f4ec39f7ad0b953344d0cd5c374d65ed91a34903
[deliverable/binutils-gdb.git] / gdb / mcore-tdep.c
1 /* Target-machine dependent code for Motorola MCore for GDB, the GNU debugger
2
3 Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "value.h"
26 #include "gdbcmd.h"
27 #include "regcache.h"
28 #include "symfile.h"
29 #include "gdbcore.h"
30 #include "inferior.h"
31 #include "arch-utils.h"
32 #include "gdb_string.h"
33 #include "disasm.h"
34 #include "dis-asm.h"
35
36 static CORE_ADDR mcore_analyze_prologue (struct frame_info *fi, CORE_ADDR pc,
37 int skip_prologue);
38 static int get_insn (CORE_ADDR pc);
39
40 #ifdef MCORE_DEBUG
41 int mcore_debug = 0;
42 #endif
43
44
45 /* All registers are 4 bytes long. */
46 #define MCORE_REG_SIZE 4
47 #define MCORE_NUM_REGS 65
48
49 /* Some useful register numbers. */
50 #define PR_REGNUM 15
51 #define FIRST_ARGREG 2
52 #define LAST_ARGREG 7
53 #define RETVAL_REGNUM 2
54
55
56 /* Additional info that we use for managing frames */
57 struct frame_extra_info
58 {
59 /* A generic status word */
60 int status;
61
62 /* Size of this frame */
63 int framesize;
64
65 /* The register that is acting as a frame pointer, if
66 it is being used. This is undefined if status
67 does not contain the flag MY_FRAME_IN_FP. */
68 int fp_regnum;
69 };
70
71 /* frame_extra_info status flags */
72
73 /* The base of the current frame is actually in the stack pointer.
74 This happens when there is no frame pointer (MCore ABI does not
75 require a frame pointer) or when we're stopped in the prologue or
76 epilogue itself. In these cases, mcore_analyze_prologue will need
77 to update fi->frame before returning or analyzing the register
78 save instructions. */
79 #define MY_FRAME_IN_SP 0x1
80
81 /* The base of the current frame is in a frame pointer register.
82 This register is noted in frame_extra_info->fp_regnum.
83
84 Note that the existence of an FP might also indicate that the
85 function has called alloca. */
86 #define MY_FRAME_IN_FP 0x2
87
88 /* This flag is set to indicate that this frame is the top-most
89 frame. This tells frame chain not to bother trying to unwind
90 beyond this frame. */
91 #define NO_MORE_FRAMES 0x4
92
93 /* Instruction macros used for analyzing the prologue */
94 #define IS_SUBI0(x) (((x) & 0xfe0f) == 0x2400) /* subi r0,oimm5 */
95 #define IS_STM(x) (((x) & 0xfff0) == 0x0070) /* stm rf-r15,r0 */
96 #define IS_STWx0(x) (((x) & 0xf00f) == 0x9000) /* stw rz,(r0,disp) */
97 #define IS_STWxy(x) (((x) & 0xf000) == 0x9000) /* stw rx,(ry,disp) */
98 #define IS_MOVx0(x) (((x) & 0xfff0) == 0x1200) /* mov rn,r0 */
99 #define IS_LRW1(x) (((x) & 0xff00) == 0x7100) /* lrw r1,literal */
100 #define IS_MOVI1(x) (((x) & 0xf80f) == 0x6001) /* movi r1,imm7 */
101 #define IS_BGENI1(x) (((x) & 0xfe0f) == 0x3201) /* bgeni r1,imm5 */
102 #define IS_BMASKI1(x) (((x) & 0xfe0f) == 0x2C01) /* bmaski r1,imm5 */
103 #define IS_ADDI1(x) (((x) & 0xfe0f) == 0x2001) /* addi r1,oimm5 */
104 #define IS_SUBI1(x) (((x) & 0xfe0f) == 0x2401) /* subi r1,oimm5 */
105 #define IS_RSUBI1(x) (((x) & 0xfe0f) == 0x2801) /* rsubi r1,imm5 */
106 #define IS_NOT1(x) (((x) & 0xffff) == 0x01f1) /* not r1 */
107 #define IS_ROTLI1(x) (((x) & 0xfe0f) == 0x3801) /* rotli r1,imm5 */
108 #define IS_BSETI1(x) (((x) & 0xfe0f) == 0x3401) /* bseti r1,imm5 */
109 #define IS_BCLRI1(x) (((x) & 0xfe0f) == 0x3001) /* bclri r1,imm5 */
110 #define IS_IXH1(x) (((x) & 0xffff) == 0x1d11) /* ixh r1,r1 */
111 #define IS_IXW1(x) (((x) & 0xffff) == 0x1511) /* ixw r1,r1 */
112 #define IS_SUB01(x) (((x) & 0xffff) == 0x0510) /* subu r0,r1 */
113 #define IS_RTS(x) (((x) & 0xffff) == 0x00cf) /* jmp r15 */
114
115 #define IS_R1_ADJUSTER(x) \
116 (IS_ADDI1(x) || IS_SUBI1(x) || IS_ROTLI1(x) || IS_BSETI1(x) \
117 || IS_BCLRI1(x) || IS_RSUBI1(x) || IS_NOT1(x) \
118 || IS_IXH1(x) || IS_IXW1(x))
119 \f
120
121 #ifdef MCORE_DEBUG
122 static void
123 mcore_dump_insn (char *commnt, CORE_ADDR pc, int insn)
124 {
125 if (mcore_debug)
126 {
127 printf_filtered ("MCORE: %s %08x %08x ",
128 commnt, (unsigned int) pc, (unsigned int) insn);
129 gdb_print_insn (pc, gdb_stdout);
130 printf_filtered ("\n");
131 }
132 }
133 #define mcore_insn_debug(args) { if (mcore_debug) printf_filtered args; }
134 #else /* !MCORE_DEBUG */
135 #define mcore_dump_insn(a,b,c) {}
136 #define mcore_insn_debug(args) {}
137 #endif
138
139
140 static struct type *
141 mcore_register_virtual_type (int regnum)
142 {
143 if (regnum < 0 || regnum >= MCORE_NUM_REGS)
144 internal_error (__FILE__, __LINE__,
145 "mcore_register_virtual_type: illegal register number %d",
146 regnum);
147 else
148 return builtin_type_int;
149 }
150
151 static int
152 mcore_register_byte (int regnum)
153 {
154 if (regnum < 0 || regnum >= MCORE_NUM_REGS)
155 internal_error (__FILE__, __LINE__,
156 "mcore_register_byte: illegal register number %d",
157 regnum);
158 else
159 return (regnum * MCORE_REG_SIZE);
160 }
161
162 static int
163 mcore_register_size (int regnum)
164 {
165
166 if (regnum < 0 || regnum >= MCORE_NUM_REGS)
167 internal_error (__FILE__, __LINE__,
168 "mcore_register_size: illegal register number %d",
169 regnum);
170 else
171 return MCORE_REG_SIZE;
172 }
173
174 /* The registers of the Motorola MCore processors */
175
176 static const char *
177 mcore_register_name (int regnum)
178 {
179
180 static char *register_names[] = {
181 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
182 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
183 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7",
184 "ar8", "ar9", "ar10", "ar11", "ar12", "ar13", "ar14", "ar15",
185 "psr", "vbr", "epsr", "fpsr", "epc", "fpc", "ss0", "ss1",
186 "ss2", "ss3", "ss4", "gcr", "gsr", "cr13", "cr14", "cr15",
187 "cr16", "cr17", "cr18", "cr19", "cr20", "cr21", "cr22", "cr23",
188 "cr24", "cr25", "cr26", "cr27", "cr28", "cr29", "cr30", "cr31",
189 "pc"
190 };
191
192 if (regnum < 0 ||
193 regnum >= sizeof (register_names) / sizeof (register_names[0]))
194 internal_error (__FILE__, __LINE__,
195 "mcore_register_name: illegal register number %d",
196 regnum);
197 else
198 return register_names[regnum];
199 }
200
201 /* Given the address at which to insert a breakpoint (BP_ADDR),
202 what will that breakpoint be?
203
204 For MCore, we have a breakpoint instruction. Since all MCore
205 instructions are 16 bits, this is all we need, regardless of
206 address. bpkt = 0x0000 */
207
208 static const unsigned char *
209 mcore_breakpoint_from_pc (CORE_ADDR * bp_addr, int *bp_size)
210 {
211 static char breakpoint[] =
212 {0x00, 0x00};
213 *bp_size = 2;
214 return breakpoint;
215 }
216
217 static CORE_ADDR
218 mcore_saved_pc_after_call (struct frame_info *frame)
219 {
220 return read_register (PR_REGNUM);
221 }
222
223 /* This is currently handled by init_extra_frame_info. */
224 static void
225 mcore_frame_init_saved_regs (struct frame_info *frame)
226 {
227
228 }
229
230 /* This is currently handled by mcore_push_arguments */
231 static void
232 mcore_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
233 {
234
235 }
236
237 static int
238 mcore_reg_struct_has_addr (int gcc_p, struct type *type)
239 {
240 return 0;
241 }
242
243
244 /* Helper function for several routines below. This funtion simply
245 sets up a fake, aka dummy, frame (not a _call_ dummy frame) that
246 we can analyze with mcore_analyze_prologue. */
247
248 static struct frame_info *
249 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
250 {
251 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
252 struct frame_info *dummy
253 = deprecated_frame_xmalloc_with_cleanup (SIZEOF_FRAME_SAVED_REGS,
254 sizeof (struct frame_extra_info));
255 deprecated_update_frame_pc_hack (dummy, pc);
256 deprecated_update_frame_base_hack (dummy, frame);
257 get_frame_extra_info (dummy)->status = 0;
258 get_frame_extra_info (dummy)->framesize = 0;
259 mcore_analyze_prologue (dummy, 0, 0);
260 do_cleanups (old_chain);
261 return dummy;
262 }
263
264 /* Function prologues on the Motorola MCore processors consist of:
265
266 - adjustments to the stack pointer (r1 used as scratch register)
267 - store word/multiples that use r0 as the base address
268 - making a copy of r0 into another register (a "frame" pointer)
269
270 Note that the MCore really doesn't have a real frame pointer.
271 Instead, the compiler may copy the SP into a register (usually
272 r8) to act as an arg pointer. For our target-dependent purposes,
273 the frame info's "frame" member will be the beginning of the
274 frame. The SP could, in fact, point below this.
275
276 The prologue ends when an instruction fails to meet either of
277 the first two criteria or when an FP is made. We make a special
278 exception for gcc. When compiling unoptimized code, gcc will
279 setup stack slots. We need to make sure that we skip the filling
280 of these stack slots as much as possible. This is only done
281 when SKIP_PROLOGUE is set, so that it does not mess up
282 backtraces. */
283
284 /* Analyze the prologue of frame FI to determine where registers are saved,
285 the end of the prologue, etc. Return the address of the first line
286 of "real" code (i.e., the end of the prologue). */
287
288 static CORE_ADDR
289 mcore_analyze_prologue (struct frame_info *fi, CORE_ADDR pc, int skip_prologue)
290 {
291 CORE_ADDR func_addr, func_end, addr, stop;
292 CORE_ADDR stack_size;
293 int insn, rn;
294 int status;
295 int fp_regnum = 0; /* dummy, valid when (flags & MY_FRAME_IN_FP) */
296 int flags;
297 int framesize;
298 int register_offsets[NUM_REGS];
299 char *name;
300
301 /* If provided, use the PC in the frame to look up the
302 start of this function. */
303 pc = (fi == NULL ? pc : get_frame_pc (fi));
304
305 /* Find the start of this function. */
306 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
307
308 /* If the start of this function could not be found or if the debbuger
309 is stopped at the first instruction of the prologue, do nothing. */
310 if (status == 0)
311 return pc;
312
313 /* If the debugger is entry function, give up. */
314 if (func_addr == entry_point_address ())
315 {
316 if (fi != NULL)
317 get_frame_extra_info (fi)->status |= NO_MORE_FRAMES;
318 return pc;
319 }
320
321 /* At the start of a function, our frame is in the stack pointer. */
322 flags = MY_FRAME_IN_SP;
323
324 /* Start decoding the prologue. We start by checking two special cases:
325
326 1. We're about to return
327 2. We're at the first insn of the prologue.
328
329 If we're about to return, our frame has already been deallocated.
330 If we are stopped at the first instruction of a prologue,
331 then our frame has not yet been set up. */
332
333 /* Get the first insn from memory (all MCore instructions are 16 bits) */
334 mcore_insn_debug (("MCORE: starting prologue decoding\n"));
335 insn = get_insn (pc);
336 mcore_dump_insn ("got 1: ", pc, insn);
337
338 /* Check for return. */
339 if (fi != NULL && IS_RTS (insn))
340 {
341 mcore_insn_debug (("MCORE: got jmp r15"));
342 if (get_next_frame (fi) == NULL)
343 deprecated_update_frame_base_hack (fi, read_sp ());
344 return get_frame_pc (fi);
345 }
346
347 /* Check for first insn of prologue */
348 if (fi != NULL && get_frame_pc (fi) == func_addr)
349 {
350 if (get_next_frame (fi) == NULL)
351 deprecated_update_frame_base_hack (fi, read_sp ());
352 return get_frame_pc (fi);
353 }
354
355 /* Figure out where to stop scanning */
356 stop = (fi ? get_frame_pc (fi) : func_end);
357
358 /* Don't walk off the end of the function */
359 stop = (stop > func_end ? func_end : stop);
360
361 /* REGISTER_OFFSETS will contain offsets, from the top of the frame
362 (NOT the frame pointer), for the various saved registers or -1
363 if the register is not saved. */
364 for (rn = 0; rn < NUM_REGS; rn++)
365 register_offsets[rn] = -1;
366
367 /* Analyze the prologue. Things we determine from analyzing the
368 prologue include:
369 * the size of the frame
370 * where saved registers are located (and which are saved)
371 * FP used? */
372 mcore_insn_debug (("MCORE: Scanning prologue: func_addr=0x%x, stop=0x%x\n",
373 (unsigned int) func_addr, (unsigned int) stop));
374
375 framesize = 0;
376 for (addr = func_addr; addr < stop; addr += 2)
377 {
378 /* Get next insn */
379 insn = get_insn (addr);
380 mcore_dump_insn ("got 2: ", addr, insn);
381
382 if (IS_SUBI0 (insn))
383 {
384 int offset = 1 + ((insn >> 4) & 0x1f);
385 mcore_insn_debug (("MCORE: got subi r0,%d; continuing\n", offset));
386 framesize += offset;
387 continue;
388 }
389 else if (IS_STM (insn))
390 {
391 /* Spill register(s) */
392 int offset;
393 int start_register;
394
395 /* BIG WARNING! The MCore ABI does not restrict functions
396 to taking only one stack allocation. Therefore, when
397 we save a register, we record the offset of where it was
398 saved relative to the current framesize. This will
399 then give an offset from the SP upon entry to our
400 function. Remember, framesize is NOT constant until
401 we're done scanning the prologue. */
402 start_register = (insn & 0xf);
403 mcore_insn_debug (("MCORE: got stm r%d-r15,(r0)\n", start_register));
404
405 for (rn = start_register, offset = 0; rn <= 15; rn++, offset += 4)
406 {
407 register_offsets[rn] = framesize - offset;
408 mcore_insn_debug (("MCORE: r%d saved at 0x%x (offset %d)\n", rn,
409 register_offsets[rn], offset));
410 }
411 mcore_insn_debug (("MCORE: continuing\n"));
412 continue;
413 }
414 else if (IS_STWx0 (insn))
415 {
416 /* Spill register: see note for IS_STM above. */
417 int imm;
418
419 rn = (insn >> 8) & 0xf;
420 imm = (insn >> 4) & 0xf;
421 register_offsets[rn] = framesize - (imm << 2);
422 mcore_insn_debug (("MCORE: r%d saved at offset 0x%x\n", rn, register_offsets[rn]));
423 mcore_insn_debug (("MCORE: continuing\n"));
424 continue;
425 }
426 else if (IS_MOVx0 (insn))
427 {
428 /* We have a frame pointer, so this prologue is over. Note
429 the register which is acting as the frame pointer. */
430 flags |= MY_FRAME_IN_FP;
431 flags &= ~MY_FRAME_IN_SP;
432 fp_regnum = insn & 0xf;
433 mcore_insn_debug (("MCORE: Found a frame pointer: r%d\n", fp_regnum));
434
435 /* If we found an FP, we're at the end of the prologue. */
436 mcore_insn_debug (("MCORE: end of prologue\n"));
437 if (skip_prologue)
438 continue;
439
440 /* If we're decoding prologue, stop here. */
441 addr += 2;
442 break;
443 }
444 else if (IS_STWxy (insn) && (flags & MY_FRAME_IN_FP) && ((insn & 0xf) == fp_regnum))
445 {
446 /* Special case. Skip over stack slot allocs, too. */
447 mcore_insn_debug (("MCORE: push arg onto stack.\n"));
448 continue;
449 }
450 else if (IS_LRW1 (insn) || IS_MOVI1 (insn)
451 || IS_BGENI1 (insn) || IS_BMASKI1 (insn))
452 {
453 int adjust = 0;
454 int offset = 0;
455 int insn2;
456
457 mcore_insn_debug (("MCORE: looking at large frame\n"));
458 if (IS_LRW1 (insn))
459 {
460 adjust =
461 read_memory_integer ((addr + 2 + ((insn & 0xff) << 2)) & 0xfffffffc, 4);
462 }
463 else if (IS_MOVI1 (insn))
464 adjust = (insn >> 4) & 0x7f;
465 else if (IS_BGENI1 (insn))
466 adjust = 1 << ((insn >> 4) & 0x1f);
467 else /* IS_BMASKI (insn) */
468 adjust = (1 << (adjust >> 4) & 0x1f) - 1;
469
470 mcore_insn_debug (("MCORE: base framesize=0x%x\n", adjust));
471
472 /* May have zero or more insns which modify r1 */
473 mcore_insn_debug (("MCORE: looking for r1 adjusters...\n"));
474 offset = 2;
475 insn2 = get_insn (addr + offset);
476 while (IS_R1_ADJUSTER (insn2))
477 {
478 int imm;
479
480 imm = (insn2 >> 4) & 0x1f;
481 mcore_dump_insn ("got 3: ", addr + offset, insn);
482 if (IS_ADDI1 (insn2))
483 {
484 adjust += (imm + 1);
485 mcore_insn_debug (("MCORE: addi r1,%d\n", imm + 1));
486 }
487 else if (IS_SUBI1 (insn2))
488 {
489 adjust -= (imm + 1);
490 mcore_insn_debug (("MCORE: subi r1,%d\n", imm + 1));
491 }
492 else if (IS_RSUBI1 (insn2))
493 {
494 adjust = imm - adjust;
495 mcore_insn_debug (("MCORE: rsubi r1,%d\n", imm + 1));
496 }
497 else if (IS_NOT1 (insn2))
498 {
499 adjust = ~adjust;
500 mcore_insn_debug (("MCORE: not r1\n"));
501 }
502 else if (IS_ROTLI1 (insn2))
503 {
504 adjust <<= imm;
505 mcore_insn_debug (("MCORE: rotli r1,%d\n", imm + 1));
506 }
507 else if (IS_BSETI1 (insn2))
508 {
509 adjust |= (1 << imm);
510 mcore_insn_debug (("MCORE: bseti r1,%d\n", imm));
511 }
512 else if (IS_BCLRI1 (insn2))
513 {
514 adjust &= ~(1 << imm);
515 mcore_insn_debug (("MCORE: bclri r1,%d\n", imm));
516 }
517 else if (IS_IXH1 (insn2))
518 {
519 adjust *= 3;
520 mcore_insn_debug (("MCORE: ix.h r1,r1\n"));
521 }
522 else if (IS_IXW1 (insn2))
523 {
524 adjust *= 5;
525 mcore_insn_debug (("MCORE: ix.w r1,r1\n"));
526 }
527
528 offset += 2;
529 insn2 = get_insn (addr + offset);
530 };
531
532 mcore_insn_debug (("MCORE: done looking for r1 adjusters\n"));
533
534 /* If the next insn adjusts the stack pointer, we keep everything;
535 if not, we scrap it and we've found the end of the prologue. */
536 if (IS_SUB01 (insn2))
537 {
538 addr += offset;
539 framesize += adjust;
540 mcore_insn_debug (("MCORE: found stack adjustment of 0x%x bytes.\n", adjust));
541 mcore_insn_debug (("MCORE: skipping to new address 0x%x\n", addr));
542 mcore_insn_debug (("MCORE: continuing\n"));
543 continue;
544 }
545
546 /* None of these instructions are prologue, so don't touch
547 anything. */
548 mcore_insn_debug (("MCORE: no subu r1,r0, NOT altering framesize.\n"));
549 break;
550 }
551
552 /* This is not a prologue insn, so stop here. */
553 mcore_insn_debug (("MCORE: insn is not a prologue insn -- ending scan\n"));
554 break;
555 }
556
557 mcore_insn_debug (("MCORE: done analyzing prologue\n"));
558 mcore_insn_debug (("MCORE: prologue end = 0x%x\n", addr));
559
560 /* Save everything we have learned about this frame into FI. */
561 if (fi != NULL)
562 {
563 get_frame_extra_info (fi)->framesize = framesize;
564 get_frame_extra_info (fi)->fp_regnum = fp_regnum;
565 get_frame_extra_info (fi)->status = flags;
566
567 /* Fix the frame pointer. When gcc uses r8 as a frame pointer,
568 it is really an arg ptr. We adjust fi->frame to be a "real"
569 frame pointer. */
570 if (get_next_frame (fi) == NULL)
571 {
572 if (get_frame_extra_info (fi)->status & MY_FRAME_IN_SP)
573 deprecated_update_frame_base_hack (fi, read_sp () + framesize);
574 else
575 deprecated_update_frame_base_hack (fi, read_register (fp_regnum) + framesize);
576 }
577
578 /* Note where saved registers are stored. The offsets in REGISTER_OFFSETS
579 are computed relative to the top of the frame. */
580 for (rn = 0; rn < NUM_REGS; rn++)
581 {
582 if (register_offsets[rn] >= 0)
583 {
584 deprecated_get_frame_saved_regs (fi)[rn] = get_frame_base (fi) - register_offsets[rn];
585 mcore_insn_debug (("Saved register %s stored at 0x%08x, value=0x%08x\n",
586 mcore_register_names[rn], fi->saved_regs[rn],
587 read_memory_integer (fi->saved_regs[rn], 4)));
588 }
589 }
590 }
591
592 /* Return addr of first non-prologue insn. */
593 return addr;
594 }
595
596 /* Given a GDB frame, determine the address of the calling function's
597 frame. This will be used to create a new GDB frame struct, and
598 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
599 will be called for the new frame. */
600
601 static CORE_ADDR
602 mcore_frame_chain (struct frame_info * fi)
603 {
604 struct frame_info *dummy;
605 CORE_ADDR callers_addr;
606
607 /* Analyze the prologue of this function. */
608 if (get_frame_extra_info (fi)->status == 0)
609 mcore_analyze_prologue (fi, 0, 0);
610
611 /* If mcore_analyze_prologue set NO_MORE_FRAMES, quit now. */
612 if (get_frame_extra_info (fi)->status & NO_MORE_FRAMES)
613 return 0;
614
615 /* Now that we've analyzed our prologue, we can start to ask
616 for information about our caller. The easiest way to do
617 this is to analyze our caller's prologue.
618
619 If our caller has a frame pointer, then we need to find
620 the value of that register upon entry to our frame.
621 This value is either in fi->saved_regs[rn] if it's saved,
622 or it's still in a register.
623
624 If our caller does not have a frame pointer, then his frame base
625 is <our base> + -<caller's frame size>. */
626 dummy = analyze_dummy_frame (DEPRECATED_FRAME_SAVED_PC (fi), get_frame_base (fi));
627
628 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_FP)
629 {
630 int fp = get_frame_extra_info (dummy)->fp_regnum;
631
632 /* Our caller has a frame pointer. */
633 if (deprecated_get_frame_saved_regs (fi)[fp] != 0)
634 {
635 /* The "FP" was saved on the stack. Don't forget to adjust
636 the "FP" with the framesize to get a real FP. */
637 callers_addr = read_memory_integer (deprecated_get_frame_saved_regs (fi)[fp],
638 DEPRECATED_REGISTER_SIZE)
639 + get_frame_extra_info (dummy)->framesize;
640 }
641 else
642 {
643 /* It's still in the register. Don't forget to adjust
644 the "FP" with the framesize to get a real FP. */
645 callers_addr = read_register (fp) + get_frame_extra_info (dummy)->framesize;
646 }
647 }
648 else
649 {
650 /* Our caller does not have a frame pointer. */
651 callers_addr = get_frame_base (fi) + get_frame_extra_info (dummy)->framesize;
652 }
653
654 return callers_addr;
655 }
656
657 /* Skip the prologue of the function at PC. */
658
659 static CORE_ADDR
660 mcore_skip_prologue (CORE_ADDR pc)
661 {
662 CORE_ADDR func_addr, func_end;
663 struct symtab_and_line sal;
664
665 /* If we have line debugging information, then the end of the
666 prologue should be the first assembly instruction of the first
667 source line */
668 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
669 {
670 sal = find_pc_line (func_addr, 0);
671 if (sal.end && sal.end < func_end)
672 return sal.end;
673 }
674
675 return mcore_analyze_prologue (NULL, pc, 1);
676 }
677
678 /* Return the address at which function arguments are offset. */
679 static CORE_ADDR
680 mcore_frame_args_address (struct frame_info * fi)
681 {
682 return get_frame_base (fi) - get_frame_extra_info (fi)->framesize;
683 }
684
685 static CORE_ADDR
686 mcore_frame_locals_address (struct frame_info * fi)
687 {
688 return get_frame_base (fi) - get_frame_extra_info (fi)->framesize;
689 }
690
691 /* Return the frame pointer in use at address PC. */
692
693 static void
694 mcore_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
695 {
696 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
697 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_SP)
698 {
699 *reg = SP_REGNUM;
700 *offset = 0;
701 }
702 else
703 {
704 *reg = get_frame_extra_info (dummy)->fp_regnum;
705 *offset = 0;
706 }
707 }
708
709 /* Find the value of register REGNUM in frame FI. */
710
711 static CORE_ADDR
712 mcore_find_callers_reg (struct frame_info *fi, int regnum)
713 {
714 for (; fi != NULL; fi = get_next_frame (fi))
715 {
716 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
717 get_frame_base (fi)))
718 return deprecated_read_register_dummy (get_frame_pc (fi),
719 get_frame_base (fi), regnum);
720 else if (deprecated_get_frame_saved_regs (fi)[regnum] != 0)
721 return read_memory_integer (deprecated_get_frame_saved_regs (fi)[regnum],
722 DEPRECATED_REGISTER_SIZE);
723 }
724
725 return read_register (regnum);
726 }
727
728 /* Find the saved pc in frame FI. */
729
730 static CORE_ADDR
731 mcore_frame_saved_pc (struct frame_info * fi)
732 {
733
734 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
735 get_frame_base (fi)))
736 return deprecated_read_register_dummy (get_frame_pc (fi),
737 get_frame_base (fi), PC_REGNUM);
738 else
739 return mcore_find_callers_reg (fi, PR_REGNUM);
740 }
741 \f
742 /* INFERIOR FUNCTION CALLS */
743
744 /* This routine gets called when either the user uses the "return"
745 command, or the call dummy breakpoint gets hit. */
746
747 static void
748 mcore_pop_frame (void)
749 {
750 int rn;
751 struct frame_info *fi = get_current_frame ();
752
753 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
754 get_frame_base (fi)))
755 generic_pop_dummy_frame ();
756 else
757 {
758 /* Write out the PC we saved. */
759 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (fi));
760
761 /* Restore any saved registers. */
762 for (rn = 0; rn < NUM_REGS; rn++)
763 {
764 if (deprecated_get_frame_saved_regs (fi)[rn] != 0)
765 {
766 ULONGEST value;
767
768 value = read_memory_unsigned_integer (deprecated_get_frame_saved_regs (fi)[rn],
769 DEPRECATED_REGISTER_SIZE);
770 write_register (rn, value);
771 }
772 }
773
774 /* Actually cut back the stack. */
775 write_register (SP_REGNUM, get_frame_base (fi));
776 }
777
778 /* Finally, throw away any cached frame information. */
779 flush_cached_frames ();
780 }
781
782 /* Setup arguments and PR for a call to the target. First six arguments
783 go in FIRST_ARGREG -> LAST_ARGREG, subsequent args go on to the stack.
784
785 - Types with lengths greater than DEPRECATED_REGISTER_SIZE may not
786 be split between registers and the stack, and they must start in an
787 even-numbered register. Subsequent args will go onto the stack.
788
789 * Structs may be split between registers and stack, left-aligned.
790
791 * If the function returns a struct which will not fit into registers (it's
792 more than eight bytes), we must allocate for that, too. Gdb will tell
793 us where this buffer is (STRUCT_ADDR), and we simply place it into
794 FIRST_ARGREG, since the MCORE treats struct returns (of less than eight
795 bytes) as hidden first arguments. */
796
797 static CORE_ADDR
798 mcore_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
799 int struct_return, CORE_ADDR struct_addr)
800 {
801 int argreg;
802 int argnum;
803 struct stack_arg
804 {
805 int len;
806 char *val;
807 }
808 *stack_args;
809 int nstack_args = 0;
810
811 stack_args = (struct stack_arg *) alloca (nargs * sizeof (struct stack_arg));
812
813 argreg = FIRST_ARGREG;
814
815 /* Align the stack. This is mostly a nop, but not always. It will be needed
816 if we call a function which has argument overflow. */
817 sp &= ~3;
818
819 /* If this function returns a struct which does not fit in the
820 return registers, we must pass a buffer to the function
821 which it can use to save the return value. */
822 if (struct_return)
823 write_register (argreg++, struct_addr);
824
825 /* FIXME: what about unions? */
826 for (argnum = 0; argnum < nargs; argnum++)
827 {
828 char *val = (char *) VALUE_CONTENTS (args[argnum]);
829 int len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
830 struct type *type = VALUE_TYPE (args[argnum]);
831 int olen;
832
833 mcore_insn_debug (("MCORE PUSH: argreg=%d; len=%d; %s\n",
834 argreg, len, TYPE_CODE (type) == TYPE_CODE_STRUCT ? "struct" : "not struct"));
835 /* Arguments larger than a register must start in an even
836 numbered register. */
837 olen = len;
838
839 if (TYPE_CODE (type) != TYPE_CODE_STRUCT && len > DEPRECATED_REGISTER_SIZE && argreg % 2)
840 {
841 mcore_insn_debug (("MCORE PUSH: %d > DEPRECATED_REGISTER_SIZE: and %s is not even\n",
842 len, mcore_register_names[argreg]));
843 argreg++;
844 }
845
846 if ((argreg <= LAST_ARGREG && len <= (LAST_ARGREG - argreg + 1) * DEPRECATED_REGISTER_SIZE)
847 || (TYPE_CODE (type) == TYPE_CODE_STRUCT))
848 {
849 /* Something that will fit entirely into registers (or a struct
850 which may be split between registers and stack). */
851 mcore_insn_debug (("MCORE PUSH: arg %d going into regs\n", argnum));
852
853 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && olen < DEPRECATED_REGISTER_SIZE)
854 {
855 /* Small structs must be right aligned within the register,
856 the most significant bits are undefined. */
857 write_register (argreg, extract_unsigned_integer (val, len));
858 argreg++;
859 len = 0;
860 }
861
862 while (len > 0 && argreg <= LAST_ARGREG)
863 {
864 write_register (argreg, extract_unsigned_integer (val, DEPRECATED_REGISTER_SIZE));
865 argreg++;
866 val += DEPRECATED_REGISTER_SIZE;
867 len -= DEPRECATED_REGISTER_SIZE;
868 }
869
870 /* Any remainder for the stack is noted below... */
871 }
872 else if (TYPE_CODE (VALUE_TYPE (args[argnum])) != TYPE_CODE_STRUCT
873 && len > DEPRECATED_REGISTER_SIZE)
874 {
875 /* All subsequent args go onto the stack. */
876 mcore_insn_debug (("MCORE PUSH: does not fit into regs, going onto stack\n"));
877 argnum = LAST_ARGREG + 1;
878 }
879
880 if (len > 0)
881 {
882 /* Note that this must be saved onto the stack */
883 mcore_insn_debug (("MCORE PUSH: adding arg %d to stack\n", argnum));
884 stack_args[nstack_args].val = val;
885 stack_args[nstack_args].len = len;
886 nstack_args++;
887 }
888
889 }
890
891 /* We're done with registers and stack allocation. Now do the actual
892 stack pushes. */
893 while (nstack_args--)
894 {
895 sp -= stack_args[nstack_args].len;
896 write_memory (sp, stack_args[nstack_args].val, stack_args[nstack_args].len);
897 }
898
899 /* Return adjusted stack pointer. */
900 return sp;
901 }
902
903 /* Store the return address for the call dummy. For MCore, we've opted
904 to use generic call dummies, so we simply store the entry-point
905 address into the PR register (r15). */
906
907 static CORE_ADDR
908 mcore_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
909 {
910 write_register (PR_REGNUM, entry_point_address ());
911 return sp;
912 }
913
914 /* Setting/getting return values from functions.
915
916 The Motorola MCore processors use r2/r3 to return anything
917 not larger than 32 bits. Everything else goes into a caller-
918 supplied buffer, which is passed in via a hidden first
919 argument.
920
921 For gdb, this leaves us two routes, based on what
922 USE_STRUCT_CONVENTION (mcore_use_struct_convention) returns. If
923 this macro returns 1, gdb will call STORE_STRUCT_RETURN to store
924 the return value.
925
926 If USE_STRUCT_CONVENTION returns 0, then gdb uses
927 STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE to store/fetch the
928 functions return value. */
929
930 static int
931 mcore_use_struct_convention (int gcc_p, struct type *type)
932 {
933 return (TYPE_LENGTH (type) > 8);
934 }
935
936 /* Given a function which returns a value of type TYPE, extract the
937 the function's return value and place the result into VALBUF.
938 REGBUF is the register contents of the target. */
939
940 static void
941 mcore_extract_return_value (struct type *type, char *regbuf, char *valbuf)
942 {
943 /* Copy the return value (starting) in RETVAL_REGNUM to VALBUF. */
944 /* Only getting the first byte! if len = 1, we need the last byte of
945 the register, not the first. */
946 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (RETVAL_REGNUM) +
947 (TYPE_LENGTH (type) < 4 ? 4 - TYPE_LENGTH (type) : 0), TYPE_LENGTH (type));
948 }
949
950 /* Store the return value in VALBUF (of type TYPE) where the caller
951 expects to see it.
952
953 Values less than 32 bits are stored in r2, right justified and
954 sign or zero extended.
955
956 Values between 32 and 64 bits are stored in r2 (most
957 significant word) and r3 (least significant word, left justified).
958 Note that this includes structures of less than eight bytes, too. */
959
960 static void
961 mcore_store_return_value (struct type *type, char *valbuf)
962 {
963 int value_size;
964 int return_size;
965 int offset;
966 char *zeros;
967
968 value_size = TYPE_LENGTH (type);
969
970 /* Return value fits into registers. */
971 return_size = (value_size + DEPRECATED_REGISTER_SIZE - 1) & ~(DEPRECATED_REGISTER_SIZE - 1);
972 offset = DEPRECATED_REGISTER_BYTE (RETVAL_REGNUM) + (return_size - value_size);
973 zeros = alloca (return_size);
974 memset (zeros, 0, return_size);
975
976 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (RETVAL_REGNUM), zeros,
977 return_size);
978 deprecated_write_register_bytes (offset, valbuf, value_size);
979 }
980
981 /* Initialize our target-dependent "stuff" for this newly created frame.
982
983 This includes allocating space for saved registers and analyzing
984 the prologue of this frame. */
985
986 static void
987 mcore_init_extra_frame_info (int fromleaf, struct frame_info *fi)
988 {
989 if (fi && get_next_frame (fi))
990 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
991
992 frame_saved_regs_zalloc (fi);
993
994 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
995 get_frame_extra_info (fi)->status = 0;
996 get_frame_extra_info (fi)->framesize = 0;
997
998 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
999 get_frame_base (fi)))
1000 {
1001 /* We need to setup fi->frame here because call_function_by_hand
1002 gets it wrong by assuming it's always FP. */
1003 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi), SP_REGNUM));
1004 }
1005 else
1006 mcore_analyze_prologue (fi, 0, 0);
1007 }
1008
1009 /* Get an insturction from memory. */
1010
1011 static int
1012 get_insn (CORE_ADDR pc)
1013 {
1014 char buf[4];
1015 int status = read_memory_nobpt (pc, buf, 2);
1016 if (status != 0)
1017 return 0;
1018
1019 return extract_unsigned_integer (buf, 2);
1020 }
1021
1022 static struct gdbarch *
1023 mcore_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1024 {
1025 static LONGEST call_dummy_words[7] = { };
1026 struct gdbarch_tdep *tdep = NULL;
1027 struct gdbarch *gdbarch;
1028
1029 /* find a candidate among the list of pre-declared architectures. */
1030 arches = gdbarch_list_lookup_by_info (arches, &info);
1031 if (arches != NULL)
1032 return (arches->gdbarch);
1033
1034 gdbarch = gdbarch_alloc (&info, 0);
1035
1036 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1037 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1038 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
1039
1040 /* Registers: */
1041
1042 /* All registers are 32 bits */
1043 set_gdbarch_deprecated_register_size (gdbarch, MCORE_REG_SIZE);
1044 set_gdbarch_deprecated_max_register_raw_size (gdbarch, MCORE_REG_SIZE);
1045 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, MCORE_REG_SIZE);
1046 set_gdbarch_register_name (gdbarch, mcore_register_name);
1047 set_gdbarch_deprecated_register_virtual_type (gdbarch, mcore_register_virtual_type);
1048 set_gdbarch_deprecated_register_virtual_size (gdbarch, mcore_register_size);
1049 set_gdbarch_deprecated_register_raw_size (gdbarch, mcore_register_size);
1050 set_gdbarch_deprecated_register_byte (gdbarch, mcore_register_byte);
1051 set_gdbarch_deprecated_register_bytes (gdbarch, MCORE_REG_SIZE * MCORE_NUM_REGS);
1052 set_gdbarch_num_regs (gdbarch, MCORE_NUM_REGS);
1053 set_gdbarch_pc_regnum (gdbarch, 64);
1054 set_gdbarch_sp_regnum (gdbarch, 0);
1055 set_gdbarch_deprecated_fp_regnum (gdbarch, 0);
1056
1057 /* Call Dummies: */
1058
1059 set_gdbarch_deprecated_call_dummy_words (gdbarch, call_dummy_words);
1060 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
1061 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1062 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mcore_saved_pc_after_call);
1063 set_gdbarch_breakpoint_from_pc (gdbarch, mcore_breakpoint_from_pc);
1064 set_gdbarch_deprecated_push_return_address (gdbarch, mcore_push_return_address);
1065 set_gdbarch_deprecated_push_arguments (gdbarch, mcore_push_arguments);
1066
1067 /* Frames: */
1068
1069 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mcore_init_extra_frame_info);
1070 set_gdbarch_deprecated_frame_chain (gdbarch, mcore_frame_chain);
1071 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mcore_frame_init_saved_regs);
1072 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mcore_frame_saved_pc);
1073 set_gdbarch_deprecated_store_return_value (gdbarch, mcore_store_return_value);
1074 set_gdbarch_deprecated_extract_return_value (gdbarch,
1075 mcore_extract_return_value);
1076 set_gdbarch_deprecated_store_struct_return (gdbarch, mcore_store_struct_return);
1077 set_gdbarch_skip_prologue (gdbarch, mcore_skip_prologue);
1078 set_gdbarch_deprecated_frame_args_address (gdbarch, mcore_frame_args_address);
1079 set_gdbarch_deprecated_frame_locals_address (gdbarch, mcore_frame_locals_address);
1080 set_gdbarch_deprecated_pop_frame (gdbarch, mcore_pop_frame);
1081 set_gdbarch_virtual_frame_pointer (gdbarch, mcore_virtual_frame_pointer);
1082
1083 /* Misc.: */
1084
1085 /* Stack grows down. */
1086 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1087 set_gdbarch_use_struct_convention (gdbarch, mcore_use_struct_convention);
1088 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1089 /* MCore will never pass a sturcture by reference. It will always be split
1090 between registers and stack. */
1091 set_gdbarch_deprecated_reg_struct_has_addr
1092 (gdbarch, mcore_reg_struct_has_addr);
1093
1094 /* Should be using push_dummy_call. */
1095 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
1096
1097 set_gdbarch_print_insn (gdbarch, print_insn_mcore);
1098
1099 return gdbarch;
1100 }
1101
1102 static void
1103 mcore_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1104 {
1105
1106 }
1107
1108 extern initialize_file_ftype _initialize_mcore_tdep; /* -Wmissing-prototypes */
1109
1110 void
1111 _initialize_mcore_tdep (void)
1112 {
1113 gdbarch_register (bfd_arch_mcore, mcore_gdbarch_init, mcore_dump_tdep);
1114
1115 #ifdef MCORE_DEBUG
1116 add_show_from_set (add_set_cmd ("mcoredebug", no_class,
1117 var_boolean, (char *) &mcore_debug,
1118 "Set mcore debugging.\n", &setlist),
1119 &showlist);
1120 #endif
1121 }
This page took 0.054898 seconds and 3 git commands to generate.