-Wwrite-strings: Constify macroexp.c:init_shared_buffer
[deliverable/binutils-gdb.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "bcache.h"
23 #include "macrotab.h"
24 #include "macroexp.h"
25 #include "c-lang.h"
26
27
28 \f
29 /* A resizeable, substringable string type. */
30
31
32 /* A string type that we can resize, quickly append to, and use to
33 refer to substrings of other strings. */
34 struct macro_buffer
35 {
36 /* An array of characters. The first LEN bytes are the real text,
37 but there are SIZE bytes allocated to the array. If SIZE is
38 zero, then this doesn't point to a malloc'ed block. If SHARED is
39 non-zero, then this buffer is actually a pointer into some larger
40 string, and we shouldn't append characters to it, etc. Because
41 of sharing, we can't assume in general that the text is
42 null-terminated. */
43 char *text;
44
45 /* The number of characters in the string. */
46 int len;
47
48 /* The number of characters allocated to the string. If SHARED is
49 non-zero, this is meaningless; in this case, we set it to zero so
50 that any "do we have room to append something?" tests will fail,
51 so we don't always have to check SHARED before using this field. */
52 int size;
53
54 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
55 block). Non-zero if TEXT is actually pointing into the middle of
56 some other block, or to a string literal, and we shouldn't
57 reallocate it. */
58 bool shared;
59
60 /* For detecting token splicing.
61
62 This is the index in TEXT of the first character of the token
63 that abuts the end of TEXT. If TEXT contains no tokens, then we
64 set this equal to LEN. If TEXT ends in whitespace, then there is
65 no token abutting the end of TEXT (it's just whitespace), and
66 again, we set this equal to LEN. We set this to -1 if we don't
67 know the nature of TEXT. */
68 int last_token;
69
70 /* If this buffer is holding the result from get_token, then this
71 is non-zero if it is an identifier token, zero otherwise. */
72 int is_identifier;
73 };
74
75
76 /* Set the macro buffer *B to the empty string, guessing that its
77 final contents will fit in N bytes. (It'll get resized if it
78 doesn't, so the guess doesn't have to be right.) Allocate the
79 initial storage with xmalloc. */
80 static void
81 init_buffer (struct macro_buffer *b, int n)
82 {
83 b->size = n;
84 if (n > 0)
85 b->text = (char *) xmalloc (n);
86 else
87 b->text = NULL;
88 b->len = 0;
89 b->shared = false;
90 b->last_token = -1;
91 }
92
93
94 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
95 shared substring. */
96
97 static void
98 init_shared_buffer (struct macro_buffer *buf, const char *addr, int len)
99 {
100 /* The function accept a "const char *" addr so that clients can
101 pass in string literals without casts. */
102 buf->text = (char *) addr;
103 buf->len = len;
104 buf->shared = true;
105 buf->size = 0;
106 buf->last_token = -1;
107 }
108
109
110 /* Free the text of the buffer B. Raise an error if B is shared. */
111 static void
112 free_buffer (struct macro_buffer *b)
113 {
114 gdb_assert (! b->shared);
115 if (b->size)
116 xfree (b->text);
117 }
118
119 /* Like free_buffer, but return the text as an xstrdup()d string.
120 This only exists to try to make the API relatively clean. */
121
122 static char *
123 free_buffer_return_text (struct macro_buffer *b)
124 {
125 gdb_assert (! b->shared);
126 gdb_assert (b->size);
127 /* Nothing to do. */
128 return b->text;
129 }
130
131 /* A cleanup function for macro buffers. */
132 static void
133 cleanup_macro_buffer (void *untyped_buf)
134 {
135 free_buffer ((struct macro_buffer *) untyped_buf);
136 }
137
138
139 /* Resize the buffer B to be at least N bytes long. Raise an error if
140 B shouldn't be resized. */
141 static void
142 resize_buffer (struct macro_buffer *b, int n)
143 {
144 /* We shouldn't be trying to resize shared strings. */
145 gdb_assert (! b->shared);
146
147 if (b->size == 0)
148 b->size = n;
149 else
150 while (b->size <= n)
151 b->size *= 2;
152
153 b->text = (char *) xrealloc (b->text, b->size);
154 }
155
156
157 /* Append the character C to the buffer B. */
158 static void
159 appendc (struct macro_buffer *b, int c)
160 {
161 int new_len = b->len + 1;
162
163 if (new_len > b->size)
164 resize_buffer (b, new_len);
165
166 b->text[b->len] = c;
167 b->len = new_len;
168 }
169
170
171 /* Append the LEN bytes at ADDR to the buffer B. */
172 static void
173 appendmem (struct macro_buffer *b, char *addr, int len)
174 {
175 int new_len = b->len + len;
176
177 if (new_len > b->size)
178 resize_buffer (b, new_len);
179
180 memcpy (b->text + b->len, addr, len);
181 b->len = new_len;
182 }
183
184
185 \f
186 /* Recognizing preprocessor tokens. */
187
188
189 int
190 macro_is_whitespace (int c)
191 {
192 return (c == ' '
193 || c == '\t'
194 || c == '\n'
195 || c == '\v'
196 || c == '\f');
197 }
198
199
200 int
201 macro_is_digit (int c)
202 {
203 return ('0' <= c && c <= '9');
204 }
205
206
207 int
208 macro_is_identifier_nondigit (int c)
209 {
210 return (c == '_'
211 || ('a' <= c && c <= 'z')
212 || ('A' <= c && c <= 'Z'));
213 }
214
215
216 static void
217 set_token (struct macro_buffer *tok, char *start, char *end)
218 {
219 init_shared_buffer (tok, start, end - start);
220 tok->last_token = 0;
221
222 /* Presumed; get_identifier may overwrite this. */
223 tok->is_identifier = 0;
224 }
225
226
227 static int
228 get_comment (struct macro_buffer *tok, char *p, char *end)
229 {
230 if (p + 2 > end)
231 return 0;
232 else if (p[0] == '/'
233 && p[1] == '*')
234 {
235 char *tok_start = p;
236
237 p += 2;
238
239 for (; p < end; p++)
240 if (p + 2 <= end
241 && p[0] == '*'
242 && p[1] == '/')
243 {
244 p += 2;
245 set_token (tok, tok_start, p);
246 return 1;
247 }
248
249 error (_("Unterminated comment in macro expansion."));
250 }
251 else if (p[0] == '/'
252 && p[1] == '/')
253 {
254 char *tok_start = p;
255
256 p += 2;
257 for (; p < end; p++)
258 if (*p == '\n')
259 break;
260
261 set_token (tok, tok_start, p);
262 return 1;
263 }
264 else
265 return 0;
266 }
267
268
269 static int
270 get_identifier (struct macro_buffer *tok, char *p, char *end)
271 {
272 if (p < end
273 && macro_is_identifier_nondigit (*p))
274 {
275 char *tok_start = p;
276
277 while (p < end
278 && (macro_is_identifier_nondigit (*p)
279 || macro_is_digit (*p)))
280 p++;
281
282 set_token (tok, tok_start, p);
283 tok->is_identifier = 1;
284 return 1;
285 }
286 else
287 return 0;
288 }
289
290
291 static int
292 get_pp_number (struct macro_buffer *tok, char *p, char *end)
293 {
294 if (p < end
295 && (macro_is_digit (*p)
296 || (*p == '.'
297 && p + 2 <= end
298 && macro_is_digit (p[1]))))
299 {
300 char *tok_start = p;
301
302 while (p < end)
303 {
304 if (p + 2 <= end
305 && strchr ("eEpP", *p)
306 && (p[1] == '+' || p[1] == '-'))
307 p += 2;
308 else if (macro_is_digit (*p)
309 || macro_is_identifier_nondigit (*p)
310 || *p == '.')
311 p++;
312 else
313 break;
314 }
315
316 set_token (tok, tok_start, p);
317 return 1;
318 }
319 else
320 return 0;
321 }
322
323
324
325 /* If the text starting at P going up to (but not including) END
326 starts with a character constant, set *TOK to point to that
327 character constant, and return 1. Otherwise, return zero.
328 Signal an error if it contains a malformed or incomplete character
329 constant. */
330 static int
331 get_character_constant (struct macro_buffer *tok, char *p, char *end)
332 {
333 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
334 But of course, what really matters is that we handle it the same
335 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
336 to handle escape sequences. */
337 if ((p + 1 <= end && *p == '\'')
338 || (p + 2 <= end
339 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
340 && p[1] == '\''))
341 {
342 char *tok_start = p;
343 int char_count = 0;
344
345 if (*p == '\'')
346 p++;
347 else if (*p == 'L' || *p == 'u' || *p == 'U')
348 p += 2;
349 else
350 gdb_assert_not_reached ("unexpected character constant");
351
352 for (;;)
353 {
354 if (p >= end)
355 error (_("Unmatched single quote."));
356 else if (*p == '\'')
357 {
358 if (!char_count)
359 error (_("A character constant must contain at least one "
360 "character."));
361 p++;
362 break;
363 }
364 else if (*p == '\\')
365 {
366 const char *s, *o;
367
368 s = o = ++p;
369 char_count += c_parse_escape (&s, NULL);
370 p += s - o;
371 }
372 else
373 {
374 p++;
375 char_count++;
376 }
377 }
378
379 set_token (tok, tok_start, p);
380 return 1;
381 }
382 else
383 return 0;
384 }
385
386
387 /* If the text starting at P going up to (but not including) END
388 starts with a string literal, set *TOK to point to that string
389 literal, and return 1. Otherwise, return zero. Signal an error if
390 it contains a malformed or incomplete string literal. */
391 static int
392 get_string_literal (struct macro_buffer *tok, char *p, char *end)
393 {
394 if ((p + 1 <= end
395 && *p == '"')
396 || (p + 2 <= end
397 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
398 && p[1] == '"'))
399 {
400 char *tok_start = p;
401
402 if (*p == '"')
403 p++;
404 else if (*p == 'L' || *p == 'u' || *p == 'U')
405 p += 2;
406 else
407 gdb_assert_not_reached ("unexpected string literal");
408
409 for (;;)
410 {
411 if (p >= end)
412 error (_("Unterminated string in expression."));
413 else if (*p == '"')
414 {
415 p++;
416 break;
417 }
418 else if (*p == '\n')
419 error (_("Newline characters may not appear in string "
420 "constants."));
421 else if (*p == '\\')
422 {
423 const char *s, *o;
424
425 s = o = ++p;
426 c_parse_escape (&s, NULL);
427 p += s - o;
428 }
429 else
430 p++;
431 }
432
433 set_token (tok, tok_start, p);
434 return 1;
435 }
436 else
437 return 0;
438 }
439
440
441 static int
442 get_punctuator (struct macro_buffer *tok, char *p, char *end)
443 {
444 /* Here, speed is much less important than correctness and clarity. */
445
446 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
447 Note that this table is ordered in a special way. A punctuator
448 which is a prefix of another punctuator must appear after its
449 "extension". Otherwise, the wrong token will be returned. */
450 static const char * const punctuators[] = {
451 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
452 "...", ".",
453 "->", "--", "-=", "-",
454 "++", "+=", "+",
455 "*=", "*",
456 "!=", "!",
457 "&&", "&=", "&",
458 "/=", "/",
459 "%>", "%:%:", "%:", "%=", "%",
460 "^=", "^",
461 "##", "#",
462 ":>", ":",
463 "||", "|=", "|",
464 "<<=", "<<", "<=", "<:", "<%", "<",
465 ">>=", ">>", ">=", ">",
466 "==", "=",
467 0
468 };
469
470 int i;
471
472 if (p + 1 <= end)
473 {
474 for (i = 0; punctuators[i]; i++)
475 {
476 const char *punctuator = punctuators[i];
477
478 if (p[0] == punctuator[0])
479 {
480 int len = strlen (punctuator);
481
482 if (p + len <= end
483 && ! memcmp (p, punctuator, len))
484 {
485 set_token (tok, p, p + len);
486 return 1;
487 }
488 }
489 }
490 }
491
492 return 0;
493 }
494
495
496 /* Peel the next preprocessor token off of SRC, and put it in TOK.
497 Mutate TOK to refer to the first token in SRC, and mutate SRC to
498 refer to the text after that token. SRC must be a shared buffer;
499 the resulting TOK will be shared, pointing into the same string SRC
500 does. Initialize TOK's last_token field. Return non-zero if we
501 succeed, or 0 if we didn't find any more tokens in SRC. */
502 static int
503 get_token (struct macro_buffer *tok,
504 struct macro_buffer *src)
505 {
506 char *p = src->text;
507 char *end = p + src->len;
508
509 gdb_assert (src->shared);
510
511 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
512
513 preprocessing-token:
514 header-name
515 identifier
516 pp-number
517 character-constant
518 string-literal
519 punctuator
520 each non-white-space character that cannot be one of the above
521
522 We don't have to deal with header-name tokens, since those can
523 only occur after a #include, which we will never see. */
524
525 while (p < end)
526 if (macro_is_whitespace (*p))
527 p++;
528 else if (get_comment (tok, p, end))
529 p += tok->len;
530 else if (get_pp_number (tok, p, end)
531 || get_character_constant (tok, p, end)
532 || get_string_literal (tok, p, end)
533 /* Note: the grammar in the standard seems to be
534 ambiguous: L'x' can be either a wide character
535 constant, or an identifier followed by a normal
536 character constant. By trying `get_identifier' after
537 we try get_character_constant and get_string_literal,
538 we give the wide character syntax precedence. Now,
539 since GDB doesn't handle wide character constants
540 anyway, is this the right thing to do? */
541 || get_identifier (tok, p, end)
542 || get_punctuator (tok, p, end))
543 {
544 /* How many characters did we consume, including whitespace? */
545 int consumed = p - src->text + tok->len;
546
547 src->text += consumed;
548 src->len -= consumed;
549 return 1;
550 }
551 else
552 {
553 /* We have found a "non-whitespace character that cannot be
554 one of the above." Make a token out of it. */
555 int consumed;
556
557 set_token (tok, p, p + 1);
558 consumed = p - src->text + tok->len;
559 src->text += consumed;
560 src->len -= consumed;
561 return 1;
562 }
563
564 return 0;
565 }
566
567
568 \f
569 /* Appending token strings, with and without splicing */
570
571
572 /* Append the macro buffer SRC to the end of DEST, and ensure that
573 doing so doesn't splice the token at the end of SRC with the token
574 at the beginning of DEST. SRC and DEST must have their last_token
575 fields set. Upon return, DEST's last_token field is set correctly.
576
577 For example:
578
579 If DEST is "(" and SRC is "y", then we can return with
580 DEST set to "(y" --- we've simply appended the two buffers.
581
582 However, if DEST is "x" and SRC is "y", then we must not return
583 with DEST set to "xy" --- that would splice the two tokens "x" and
584 "y" together to make a single token "xy". However, it would be
585 fine to return with DEST set to "x y". Similarly, "<" and "<" must
586 yield "< <", not "<<", etc. */
587 static void
588 append_tokens_without_splicing (struct macro_buffer *dest,
589 struct macro_buffer *src)
590 {
591 int original_dest_len = dest->len;
592 struct macro_buffer dest_tail, new_token;
593
594 gdb_assert (src->last_token != -1);
595 gdb_assert (dest->last_token != -1);
596
597 /* First, just try appending the two, and call get_token to see if
598 we got a splice. */
599 appendmem (dest, src->text, src->len);
600
601 /* If DEST originally had no token abutting its end, then we can't
602 have spliced anything, so we're done. */
603 if (dest->last_token == original_dest_len)
604 {
605 dest->last_token = original_dest_len + src->last_token;
606 return;
607 }
608
609 /* Set DEST_TAIL to point to the last token in DEST, followed by
610 all the stuff we just appended. */
611 init_shared_buffer (&dest_tail,
612 dest->text + dest->last_token,
613 dest->len - dest->last_token);
614
615 /* Re-parse DEST's last token. We know that DEST used to contain
616 at least one token, so if it doesn't contain any after the
617 append, then we must have spliced "/" and "*" or "/" and "/" to
618 make a comment start. (Just for the record, I got this right
619 the first time. This is not a bug fix.) */
620 if (get_token (&new_token, &dest_tail)
621 && (new_token.text + new_token.len
622 == dest->text + original_dest_len))
623 {
624 /* No splice, so we're done. */
625 dest->last_token = original_dest_len + src->last_token;
626 return;
627 }
628
629 /* Okay, a simple append caused a splice. Let's chop dest back to
630 its original length and try again, but separate the texts with a
631 space. */
632 dest->len = original_dest_len;
633 appendc (dest, ' ');
634 appendmem (dest, src->text, src->len);
635
636 init_shared_buffer (&dest_tail,
637 dest->text + dest->last_token,
638 dest->len - dest->last_token);
639
640 /* Try to re-parse DEST's last token, as above. */
641 if (get_token (&new_token, &dest_tail)
642 && (new_token.text + new_token.len
643 == dest->text + original_dest_len))
644 {
645 /* No splice, so we're done. */
646 dest->last_token = original_dest_len + 1 + src->last_token;
647 return;
648 }
649
650 /* As far as I know, there's no case where inserting a space isn't
651 enough to prevent a splice. */
652 internal_error (__FILE__, __LINE__,
653 _("unable to avoid splicing tokens during macro expansion"));
654 }
655
656 /* Stringify an argument, and insert it into DEST. ARG is the text to
657 stringify; it is LEN bytes long. */
658
659 static void
660 stringify (struct macro_buffer *dest, const char *arg, int len)
661 {
662 /* Trim initial whitespace from ARG. */
663 while (len > 0 && macro_is_whitespace (*arg))
664 {
665 ++arg;
666 --len;
667 }
668
669 /* Trim trailing whitespace from ARG. */
670 while (len > 0 && macro_is_whitespace (arg[len - 1]))
671 --len;
672
673 /* Insert the string. */
674 appendc (dest, '"');
675 while (len > 0)
676 {
677 /* We could try to handle strange cases here, like control
678 characters, but there doesn't seem to be much point. */
679 if (macro_is_whitespace (*arg))
680 {
681 /* Replace a sequence of whitespace with a single space. */
682 appendc (dest, ' ');
683 while (len > 1 && macro_is_whitespace (arg[1]))
684 {
685 ++arg;
686 --len;
687 }
688 }
689 else if (*arg == '\\' || *arg == '"')
690 {
691 appendc (dest, '\\');
692 appendc (dest, *arg);
693 }
694 else
695 appendc (dest, *arg);
696 ++arg;
697 --len;
698 }
699 appendc (dest, '"');
700 dest->last_token = dest->len;
701 }
702
703 /* See macroexp.h. */
704
705 char *
706 macro_stringify (const char *str)
707 {
708 struct macro_buffer buffer;
709 int len = strlen (str);
710
711 init_buffer (&buffer, len);
712 stringify (&buffer, str, len);
713 appendc (&buffer, '\0');
714
715 return free_buffer_return_text (&buffer);
716 }
717
718 \f
719 /* Expanding macros! */
720
721
722 /* A singly-linked list of the names of the macros we are currently
723 expanding --- for detecting expansion loops. */
724 struct macro_name_list {
725 const char *name;
726 struct macro_name_list *next;
727 };
728
729
730 /* Return non-zero if we are currently expanding the macro named NAME,
731 according to LIST; otherwise, return zero.
732
733 You know, it would be possible to get rid of all the NO_LOOP
734 arguments to these functions by simply generating a new lookup
735 function and baton which refuses to find the definition for a
736 particular macro, and otherwise delegates the decision to another
737 function/baton pair. But that makes the linked list of excluded
738 macros chained through untyped baton pointers, which will make it
739 harder to debug. :( */
740 static int
741 currently_rescanning (struct macro_name_list *list, const char *name)
742 {
743 for (; list; list = list->next)
744 if (strcmp (name, list->name) == 0)
745 return 1;
746
747 return 0;
748 }
749
750
751 /* Gather the arguments to a macro expansion.
752
753 NAME is the name of the macro being invoked. (It's only used for
754 printing error messages.)
755
756 Assume that SRC is the text of the macro invocation immediately
757 following the macro name. For example, if we're processing the
758 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
759 baz).
760
761 If SRC doesn't start with an open paren ( token at all, return
762 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
763
764 If SRC doesn't contain a properly terminated argument list, then
765 raise an error.
766
767 For a variadic macro, NARGS holds the number of formal arguments to
768 the macro. For a GNU-style variadic macro, this should be the
769 number of named arguments. For a non-variadic macro, NARGS should
770 be -1.
771
772 Otherwise, return a pointer to the first element of an array of
773 macro buffers referring to the argument texts, and set *ARGC_P to
774 the number of arguments we found --- the number of elements in the
775 array. The macro buffers share their text with SRC, and their
776 last_token fields are initialized. The array is allocated with
777 xmalloc, and the caller is responsible for freeing it.
778
779 NOTE WELL: if SRC starts with a open paren ( token followed
780 immediately by a close paren ) token (e.g., the invocation looks
781 like "foo()"), we treat that as one argument, which happens to be
782 the empty list of tokens. The caller should keep in mind that such
783 a sequence of tokens is a valid way to invoke one-parameter
784 function-like macros, but also a valid way to invoke zero-parameter
785 function-like macros. Eeew.
786
787 Consume the tokens from SRC; after this call, SRC contains the text
788 following the invocation. */
789
790 static struct macro_buffer *
791 gather_arguments (const char *name, struct macro_buffer *src,
792 int nargs, int *argc_p)
793 {
794 struct macro_buffer tok;
795 int args_len, args_size;
796 struct macro_buffer *args = NULL;
797 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
798
799 /* Does SRC start with an opening paren token? Read from a copy of
800 SRC, so SRC itself is unaffected if we don't find an opening
801 paren. */
802 {
803 struct macro_buffer temp;
804
805 init_shared_buffer (&temp, src->text, src->len);
806
807 if (! get_token (&tok, &temp)
808 || tok.len != 1
809 || tok.text[0] != '(')
810 {
811 discard_cleanups (back_to);
812 return 0;
813 }
814 }
815
816 /* Consume SRC's opening paren. */
817 get_token (&tok, src);
818
819 args_len = 0;
820 args_size = 6;
821 args = XNEWVEC (struct macro_buffer, args_size);
822
823 for (;;)
824 {
825 struct macro_buffer *arg;
826 int depth;
827
828 /* Make sure we have room for the next argument. */
829 if (args_len >= args_size)
830 {
831 args_size *= 2;
832 args = XRESIZEVEC (struct macro_buffer, args, args_size);
833 }
834
835 /* Initialize the next argument. */
836 arg = &args[args_len++];
837 set_token (arg, src->text, src->text);
838
839 /* Gather the argument's tokens. */
840 depth = 0;
841 for (;;)
842 {
843 if (! get_token (&tok, src))
844 error (_("Malformed argument list for macro `%s'."), name);
845
846 /* Is tok an opening paren? */
847 if (tok.len == 1 && tok.text[0] == '(')
848 depth++;
849
850 /* Is tok is a closing paren? */
851 else if (tok.len == 1 && tok.text[0] == ')')
852 {
853 /* If it's a closing paren at the top level, then that's
854 the end of the argument list. */
855 if (depth == 0)
856 {
857 /* In the varargs case, the last argument may be
858 missing. Add an empty argument in this case. */
859 if (nargs != -1 && args_len == nargs - 1)
860 {
861 /* Make sure we have room for the argument. */
862 if (args_len >= args_size)
863 {
864 args_size++;
865 args = XRESIZEVEC (struct macro_buffer, args,
866 args_size);
867 }
868 arg = &args[args_len++];
869 set_token (arg, src->text, src->text);
870 }
871
872 discard_cleanups (back_to);
873 *argc_p = args_len;
874 return args;
875 }
876
877 depth--;
878 }
879
880 /* If tok is a comma at top level, then that's the end of
881 the current argument. However, if we are handling a
882 variadic macro and we are computing the last argument, we
883 want to include the comma and remaining tokens. */
884 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
885 && (nargs == -1 || args_len < nargs))
886 break;
887
888 /* Extend the current argument to enclose this token. If
889 this is the current argument's first token, leave out any
890 leading whitespace, just for aesthetics. */
891 if (arg->len == 0)
892 {
893 arg->text = tok.text;
894 arg->len = tok.len;
895 arg->last_token = 0;
896 }
897 else
898 {
899 arg->len = (tok.text + tok.len) - arg->text;
900 arg->last_token = tok.text - arg->text;
901 }
902 }
903 }
904 }
905
906
907 /* The `expand' and `substitute_args' functions both invoke `scan'
908 recursively, so we need a forward declaration somewhere. */
909 static void scan (struct macro_buffer *dest,
910 struct macro_buffer *src,
911 struct macro_name_list *no_loop,
912 macro_lookup_ftype *lookup_func,
913 void *lookup_baton);
914
915
916 /* A helper function for substitute_args.
917
918 ARGV is a vector of all the arguments; ARGC is the number of
919 arguments. IS_VARARGS is true if the macro being substituted is a
920 varargs macro; in this case VA_ARG_NAME is the name of the
921 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
922 false.
923
924 If the token TOK is the name of a parameter, return the parameter's
925 index. If TOK is not an argument, return -1. */
926
927 static int
928 find_parameter (const struct macro_buffer *tok,
929 int is_varargs, const struct macro_buffer *va_arg_name,
930 int argc, const char * const *argv)
931 {
932 int i;
933
934 if (! tok->is_identifier)
935 return -1;
936
937 for (i = 0; i < argc; ++i)
938 if (tok->len == strlen (argv[i])
939 && !memcmp (tok->text, argv[i], tok->len))
940 return i;
941
942 if (is_varargs && tok->len == va_arg_name->len
943 && ! memcmp (tok->text, va_arg_name->text, tok->len))
944 return argc - 1;
945
946 return -1;
947 }
948
949 /* Given the macro definition DEF, being invoked with the actual
950 arguments given by ARGC and ARGV, substitute the arguments into the
951 replacement list, and store the result in DEST.
952
953 IS_VARARGS should be true if DEF is a varargs macro. In this case,
954 VA_ARG_NAME should be the name of the "variable" argument -- either
955 __VA_ARGS__ for c99-style varargs, or the final argument name, for
956 GNU-style varargs. If IS_VARARGS is false, this parameter is
957 ignored.
958
959 If it is necessary to expand macro invocations in one of the
960 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
961 definitions, and don't expand invocations of the macros listed in
962 NO_LOOP. */
963
964 static void
965 substitute_args (struct macro_buffer *dest,
966 struct macro_definition *def,
967 int is_varargs, const struct macro_buffer *va_arg_name,
968 int argc, struct macro_buffer *argv,
969 struct macro_name_list *no_loop,
970 macro_lookup_ftype *lookup_func,
971 void *lookup_baton)
972 {
973 /* A macro buffer for the macro's replacement list. */
974 struct macro_buffer replacement_list;
975 /* The token we are currently considering. */
976 struct macro_buffer tok;
977 /* The replacement list's pointer from just before TOK was lexed. */
978 char *original_rl_start;
979 /* We have a single lookahead token to handle token splicing. */
980 struct macro_buffer lookahead;
981 /* The lookahead token might not be valid. */
982 int lookahead_valid;
983 /* The replacement list's pointer from just before LOOKAHEAD was
984 lexed. */
985 char *lookahead_rl_start;
986
987 init_shared_buffer (&replacement_list, def->replacement,
988 strlen (def->replacement));
989
990 gdb_assert (dest->len == 0);
991 dest->last_token = 0;
992
993 original_rl_start = replacement_list.text;
994 if (! get_token (&tok, &replacement_list))
995 return;
996 lookahead_rl_start = replacement_list.text;
997 lookahead_valid = get_token (&lookahead, &replacement_list);
998
999 for (;;)
1000 {
1001 /* Just for aesthetics. If we skipped some whitespace, copy
1002 that to DEST. */
1003 if (tok.text > original_rl_start)
1004 {
1005 appendmem (dest, original_rl_start, tok.text - original_rl_start);
1006 dest->last_token = dest->len;
1007 }
1008
1009 /* Is this token the stringification operator? */
1010 if (tok.len == 1
1011 && tok.text[0] == '#')
1012 {
1013 int arg;
1014
1015 if (!lookahead_valid)
1016 error (_("Stringification operator requires an argument."));
1017
1018 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1019 def->argc, def->argv);
1020 if (arg == -1)
1021 error (_("Argument to stringification operator must name "
1022 "a macro parameter."));
1023
1024 stringify (dest, argv[arg].text, argv[arg].len);
1025
1026 /* Read one token and let the loop iteration code handle the
1027 rest. */
1028 lookahead_rl_start = replacement_list.text;
1029 lookahead_valid = get_token (&lookahead, &replacement_list);
1030 }
1031 /* Is this token the splicing operator? */
1032 else if (tok.len == 2
1033 && tok.text[0] == '#'
1034 && tok.text[1] == '#')
1035 error (_("Stray splicing operator"));
1036 /* Is the next token the splicing operator? */
1037 else if (lookahead_valid
1038 && lookahead.len == 2
1039 && lookahead.text[0] == '#'
1040 && lookahead.text[1] == '#')
1041 {
1042 int finished = 0;
1043 int prev_was_comma = 0;
1044
1045 /* Note that GCC warns if the result of splicing is not a
1046 token. In the debugger there doesn't seem to be much
1047 benefit from doing this. */
1048
1049 /* Insert the first token. */
1050 if (tok.len == 1 && tok.text[0] == ',')
1051 prev_was_comma = 1;
1052 else
1053 {
1054 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1055 def->argc, def->argv);
1056
1057 if (arg != -1)
1058 appendmem (dest, argv[arg].text, argv[arg].len);
1059 else
1060 appendmem (dest, tok.text, tok.len);
1061 }
1062
1063 /* Apply a possible sequence of ## operators. */
1064 for (;;)
1065 {
1066 if (! get_token (&tok, &replacement_list))
1067 error (_("Splicing operator at end of macro"));
1068
1069 /* Handle a comma before a ##. If we are handling
1070 varargs, and the token on the right hand side is the
1071 varargs marker, and the final argument is empty or
1072 missing, then drop the comma. This is a GNU
1073 extension. There is one ambiguous case here,
1074 involving pedantic behavior with an empty argument,
1075 but we settle that in favor of GNU-style (GCC uses an
1076 option). If we aren't dealing with varargs, we
1077 simply insert the comma. */
1078 if (prev_was_comma)
1079 {
1080 if (! (is_varargs
1081 && tok.len == va_arg_name->len
1082 && !memcmp (tok.text, va_arg_name->text, tok.len)
1083 && argv[argc - 1].len == 0))
1084 appendmem (dest, ",", 1);
1085 prev_was_comma = 0;
1086 }
1087
1088 /* Insert the token. If it is a parameter, insert the
1089 argument. If it is a comma, treat it specially. */
1090 if (tok.len == 1 && tok.text[0] == ',')
1091 prev_was_comma = 1;
1092 else
1093 {
1094 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1095 def->argc, def->argv);
1096
1097 if (arg != -1)
1098 appendmem (dest, argv[arg].text, argv[arg].len);
1099 else
1100 appendmem (dest, tok.text, tok.len);
1101 }
1102
1103 /* Now read another token. If it is another splice, we
1104 loop. */
1105 original_rl_start = replacement_list.text;
1106 if (! get_token (&tok, &replacement_list))
1107 {
1108 finished = 1;
1109 break;
1110 }
1111
1112 if (! (tok.len == 2
1113 && tok.text[0] == '#'
1114 && tok.text[1] == '#'))
1115 break;
1116 }
1117
1118 if (prev_was_comma)
1119 {
1120 /* We saw a comma. Insert it now. */
1121 appendmem (dest, ",", 1);
1122 }
1123
1124 dest->last_token = dest->len;
1125 if (finished)
1126 lookahead_valid = 0;
1127 else
1128 {
1129 /* Set up for the loop iterator. */
1130 lookahead = tok;
1131 lookahead_rl_start = original_rl_start;
1132 lookahead_valid = 1;
1133 }
1134 }
1135 else
1136 {
1137 /* Is this token an identifier? */
1138 int substituted = 0;
1139 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1140 def->argc, def->argv);
1141
1142 if (arg != -1)
1143 {
1144 struct macro_buffer arg_src;
1145
1146 /* Expand any macro invocations in the argument text,
1147 and append the result to dest. Remember that scan
1148 mutates its source, so we need to scan a new buffer
1149 referring to the argument's text, not the argument
1150 itself. */
1151 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1152 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1153 substituted = 1;
1154 }
1155
1156 /* If it wasn't a parameter, then just copy it across. */
1157 if (! substituted)
1158 append_tokens_without_splicing (dest, &tok);
1159 }
1160
1161 if (! lookahead_valid)
1162 break;
1163
1164 tok = lookahead;
1165 original_rl_start = lookahead_rl_start;
1166
1167 lookahead_rl_start = replacement_list.text;
1168 lookahead_valid = get_token (&lookahead, &replacement_list);
1169 }
1170 }
1171
1172
1173 /* Expand a call to a macro named ID, whose definition is DEF. Append
1174 its expansion to DEST. SRC is the input text following the ID
1175 token. We are currently rescanning the expansions of the macros
1176 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1177 LOOKUP_BATON to find definitions for any nested macro references.
1178
1179 Return 1 if we decided to expand it, zero otherwise. (If it's a
1180 function-like macro name that isn't followed by an argument list,
1181 we don't expand it.) If we return zero, leave SRC unchanged. */
1182 static int
1183 expand (const char *id,
1184 struct macro_definition *def,
1185 struct macro_buffer *dest,
1186 struct macro_buffer *src,
1187 struct macro_name_list *no_loop,
1188 macro_lookup_ftype *lookup_func,
1189 void *lookup_baton)
1190 {
1191 struct macro_name_list new_no_loop;
1192
1193 /* Create a new node to be added to the front of the no-expand list.
1194 This list is appropriate for re-scanning replacement lists, but
1195 it is *not* appropriate for scanning macro arguments; invocations
1196 of the macro whose arguments we are gathering *do* get expanded
1197 there. */
1198 new_no_loop.name = id;
1199 new_no_loop.next = no_loop;
1200
1201 /* What kind of macro are we expanding? */
1202 if (def->kind == macro_object_like)
1203 {
1204 struct macro_buffer replacement_list;
1205
1206 init_shared_buffer (&replacement_list, def->replacement,
1207 strlen (def->replacement));
1208
1209 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1210 return 1;
1211 }
1212 else if (def->kind == macro_function_like)
1213 {
1214 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1215 int argc = 0;
1216 struct macro_buffer *argv = NULL;
1217 struct macro_buffer substituted;
1218 struct macro_buffer substituted_src;
1219 struct macro_buffer va_arg_name = {0};
1220 int is_varargs = 0;
1221
1222 if (def->argc >= 1)
1223 {
1224 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1225 {
1226 /* In C99-style varargs, substitution is done using
1227 __VA_ARGS__. */
1228 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1229 strlen ("__VA_ARGS__"));
1230 is_varargs = 1;
1231 }
1232 else
1233 {
1234 int len = strlen (def->argv[def->argc - 1]);
1235
1236 if (len > 3
1237 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1238 {
1239 /* In GNU-style varargs, the name of the
1240 substitution parameter is the name of the formal
1241 argument without the "...". */
1242 init_shared_buffer (&va_arg_name,
1243 def->argv[def->argc - 1],
1244 len - 3);
1245 is_varargs = 1;
1246 }
1247 }
1248 }
1249
1250 make_cleanup (free_current_contents, &argv);
1251 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1252 &argc);
1253
1254 /* If we couldn't find any argument list, then we don't expand
1255 this macro. */
1256 if (! argv)
1257 {
1258 do_cleanups (back_to);
1259 return 0;
1260 }
1261
1262 /* Check that we're passing an acceptable number of arguments for
1263 this macro. */
1264 if (argc != def->argc)
1265 {
1266 if (is_varargs && argc >= def->argc - 1)
1267 {
1268 /* Ok. */
1269 }
1270 /* Remember that a sequence of tokens like "foo()" is a
1271 valid invocation of a macro expecting either zero or one
1272 arguments. */
1273 else if (! (argc == 1
1274 && argv[0].len == 0
1275 && def->argc == 0))
1276 error (_("Wrong number of arguments to macro `%s' "
1277 "(expected %d, got %d)."),
1278 id, def->argc, argc);
1279 }
1280
1281 /* Note that we don't expand macro invocations in the arguments
1282 yet --- we let subst_args take care of that. Parameters that
1283 appear as operands of the stringifying operator "#" or the
1284 splicing operator "##" don't get macro references expanded,
1285 so we can't really tell whether it's appropriate to macro-
1286 expand an argument until we see how it's being used. */
1287 init_buffer (&substituted, 0);
1288 make_cleanup (cleanup_macro_buffer, &substituted);
1289 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1290 argc, argv, no_loop, lookup_func, lookup_baton);
1291
1292 /* Now `substituted' is the macro's replacement list, with all
1293 argument values substituted into it properly. Re-scan it for
1294 macro references, but don't expand invocations of this macro.
1295
1296 We create a new buffer, `substituted_src', which points into
1297 `substituted', and scan that. We can't scan `substituted'
1298 itself, since the tokenization process moves the buffer's
1299 text pointer around, and we still need to be able to find
1300 `substituted's original text buffer after scanning it so we
1301 can free it. */
1302 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1303 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1304
1305 do_cleanups (back_to);
1306
1307 return 1;
1308 }
1309 else
1310 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1311 }
1312
1313
1314 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1315 constitute a macro invokation not forbidden in NO_LOOP, append its
1316 expansion to DEST and return non-zero. Otherwise, return zero, and
1317 leave DEST unchanged.
1318
1319 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1320 SRC_FIRST must be a string built by get_token. */
1321 static int
1322 maybe_expand (struct macro_buffer *dest,
1323 struct macro_buffer *src_first,
1324 struct macro_buffer *src_rest,
1325 struct macro_name_list *no_loop,
1326 macro_lookup_ftype *lookup_func,
1327 void *lookup_baton)
1328 {
1329 gdb_assert (src_first->shared);
1330 gdb_assert (src_rest->shared);
1331 gdb_assert (! dest->shared);
1332
1333 /* Is this token an identifier? */
1334 if (src_first->is_identifier)
1335 {
1336 /* Make a null-terminated copy of it, since that's what our
1337 lookup function expects. */
1338 char *id = (char *) xmalloc (src_first->len + 1);
1339 struct cleanup *back_to = make_cleanup (xfree, id);
1340
1341 memcpy (id, src_first->text, src_first->len);
1342 id[src_first->len] = 0;
1343
1344 /* If we're currently re-scanning the result of expanding
1345 this macro, don't expand it again. */
1346 if (! currently_rescanning (no_loop, id))
1347 {
1348 /* Does this identifier have a macro definition in scope? */
1349 struct macro_definition *def = lookup_func (id, lookup_baton);
1350
1351 if (def && expand (id, def, dest, src_rest, no_loop,
1352 lookup_func, lookup_baton))
1353 {
1354 do_cleanups (back_to);
1355 return 1;
1356 }
1357 }
1358
1359 do_cleanups (back_to);
1360 }
1361
1362 return 0;
1363 }
1364
1365
1366 /* Expand macro references in SRC, appending the results to DEST.
1367 Assume we are re-scanning the result of expanding the macros named
1368 in NO_LOOP, and don't try to re-expand references to them.
1369
1370 SRC must be a shared buffer; DEST must not be one. */
1371 static void
1372 scan (struct macro_buffer *dest,
1373 struct macro_buffer *src,
1374 struct macro_name_list *no_loop,
1375 macro_lookup_ftype *lookup_func,
1376 void *lookup_baton)
1377 {
1378 gdb_assert (src->shared);
1379 gdb_assert (! dest->shared);
1380
1381 for (;;)
1382 {
1383 struct macro_buffer tok;
1384 char *original_src_start = src->text;
1385
1386 /* Find the next token in SRC. */
1387 if (! get_token (&tok, src))
1388 break;
1389
1390 /* Just for aesthetics. If we skipped some whitespace, copy
1391 that to DEST. */
1392 if (tok.text > original_src_start)
1393 {
1394 appendmem (dest, original_src_start, tok.text - original_src_start);
1395 dest->last_token = dest->len;
1396 }
1397
1398 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1399 /* We didn't end up expanding tok as a macro reference, so
1400 simply append it to dest. */
1401 append_tokens_without_splicing (dest, &tok);
1402 }
1403
1404 /* Just for aesthetics. If there was any trailing whitespace in
1405 src, copy it to dest. */
1406 if (src->len)
1407 {
1408 appendmem (dest, src->text, src->len);
1409 dest->last_token = dest->len;
1410 }
1411 }
1412
1413
1414 char *
1415 macro_expand (const char *source,
1416 macro_lookup_ftype *lookup_func,
1417 void *lookup_func_baton)
1418 {
1419 struct macro_buffer src, dest;
1420 struct cleanup *back_to;
1421
1422 init_shared_buffer (&src, source, strlen (source));
1423
1424 init_buffer (&dest, 0);
1425 dest.last_token = 0;
1426 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1427
1428 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1429
1430 appendc (&dest, '\0');
1431
1432 discard_cleanups (back_to);
1433 return dest.text;
1434 }
1435
1436
1437 char *
1438 macro_expand_once (const char *source,
1439 macro_lookup_ftype *lookup_func,
1440 void *lookup_func_baton)
1441 {
1442 error (_("Expand-once not implemented yet."));
1443 }
1444
1445
1446 char *
1447 macro_expand_next (const char **lexptr,
1448 macro_lookup_ftype *lookup_func,
1449 void *lookup_baton)
1450 {
1451 struct macro_buffer src, dest, tok;
1452 struct cleanup *back_to;
1453
1454 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1455 init_shared_buffer (&src, *lexptr, strlen (*lexptr));
1456
1457 /* Set up DEST to receive the expansion, if there is one. */
1458 init_buffer (&dest, 0);
1459 dest.last_token = 0;
1460 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1461
1462 /* Get the text's first preprocessing token. */
1463 if (! get_token (&tok, &src))
1464 {
1465 do_cleanups (back_to);
1466 return 0;
1467 }
1468
1469 /* If it's a macro invocation, expand it. */
1470 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1471 {
1472 /* It was a macro invocation! Package up the expansion as a
1473 null-terminated string and return it. Set *lexptr to the
1474 start of the next token in the input. */
1475 appendc (&dest, '\0');
1476 discard_cleanups (back_to);
1477 *lexptr = src.text;
1478 return dest.text;
1479 }
1480 else
1481 {
1482 /* It wasn't a macro invocation. */
1483 do_cleanups (back_to);
1484 return 0;
1485 }
1486 }
This page took 0.061883 seconds and 5 git commands to generate.