* macroexp.c (macro_stringify): Terminate the string.
[deliverable/binutils-gdb.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002, 2007-2012 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "bcache.h"
23 #include "macrotab.h"
24 #include "macroexp.h"
25 #include "gdb_assert.h"
26 #include "c-lang.h"
27
28
29 \f
30 /* A resizeable, substringable string type. */
31
32
33 /* A string type that we can resize, quickly append to, and use to
34 refer to substrings of other strings. */
35 struct macro_buffer
36 {
37 /* An array of characters. The first LEN bytes are the real text,
38 but there are SIZE bytes allocated to the array. If SIZE is
39 zero, then this doesn't point to a malloc'ed block. If SHARED is
40 non-zero, then this buffer is actually a pointer into some larger
41 string, and we shouldn't append characters to it, etc. Because
42 of sharing, we can't assume in general that the text is
43 null-terminated. */
44 char *text;
45
46 /* The number of characters in the string. */
47 int len;
48
49 /* The number of characters allocated to the string. If SHARED is
50 non-zero, this is meaningless; in this case, we set it to zero so
51 that any "do we have room to append something?" tests will fail,
52 so we don't always have to check SHARED before using this field. */
53 int size;
54
55 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
56 block). Non-zero if TEXT is actually pointing into the middle of
57 some other block, and we shouldn't reallocate it. */
58 int shared;
59
60 /* For detecting token splicing.
61
62 This is the index in TEXT of the first character of the token
63 that abuts the end of TEXT. If TEXT contains no tokens, then we
64 set this equal to LEN. If TEXT ends in whitespace, then there is
65 no token abutting the end of TEXT (it's just whitespace), and
66 again, we set this equal to LEN. We set this to -1 if we don't
67 know the nature of TEXT. */
68 int last_token;
69
70 /* If this buffer is holding the result from get_token, then this
71 is non-zero if it is an identifier token, zero otherwise. */
72 int is_identifier;
73 };
74
75
76 /* Set the macro buffer *B to the empty string, guessing that its
77 final contents will fit in N bytes. (It'll get resized if it
78 doesn't, so the guess doesn't have to be right.) Allocate the
79 initial storage with xmalloc. */
80 static void
81 init_buffer (struct macro_buffer *b, int n)
82 {
83 b->size = n;
84 if (n > 0)
85 b->text = (char *) xmalloc (n);
86 else
87 b->text = NULL;
88 b->len = 0;
89 b->shared = 0;
90 b->last_token = -1;
91 }
92
93
94 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
95 shared substring. */
96 static void
97 init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
98 {
99 buf->text = addr;
100 buf->len = len;
101 buf->shared = 1;
102 buf->size = 0;
103 buf->last_token = -1;
104 }
105
106
107 /* Free the text of the buffer B. Raise an error if B is shared. */
108 static void
109 free_buffer (struct macro_buffer *b)
110 {
111 gdb_assert (! b->shared);
112 if (b->size)
113 xfree (b->text);
114 }
115
116 /* Like free_buffer, but return the text as an xstrdup()d string.
117 This only exists to try to make the API relatively clean. */
118
119 static char *
120 free_buffer_return_text (struct macro_buffer *b)
121 {
122 gdb_assert (! b->shared);
123 gdb_assert (b->size);
124 /* Nothing to do. */
125 return b->text;
126 }
127
128 /* A cleanup function for macro buffers. */
129 static void
130 cleanup_macro_buffer (void *untyped_buf)
131 {
132 free_buffer ((struct macro_buffer *) untyped_buf);
133 }
134
135
136 /* Resize the buffer B to be at least N bytes long. Raise an error if
137 B shouldn't be resized. */
138 static void
139 resize_buffer (struct macro_buffer *b, int n)
140 {
141 /* We shouldn't be trying to resize shared strings. */
142 gdb_assert (! b->shared);
143
144 if (b->size == 0)
145 b->size = n;
146 else
147 while (b->size <= n)
148 b->size *= 2;
149
150 b->text = xrealloc (b->text, b->size);
151 }
152
153
154 /* Append the character C to the buffer B. */
155 static void
156 appendc (struct macro_buffer *b, int c)
157 {
158 int new_len = b->len + 1;
159
160 if (new_len > b->size)
161 resize_buffer (b, new_len);
162
163 b->text[b->len] = c;
164 b->len = new_len;
165 }
166
167
168 /* Append the LEN bytes at ADDR to the buffer B. */
169 static void
170 appendmem (struct macro_buffer *b, char *addr, int len)
171 {
172 int new_len = b->len + len;
173
174 if (new_len > b->size)
175 resize_buffer (b, new_len);
176
177 memcpy (b->text + b->len, addr, len);
178 b->len = new_len;
179 }
180
181
182 \f
183 /* Recognizing preprocessor tokens. */
184
185
186 int
187 macro_is_whitespace (int c)
188 {
189 return (c == ' '
190 || c == '\t'
191 || c == '\n'
192 || c == '\v'
193 || c == '\f');
194 }
195
196
197 int
198 macro_is_digit (int c)
199 {
200 return ('0' <= c && c <= '9');
201 }
202
203
204 int
205 macro_is_identifier_nondigit (int c)
206 {
207 return (c == '_'
208 || ('a' <= c && c <= 'z')
209 || ('A' <= c && c <= 'Z'));
210 }
211
212
213 static void
214 set_token (struct macro_buffer *tok, char *start, char *end)
215 {
216 init_shared_buffer (tok, start, end - start);
217 tok->last_token = 0;
218
219 /* Presumed; get_identifier may overwrite this. */
220 tok->is_identifier = 0;
221 }
222
223
224 static int
225 get_comment (struct macro_buffer *tok, char *p, char *end)
226 {
227 if (p + 2 > end)
228 return 0;
229 else if (p[0] == '/'
230 && p[1] == '*')
231 {
232 char *tok_start = p;
233
234 p += 2;
235
236 for (; p < end; p++)
237 if (p + 2 <= end
238 && p[0] == '*'
239 && p[1] == '/')
240 {
241 p += 2;
242 set_token (tok, tok_start, p);
243 return 1;
244 }
245
246 error (_("Unterminated comment in macro expansion."));
247 }
248 else if (p[0] == '/'
249 && p[1] == '/')
250 {
251 char *tok_start = p;
252
253 p += 2;
254 for (; p < end; p++)
255 if (*p == '\n')
256 break;
257
258 set_token (tok, tok_start, p);
259 return 1;
260 }
261 else
262 return 0;
263 }
264
265
266 static int
267 get_identifier (struct macro_buffer *tok, char *p, char *end)
268 {
269 if (p < end
270 && macro_is_identifier_nondigit (*p))
271 {
272 char *tok_start = p;
273
274 while (p < end
275 && (macro_is_identifier_nondigit (*p)
276 || macro_is_digit (*p)))
277 p++;
278
279 set_token (tok, tok_start, p);
280 tok->is_identifier = 1;
281 return 1;
282 }
283 else
284 return 0;
285 }
286
287
288 static int
289 get_pp_number (struct macro_buffer *tok, char *p, char *end)
290 {
291 if (p < end
292 && (macro_is_digit (*p)
293 || (*p == '.'
294 && p + 2 <= end
295 && macro_is_digit (p[1]))))
296 {
297 char *tok_start = p;
298
299 while (p < end)
300 {
301 if (p + 2 <= end
302 && strchr ("eEpP", *p)
303 && (p[1] == '+' || p[1] == '-'))
304 p += 2;
305 else if (macro_is_digit (*p)
306 || macro_is_identifier_nondigit (*p)
307 || *p == '.')
308 p++;
309 else
310 break;
311 }
312
313 set_token (tok, tok_start, p);
314 return 1;
315 }
316 else
317 return 0;
318 }
319
320
321
322 /* If the text starting at P going up to (but not including) END
323 starts with a character constant, set *TOK to point to that
324 character constant, and return 1. Otherwise, return zero.
325 Signal an error if it contains a malformed or incomplete character
326 constant. */
327 static int
328 get_character_constant (struct macro_buffer *tok, char *p, char *end)
329 {
330 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
331 But of course, what really matters is that we handle it the same
332 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
333 to handle escape sequences. */
334 if ((p + 1 <= end && *p == '\'')
335 || (p + 2 <= end
336 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
337 && p[1] == '\''))
338 {
339 char *tok_start = p;
340 char *body_start;
341 int char_count = 0;
342
343 if (*p == '\'')
344 p++;
345 else if (*p == 'L' || *p == 'u' || *p == 'U')
346 p += 2;
347 else
348 gdb_assert_not_reached ("unexpected character constant");
349
350 body_start = p;
351 for (;;)
352 {
353 if (p >= end)
354 error (_("Unmatched single quote."));
355 else if (*p == '\'')
356 {
357 if (!char_count)
358 error (_("A character constant must contain at least one "
359 "character."));
360 p++;
361 break;
362 }
363 else if (*p == '\\')
364 {
365 p++;
366 char_count += c_parse_escape (&p, NULL);
367 }
368 else
369 {
370 p++;
371 char_count++;
372 }
373 }
374
375 set_token (tok, tok_start, p);
376 return 1;
377 }
378 else
379 return 0;
380 }
381
382
383 /* If the text starting at P going up to (but not including) END
384 starts with a string literal, set *TOK to point to that string
385 literal, and return 1. Otherwise, return zero. Signal an error if
386 it contains a malformed or incomplete string literal. */
387 static int
388 get_string_literal (struct macro_buffer *tok, char *p, char *end)
389 {
390 if ((p + 1 <= end
391 && *p == '"')
392 || (p + 2 <= end
393 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
394 && p[1] == '"'))
395 {
396 char *tok_start = p;
397
398 if (*p == '"')
399 p++;
400 else if (*p == 'L' || *p == 'u' || *p == 'U')
401 p += 2;
402 else
403 gdb_assert_not_reached ("unexpected string literal");
404
405 for (;;)
406 {
407 if (p >= end)
408 error (_("Unterminated string in expression."));
409 else if (*p == '"')
410 {
411 p++;
412 break;
413 }
414 else if (*p == '\n')
415 error (_("Newline characters may not appear in string "
416 "constants."));
417 else if (*p == '\\')
418 {
419 p++;
420 c_parse_escape (&p, NULL);
421 }
422 else
423 p++;
424 }
425
426 set_token (tok, tok_start, p);
427 return 1;
428 }
429 else
430 return 0;
431 }
432
433
434 static int
435 get_punctuator (struct macro_buffer *tok, char *p, char *end)
436 {
437 /* Here, speed is much less important than correctness and clarity. */
438
439 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
440 Note that this table is ordered in a special way. A punctuator
441 which is a prefix of another punctuator must appear after its
442 "extension". Otherwise, the wrong token will be returned. */
443 static const char * const punctuators[] = {
444 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
445 "...", ".",
446 "->", "--", "-=", "-",
447 "++", "+=", "+",
448 "*=", "*",
449 "!=", "!",
450 "&&", "&=", "&",
451 "/=", "/",
452 "%>", "%:%:", "%:", "%=", "%",
453 "^=", "^",
454 "##", "#",
455 ":>", ":",
456 "||", "|=", "|",
457 "<<=", "<<", "<=", "<:", "<%", "<",
458 ">>=", ">>", ">=", ">",
459 "==", "=",
460 0
461 };
462
463 int i;
464
465 if (p + 1 <= end)
466 {
467 for (i = 0; punctuators[i]; i++)
468 {
469 const char *punctuator = punctuators[i];
470
471 if (p[0] == punctuator[0])
472 {
473 int len = strlen (punctuator);
474
475 if (p + len <= end
476 && ! memcmp (p, punctuator, len))
477 {
478 set_token (tok, p, p + len);
479 return 1;
480 }
481 }
482 }
483 }
484
485 return 0;
486 }
487
488
489 /* Peel the next preprocessor token off of SRC, and put it in TOK.
490 Mutate TOK to refer to the first token in SRC, and mutate SRC to
491 refer to the text after that token. SRC must be a shared buffer;
492 the resulting TOK will be shared, pointing into the same string SRC
493 does. Initialize TOK's last_token field. Return non-zero if we
494 succeed, or 0 if we didn't find any more tokens in SRC. */
495 static int
496 get_token (struct macro_buffer *tok,
497 struct macro_buffer *src)
498 {
499 char *p = src->text;
500 char *end = p + src->len;
501
502 gdb_assert (src->shared);
503
504 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
505
506 preprocessing-token:
507 header-name
508 identifier
509 pp-number
510 character-constant
511 string-literal
512 punctuator
513 each non-white-space character that cannot be one of the above
514
515 We don't have to deal with header-name tokens, since those can
516 only occur after a #include, which we will never see. */
517
518 while (p < end)
519 if (macro_is_whitespace (*p))
520 p++;
521 else if (get_comment (tok, p, end))
522 p += tok->len;
523 else if (get_pp_number (tok, p, end)
524 || get_character_constant (tok, p, end)
525 || get_string_literal (tok, p, end)
526 /* Note: the grammar in the standard seems to be
527 ambiguous: L'x' can be either a wide character
528 constant, or an identifier followed by a normal
529 character constant. By trying `get_identifier' after
530 we try get_character_constant and get_string_literal,
531 we give the wide character syntax precedence. Now,
532 since GDB doesn't handle wide character constants
533 anyway, is this the right thing to do? */
534 || get_identifier (tok, p, end)
535 || get_punctuator (tok, p, end))
536 {
537 /* How many characters did we consume, including whitespace? */
538 int consumed = p - src->text + tok->len;
539
540 src->text += consumed;
541 src->len -= consumed;
542 return 1;
543 }
544 else
545 {
546 /* We have found a "non-whitespace character that cannot be
547 one of the above." Make a token out of it. */
548 int consumed;
549
550 set_token (tok, p, p + 1);
551 consumed = p - src->text + tok->len;
552 src->text += consumed;
553 src->len -= consumed;
554 return 1;
555 }
556
557 return 0;
558 }
559
560
561 \f
562 /* Appending token strings, with and without splicing */
563
564
565 /* Append the macro buffer SRC to the end of DEST, and ensure that
566 doing so doesn't splice the token at the end of SRC with the token
567 at the beginning of DEST. SRC and DEST must have their last_token
568 fields set. Upon return, DEST's last_token field is set correctly.
569
570 For example:
571
572 If DEST is "(" and SRC is "y", then we can return with
573 DEST set to "(y" --- we've simply appended the two buffers.
574
575 However, if DEST is "x" and SRC is "y", then we must not return
576 with DEST set to "xy" --- that would splice the two tokens "x" and
577 "y" together to make a single token "xy". However, it would be
578 fine to return with DEST set to "x y". Similarly, "<" and "<" must
579 yield "< <", not "<<", etc. */
580 static void
581 append_tokens_without_splicing (struct macro_buffer *dest,
582 struct macro_buffer *src)
583 {
584 int original_dest_len = dest->len;
585 struct macro_buffer dest_tail, new_token;
586
587 gdb_assert (src->last_token != -1);
588 gdb_assert (dest->last_token != -1);
589
590 /* First, just try appending the two, and call get_token to see if
591 we got a splice. */
592 appendmem (dest, src->text, src->len);
593
594 /* If DEST originally had no token abutting its end, then we can't
595 have spliced anything, so we're done. */
596 if (dest->last_token == original_dest_len)
597 {
598 dest->last_token = original_dest_len + src->last_token;
599 return;
600 }
601
602 /* Set DEST_TAIL to point to the last token in DEST, followed by
603 all the stuff we just appended. */
604 init_shared_buffer (&dest_tail,
605 dest->text + dest->last_token,
606 dest->len - dest->last_token);
607
608 /* Re-parse DEST's last token. We know that DEST used to contain
609 at least one token, so if it doesn't contain any after the
610 append, then we must have spliced "/" and "*" or "/" and "/" to
611 make a comment start. (Just for the record, I got this right
612 the first time. This is not a bug fix.) */
613 if (get_token (&new_token, &dest_tail)
614 && (new_token.text + new_token.len
615 == dest->text + original_dest_len))
616 {
617 /* No splice, so we're done. */
618 dest->last_token = original_dest_len + src->last_token;
619 return;
620 }
621
622 /* Okay, a simple append caused a splice. Let's chop dest back to
623 its original length and try again, but separate the texts with a
624 space. */
625 dest->len = original_dest_len;
626 appendc (dest, ' ');
627 appendmem (dest, src->text, src->len);
628
629 init_shared_buffer (&dest_tail,
630 dest->text + dest->last_token,
631 dest->len - dest->last_token);
632
633 /* Try to re-parse DEST's last token, as above. */
634 if (get_token (&new_token, &dest_tail)
635 && (new_token.text + new_token.len
636 == dest->text + original_dest_len))
637 {
638 /* No splice, so we're done. */
639 dest->last_token = original_dest_len + 1 + src->last_token;
640 return;
641 }
642
643 /* As far as I know, there's no case where inserting a space isn't
644 enough to prevent a splice. */
645 internal_error (__FILE__, __LINE__,
646 _("unable to avoid splicing tokens during macro expansion"));
647 }
648
649 /* Stringify an argument, and insert it into DEST. ARG is the text to
650 stringify; it is LEN bytes long. */
651
652 static void
653 stringify (struct macro_buffer *dest, const char *arg, int len)
654 {
655 /* Trim initial whitespace from ARG. */
656 while (len > 0 && macro_is_whitespace (*arg))
657 {
658 ++arg;
659 --len;
660 }
661
662 /* Trim trailing whitespace from ARG. */
663 while (len > 0 && macro_is_whitespace (arg[len - 1]))
664 --len;
665
666 /* Insert the string. */
667 appendc (dest, '"');
668 while (len > 0)
669 {
670 /* We could try to handle strange cases here, like control
671 characters, but there doesn't seem to be much point. */
672 if (macro_is_whitespace (*arg))
673 {
674 /* Replace a sequence of whitespace with a single space. */
675 appendc (dest, ' ');
676 while (len > 1 && macro_is_whitespace (arg[1]))
677 {
678 ++arg;
679 --len;
680 }
681 }
682 else if (*arg == '\\' || *arg == '"')
683 {
684 appendc (dest, '\\');
685 appendc (dest, *arg);
686 }
687 else
688 appendc (dest, *arg);
689 ++arg;
690 --len;
691 }
692 appendc (dest, '"');
693 dest->last_token = dest->len;
694 }
695
696 /* See macroexp.h. */
697
698 char *
699 macro_stringify (const char *str)
700 {
701 struct macro_buffer buffer;
702 int len = strlen (str);
703 char *result;
704
705 init_buffer (&buffer, len);
706 stringify (&buffer, str, len);
707 appendc (&buffer, '\0');
708
709 return free_buffer_return_text (&buffer);
710 }
711
712 \f
713 /* Expanding macros! */
714
715
716 /* A singly-linked list of the names of the macros we are currently
717 expanding --- for detecting expansion loops. */
718 struct macro_name_list {
719 const char *name;
720 struct macro_name_list *next;
721 };
722
723
724 /* Return non-zero if we are currently expanding the macro named NAME,
725 according to LIST; otherwise, return zero.
726
727 You know, it would be possible to get rid of all the NO_LOOP
728 arguments to these functions by simply generating a new lookup
729 function and baton which refuses to find the definition for a
730 particular macro, and otherwise delegates the decision to another
731 function/baton pair. But that makes the linked list of excluded
732 macros chained through untyped baton pointers, which will make it
733 harder to debug. :( */
734 static int
735 currently_rescanning (struct macro_name_list *list, const char *name)
736 {
737 for (; list; list = list->next)
738 if (strcmp (name, list->name) == 0)
739 return 1;
740
741 return 0;
742 }
743
744
745 /* Gather the arguments to a macro expansion.
746
747 NAME is the name of the macro being invoked. (It's only used for
748 printing error messages.)
749
750 Assume that SRC is the text of the macro invocation immediately
751 following the macro name. For example, if we're processing the
752 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
753 baz).
754
755 If SRC doesn't start with an open paren ( token at all, return
756 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
757
758 If SRC doesn't contain a properly terminated argument list, then
759 raise an error.
760
761 For a variadic macro, NARGS holds the number of formal arguments to
762 the macro. For a GNU-style variadic macro, this should be the
763 number of named arguments. For a non-variadic macro, NARGS should
764 be -1.
765
766 Otherwise, return a pointer to the first element of an array of
767 macro buffers referring to the argument texts, and set *ARGC_P to
768 the number of arguments we found --- the number of elements in the
769 array. The macro buffers share their text with SRC, and their
770 last_token fields are initialized. The array is allocated with
771 xmalloc, and the caller is responsible for freeing it.
772
773 NOTE WELL: if SRC starts with a open paren ( token followed
774 immediately by a close paren ) token (e.g., the invocation looks
775 like "foo()"), we treat that as one argument, which happens to be
776 the empty list of tokens. The caller should keep in mind that such
777 a sequence of tokens is a valid way to invoke one-parameter
778 function-like macros, but also a valid way to invoke zero-parameter
779 function-like macros. Eeew.
780
781 Consume the tokens from SRC; after this call, SRC contains the text
782 following the invocation. */
783
784 static struct macro_buffer *
785 gather_arguments (const char *name, struct macro_buffer *src,
786 int nargs, int *argc_p)
787 {
788 struct macro_buffer tok;
789 int args_len, args_size;
790 struct macro_buffer *args = NULL;
791 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
792
793 /* Does SRC start with an opening paren token? Read from a copy of
794 SRC, so SRC itself is unaffected if we don't find an opening
795 paren. */
796 {
797 struct macro_buffer temp;
798
799 init_shared_buffer (&temp, src->text, src->len);
800
801 if (! get_token (&tok, &temp)
802 || tok.len != 1
803 || tok.text[0] != '(')
804 {
805 discard_cleanups (back_to);
806 return 0;
807 }
808 }
809
810 /* Consume SRC's opening paren. */
811 get_token (&tok, src);
812
813 args_len = 0;
814 args_size = 6;
815 args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size);
816
817 for (;;)
818 {
819 struct macro_buffer *arg;
820 int depth;
821
822 /* Make sure we have room for the next argument. */
823 if (args_len >= args_size)
824 {
825 args_size *= 2;
826 args = xrealloc (args, sizeof (*args) * args_size);
827 }
828
829 /* Initialize the next argument. */
830 arg = &args[args_len++];
831 set_token (arg, src->text, src->text);
832
833 /* Gather the argument's tokens. */
834 depth = 0;
835 for (;;)
836 {
837 if (! get_token (&tok, src))
838 error (_("Malformed argument list for macro `%s'."), name);
839
840 /* Is tok an opening paren? */
841 if (tok.len == 1 && tok.text[0] == '(')
842 depth++;
843
844 /* Is tok is a closing paren? */
845 else if (tok.len == 1 && tok.text[0] == ')')
846 {
847 /* If it's a closing paren at the top level, then that's
848 the end of the argument list. */
849 if (depth == 0)
850 {
851 /* In the varargs case, the last argument may be
852 missing. Add an empty argument in this case. */
853 if (nargs != -1 && args_len == nargs - 1)
854 {
855 /* Make sure we have room for the argument. */
856 if (args_len >= args_size)
857 {
858 args_size++;
859 args = xrealloc (args, sizeof (*args) * args_size);
860 }
861 arg = &args[args_len++];
862 set_token (arg, src->text, src->text);
863 }
864
865 discard_cleanups (back_to);
866 *argc_p = args_len;
867 return args;
868 }
869
870 depth--;
871 }
872
873 /* If tok is a comma at top level, then that's the end of
874 the current argument. However, if we are handling a
875 variadic macro and we are computing the last argument, we
876 want to include the comma and remaining tokens. */
877 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
878 && (nargs == -1 || args_len < nargs))
879 break;
880
881 /* Extend the current argument to enclose this token. If
882 this is the current argument's first token, leave out any
883 leading whitespace, just for aesthetics. */
884 if (arg->len == 0)
885 {
886 arg->text = tok.text;
887 arg->len = tok.len;
888 arg->last_token = 0;
889 }
890 else
891 {
892 arg->len = (tok.text + tok.len) - arg->text;
893 arg->last_token = tok.text - arg->text;
894 }
895 }
896 }
897 }
898
899
900 /* The `expand' and `substitute_args' functions both invoke `scan'
901 recursively, so we need a forward declaration somewhere. */
902 static void scan (struct macro_buffer *dest,
903 struct macro_buffer *src,
904 struct macro_name_list *no_loop,
905 macro_lookup_ftype *lookup_func,
906 void *lookup_baton);
907
908
909 /* A helper function for substitute_args.
910
911 ARGV is a vector of all the arguments; ARGC is the number of
912 arguments. IS_VARARGS is true if the macro being substituted is a
913 varargs macro; in this case VA_ARG_NAME is the name of the
914 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
915 false.
916
917 If the token TOK is the name of a parameter, return the parameter's
918 index. If TOK is not an argument, return -1. */
919
920 static int
921 find_parameter (const struct macro_buffer *tok,
922 int is_varargs, const struct macro_buffer *va_arg_name,
923 int argc, const char * const *argv)
924 {
925 int i;
926
927 if (! tok->is_identifier)
928 return -1;
929
930 for (i = 0; i < argc; ++i)
931 if (tok->len == strlen (argv[i])
932 && !memcmp (tok->text, argv[i], tok->len))
933 return i;
934
935 if (is_varargs && tok->len == va_arg_name->len
936 && ! memcmp (tok->text, va_arg_name->text, tok->len))
937 return argc - 1;
938
939 return -1;
940 }
941
942 /* Given the macro definition DEF, being invoked with the actual
943 arguments given by ARGC and ARGV, substitute the arguments into the
944 replacement list, and store the result in DEST.
945
946 IS_VARARGS should be true if DEF is a varargs macro. In this case,
947 VA_ARG_NAME should be the name of the "variable" argument -- either
948 __VA_ARGS__ for c99-style varargs, or the final argument name, for
949 GNU-style varargs. If IS_VARARGS is false, this parameter is
950 ignored.
951
952 If it is necessary to expand macro invocations in one of the
953 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
954 definitions, and don't expand invocations of the macros listed in
955 NO_LOOP. */
956
957 static void
958 substitute_args (struct macro_buffer *dest,
959 struct macro_definition *def,
960 int is_varargs, const struct macro_buffer *va_arg_name,
961 int argc, struct macro_buffer *argv,
962 struct macro_name_list *no_loop,
963 macro_lookup_ftype *lookup_func,
964 void *lookup_baton)
965 {
966 /* A macro buffer for the macro's replacement list. */
967 struct macro_buffer replacement_list;
968 /* The token we are currently considering. */
969 struct macro_buffer tok;
970 /* The replacement list's pointer from just before TOK was lexed. */
971 char *original_rl_start;
972 /* We have a single lookahead token to handle token splicing. */
973 struct macro_buffer lookahead;
974 /* The lookahead token might not be valid. */
975 int lookahead_valid;
976 /* The replacement list's pointer from just before LOOKAHEAD was
977 lexed. */
978 char *lookahead_rl_start;
979
980 init_shared_buffer (&replacement_list, (char *) def->replacement,
981 strlen (def->replacement));
982
983 gdb_assert (dest->len == 0);
984 dest->last_token = 0;
985
986 original_rl_start = replacement_list.text;
987 if (! get_token (&tok, &replacement_list))
988 return;
989 lookahead_rl_start = replacement_list.text;
990 lookahead_valid = get_token (&lookahead, &replacement_list);
991
992 for (;;)
993 {
994 /* Just for aesthetics. If we skipped some whitespace, copy
995 that to DEST. */
996 if (tok.text > original_rl_start)
997 {
998 appendmem (dest, original_rl_start, tok.text - original_rl_start);
999 dest->last_token = dest->len;
1000 }
1001
1002 /* Is this token the stringification operator? */
1003 if (tok.len == 1
1004 && tok.text[0] == '#')
1005 {
1006 int arg;
1007
1008 if (!lookahead_valid)
1009 error (_("Stringification operator requires an argument."));
1010
1011 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1012 def->argc, def->argv);
1013 if (arg == -1)
1014 error (_("Argument to stringification operator must name "
1015 "a macro parameter."));
1016
1017 stringify (dest, argv[arg].text, argv[arg].len);
1018
1019 /* Read one token and let the loop iteration code handle the
1020 rest. */
1021 lookahead_rl_start = replacement_list.text;
1022 lookahead_valid = get_token (&lookahead, &replacement_list);
1023 }
1024 /* Is this token the splicing operator? */
1025 else if (tok.len == 2
1026 && tok.text[0] == '#'
1027 && tok.text[1] == '#')
1028 error (_("Stray splicing operator"));
1029 /* Is the next token the splicing operator? */
1030 else if (lookahead_valid
1031 && lookahead.len == 2
1032 && lookahead.text[0] == '#'
1033 && lookahead.text[1] == '#')
1034 {
1035 int finished = 0;
1036 int prev_was_comma = 0;
1037
1038 /* Note that GCC warns if the result of splicing is not a
1039 token. In the debugger there doesn't seem to be much
1040 benefit from doing this. */
1041
1042 /* Insert the first token. */
1043 if (tok.len == 1 && tok.text[0] == ',')
1044 prev_was_comma = 1;
1045 else
1046 {
1047 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1048 def->argc, def->argv);
1049
1050 if (arg != -1)
1051 appendmem (dest, argv[arg].text, argv[arg].len);
1052 else
1053 appendmem (dest, tok.text, tok.len);
1054 }
1055
1056 /* Apply a possible sequence of ## operators. */
1057 for (;;)
1058 {
1059 if (! get_token (&tok, &replacement_list))
1060 error (_("Splicing operator at end of macro"));
1061
1062 /* Handle a comma before a ##. If we are handling
1063 varargs, and the token on the right hand side is the
1064 varargs marker, and the final argument is empty or
1065 missing, then drop the comma. This is a GNU
1066 extension. There is one ambiguous case here,
1067 involving pedantic behavior with an empty argument,
1068 but we settle that in favor of GNU-style (GCC uses an
1069 option). If we aren't dealing with varargs, we
1070 simply insert the comma. */
1071 if (prev_was_comma)
1072 {
1073 if (! (is_varargs
1074 && tok.len == va_arg_name->len
1075 && !memcmp (tok.text, va_arg_name->text, tok.len)
1076 && argv[argc - 1].len == 0))
1077 appendmem (dest, ",", 1);
1078 prev_was_comma = 0;
1079 }
1080
1081 /* Insert the token. If it is a parameter, insert the
1082 argument. If it is a comma, treat it specially. */
1083 if (tok.len == 1 && tok.text[0] == ',')
1084 prev_was_comma = 1;
1085 else
1086 {
1087 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1088 def->argc, def->argv);
1089
1090 if (arg != -1)
1091 appendmem (dest, argv[arg].text, argv[arg].len);
1092 else
1093 appendmem (dest, tok.text, tok.len);
1094 }
1095
1096 /* Now read another token. If it is another splice, we
1097 loop. */
1098 original_rl_start = replacement_list.text;
1099 if (! get_token (&tok, &replacement_list))
1100 {
1101 finished = 1;
1102 break;
1103 }
1104
1105 if (! (tok.len == 2
1106 && tok.text[0] == '#'
1107 && tok.text[1] == '#'))
1108 break;
1109 }
1110
1111 if (prev_was_comma)
1112 {
1113 /* We saw a comma. Insert it now. */
1114 appendmem (dest, ",", 1);
1115 }
1116
1117 dest->last_token = dest->len;
1118 if (finished)
1119 lookahead_valid = 0;
1120 else
1121 {
1122 /* Set up for the loop iterator. */
1123 lookahead = tok;
1124 lookahead_rl_start = original_rl_start;
1125 lookahead_valid = 1;
1126 }
1127 }
1128 else
1129 {
1130 /* Is this token an identifier? */
1131 int substituted = 0;
1132 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1133 def->argc, def->argv);
1134
1135 if (arg != -1)
1136 {
1137 struct macro_buffer arg_src;
1138
1139 /* Expand any macro invocations in the argument text,
1140 and append the result to dest. Remember that scan
1141 mutates its source, so we need to scan a new buffer
1142 referring to the argument's text, not the argument
1143 itself. */
1144 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1145 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1146 substituted = 1;
1147 }
1148
1149 /* If it wasn't a parameter, then just copy it across. */
1150 if (! substituted)
1151 append_tokens_without_splicing (dest, &tok);
1152 }
1153
1154 if (! lookahead_valid)
1155 break;
1156
1157 tok = lookahead;
1158 original_rl_start = lookahead_rl_start;
1159
1160 lookahead_rl_start = replacement_list.text;
1161 lookahead_valid = get_token (&lookahead, &replacement_list);
1162 }
1163 }
1164
1165
1166 /* Expand a call to a macro named ID, whose definition is DEF. Append
1167 its expansion to DEST. SRC is the input text following the ID
1168 token. We are currently rescanning the expansions of the macros
1169 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1170 LOOKUP_BATON to find definitions for any nested macro references.
1171
1172 Return 1 if we decided to expand it, zero otherwise. (If it's a
1173 function-like macro name that isn't followed by an argument list,
1174 we don't expand it.) If we return zero, leave SRC unchanged. */
1175 static int
1176 expand (const char *id,
1177 struct macro_definition *def,
1178 struct macro_buffer *dest,
1179 struct macro_buffer *src,
1180 struct macro_name_list *no_loop,
1181 macro_lookup_ftype *lookup_func,
1182 void *lookup_baton)
1183 {
1184 struct macro_name_list new_no_loop;
1185
1186 /* Create a new node to be added to the front of the no-expand list.
1187 This list is appropriate for re-scanning replacement lists, but
1188 it is *not* appropriate for scanning macro arguments; invocations
1189 of the macro whose arguments we are gathering *do* get expanded
1190 there. */
1191 new_no_loop.name = id;
1192 new_no_loop.next = no_loop;
1193
1194 /* What kind of macro are we expanding? */
1195 if (def->kind == macro_object_like)
1196 {
1197 struct macro_buffer replacement_list;
1198
1199 init_shared_buffer (&replacement_list, (char *) def->replacement,
1200 strlen (def->replacement));
1201
1202 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1203 return 1;
1204 }
1205 else if (def->kind == macro_function_like)
1206 {
1207 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1208 int argc = 0;
1209 struct macro_buffer *argv = NULL;
1210 struct macro_buffer substituted;
1211 struct macro_buffer substituted_src;
1212 struct macro_buffer va_arg_name = {0};
1213 int is_varargs = 0;
1214
1215 if (def->argc >= 1)
1216 {
1217 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1218 {
1219 /* In C99-style varargs, substitution is done using
1220 __VA_ARGS__. */
1221 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1222 strlen ("__VA_ARGS__"));
1223 is_varargs = 1;
1224 }
1225 else
1226 {
1227 int len = strlen (def->argv[def->argc - 1]);
1228
1229 if (len > 3
1230 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1231 {
1232 /* In GNU-style varargs, the name of the
1233 substitution parameter is the name of the formal
1234 argument without the "...". */
1235 init_shared_buffer (&va_arg_name,
1236 (char *) def->argv[def->argc - 1],
1237 len - 3);
1238 is_varargs = 1;
1239 }
1240 }
1241 }
1242
1243 make_cleanup (free_current_contents, &argv);
1244 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1245 &argc);
1246
1247 /* If we couldn't find any argument list, then we don't expand
1248 this macro. */
1249 if (! argv)
1250 {
1251 do_cleanups (back_to);
1252 return 0;
1253 }
1254
1255 /* Check that we're passing an acceptable number of arguments for
1256 this macro. */
1257 if (argc != def->argc)
1258 {
1259 if (is_varargs && argc >= def->argc - 1)
1260 {
1261 /* Ok. */
1262 }
1263 /* Remember that a sequence of tokens like "foo()" is a
1264 valid invocation of a macro expecting either zero or one
1265 arguments. */
1266 else if (! (argc == 1
1267 && argv[0].len == 0
1268 && def->argc == 0))
1269 error (_("Wrong number of arguments to macro `%s' "
1270 "(expected %d, got %d)."),
1271 id, def->argc, argc);
1272 }
1273
1274 /* Note that we don't expand macro invocations in the arguments
1275 yet --- we let subst_args take care of that. Parameters that
1276 appear as operands of the stringifying operator "#" or the
1277 splicing operator "##" don't get macro references expanded,
1278 so we can't really tell whether it's appropriate to macro-
1279 expand an argument until we see how it's being used. */
1280 init_buffer (&substituted, 0);
1281 make_cleanup (cleanup_macro_buffer, &substituted);
1282 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1283 argc, argv, no_loop, lookup_func, lookup_baton);
1284
1285 /* Now `substituted' is the macro's replacement list, with all
1286 argument values substituted into it properly. Re-scan it for
1287 macro references, but don't expand invocations of this macro.
1288
1289 We create a new buffer, `substituted_src', which points into
1290 `substituted', and scan that. We can't scan `substituted'
1291 itself, since the tokenization process moves the buffer's
1292 text pointer around, and we still need to be able to find
1293 `substituted's original text buffer after scanning it so we
1294 can free it. */
1295 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1296 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1297
1298 do_cleanups (back_to);
1299
1300 return 1;
1301 }
1302 else
1303 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1304 }
1305
1306
1307 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1308 constitute a macro invokation not forbidden in NO_LOOP, append its
1309 expansion to DEST and return non-zero. Otherwise, return zero, and
1310 leave DEST unchanged.
1311
1312 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1313 SRC_FIRST must be a string built by get_token. */
1314 static int
1315 maybe_expand (struct macro_buffer *dest,
1316 struct macro_buffer *src_first,
1317 struct macro_buffer *src_rest,
1318 struct macro_name_list *no_loop,
1319 macro_lookup_ftype *lookup_func,
1320 void *lookup_baton)
1321 {
1322 gdb_assert (src_first->shared);
1323 gdb_assert (src_rest->shared);
1324 gdb_assert (! dest->shared);
1325
1326 /* Is this token an identifier? */
1327 if (src_first->is_identifier)
1328 {
1329 /* Make a null-terminated copy of it, since that's what our
1330 lookup function expects. */
1331 char *id = xmalloc (src_first->len + 1);
1332 struct cleanup *back_to = make_cleanup (xfree, id);
1333
1334 memcpy (id, src_first->text, src_first->len);
1335 id[src_first->len] = 0;
1336
1337 /* If we're currently re-scanning the result of expanding
1338 this macro, don't expand it again. */
1339 if (! currently_rescanning (no_loop, id))
1340 {
1341 /* Does this identifier have a macro definition in scope? */
1342 struct macro_definition *def = lookup_func (id, lookup_baton);
1343
1344 if (def && expand (id, def, dest, src_rest, no_loop,
1345 lookup_func, lookup_baton))
1346 {
1347 do_cleanups (back_to);
1348 return 1;
1349 }
1350 }
1351
1352 do_cleanups (back_to);
1353 }
1354
1355 return 0;
1356 }
1357
1358
1359 /* Expand macro references in SRC, appending the results to DEST.
1360 Assume we are re-scanning the result of expanding the macros named
1361 in NO_LOOP, and don't try to re-expand references to them.
1362
1363 SRC must be a shared buffer; DEST must not be one. */
1364 static void
1365 scan (struct macro_buffer *dest,
1366 struct macro_buffer *src,
1367 struct macro_name_list *no_loop,
1368 macro_lookup_ftype *lookup_func,
1369 void *lookup_baton)
1370 {
1371 gdb_assert (src->shared);
1372 gdb_assert (! dest->shared);
1373
1374 for (;;)
1375 {
1376 struct macro_buffer tok;
1377 char *original_src_start = src->text;
1378
1379 /* Find the next token in SRC. */
1380 if (! get_token (&tok, src))
1381 break;
1382
1383 /* Just for aesthetics. If we skipped some whitespace, copy
1384 that to DEST. */
1385 if (tok.text > original_src_start)
1386 {
1387 appendmem (dest, original_src_start, tok.text - original_src_start);
1388 dest->last_token = dest->len;
1389 }
1390
1391 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1392 /* We didn't end up expanding tok as a macro reference, so
1393 simply append it to dest. */
1394 append_tokens_without_splicing (dest, &tok);
1395 }
1396
1397 /* Just for aesthetics. If there was any trailing whitespace in
1398 src, copy it to dest. */
1399 if (src->len)
1400 {
1401 appendmem (dest, src->text, src->len);
1402 dest->last_token = dest->len;
1403 }
1404 }
1405
1406
1407 char *
1408 macro_expand (const char *source,
1409 macro_lookup_ftype *lookup_func,
1410 void *lookup_func_baton)
1411 {
1412 struct macro_buffer src, dest;
1413 struct cleanup *back_to;
1414
1415 init_shared_buffer (&src, (char *) source, strlen (source));
1416
1417 init_buffer (&dest, 0);
1418 dest.last_token = 0;
1419 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1420
1421 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1422
1423 appendc (&dest, '\0');
1424
1425 discard_cleanups (back_to);
1426 return dest.text;
1427 }
1428
1429
1430 char *
1431 macro_expand_once (const char *source,
1432 macro_lookup_ftype *lookup_func,
1433 void *lookup_func_baton)
1434 {
1435 error (_("Expand-once not implemented yet."));
1436 }
1437
1438
1439 char *
1440 macro_expand_next (char **lexptr,
1441 macro_lookup_ftype *lookup_func,
1442 void *lookup_baton)
1443 {
1444 struct macro_buffer src, dest, tok;
1445 struct cleanup *back_to;
1446
1447 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1448 init_shared_buffer (&src, *lexptr, strlen (*lexptr));
1449
1450 /* Set up DEST to receive the expansion, if there is one. */
1451 init_buffer (&dest, 0);
1452 dest.last_token = 0;
1453 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1454
1455 /* Get the text's first preprocessing token. */
1456 if (! get_token (&tok, &src))
1457 {
1458 do_cleanups (back_to);
1459 return 0;
1460 }
1461
1462 /* If it's a macro invocation, expand it. */
1463 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1464 {
1465 /* It was a macro invocation! Package up the expansion as a
1466 null-terminated string and return it. Set *lexptr to the
1467 start of the next token in the input. */
1468 appendc (&dest, '\0');
1469 discard_cleanups (back_to);
1470 *lexptr = src.text;
1471 return dest.text;
1472 }
1473 else
1474 {
1475 /* It wasn't a macro invocation. */
1476 do_cleanups (back_to);
1477 return 0;
1478 }
1479 }
This page took 0.0922809999999999 seconds and 5 git commands to generate.