Constification of parse_linespec and fallout:
[deliverable/binutils-gdb.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "bcache.h"
23 #include "macrotab.h"
24 #include "macroexp.h"
25 #include "gdb_assert.h"
26 #include "c-lang.h"
27
28
29 \f
30 /* A resizeable, substringable string type. */
31
32
33 /* A string type that we can resize, quickly append to, and use to
34 refer to substrings of other strings. */
35 struct macro_buffer
36 {
37 /* An array of characters. The first LEN bytes are the real text,
38 but there are SIZE bytes allocated to the array. If SIZE is
39 zero, then this doesn't point to a malloc'ed block. If SHARED is
40 non-zero, then this buffer is actually a pointer into some larger
41 string, and we shouldn't append characters to it, etc. Because
42 of sharing, we can't assume in general that the text is
43 null-terminated. */
44 char *text;
45
46 /* The number of characters in the string. */
47 int len;
48
49 /* The number of characters allocated to the string. If SHARED is
50 non-zero, this is meaningless; in this case, we set it to zero so
51 that any "do we have room to append something?" tests will fail,
52 so we don't always have to check SHARED before using this field. */
53 int size;
54
55 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
56 block). Non-zero if TEXT is actually pointing into the middle of
57 some other block, and we shouldn't reallocate it. */
58 int shared;
59
60 /* For detecting token splicing.
61
62 This is the index in TEXT of the first character of the token
63 that abuts the end of TEXT. If TEXT contains no tokens, then we
64 set this equal to LEN. If TEXT ends in whitespace, then there is
65 no token abutting the end of TEXT (it's just whitespace), and
66 again, we set this equal to LEN. We set this to -1 if we don't
67 know the nature of TEXT. */
68 int last_token;
69
70 /* If this buffer is holding the result from get_token, then this
71 is non-zero if it is an identifier token, zero otherwise. */
72 int is_identifier;
73 };
74
75
76 /* Set the macro buffer *B to the empty string, guessing that its
77 final contents will fit in N bytes. (It'll get resized if it
78 doesn't, so the guess doesn't have to be right.) Allocate the
79 initial storage with xmalloc. */
80 static void
81 init_buffer (struct macro_buffer *b, int n)
82 {
83 b->size = n;
84 if (n > 0)
85 b->text = (char *) xmalloc (n);
86 else
87 b->text = NULL;
88 b->len = 0;
89 b->shared = 0;
90 b->last_token = -1;
91 }
92
93
94 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
95 shared substring. */
96 static void
97 init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
98 {
99 buf->text = addr;
100 buf->len = len;
101 buf->shared = 1;
102 buf->size = 0;
103 buf->last_token = -1;
104 }
105
106
107 /* Free the text of the buffer B. Raise an error if B is shared. */
108 static void
109 free_buffer (struct macro_buffer *b)
110 {
111 gdb_assert (! b->shared);
112 if (b->size)
113 xfree (b->text);
114 }
115
116 /* Like free_buffer, but return the text as an xstrdup()d string.
117 This only exists to try to make the API relatively clean. */
118
119 static char *
120 free_buffer_return_text (struct macro_buffer *b)
121 {
122 gdb_assert (! b->shared);
123 gdb_assert (b->size);
124 /* Nothing to do. */
125 return b->text;
126 }
127
128 /* A cleanup function for macro buffers. */
129 static void
130 cleanup_macro_buffer (void *untyped_buf)
131 {
132 free_buffer ((struct macro_buffer *) untyped_buf);
133 }
134
135
136 /* Resize the buffer B to be at least N bytes long. Raise an error if
137 B shouldn't be resized. */
138 static void
139 resize_buffer (struct macro_buffer *b, int n)
140 {
141 /* We shouldn't be trying to resize shared strings. */
142 gdb_assert (! b->shared);
143
144 if (b->size == 0)
145 b->size = n;
146 else
147 while (b->size <= n)
148 b->size *= 2;
149
150 b->text = xrealloc (b->text, b->size);
151 }
152
153
154 /* Append the character C to the buffer B. */
155 static void
156 appendc (struct macro_buffer *b, int c)
157 {
158 int new_len = b->len + 1;
159
160 if (new_len > b->size)
161 resize_buffer (b, new_len);
162
163 b->text[b->len] = c;
164 b->len = new_len;
165 }
166
167
168 /* Append the LEN bytes at ADDR to the buffer B. */
169 static void
170 appendmem (struct macro_buffer *b, char *addr, int len)
171 {
172 int new_len = b->len + len;
173
174 if (new_len > b->size)
175 resize_buffer (b, new_len);
176
177 memcpy (b->text + b->len, addr, len);
178 b->len = new_len;
179 }
180
181
182 \f
183 /* Recognizing preprocessor tokens. */
184
185
186 int
187 macro_is_whitespace (int c)
188 {
189 return (c == ' '
190 || c == '\t'
191 || c == '\n'
192 || c == '\v'
193 || c == '\f');
194 }
195
196
197 int
198 macro_is_digit (int c)
199 {
200 return ('0' <= c && c <= '9');
201 }
202
203
204 int
205 macro_is_identifier_nondigit (int c)
206 {
207 return (c == '_'
208 || ('a' <= c && c <= 'z')
209 || ('A' <= c && c <= 'Z'));
210 }
211
212
213 static void
214 set_token (struct macro_buffer *tok, char *start, char *end)
215 {
216 init_shared_buffer (tok, start, end - start);
217 tok->last_token = 0;
218
219 /* Presumed; get_identifier may overwrite this. */
220 tok->is_identifier = 0;
221 }
222
223
224 static int
225 get_comment (struct macro_buffer *tok, char *p, char *end)
226 {
227 if (p + 2 > end)
228 return 0;
229 else if (p[0] == '/'
230 && p[1] == '*')
231 {
232 char *tok_start = p;
233
234 p += 2;
235
236 for (; p < end; p++)
237 if (p + 2 <= end
238 && p[0] == '*'
239 && p[1] == '/')
240 {
241 p += 2;
242 set_token (tok, tok_start, p);
243 return 1;
244 }
245
246 error (_("Unterminated comment in macro expansion."));
247 }
248 else if (p[0] == '/'
249 && p[1] == '/')
250 {
251 char *tok_start = p;
252
253 p += 2;
254 for (; p < end; p++)
255 if (*p == '\n')
256 break;
257
258 set_token (tok, tok_start, p);
259 return 1;
260 }
261 else
262 return 0;
263 }
264
265
266 static int
267 get_identifier (struct macro_buffer *tok, char *p, char *end)
268 {
269 if (p < end
270 && macro_is_identifier_nondigit (*p))
271 {
272 char *tok_start = p;
273
274 while (p < end
275 && (macro_is_identifier_nondigit (*p)
276 || macro_is_digit (*p)))
277 p++;
278
279 set_token (tok, tok_start, p);
280 tok->is_identifier = 1;
281 return 1;
282 }
283 else
284 return 0;
285 }
286
287
288 static int
289 get_pp_number (struct macro_buffer *tok, char *p, char *end)
290 {
291 if (p < end
292 && (macro_is_digit (*p)
293 || (*p == '.'
294 && p + 2 <= end
295 && macro_is_digit (p[1]))))
296 {
297 char *tok_start = p;
298
299 while (p < end)
300 {
301 if (p + 2 <= end
302 && strchr ("eEpP", *p)
303 && (p[1] == '+' || p[1] == '-'))
304 p += 2;
305 else if (macro_is_digit (*p)
306 || macro_is_identifier_nondigit (*p)
307 || *p == '.')
308 p++;
309 else
310 break;
311 }
312
313 set_token (tok, tok_start, p);
314 return 1;
315 }
316 else
317 return 0;
318 }
319
320
321
322 /* If the text starting at P going up to (but not including) END
323 starts with a character constant, set *TOK to point to that
324 character constant, and return 1. Otherwise, return zero.
325 Signal an error if it contains a malformed or incomplete character
326 constant. */
327 static int
328 get_character_constant (struct macro_buffer *tok, char *p, char *end)
329 {
330 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
331 But of course, what really matters is that we handle it the same
332 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
333 to handle escape sequences. */
334 if ((p + 1 <= end && *p == '\'')
335 || (p + 2 <= end
336 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
337 && p[1] == '\''))
338 {
339 char *tok_start = p;
340 int char_count = 0;
341
342 if (*p == '\'')
343 p++;
344 else if (*p == 'L' || *p == 'u' || *p == 'U')
345 p += 2;
346 else
347 gdb_assert_not_reached ("unexpected character constant");
348
349 for (;;)
350 {
351 if (p >= end)
352 error (_("Unmatched single quote."));
353 else if (*p == '\'')
354 {
355 if (!char_count)
356 error (_("A character constant must contain at least one "
357 "character."));
358 p++;
359 break;
360 }
361 else if (*p == '\\')
362 {
363 const char *s, *o;
364
365 s = o = ++p;
366 char_count += c_parse_escape (&s, NULL);
367 p += s - o;
368 }
369 else
370 {
371 p++;
372 char_count++;
373 }
374 }
375
376 set_token (tok, tok_start, p);
377 return 1;
378 }
379 else
380 return 0;
381 }
382
383
384 /* If the text starting at P going up to (but not including) END
385 starts with a string literal, set *TOK to point to that string
386 literal, and return 1. Otherwise, return zero. Signal an error if
387 it contains a malformed or incomplete string literal. */
388 static int
389 get_string_literal (struct macro_buffer *tok, char *p, char *end)
390 {
391 if ((p + 1 <= end
392 && *p == '"')
393 || (p + 2 <= end
394 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
395 && p[1] == '"'))
396 {
397 char *tok_start = p;
398
399 if (*p == '"')
400 p++;
401 else if (*p == 'L' || *p == 'u' || *p == 'U')
402 p += 2;
403 else
404 gdb_assert_not_reached ("unexpected string literal");
405
406 for (;;)
407 {
408 if (p >= end)
409 error (_("Unterminated string in expression."));
410 else if (*p == '"')
411 {
412 p++;
413 break;
414 }
415 else if (*p == '\n')
416 error (_("Newline characters may not appear in string "
417 "constants."));
418 else if (*p == '\\')
419 {
420 const char *s, *o;
421
422 s = o = ++p;
423 c_parse_escape (&s, NULL);
424 p += s - o;
425 }
426 else
427 p++;
428 }
429
430 set_token (tok, tok_start, p);
431 return 1;
432 }
433 else
434 return 0;
435 }
436
437
438 static int
439 get_punctuator (struct macro_buffer *tok, char *p, char *end)
440 {
441 /* Here, speed is much less important than correctness and clarity. */
442
443 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
444 Note that this table is ordered in a special way. A punctuator
445 which is a prefix of another punctuator must appear after its
446 "extension". Otherwise, the wrong token will be returned. */
447 static const char * const punctuators[] = {
448 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
449 "...", ".",
450 "->", "--", "-=", "-",
451 "++", "+=", "+",
452 "*=", "*",
453 "!=", "!",
454 "&&", "&=", "&",
455 "/=", "/",
456 "%>", "%:%:", "%:", "%=", "%",
457 "^=", "^",
458 "##", "#",
459 ":>", ":",
460 "||", "|=", "|",
461 "<<=", "<<", "<=", "<:", "<%", "<",
462 ">>=", ">>", ">=", ">",
463 "==", "=",
464 0
465 };
466
467 int i;
468
469 if (p + 1 <= end)
470 {
471 for (i = 0; punctuators[i]; i++)
472 {
473 const char *punctuator = punctuators[i];
474
475 if (p[0] == punctuator[0])
476 {
477 int len = strlen (punctuator);
478
479 if (p + len <= end
480 && ! memcmp (p, punctuator, len))
481 {
482 set_token (tok, p, p + len);
483 return 1;
484 }
485 }
486 }
487 }
488
489 return 0;
490 }
491
492
493 /* Peel the next preprocessor token off of SRC, and put it in TOK.
494 Mutate TOK to refer to the first token in SRC, and mutate SRC to
495 refer to the text after that token. SRC must be a shared buffer;
496 the resulting TOK will be shared, pointing into the same string SRC
497 does. Initialize TOK's last_token field. Return non-zero if we
498 succeed, or 0 if we didn't find any more tokens in SRC. */
499 static int
500 get_token (struct macro_buffer *tok,
501 struct macro_buffer *src)
502 {
503 char *p = src->text;
504 char *end = p + src->len;
505
506 gdb_assert (src->shared);
507
508 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
509
510 preprocessing-token:
511 header-name
512 identifier
513 pp-number
514 character-constant
515 string-literal
516 punctuator
517 each non-white-space character that cannot be one of the above
518
519 We don't have to deal with header-name tokens, since those can
520 only occur after a #include, which we will never see. */
521
522 while (p < end)
523 if (macro_is_whitespace (*p))
524 p++;
525 else if (get_comment (tok, p, end))
526 p += tok->len;
527 else if (get_pp_number (tok, p, end)
528 || get_character_constant (tok, p, end)
529 || get_string_literal (tok, p, end)
530 /* Note: the grammar in the standard seems to be
531 ambiguous: L'x' can be either a wide character
532 constant, or an identifier followed by a normal
533 character constant. By trying `get_identifier' after
534 we try get_character_constant and get_string_literal,
535 we give the wide character syntax precedence. Now,
536 since GDB doesn't handle wide character constants
537 anyway, is this the right thing to do? */
538 || get_identifier (tok, p, end)
539 || get_punctuator (tok, p, end))
540 {
541 /* How many characters did we consume, including whitespace? */
542 int consumed = p - src->text + tok->len;
543
544 src->text += consumed;
545 src->len -= consumed;
546 return 1;
547 }
548 else
549 {
550 /* We have found a "non-whitespace character that cannot be
551 one of the above." Make a token out of it. */
552 int consumed;
553
554 set_token (tok, p, p + 1);
555 consumed = p - src->text + tok->len;
556 src->text += consumed;
557 src->len -= consumed;
558 return 1;
559 }
560
561 return 0;
562 }
563
564
565 \f
566 /* Appending token strings, with and without splicing */
567
568
569 /* Append the macro buffer SRC to the end of DEST, and ensure that
570 doing so doesn't splice the token at the end of SRC with the token
571 at the beginning of DEST. SRC and DEST must have their last_token
572 fields set. Upon return, DEST's last_token field is set correctly.
573
574 For example:
575
576 If DEST is "(" and SRC is "y", then we can return with
577 DEST set to "(y" --- we've simply appended the two buffers.
578
579 However, if DEST is "x" and SRC is "y", then we must not return
580 with DEST set to "xy" --- that would splice the two tokens "x" and
581 "y" together to make a single token "xy". However, it would be
582 fine to return with DEST set to "x y". Similarly, "<" and "<" must
583 yield "< <", not "<<", etc. */
584 static void
585 append_tokens_without_splicing (struct macro_buffer *dest,
586 struct macro_buffer *src)
587 {
588 int original_dest_len = dest->len;
589 struct macro_buffer dest_tail, new_token;
590
591 gdb_assert (src->last_token != -1);
592 gdb_assert (dest->last_token != -1);
593
594 /* First, just try appending the two, and call get_token to see if
595 we got a splice. */
596 appendmem (dest, src->text, src->len);
597
598 /* If DEST originally had no token abutting its end, then we can't
599 have spliced anything, so we're done. */
600 if (dest->last_token == original_dest_len)
601 {
602 dest->last_token = original_dest_len + src->last_token;
603 return;
604 }
605
606 /* Set DEST_TAIL to point to the last token in DEST, followed by
607 all the stuff we just appended. */
608 init_shared_buffer (&dest_tail,
609 dest->text + dest->last_token,
610 dest->len - dest->last_token);
611
612 /* Re-parse DEST's last token. We know that DEST used to contain
613 at least one token, so if it doesn't contain any after the
614 append, then we must have spliced "/" and "*" or "/" and "/" to
615 make a comment start. (Just for the record, I got this right
616 the first time. This is not a bug fix.) */
617 if (get_token (&new_token, &dest_tail)
618 && (new_token.text + new_token.len
619 == dest->text + original_dest_len))
620 {
621 /* No splice, so we're done. */
622 dest->last_token = original_dest_len + src->last_token;
623 return;
624 }
625
626 /* Okay, a simple append caused a splice. Let's chop dest back to
627 its original length and try again, but separate the texts with a
628 space. */
629 dest->len = original_dest_len;
630 appendc (dest, ' ');
631 appendmem (dest, src->text, src->len);
632
633 init_shared_buffer (&dest_tail,
634 dest->text + dest->last_token,
635 dest->len - dest->last_token);
636
637 /* Try to re-parse DEST's last token, as above. */
638 if (get_token (&new_token, &dest_tail)
639 && (new_token.text + new_token.len
640 == dest->text + original_dest_len))
641 {
642 /* No splice, so we're done. */
643 dest->last_token = original_dest_len + 1 + src->last_token;
644 return;
645 }
646
647 /* As far as I know, there's no case where inserting a space isn't
648 enough to prevent a splice. */
649 internal_error (__FILE__, __LINE__,
650 _("unable to avoid splicing tokens during macro expansion"));
651 }
652
653 /* Stringify an argument, and insert it into DEST. ARG is the text to
654 stringify; it is LEN bytes long. */
655
656 static void
657 stringify (struct macro_buffer *dest, const char *arg, int len)
658 {
659 /* Trim initial whitespace from ARG. */
660 while (len > 0 && macro_is_whitespace (*arg))
661 {
662 ++arg;
663 --len;
664 }
665
666 /* Trim trailing whitespace from ARG. */
667 while (len > 0 && macro_is_whitespace (arg[len - 1]))
668 --len;
669
670 /* Insert the string. */
671 appendc (dest, '"');
672 while (len > 0)
673 {
674 /* We could try to handle strange cases here, like control
675 characters, but there doesn't seem to be much point. */
676 if (macro_is_whitespace (*arg))
677 {
678 /* Replace a sequence of whitespace with a single space. */
679 appendc (dest, ' ');
680 while (len > 1 && macro_is_whitespace (arg[1]))
681 {
682 ++arg;
683 --len;
684 }
685 }
686 else if (*arg == '\\' || *arg == '"')
687 {
688 appendc (dest, '\\');
689 appendc (dest, *arg);
690 }
691 else
692 appendc (dest, *arg);
693 ++arg;
694 --len;
695 }
696 appendc (dest, '"');
697 dest->last_token = dest->len;
698 }
699
700 /* See macroexp.h. */
701
702 char *
703 macro_stringify (const char *str)
704 {
705 struct macro_buffer buffer;
706 int len = strlen (str);
707
708 init_buffer (&buffer, len);
709 stringify (&buffer, str, len);
710 appendc (&buffer, '\0');
711
712 return free_buffer_return_text (&buffer);
713 }
714
715 \f
716 /* Expanding macros! */
717
718
719 /* A singly-linked list of the names of the macros we are currently
720 expanding --- for detecting expansion loops. */
721 struct macro_name_list {
722 const char *name;
723 struct macro_name_list *next;
724 };
725
726
727 /* Return non-zero if we are currently expanding the macro named NAME,
728 according to LIST; otherwise, return zero.
729
730 You know, it would be possible to get rid of all the NO_LOOP
731 arguments to these functions by simply generating a new lookup
732 function and baton which refuses to find the definition for a
733 particular macro, and otherwise delegates the decision to another
734 function/baton pair. But that makes the linked list of excluded
735 macros chained through untyped baton pointers, which will make it
736 harder to debug. :( */
737 static int
738 currently_rescanning (struct macro_name_list *list, const char *name)
739 {
740 for (; list; list = list->next)
741 if (strcmp (name, list->name) == 0)
742 return 1;
743
744 return 0;
745 }
746
747
748 /* Gather the arguments to a macro expansion.
749
750 NAME is the name of the macro being invoked. (It's only used for
751 printing error messages.)
752
753 Assume that SRC is the text of the macro invocation immediately
754 following the macro name. For example, if we're processing the
755 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
756 baz).
757
758 If SRC doesn't start with an open paren ( token at all, return
759 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
760
761 If SRC doesn't contain a properly terminated argument list, then
762 raise an error.
763
764 For a variadic macro, NARGS holds the number of formal arguments to
765 the macro. For a GNU-style variadic macro, this should be the
766 number of named arguments. For a non-variadic macro, NARGS should
767 be -1.
768
769 Otherwise, return a pointer to the first element of an array of
770 macro buffers referring to the argument texts, and set *ARGC_P to
771 the number of arguments we found --- the number of elements in the
772 array. The macro buffers share their text with SRC, and their
773 last_token fields are initialized. The array is allocated with
774 xmalloc, and the caller is responsible for freeing it.
775
776 NOTE WELL: if SRC starts with a open paren ( token followed
777 immediately by a close paren ) token (e.g., the invocation looks
778 like "foo()"), we treat that as one argument, which happens to be
779 the empty list of tokens. The caller should keep in mind that such
780 a sequence of tokens is a valid way to invoke one-parameter
781 function-like macros, but also a valid way to invoke zero-parameter
782 function-like macros. Eeew.
783
784 Consume the tokens from SRC; after this call, SRC contains the text
785 following the invocation. */
786
787 static struct macro_buffer *
788 gather_arguments (const char *name, struct macro_buffer *src,
789 int nargs, int *argc_p)
790 {
791 struct macro_buffer tok;
792 int args_len, args_size;
793 struct macro_buffer *args = NULL;
794 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
795
796 /* Does SRC start with an opening paren token? Read from a copy of
797 SRC, so SRC itself is unaffected if we don't find an opening
798 paren. */
799 {
800 struct macro_buffer temp;
801
802 init_shared_buffer (&temp, src->text, src->len);
803
804 if (! get_token (&tok, &temp)
805 || tok.len != 1
806 || tok.text[0] != '(')
807 {
808 discard_cleanups (back_to);
809 return 0;
810 }
811 }
812
813 /* Consume SRC's opening paren. */
814 get_token (&tok, src);
815
816 args_len = 0;
817 args_size = 6;
818 args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size);
819
820 for (;;)
821 {
822 struct macro_buffer *arg;
823 int depth;
824
825 /* Make sure we have room for the next argument. */
826 if (args_len >= args_size)
827 {
828 args_size *= 2;
829 args = xrealloc (args, sizeof (*args) * args_size);
830 }
831
832 /* Initialize the next argument. */
833 arg = &args[args_len++];
834 set_token (arg, src->text, src->text);
835
836 /* Gather the argument's tokens. */
837 depth = 0;
838 for (;;)
839 {
840 if (! get_token (&tok, src))
841 error (_("Malformed argument list for macro `%s'."), name);
842
843 /* Is tok an opening paren? */
844 if (tok.len == 1 && tok.text[0] == '(')
845 depth++;
846
847 /* Is tok is a closing paren? */
848 else if (tok.len == 1 && tok.text[0] == ')')
849 {
850 /* If it's a closing paren at the top level, then that's
851 the end of the argument list. */
852 if (depth == 0)
853 {
854 /* In the varargs case, the last argument may be
855 missing. Add an empty argument in this case. */
856 if (nargs != -1 && args_len == nargs - 1)
857 {
858 /* Make sure we have room for the argument. */
859 if (args_len >= args_size)
860 {
861 args_size++;
862 args = xrealloc (args, sizeof (*args) * args_size);
863 }
864 arg = &args[args_len++];
865 set_token (arg, src->text, src->text);
866 }
867
868 discard_cleanups (back_to);
869 *argc_p = args_len;
870 return args;
871 }
872
873 depth--;
874 }
875
876 /* If tok is a comma at top level, then that's the end of
877 the current argument. However, if we are handling a
878 variadic macro and we are computing the last argument, we
879 want to include the comma and remaining tokens. */
880 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
881 && (nargs == -1 || args_len < nargs))
882 break;
883
884 /* Extend the current argument to enclose this token. If
885 this is the current argument's first token, leave out any
886 leading whitespace, just for aesthetics. */
887 if (arg->len == 0)
888 {
889 arg->text = tok.text;
890 arg->len = tok.len;
891 arg->last_token = 0;
892 }
893 else
894 {
895 arg->len = (tok.text + tok.len) - arg->text;
896 arg->last_token = tok.text - arg->text;
897 }
898 }
899 }
900 }
901
902
903 /* The `expand' and `substitute_args' functions both invoke `scan'
904 recursively, so we need a forward declaration somewhere. */
905 static void scan (struct macro_buffer *dest,
906 struct macro_buffer *src,
907 struct macro_name_list *no_loop,
908 macro_lookup_ftype *lookup_func,
909 void *lookup_baton);
910
911
912 /* A helper function for substitute_args.
913
914 ARGV is a vector of all the arguments; ARGC is the number of
915 arguments. IS_VARARGS is true if the macro being substituted is a
916 varargs macro; in this case VA_ARG_NAME is the name of the
917 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
918 false.
919
920 If the token TOK is the name of a parameter, return the parameter's
921 index. If TOK is not an argument, return -1. */
922
923 static int
924 find_parameter (const struct macro_buffer *tok,
925 int is_varargs, const struct macro_buffer *va_arg_name,
926 int argc, const char * const *argv)
927 {
928 int i;
929
930 if (! tok->is_identifier)
931 return -1;
932
933 for (i = 0; i < argc; ++i)
934 if (tok->len == strlen (argv[i])
935 && !memcmp (tok->text, argv[i], tok->len))
936 return i;
937
938 if (is_varargs && tok->len == va_arg_name->len
939 && ! memcmp (tok->text, va_arg_name->text, tok->len))
940 return argc - 1;
941
942 return -1;
943 }
944
945 /* Given the macro definition DEF, being invoked with the actual
946 arguments given by ARGC and ARGV, substitute the arguments into the
947 replacement list, and store the result in DEST.
948
949 IS_VARARGS should be true if DEF is a varargs macro. In this case,
950 VA_ARG_NAME should be the name of the "variable" argument -- either
951 __VA_ARGS__ for c99-style varargs, or the final argument name, for
952 GNU-style varargs. If IS_VARARGS is false, this parameter is
953 ignored.
954
955 If it is necessary to expand macro invocations in one of the
956 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
957 definitions, and don't expand invocations of the macros listed in
958 NO_LOOP. */
959
960 static void
961 substitute_args (struct macro_buffer *dest,
962 struct macro_definition *def,
963 int is_varargs, const struct macro_buffer *va_arg_name,
964 int argc, struct macro_buffer *argv,
965 struct macro_name_list *no_loop,
966 macro_lookup_ftype *lookup_func,
967 void *lookup_baton)
968 {
969 /* A macro buffer for the macro's replacement list. */
970 struct macro_buffer replacement_list;
971 /* The token we are currently considering. */
972 struct macro_buffer tok;
973 /* The replacement list's pointer from just before TOK was lexed. */
974 char *original_rl_start;
975 /* We have a single lookahead token to handle token splicing. */
976 struct macro_buffer lookahead;
977 /* The lookahead token might not be valid. */
978 int lookahead_valid;
979 /* The replacement list's pointer from just before LOOKAHEAD was
980 lexed. */
981 char *lookahead_rl_start;
982
983 init_shared_buffer (&replacement_list, (char *) def->replacement,
984 strlen (def->replacement));
985
986 gdb_assert (dest->len == 0);
987 dest->last_token = 0;
988
989 original_rl_start = replacement_list.text;
990 if (! get_token (&tok, &replacement_list))
991 return;
992 lookahead_rl_start = replacement_list.text;
993 lookahead_valid = get_token (&lookahead, &replacement_list);
994
995 for (;;)
996 {
997 /* Just for aesthetics. If we skipped some whitespace, copy
998 that to DEST. */
999 if (tok.text > original_rl_start)
1000 {
1001 appendmem (dest, original_rl_start, tok.text - original_rl_start);
1002 dest->last_token = dest->len;
1003 }
1004
1005 /* Is this token the stringification operator? */
1006 if (tok.len == 1
1007 && tok.text[0] == '#')
1008 {
1009 int arg;
1010
1011 if (!lookahead_valid)
1012 error (_("Stringification operator requires an argument."));
1013
1014 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1015 def->argc, def->argv);
1016 if (arg == -1)
1017 error (_("Argument to stringification operator must name "
1018 "a macro parameter."));
1019
1020 stringify (dest, argv[arg].text, argv[arg].len);
1021
1022 /* Read one token and let the loop iteration code handle the
1023 rest. */
1024 lookahead_rl_start = replacement_list.text;
1025 lookahead_valid = get_token (&lookahead, &replacement_list);
1026 }
1027 /* Is this token the splicing operator? */
1028 else if (tok.len == 2
1029 && tok.text[0] == '#'
1030 && tok.text[1] == '#')
1031 error (_("Stray splicing operator"));
1032 /* Is the next token the splicing operator? */
1033 else if (lookahead_valid
1034 && lookahead.len == 2
1035 && lookahead.text[0] == '#'
1036 && lookahead.text[1] == '#')
1037 {
1038 int finished = 0;
1039 int prev_was_comma = 0;
1040
1041 /* Note that GCC warns if the result of splicing is not a
1042 token. In the debugger there doesn't seem to be much
1043 benefit from doing this. */
1044
1045 /* Insert the first token. */
1046 if (tok.len == 1 && tok.text[0] == ',')
1047 prev_was_comma = 1;
1048 else
1049 {
1050 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1051 def->argc, def->argv);
1052
1053 if (arg != -1)
1054 appendmem (dest, argv[arg].text, argv[arg].len);
1055 else
1056 appendmem (dest, tok.text, tok.len);
1057 }
1058
1059 /* Apply a possible sequence of ## operators. */
1060 for (;;)
1061 {
1062 if (! get_token (&tok, &replacement_list))
1063 error (_("Splicing operator at end of macro"));
1064
1065 /* Handle a comma before a ##. If we are handling
1066 varargs, and the token on the right hand side is the
1067 varargs marker, and the final argument is empty or
1068 missing, then drop the comma. This is a GNU
1069 extension. There is one ambiguous case here,
1070 involving pedantic behavior with an empty argument,
1071 but we settle that in favor of GNU-style (GCC uses an
1072 option). If we aren't dealing with varargs, we
1073 simply insert the comma. */
1074 if (prev_was_comma)
1075 {
1076 if (! (is_varargs
1077 && tok.len == va_arg_name->len
1078 && !memcmp (tok.text, va_arg_name->text, tok.len)
1079 && argv[argc - 1].len == 0))
1080 appendmem (dest, ",", 1);
1081 prev_was_comma = 0;
1082 }
1083
1084 /* Insert the token. If it is a parameter, insert the
1085 argument. If it is a comma, treat it specially. */
1086 if (tok.len == 1 && tok.text[0] == ',')
1087 prev_was_comma = 1;
1088 else
1089 {
1090 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1091 def->argc, def->argv);
1092
1093 if (arg != -1)
1094 appendmem (dest, argv[arg].text, argv[arg].len);
1095 else
1096 appendmem (dest, tok.text, tok.len);
1097 }
1098
1099 /* Now read another token. If it is another splice, we
1100 loop. */
1101 original_rl_start = replacement_list.text;
1102 if (! get_token (&tok, &replacement_list))
1103 {
1104 finished = 1;
1105 break;
1106 }
1107
1108 if (! (tok.len == 2
1109 && tok.text[0] == '#'
1110 && tok.text[1] == '#'))
1111 break;
1112 }
1113
1114 if (prev_was_comma)
1115 {
1116 /* We saw a comma. Insert it now. */
1117 appendmem (dest, ",", 1);
1118 }
1119
1120 dest->last_token = dest->len;
1121 if (finished)
1122 lookahead_valid = 0;
1123 else
1124 {
1125 /* Set up for the loop iterator. */
1126 lookahead = tok;
1127 lookahead_rl_start = original_rl_start;
1128 lookahead_valid = 1;
1129 }
1130 }
1131 else
1132 {
1133 /* Is this token an identifier? */
1134 int substituted = 0;
1135 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1136 def->argc, def->argv);
1137
1138 if (arg != -1)
1139 {
1140 struct macro_buffer arg_src;
1141
1142 /* Expand any macro invocations in the argument text,
1143 and append the result to dest. Remember that scan
1144 mutates its source, so we need to scan a new buffer
1145 referring to the argument's text, not the argument
1146 itself. */
1147 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1148 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1149 substituted = 1;
1150 }
1151
1152 /* If it wasn't a parameter, then just copy it across. */
1153 if (! substituted)
1154 append_tokens_without_splicing (dest, &tok);
1155 }
1156
1157 if (! lookahead_valid)
1158 break;
1159
1160 tok = lookahead;
1161 original_rl_start = lookahead_rl_start;
1162
1163 lookahead_rl_start = replacement_list.text;
1164 lookahead_valid = get_token (&lookahead, &replacement_list);
1165 }
1166 }
1167
1168
1169 /* Expand a call to a macro named ID, whose definition is DEF. Append
1170 its expansion to DEST. SRC is the input text following the ID
1171 token. We are currently rescanning the expansions of the macros
1172 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1173 LOOKUP_BATON to find definitions for any nested macro references.
1174
1175 Return 1 if we decided to expand it, zero otherwise. (If it's a
1176 function-like macro name that isn't followed by an argument list,
1177 we don't expand it.) If we return zero, leave SRC unchanged. */
1178 static int
1179 expand (const char *id,
1180 struct macro_definition *def,
1181 struct macro_buffer *dest,
1182 struct macro_buffer *src,
1183 struct macro_name_list *no_loop,
1184 macro_lookup_ftype *lookup_func,
1185 void *lookup_baton)
1186 {
1187 struct macro_name_list new_no_loop;
1188
1189 /* Create a new node to be added to the front of the no-expand list.
1190 This list is appropriate for re-scanning replacement lists, but
1191 it is *not* appropriate for scanning macro arguments; invocations
1192 of the macro whose arguments we are gathering *do* get expanded
1193 there. */
1194 new_no_loop.name = id;
1195 new_no_loop.next = no_loop;
1196
1197 /* What kind of macro are we expanding? */
1198 if (def->kind == macro_object_like)
1199 {
1200 struct macro_buffer replacement_list;
1201
1202 init_shared_buffer (&replacement_list, (char *) def->replacement,
1203 strlen (def->replacement));
1204
1205 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1206 return 1;
1207 }
1208 else if (def->kind == macro_function_like)
1209 {
1210 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1211 int argc = 0;
1212 struct macro_buffer *argv = NULL;
1213 struct macro_buffer substituted;
1214 struct macro_buffer substituted_src;
1215 struct macro_buffer va_arg_name = {0};
1216 int is_varargs = 0;
1217
1218 if (def->argc >= 1)
1219 {
1220 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1221 {
1222 /* In C99-style varargs, substitution is done using
1223 __VA_ARGS__. */
1224 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1225 strlen ("__VA_ARGS__"));
1226 is_varargs = 1;
1227 }
1228 else
1229 {
1230 int len = strlen (def->argv[def->argc - 1]);
1231
1232 if (len > 3
1233 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1234 {
1235 /* In GNU-style varargs, the name of the
1236 substitution parameter is the name of the formal
1237 argument without the "...". */
1238 init_shared_buffer (&va_arg_name,
1239 (char *) def->argv[def->argc - 1],
1240 len - 3);
1241 is_varargs = 1;
1242 }
1243 }
1244 }
1245
1246 make_cleanup (free_current_contents, &argv);
1247 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1248 &argc);
1249
1250 /* If we couldn't find any argument list, then we don't expand
1251 this macro. */
1252 if (! argv)
1253 {
1254 do_cleanups (back_to);
1255 return 0;
1256 }
1257
1258 /* Check that we're passing an acceptable number of arguments for
1259 this macro. */
1260 if (argc != def->argc)
1261 {
1262 if (is_varargs && argc >= def->argc - 1)
1263 {
1264 /* Ok. */
1265 }
1266 /* Remember that a sequence of tokens like "foo()" is a
1267 valid invocation of a macro expecting either zero or one
1268 arguments. */
1269 else if (! (argc == 1
1270 && argv[0].len == 0
1271 && def->argc == 0))
1272 error (_("Wrong number of arguments to macro `%s' "
1273 "(expected %d, got %d)."),
1274 id, def->argc, argc);
1275 }
1276
1277 /* Note that we don't expand macro invocations in the arguments
1278 yet --- we let subst_args take care of that. Parameters that
1279 appear as operands of the stringifying operator "#" or the
1280 splicing operator "##" don't get macro references expanded,
1281 so we can't really tell whether it's appropriate to macro-
1282 expand an argument until we see how it's being used. */
1283 init_buffer (&substituted, 0);
1284 make_cleanup (cleanup_macro_buffer, &substituted);
1285 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1286 argc, argv, no_loop, lookup_func, lookup_baton);
1287
1288 /* Now `substituted' is the macro's replacement list, with all
1289 argument values substituted into it properly. Re-scan it for
1290 macro references, but don't expand invocations of this macro.
1291
1292 We create a new buffer, `substituted_src', which points into
1293 `substituted', and scan that. We can't scan `substituted'
1294 itself, since the tokenization process moves the buffer's
1295 text pointer around, and we still need to be able to find
1296 `substituted's original text buffer after scanning it so we
1297 can free it. */
1298 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1299 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1300
1301 do_cleanups (back_to);
1302
1303 return 1;
1304 }
1305 else
1306 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1307 }
1308
1309
1310 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1311 constitute a macro invokation not forbidden in NO_LOOP, append its
1312 expansion to DEST and return non-zero. Otherwise, return zero, and
1313 leave DEST unchanged.
1314
1315 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1316 SRC_FIRST must be a string built by get_token. */
1317 static int
1318 maybe_expand (struct macro_buffer *dest,
1319 struct macro_buffer *src_first,
1320 struct macro_buffer *src_rest,
1321 struct macro_name_list *no_loop,
1322 macro_lookup_ftype *lookup_func,
1323 void *lookup_baton)
1324 {
1325 gdb_assert (src_first->shared);
1326 gdb_assert (src_rest->shared);
1327 gdb_assert (! dest->shared);
1328
1329 /* Is this token an identifier? */
1330 if (src_first->is_identifier)
1331 {
1332 /* Make a null-terminated copy of it, since that's what our
1333 lookup function expects. */
1334 char *id = xmalloc (src_first->len + 1);
1335 struct cleanup *back_to = make_cleanup (xfree, id);
1336
1337 memcpy (id, src_first->text, src_first->len);
1338 id[src_first->len] = 0;
1339
1340 /* If we're currently re-scanning the result of expanding
1341 this macro, don't expand it again. */
1342 if (! currently_rescanning (no_loop, id))
1343 {
1344 /* Does this identifier have a macro definition in scope? */
1345 struct macro_definition *def = lookup_func (id, lookup_baton);
1346
1347 if (def && expand (id, def, dest, src_rest, no_loop,
1348 lookup_func, lookup_baton))
1349 {
1350 do_cleanups (back_to);
1351 return 1;
1352 }
1353 }
1354
1355 do_cleanups (back_to);
1356 }
1357
1358 return 0;
1359 }
1360
1361
1362 /* Expand macro references in SRC, appending the results to DEST.
1363 Assume we are re-scanning the result of expanding the macros named
1364 in NO_LOOP, and don't try to re-expand references to them.
1365
1366 SRC must be a shared buffer; DEST must not be one. */
1367 static void
1368 scan (struct macro_buffer *dest,
1369 struct macro_buffer *src,
1370 struct macro_name_list *no_loop,
1371 macro_lookup_ftype *lookup_func,
1372 void *lookup_baton)
1373 {
1374 gdb_assert (src->shared);
1375 gdb_assert (! dest->shared);
1376
1377 for (;;)
1378 {
1379 struct macro_buffer tok;
1380 char *original_src_start = src->text;
1381
1382 /* Find the next token in SRC. */
1383 if (! get_token (&tok, src))
1384 break;
1385
1386 /* Just for aesthetics. If we skipped some whitespace, copy
1387 that to DEST. */
1388 if (tok.text > original_src_start)
1389 {
1390 appendmem (dest, original_src_start, tok.text - original_src_start);
1391 dest->last_token = dest->len;
1392 }
1393
1394 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1395 /* We didn't end up expanding tok as a macro reference, so
1396 simply append it to dest. */
1397 append_tokens_without_splicing (dest, &tok);
1398 }
1399
1400 /* Just for aesthetics. If there was any trailing whitespace in
1401 src, copy it to dest. */
1402 if (src->len)
1403 {
1404 appendmem (dest, src->text, src->len);
1405 dest->last_token = dest->len;
1406 }
1407 }
1408
1409
1410 char *
1411 macro_expand (const char *source,
1412 macro_lookup_ftype *lookup_func,
1413 void *lookup_func_baton)
1414 {
1415 struct macro_buffer src, dest;
1416 struct cleanup *back_to;
1417
1418 init_shared_buffer (&src, (char *) source, strlen (source));
1419
1420 init_buffer (&dest, 0);
1421 dest.last_token = 0;
1422 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1423
1424 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1425
1426 appendc (&dest, '\0');
1427
1428 discard_cleanups (back_to);
1429 return dest.text;
1430 }
1431
1432
1433 char *
1434 macro_expand_once (const char *source,
1435 macro_lookup_ftype *lookup_func,
1436 void *lookup_func_baton)
1437 {
1438 error (_("Expand-once not implemented yet."));
1439 }
1440
1441
1442 char *
1443 macro_expand_next (const char **lexptr,
1444 macro_lookup_ftype *lookup_func,
1445 void *lookup_baton)
1446 {
1447 struct macro_buffer src, dest, tok;
1448 struct cleanup *back_to;
1449
1450 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1451 init_shared_buffer (&src, (char *) *lexptr, strlen (*lexptr));
1452
1453 /* Set up DEST to receive the expansion, if there is one. */
1454 init_buffer (&dest, 0);
1455 dest.last_token = 0;
1456 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1457
1458 /* Get the text's first preprocessing token. */
1459 if (! get_token (&tok, &src))
1460 {
1461 do_cleanups (back_to);
1462 return 0;
1463 }
1464
1465 /* If it's a macro invocation, expand it. */
1466 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1467 {
1468 /* It was a macro invocation! Package up the expansion as a
1469 null-terminated string and return it. Set *lexptr to the
1470 start of the next token in the input. */
1471 appendc (&dest, '\0');
1472 discard_cleanups (back_to);
1473 *lexptr = src.text;
1474 return dest.text;
1475 }
1476 else
1477 {
1478 /* It wasn't a macro invocation. */
1479 do_cleanups (back_to);
1480 return 0;
1481 }
1482 }
This page took 0.065331 seconds and 5 git commands to generate.