
849 want to include the comma and remaining tokens. */
850 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
851 && (nargs == -1 || args_len < nargs))
852 break;
853
854 /* Extend the current argument to enclose this token. If
855 this is the current argument's first token, leave out any
856 leading whitespace, just for aesthetics. */
857 if (arg->len == 0)
858 {
859 arg->text = tok.text;
860 arg->len = tok.len;
861 arg->last_token = 0;
862 }
863 else
864 {
865 arg->len = (tok.text + tok.len) - arg->text;
866 arg->last_token = tok.text - arg->text;
867 }
868 }
869 }
870 }
871
872
873 /* The `expand' and `substitute_args' functions both invoke `scan'
874 recursively, so we need a forward declaration somewhere. */
875 static void scan (struct macro_buffer *dest,
876 struct macro_buffer *src,
877 struct macro_name_list *no_loop,
878 macro_lookup_ftype *lookup_func,
879 void *lookup_baton);
880
881
882 /* A helper function for substitute_args.
883
884 ARGV is a vector of all the arguments; ARGC is the number of
885 arguments. IS_VARARGS is true if the macro being substituted is a
886 varargs macro; in this case VA_ARG_NAME is the name of the
887 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
888 false.
889
890 If the token TOK is the name of a parameter, return the parameter's
891 index. If TOK is not an argument, return -1. */
892
893 static int
894 find_parameter (const struct macro_buffer *tok,
895 int is_varargs, const struct macro_buffer *va_arg_name,
896 int argc, const char * const *argv)
897 {
898 int i;
899
900 if (! tok->is_identifier)
901 return -1;
902
903 for (i = 0; i < argc; ++i)
904 if (tok->len == strlen (argv[i]) && ! memcmp (tok->text, argv[i], tok->len))
905 return i;
906
907 if (is_varargs && tok->len == va_arg_name->len
908 && ! memcmp (tok->text, va_arg_name->text, tok->len))
909 return argc - 1;
910
911 return -1;
912 }
913
914 /* Given the macro definition DEF, being invoked with the actual
915 arguments given by ARGC and ARGV, substitute the arguments into the
916 replacement list, and store the result in DEST.
917
918 IS_VARARGS should be true if DEF is a varargs macro. In this case,
919 VA_ARG_NAME should be the name of the "variable" argument -- either
920 __VA_ARGS__ for c99-style varargs, or the final argument name, for
921 GNU-style varargs. If IS_VARARGS is false, this parameter is
922 ignored.
923
924 If it is necessary to expand macro invocations in one of the
925 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
926 definitions, and don't expand invocations of the macros listed in
927 NO_LOOP. */
928
929 static void
930 substitute_args (struct macro_buffer *dest,
931 struct macro_definition *def,
932 int is_varargs, const struct macro_buffer *va_arg_name,
933 int argc, struct macro_buffer *argv,
934 struct macro_name_list *no_loop,
935 macro_lookup_ftype *lookup_func,
936 void *lookup_baton)
937 {
938 /* A macro buffer for the macro's replacement list. */
939 struct macro_buffer replacement_list;
940 /* The token we are currently considering. */
941 struct macro_buffer tok;
942 /* The replacement list's pointer from just before TOK was lexed. */
943 char *original_rl_start;
944 /* We have a single lookahead token to handle token splicing. */
945 struct macro_buffer lookahead;
946 /* The lookahead token might not be valid. */
947 int lookahead_valid;
948 /* The replacement list's pointer from just before LOOKAHEAD was
949 lexed. */
950 char *lookahead_rl_start;
951
952 init_shared_buffer (&replacement_list, (char *) def->replacement,
953 strlen (def->replacement));
954
955 gdb_assert (dest->len == 0);
956 dest->last_token = 0;
957
958 original_rl_start = replacement_list.text;
959 if (! get_token (&tok, &replacement_list))
960 return;
961 lookahead_rl_start = replacement_list.text;
962 lookahead_valid = get_token (&lookahead, &replacement_list);
963
964 for (;;)
965 {
966 /* Just for aesthetics. If we skipped some whitespace, copy
967 that to DEST. */
968 if (tok.text > original_rl_start)
969 {
970 appendmem (dest, original_rl_start, tok.text - original_rl_start);
971 dest->last_token = dest->len;
972 }
973
974 /* Is this token the stringification operator? */
975 if (tok.len == 1
976 && tok.text[0] == '#')
977 {
978 int arg;
979
980 if (!lookahead_valid)
981 error (_("Stringification operator requires an argument."));
982
983 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
984 def->argc, def->argv);
985 if (arg == -1)
986 error (_("Argument to stringification operator must name "
987 "a macro parameter."));
988
989 stringify (dest, argv[arg].text, argv[arg].len);
990
991 /* Read one token and let the loop iteration code handle the
992 rest. */
993 lookahead_rl_start = replacement_list.text;
994 lookahead_valid = get_token (&lookahead, &replacement_list);
995 }
996 /* Is this token the splicing operator? */
997 else if (tok.len == 2
998 && tok.text[0] == '#'
999 && tok.text[1] == '#')
1000 error (_("Stray splicing operator"));
1001 /* Is the next token the splicing operator? */
1002 else if (lookahead_valid
1003 && lookahead.len == 2
1004 && lookahead.text[0] == '#'
1005 && lookahead.text[1] == '#')
1006 {
1007 int arg, finished = 0;
1008 int prev_was_comma = 0;
1009
1010 /* Note that GCC warns if the result of splicing is not a
1011 token. In the debugger there doesn't seem to be much
1012 benefit from doing this. */
1013
1014 /* Insert the first token. */
1015 if (tok.len == 1 && tok.text[0] == ',')
1016 prev_was_comma = 1;
1017 else
1018 {
1019 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1020 def->argc, def->argv);
1021 if (arg != -1)
1022 appendmem (dest, argv[arg].text, argv[arg].len);
1023 else
1024 appendmem (dest, tok.text, tok.len);
1025 }
1026
1027 /* Apply a possible sequence of ## operators. */
1028 for (;;)
1029 {
1030 if (! get_token (&tok, &replacement_list))
1031 error (_("Splicing operator at end of macro"));
1032
1033 /* Handle a comma before a ##. If we are handling
1034 varargs, and the token on the right hand side is the
1035 varargs marker, and the final argument is empty or
1036 missing, then drop the comma. This is a GNU
1037 extension. There is one ambiguous case here,
1038 involving pedantic behavior with an empty argument,
1039 but we settle that in favor of GNU-style (GCC uses an
1040 option). If we aren't dealing with varargs, we
1041 simply insert the comma. */
1042 if (prev_was_comma)
1043 {
1044 if (! (is_varargs
1045 && tok.len == va_arg_name->len
1046 && !memcmp (tok.text, va_arg_name->text, tok.len)
1047 && argv[argc - 1].len == 0))
1048 appendmem (dest, ",", 1);
1049 prev_was_comma = 0;
1050 }
1051
1052 /* Insert the token. If it is a parameter, insert the
1053 argument. If it is a comma, treat it specially. */
1054 if (tok.len == 1 && tok.text[0] == ',')
1055 prev_was_comma = 1;
1056 else
1057 {
1058 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1059 def->argc, def->argv);
1060 if (arg != -1)
1061 appendmem (dest, argv[arg].text, argv[arg].len);
1062 else
1063 appendmem (dest, tok.text, tok.len);
1064 }
1065
1066 /* Now read another token. If it is another splice, we
1067 loop. */
1068 original_rl_start = replacement_list.text;
1069 if (! get_token (&tok, &replacement_list))
1070 {
1071 finished = 1;
1072 break;
1073 }
1074
1075 if (! (tok.len == 2
1076 && tok.text[0] == '#'
1077 && tok.text[1] == '#'))
1078 break;
1079 }
1080
1081 if (prev_was_comma)
1082 {
1083 /* We saw a comma. Insert it now. */
1084 appendmem (dest, ",", 1);
1085 }
1086
1087 dest->last_token = dest->len;
1088 if (finished)
1089 lookahead_valid = 0;
1090 else
1091 {
1092 /* Set up for the loop iterator. */
1093 lookahead = tok;
1094 lookahead_rl_start = original_rl_start;
1095 lookahead_valid = 1;
1096 }
1097 }
1098 else
1099 {
1100 /* Is this token an identifier? */
1101 int substituted = 0;
1102 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1103 def->argc, def->argv);
1104
1105 if (arg != -1)
1106 {
1107 struct macro_buffer arg_src;
1108
1109 /* Expand any macro invocations in the argument text,
1110 and append the result to dest. Remember that scan
1111 mutates its source, so we need to scan a new buffer
1112 referring to the argument's text, not the argument
1113 itself. */
1114 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1115 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1116 substituted = 1;
1117 }
1118
1119 /* If it wasn't a parameter, then just copy it across. */
1120 if (! substituted)
1121 append_tokens_without_splicing (dest, &tok);
1122 }
1123
1124 if (! lookahead_valid)
1125 break;
1126
1127 tok = lookahead;
1128 original_rl_start = lookahead_rl_start;
1129
1130 lookahead_rl_start = replacement_list.text;
1131 lookahead_valid = get_token (&lookahead, &replacement_list);
1132 }
1133 }
1134
1135
1136 /* Expand a call to a macro named ID, whose definition is DEF. Append
1137 its expansion to DEST. SRC is the input text following the ID
1138 token. We are currently rescanning the expansions of the macros
1139 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1140 LOOKUP_BATON to find definitions for any nested macro references.
1141
1142 Return 1 if we decided to expand it, zero otherwise. (If it's a
1143 function-like macro name that isn't followed by an argument list,
1144 we don't expand it.) If we return zero, leave SRC unchanged. */
1145 static int
1146 expand (const char *id,
1147 struct macro_definition *def,
1148 struct macro_buffer *dest,
1149 struct macro_buffer *src,
1150 struct macro_name_list *no_loop,
1151 macro_lookup_ftype *lookup_func,
1152 void *lookup_baton)
1153 {
1154 struct macro_name_list new_no_loop;
1155
1156 /* Create a new node to be added to the front of the no-expand list.
1157 This list is appropriate for re-scanning replacement lists, but
1158 it is *not* appropriate for scanning macro arguments; invocations
1159 of the macro whose arguments we are gathering *do* get expanded
1160 there. */
1161 new_no_loop.name = id;
1162 new_no_loop.next = no_loop;
1163
1164 /* What kind of macro are we expanding? */
1165 if (def->kind == macro_object_like)
1166 {
1167 struct macro_buffer replacement_list;
1168
1169 init_shared_buffer (&replacement_list, (char *) def->replacement,
1170 strlen (def->replacement));
1171
1172 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1173 return 1;
1174 }
1175 else if (def->kind == macro_function_like)
1176 {
1177 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1178 int argc = 0;
1179 struct macro_buffer *argv = NULL;
1180 struct macro_buffer substituted;
1181 struct macro_buffer substituted_src;
1182 struct macro_buffer va_arg_name;
1183 int is_varargs = 0;
1184
1185 if (def->argc >= 1)
1186 {
1187 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1188 {
1189 /* In C99-style varargs, substitution is done using
1190 __VA_ARGS__. */
1191 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1192 strlen ("__VA_ARGS__"));
1193 is_varargs = 1;
1194 }
1195 else
1196 {
1197 int len = strlen (def->argv[def->argc - 1]);
1198 if (len > 3
1199 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1200 {
1201 /* In GNU-style varargs, the name of the
1202 substitution parameter is the name of the formal
1203 argument without the "...". */
1204 init_shared_buffer (&va_arg_name,
1205 (char *) def->argv[def->argc - 1],
1206 len - 3);
1207 is_varargs = 1;
1208 }
1209 }
1210 }
1211
1212 make_cleanup (free_current_contents, &argv);
1213 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1214 &argc);
1215
1216 /* If we couldn't find any argument list, then we don't expand
1217 this macro. */
1218 if (! argv)
1219 {
1220 do_cleanups (back_to);
1221 return 0;
1222 }
1223
1224 /* Check that we're passing an acceptable number of arguments for
1225 this macro. */
1226 if (argc != def->argc)
1227 {
1228 if (is_varargs && argc >= def->argc - 1)
1229 {
1230 /* Ok. */
1231 }
1232 /* Remember that a sequence of tokens like "foo()" is a
1233 valid invocation of a macro expecting either zero or one
1234 arguments. */
1235 else if (! (argc == 1
1236 && argv[0].len == 0
1237 && def->argc == 0))
1238 error (_("Wrong number of arguments to macro `%s' "
1239 "(expected %d, got %d)."),
1240 id, def->argc, argc);
1241 }
1242
1243 /* Note that we don't expand macro invocations in the arguments
1244 yet --- we let subst_args take care of that. Parameters that
1245 appear as operands of the stringifying operator "#" or the
1246 splicing operator "##" don't get macro references expanded,
1247 so we can't really tell whether it's appropriate to macro-
1248 expand an argument until we see how it's being used. */
1249 init_buffer (&substituted, 0);
1250 make_cleanup (cleanup_macro_buffer, &substituted);
1251 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1252 argc, argv, no_loop, lookup_func, lookup_baton);
1253
1254 /* Now `substituted' is the macro's replacement list, with all
1255 argument values substituted into it properly. Re-scan it for
1256 macro references, but don't expand invocations of this macro.
1257
1258 We create a new buffer, `substituted_src', which points into
1259 `substituted', and scan that. We can't scan `substituted'
1260 itself, since the tokenization process moves the buffer's
1261 text pointer around, and we still need to be able to find
1262 `substituted's original text buffer after scanning it so we
1263 can free it. */
1264 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1265 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1266
1267 do_cleanups (back_to);
1268
1269 return 1;
1270 }
1271 else
1272 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1273 }
1274
1275
1276 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1277 constitute a macro invokation not forbidden in NO_LOOP, append its
1278 expansion to DEST and return non-zero. Otherwise, return zero, and
1279 leave DEST unchanged.
1280
1281 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1282 SRC_FIRST must be a string built by get_token. */
1283 static int
1284 maybe_expand (struct macro_buffer *dest,
1285 struct macro_buffer *src_first,
1286 struct macro_buffer *src_rest,
1287 struct macro_name_list *no_loop,
1288 macro_lookup_ftype *lookup_func,
1289 void *lookup_baton)
1290 {
1291 gdb_assert (src_first->shared);
1292 gdb_assert (src_rest->shared);
1293 gdb_assert (! dest->shared);
1294
1295 /* Is this token an identifier? */
1296 if (src_first->is_identifier)
1297 {
1298 /* Make a null-terminated copy of it, since that's what our
1299 lookup function expects. */
1300 char *id = xmalloc (src_first->len + 1);
1301 struct cleanup *back_to = make_cleanup (xfree, id);
1302 memcpy (id, src_first->text, src_first->len);
1303 id[src_first->len] = 0;
1304
1305 /* If we're currently re-scanning the result of expanding
1306 this macro, don't expand it again. */
1307 if (! currently_rescanning (no_loop, id))
1308 {
1309 /* Does this identifier have a macro definition in scope? */
1310 struct macro_definition *def = lookup_func (id, lookup_baton);
1311
1312 if (def && expand (id, def, dest, src_rest, no_loop,
1313 lookup_func, lookup_baton))
1314 {
1315 do_cleanups (back_to);
1316 return 1;
1317 }
1318 }
1319
1320 do_cleanups (back_to);
1321 }
1322
1323 return 0;
1324 }
1325
1326
1327 /* Expand macro references in SRC, appending the results to DEST.
1328 Assume we are re-scanning the result of expanding the macros named
1329 in NO_LOOP, and don't try to re-expand references to them.
1330
1331 SRC must be a shared buffer; DEST must not be one. */
1332 static void
1333 scan (struct macro_buffer *dest,
1334 struct macro_buffer *src,
1335 struct macro_name_list *no_loop,
1336 macro_lookup_ftype *lookup_func,
1337 void *lookup_baton)
1338 {
1339 gdb_assert (src->shared);
1340 gdb_assert (! dest->shared);
1341
1342 for (;;)
1343 {
1344 struct macro_buffer tok;
1345 char *original_src_start = src->text;
1346
1347 /* Find the next token in SRC. */
1348 if (! get_token (&tok, src))
1349 break;
1350
1351 /* Just for aesthetics. If we skipped some whitespace, copy
1352 that to DEST. */
1353 if (tok.text > original_src_start)
1354 {
1355 appendmem (dest, original_src_start, tok.text - original_src_start);
1356 dest->last_token = dest->len;
1357 }
1358
1359 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1360 /* We didn't end up expanding tok as a macro reference, so
1361 simply append it to dest. */
1362 append_tokens_without_splicing (dest, &tok);
1363 }
1364
1365 /* Just for aesthetics. If there was any trailing whitespace in
1366 src, copy it to dest. */
1367 if (src->len)
1368 {
1369 appendmem (dest, src->text, src->len);
1370 dest->last_token = dest->len;
1371 }
1372 }
1373
1374
1375 char *
1376 macro_expand (const char *source,
1377 macro_lookup_ftype *lookup_func,
1378 void *lookup_func_baton)
1379 {
1380 struct macro_buffer src, dest;
1381 struct cleanup *back_to;
1382
1383 init_shared_buffer (&src, (char *) source, strlen (source));
1384
1385 init_buffer (&dest, 0);
1386 dest.last_token = 0;
1387 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1388
1389 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1390
1391 appendc (&dest, '\0');
1392
1393 discard_cleanups (back_to);
1394 return dest.text;
1395 }
1396
1397
1398 char *
1399 macro_expand_once (const char *source,
1400 macro_lookup_ftype *lookup_func,
1401 void *lookup_func_baton)
1402 {
1403 error (_("Expand-once not implemented yet."));
1404 }
1405
1406
1407 char *
1408 macro_expand_next (char **lexptr,
1409 macro_lookup_ftype *lookup_func,
1410 void *lookup_baton)
1411 {
1412 struct macro_buffer src, dest, tok;
1413 struct cleanup *back_to;
1414
1415 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1416 init_shared_buffer (&src, *lexptr, strlen (*lexptr));
1417
1418 /* Set up DEST to receive the expansion, if there is one. */
1419 init_buffer (&dest, 0);
1420 dest.last_token = 0;
1421 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1422
1423 /* Get the text's first preprocessing token. */
1424 if (! get_token (&tok, &src))
1425 {
1426 do_cleanups (back_to);
1427 return 0;
1428 }
1429
1430 /* If it's a macro invocation, expand it. */
1431 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1432 {
1433 /* It was a macro invocation! Package up the expansion as a
1434 null-terminated string and return it. Set *lexptr to the
1435 start of the next token in the input. */
1436 appendc (&dest, '\0');
1437 discard_cleanups (back_to);
1438 *lexptr = src.text;
1439 return dest.text;
1440 }
1441 else
1442 {
1443 /* It wasn't a macro invocation. */
1444 do_cleanups (back_to);
1445 return 0;
1446 }
1447 }
This page took 0.103993 seconds and 5 git commands to generate.