Update Copyright year range in all files maintained by GDB.
[deliverable/binutils-gdb.git] / gdb / mep-tdep.c
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include <string.h>
31 #include "value.h"
32 #include "inferior.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "language.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "remote.h"
40 #include "floatformat.h"
41 #include "sim-regno.h"
42 #include "disasm.h"
43 #include "trad-frame.h"
44 #include "reggroups.h"
45 #include "elf-bfd.h"
46 #include "elf/mep.h"
47 #include "prologue-value.h"
48 #include "cgen/bitset.h"
49 #include "infcall.h"
50
51 #include "gdb_assert.h"
52
53 /* Get the user's customized MeP coprocessor register names from
54 libopcodes. */
55 #include "opcodes/mep-desc.h"
56 #include "opcodes/mep-opc.h"
57
58 \f
59 /* The gdbarch_tdep structure. */
60
61 /* A quick recap for GDB hackers not familiar with the whole Toshiba
62 Media Processor story:
63
64 The MeP media engine is a configureable processor: users can design
65 their own coprocessors, implement custom instructions, adjust cache
66 sizes, select optional standard facilities like add-and-saturate
67 instructions, and so on. Then, they can build custom versions of
68 the GNU toolchain to support their customized chips. The
69 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
70 tree, and a config file pointing to various files provided by the
71 user describing their customizations, and edits the source tree to
72 produce a compiler that can generate their custom instructions, an
73 assembler that can assemble them and recognize their custom
74 register names, and so on.
75
76 Furthermore, the user can actually specify several of these custom
77 configurations, called 'me_modules', and get a toolchain which can
78 produce code for any of them, given a compiler/assembler switch;
79 you say something like 'gcc -mconfig=mm_max' to generate code for
80 the me_module named 'mm_max'.
81
82 GDB, in particular, needs to:
83
84 - use the coprocessor control register names provided by the user
85 in their hardware description, in expressions, 'info register'
86 output, and disassembly,
87
88 - know the number, names, and types of the coprocessor's
89 general-purpose registers, adjust the 'info all-registers' output
90 accordingly, and print error messages if the user refers to one
91 that doesn't exist
92
93 - allow access to the control bus space only when the configuration
94 actually has a control bus, and recognize which regions of the
95 control bus space are actually populated,
96
97 - disassemble using the user's provided mnemonics for their custom
98 instructions, and
99
100 - recognize whether the $hi and $lo registers are present, and
101 allow access to them only when they are actually there.
102
103 There are three sources of information about what sort of me_module
104 we're actually dealing with:
105
106 - A MeP executable file indicates which me_module it was compiled
107 for, and libopcodes has tables describing each module. So, given
108 an executable file, we can find out about the processor it was
109 compiled for.
110
111 - There are SID command-line options to select a particular
112 me_module, overriding the one specified in the ELF file. SID
113 provides GDB with a fake read-only register, 'module', which
114 indicates which me_module GDB is communicating with an instance
115 of.
116
117 - There are SID command-line options to enable or disable certain
118 optional processor features, overriding the defaults for the
119 selected me_module. The MeP $OPT register indicates which
120 options are present on the current processor. */
121
122
123 struct gdbarch_tdep
124 {
125 /* A CGEN cpu descriptor for this BFD architecture and machine.
126
127 Note: this is *not* customized for any particular me_module; the
128 MeP libopcodes machinery actually puts off module-specific
129 customization until the last minute. So this contains
130 information about all supported me_modules. */
131 CGEN_CPU_DESC cpu_desc;
132
133 /* The me_module index from the ELF file we used to select this
134 architecture, or CONFIG_NONE if there was none.
135
136 Note that we should prefer to use the me_module number available
137 via the 'module' register, whenever we're actually talking to a
138 real target.
139
140 In the absence of live information, we'd like to get the
141 me_module number from the ELF file. But which ELF file: the
142 executable file, the core file, ... ? The answer is, "the last
143 ELF file we used to set the current architecture". Thus, we
144 create a separate instance of the gdbarch structure for each
145 me_module value mep_gdbarch_init sees, and store the me_module
146 value from the ELF file here. */
147 CONFIG_ATTR me_module;
148 };
149
150
151 \f
152 /* Getting me_module information from the CGEN tables. */
153
154
155 /* Find an entry in the DESC's hardware table whose name begins with
156 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
157 intersect with GENERIC_ISA_MASK. If there is no matching entry,
158 return zero. */
159 static const CGEN_HW_ENTRY *
160 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
161 const char *prefix,
162 CGEN_BITSET *copro_isa_mask,
163 CGEN_BITSET *generic_isa_mask)
164 {
165 int prefix_len = strlen (prefix);
166 int i;
167
168 for (i = 0; i < desc->hw_table.num_entries; i++)
169 {
170 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
171 if (strncmp (prefix, hw->name, prefix_len) == 0)
172 {
173 CGEN_BITSET *hw_isa_mask
174 = ((CGEN_BITSET *)
175 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
176
177 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
178 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
179 return hw;
180 }
181 }
182
183 return 0;
184 }
185
186
187 /* Find an entry in DESC's hardware table whose type is TYPE. Return
188 zero if there is none. */
189 static const CGEN_HW_ENTRY *
190 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
191 {
192 int i;
193
194 for (i = 0; i < desc->hw_table.num_entries; i++)
195 {
196 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
197
198 if (hw->type == type)
199 return hw;
200 }
201
202 return 0;
203 }
204
205
206 /* Return the CGEN hardware table entry for the coprocessor register
207 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
208 no such register set, return zero. If ME_MODULE is the generic
209 me_module CONFIG_NONE, return the table entry for the register set
210 whose hardware type is GENERIC_TYPE. */
211 static const CGEN_HW_ENTRY *
212 me_module_register_set (CONFIG_ATTR me_module,
213 const char *prefix,
214 CGEN_HW_TYPE generic_type)
215 {
216 /* This is kind of tricky, because the hardware table is constructed
217 in a way that isn't very helpful. Perhaps we can fix that, but
218 here's how it works at the moment:
219
220 The configuration map, `mep_config_map', is indexed by me_module
221 number, and indicates which coprocessor and core ISAs that
222 me_module supports. The 'core_isa' mask includes all the core
223 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
224 The entry for the generic me_module, CONFIG_NONE, has an empty
225 'cop_isa', and its 'core_isa' selects only the standard MeP
226 instruction set.
227
228 The CGEN CPU descriptor's hardware table, desc->hw_table, has
229 entries for all the register sets, for all me_modules. Each
230 entry has a mask indicating which ISAs use that register set.
231 So, if an me_module supports some coprocessor ISA, we can find
232 applicable register sets by scanning the hardware table for
233 register sets whose masks include (at least some of) those ISAs.
234
235 Each hardware table entry also has a name, whose prefix says
236 whether it's a general-purpose ("h-cr") or control ("h-ccr")
237 coprocessor register set. It might be nicer to have an attribute
238 indicating what sort of register set it was, that we could use
239 instead of pattern-matching on the name.
240
241 When there is no hardware table entry whose mask includes a
242 particular coprocessor ISA and whose name starts with a given
243 prefix, then that means that that coprocessor doesn't have any
244 registers of that type. In such cases, this function must return
245 a null pointer.
246
247 Coprocessor register sets' masks may or may not include the core
248 ISA for the me_module they belong to. Those generated by a2cgen
249 do, but the sample me_module included in the unconfigured tree,
250 'ccfx', does not.
251
252 There are generic coprocessor register sets, intended only for
253 use with the generic me_module. Unfortunately, their masks
254 include *all* ISAs --- even those for coprocessors that don't
255 have such register sets. This makes detecting the case where a
256 coprocessor lacks a particular register set more complicated.
257
258 So, here's the approach we take:
259
260 - For CONFIG_NONE, we return the generic coprocessor register set.
261
262 - For any other me_module, we search for a register set whose
263 mask contains any of the me_module's coprocessor ISAs,
264 specifically excluding the generic coprocessor register sets. */
265
266 CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
267 const CGEN_HW_ENTRY *hw;
268
269 if (me_module == CONFIG_NONE)
270 hw = find_hw_entry_by_type (desc, generic_type);
271 else
272 {
273 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
274 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
275 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
276 CGEN_BITSET *cop_and_core;
277
278 /* The coprocessor ISAs include the ISA for the specific core which
279 has that coprocessor. */
280 cop_and_core = cgen_bitset_copy (cop);
281 cgen_bitset_union (cop, core, cop_and_core);
282 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
283 }
284
285 return hw;
286 }
287
288
289 /* Given a hardware table entry HW representing a register set, return
290 a pointer to the keyword table with all the register names. If HW
291 is NULL, return NULL, to propage the "no such register set" info
292 along. */
293 static CGEN_KEYWORD *
294 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
295 {
296 if (! hw)
297 return NULL;
298
299 /* Check that HW is actually a keyword table. */
300 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
301
302 /* The 'asm_data' field of a register set's hardware table entry
303 refers to a keyword table. */
304 return (CGEN_KEYWORD *) hw->asm_data;
305 }
306
307
308 /* Given a keyword table KEYWORD and a register number REGNUM, return
309 the name of the register, or "" if KEYWORD contains no register
310 whose number is REGNUM. */
311 static char *
312 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
313 {
314 const CGEN_KEYWORD_ENTRY *entry
315 = cgen_keyword_lookup_value (keyword_table, regnum);
316
317 if (entry)
318 {
319 char *name = entry->name;
320
321 /* The CGEN keyword entries for register names include the
322 leading $, which appears in MeP assembly as well as in GDB.
323 But we don't want to return that; GDB core code adds that
324 itself. */
325 if (name[0] == '$')
326 name++;
327
328 return name;
329 }
330 else
331 return "";
332 }
333
334
335 /* Masks for option bits in the OPT special-purpose register. */
336 enum {
337 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
338 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
339 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
340 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
341 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
342 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
343 MEP_OPT_AVE = 1 << 19, /* average instruction option */
344 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
345 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
346 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
347 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
348 MEP_OPT_COP = 1 << 4, /* coprocessor option */
349 MEP_OPT_DSP = 1 << 2, /* DSP option */
350 MEP_OPT_UCI = 1 << 1, /* UCI option */
351 MEP_OPT_DBG = 1 << 0, /* DBG function option */
352 };
353
354
355 /* Given the option_mask value for a particular entry in
356 mep_config_map, produce the value the processor's OPT register
357 would use to represent the same set of options. */
358 static unsigned int
359 opt_from_option_mask (unsigned int option_mask)
360 {
361 /* A table mapping OPT register bits onto CGEN config map option
362 bits. */
363 struct {
364 unsigned int opt_bit, option_mask_bit;
365 } bits[] = {
366 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
367 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
368 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
369 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
370 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
371 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
372 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
373 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
374 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
375 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
376 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
377 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
378 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
379 };
380
381 int i;
382 unsigned int opt = 0;
383
384 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
385 if (option_mask & bits[i].option_mask_bit)
386 opt |= bits[i].opt_bit;
387
388 return opt;
389 }
390
391
392 /* Return the value the $OPT register would use to represent the set
393 of options for ME_MODULE. */
394 static unsigned int
395 me_module_opt (CONFIG_ATTR me_module)
396 {
397 return opt_from_option_mask (mep_config_map[me_module].option_mask);
398 }
399
400
401 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
402 This is either 32 or 64. */
403 static int
404 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
405 {
406 if (mep_config_map[me_module].option_mask
407 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
408 return 64;
409 else
410 return 32;
411 }
412
413
414 /* Return true if ME_MODULE is big-endian, false otherwise. */
415 static int
416 me_module_big_endian (CONFIG_ATTR me_module)
417 {
418 return mep_config_map[me_module].big_endian;
419 }
420
421
422 /* Return the name of ME_MODULE, or NULL if it has no name. */
423 static const char *
424 me_module_name (CONFIG_ATTR me_module)
425 {
426 /* The default me_module has "" as its name, but it's easier for our
427 callers to test for NULL. */
428 if (! mep_config_map[me_module].name
429 || mep_config_map[me_module].name[0] == '\0')
430 return NULL;
431 else
432 return mep_config_map[me_module].name;
433 }
434 \f
435 /* Register set. */
436
437
438 /* The MeP spec defines the following registers:
439 16 general purpose registers (r0-r15)
440 32 control/special registers (csr0-csr31)
441 32 coprocessor general-purpose registers (c0 -- c31)
442 64 coprocessor control registers (ccr0 -- ccr63)
443
444 For the raw registers, we assign numbers here explicitly, instead
445 of letting the enum assign them for us; the numbers are a matter of
446 external protocol, and shouldn't shift around as things are edited.
447
448 We access the control/special registers via pseudoregisters, to
449 enforce read-only portions that some registers have.
450
451 We access the coprocessor general purpose and control registers via
452 pseudoregisters, to make sure they appear in the proper order in
453 the 'info all-registers' command (which uses the register number
454 ordering), and also to allow them to be renamed and resized
455 depending on the me_module in use.
456
457 The MeP allows coprocessor general-purpose registers to be either
458 32 or 64 bits long, depending on the configuration. Since we don't
459 want the format of the 'g' packet to vary from one core to another,
460 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
461 types of registers to change (see the implementation of
462 register_type), so we have four banks of pseudoregisters for the
463 coprocessor gprs --- 32-bit vs. 64-bit, and integer
464 vs. floating-point --- and we show or hide them depending on the
465 configuration. */
466 enum
467 {
468 MEP_FIRST_RAW_REGNUM = 0,
469
470 MEP_FIRST_GPR_REGNUM = 0,
471 MEP_R0_REGNUM = 0,
472 MEP_R1_REGNUM = 1,
473 MEP_R2_REGNUM = 2,
474 MEP_R3_REGNUM = 3,
475 MEP_R4_REGNUM = 4,
476 MEP_R5_REGNUM = 5,
477 MEP_R6_REGNUM = 6,
478 MEP_R7_REGNUM = 7,
479 MEP_R8_REGNUM = 8,
480 MEP_R9_REGNUM = 9,
481 MEP_R10_REGNUM = 10,
482 MEP_R11_REGNUM = 11,
483 MEP_R12_REGNUM = 12,
484 MEP_FP_REGNUM = MEP_R8_REGNUM,
485 MEP_R13_REGNUM = 13,
486 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
487 MEP_R14_REGNUM = 14,
488 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
489 MEP_R15_REGNUM = 15,
490 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
491 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
492
493 /* The raw control registers. These are the values as received via
494 the remote protocol, directly from the target; we only let user
495 code touch the via the pseudoregisters, which enforce read-only
496 bits. */
497 MEP_FIRST_RAW_CSR_REGNUM = 16,
498 MEP_RAW_PC_REGNUM = 16, /* Program counter */
499 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
500 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
501 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
502 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
503 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
504 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
505 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
506 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
507 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
508 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
509 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
510 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
511 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
512 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
513 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
514 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
515 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
516 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
517 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
518 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
519 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
520 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
521 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
522 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
523 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
524 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
525 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
526 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
527 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
528 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
529 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
530 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
531
532 /* The raw coprocessor general-purpose registers. These are all 64
533 bits wide. */
534 MEP_FIRST_RAW_CR_REGNUM = 48,
535 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
536
537 MEP_FIRST_RAW_CCR_REGNUM = 80,
538 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
539
540 /* The module number register. This is the index of the me_module
541 of which the current target is an instance. (This is not a real
542 MeP-specified register; it's provided by SID.) */
543 MEP_MODULE_REGNUM,
544
545 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
546
547 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
548
549 /* Pseudoregisters. See mep_pseudo_register_read and
550 mep_pseudo_register_write. */
551 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
552
553 /* We have a pseudoregister for every control/special register, to
554 implement registers with read-only bits. */
555 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
556 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
557 MEP_LP_REGNUM, /* Link pointer */
558 MEP_SAR_REGNUM, /* shift amount */
559 MEP_CSR3_REGNUM, /* csr3: reserved */
560 MEP_RPB_REGNUM, /* repeat begin address */
561 MEP_RPE_REGNUM, /* Repeat end address */
562 MEP_RPC_REGNUM, /* Repeat count */
563 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
564 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
565 MEP_CSR9_REGNUM, /* csr3: reserved */
566 MEP_CSR10_REGNUM, /* csr3: reserved */
567 MEP_CSR11_REGNUM, /* csr3: reserved */
568 MEP_MB0_REGNUM, /* modulo begin address 0 */
569 MEP_ME0_REGNUM, /* modulo end address 0 */
570 MEP_MB1_REGNUM, /* modulo begin address 1 */
571 MEP_ME1_REGNUM, /* modulo end address 1 */
572 MEP_PSW_REGNUM, /* program status word */
573 MEP_ID_REGNUM, /* processor ID/revision */
574 MEP_TMP_REGNUM, /* Temporary */
575 MEP_EPC_REGNUM, /* Exception program counter */
576 MEP_EXC_REGNUM, /* exception cause */
577 MEP_CFG_REGNUM, /* processor configuration*/
578 MEP_CSR22_REGNUM, /* csr3: reserved */
579 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
580 MEP_DBG_REGNUM, /* debug */
581 MEP_DEPC_REGNUM, /* Debug exception PC */
582 MEP_OPT_REGNUM, /* options */
583 MEP_RCFG_REGNUM, /* local ram config */
584 MEP_CCFG_REGNUM, /* cache config */
585 MEP_CSR29_REGNUM, /* csr3: reserved */
586 MEP_CSR30_REGNUM, /* csr3: reserved */
587 MEP_CSR31_REGNUM, /* csr3: reserved */
588 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
589
590 /* The 32-bit integer view of the coprocessor GPR's. */
591 MEP_FIRST_CR32_REGNUM,
592 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
593
594 /* The 32-bit floating-point view of the coprocessor GPR's. */
595 MEP_FIRST_FP_CR32_REGNUM,
596 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
597
598 /* The 64-bit integer view of the coprocessor GPR's. */
599 MEP_FIRST_CR64_REGNUM,
600 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
601
602 /* The 64-bit floating-point view of the coprocessor GPR's. */
603 MEP_FIRST_FP_CR64_REGNUM,
604 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
605
606 MEP_FIRST_CCR_REGNUM,
607 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
608
609 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
610
611 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
612
613 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
614 };
615
616
617 #define IN_SET(set, n) \
618 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
619
620 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
621 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
622 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
623 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
624
625 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
626 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
627 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
628 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
629 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
630 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
631 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
632 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
633
634 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
635 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
636
637 #define NUM_REGS_IN_SET(set) \
638 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
639
640 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
641 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
642 #define MEP_LP_SIZE (4) /* Size of the LP register. */
643
644
645 /* Many of the control/special registers contain bits that cannot be
646 written to; some are entirely read-only. So we present them all as
647 pseudoregisters.
648
649 The following table describes the special properties of each CSR. */
650 struct mep_csr_register
651 {
652 /* The number of this CSR's raw register. */
653 int raw;
654
655 /* The number of this CSR's pseudoregister. */
656 int pseudo;
657
658 /* A mask of the bits that are writeable: if a bit is set here, then
659 it can be modified; if the bit is clear, then it cannot. */
660 LONGEST writeable_bits;
661 };
662
663
664 /* mep_csr_registers[i] describes the i'th CSR.
665 We just list the register numbers here explicitly to help catch
666 typos. */
667 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
668 struct mep_csr_register mep_csr_registers[] = {
669 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
670 { CSR(LP), 0xffffffff },
671 { CSR(SAR), 0x0000003f },
672 { CSR(CSR3), 0xffffffff },
673 { CSR(RPB), 0xfffffffe },
674 { CSR(RPE), 0xffffffff },
675 { CSR(RPC), 0xffffffff },
676 { CSR(HI), 0xffffffff },
677 { CSR(LO), 0xffffffff },
678 { CSR(CSR9), 0xffffffff },
679 { CSR(CSR10), 0xffffffff },
680 { CSR(CSR11), 0xffffffff },
681 { CSR(MB0), 0x0000ffff },
682 { CSR(ME0), 0x0000ffff },
683 { CSR(MB1), 0x0000ffff },
684 { CSR(ME1), 0x0000ffff },
685 { CSR(PSW), 0x000003ff },
686 { CSR(ID), 0x00000000 },
687 { CSR(TMP), 0xffffffff },
688 { CSR(EPC), 0xffffffff },
689 { CSR(EXC), 0x000030f0 },
690 { CSR(CFG), 0x00c0001b },
691 { CSR(CSR22), 0xffffffff },
692 { CSR(NPC), 0xffffffff },
693 { CSR(DBG), 0x00000580 },
694 { CSR(DEPC), 0xffffffff },
695 { CSR(OPT), 0x00000000 },
696 { CSR(RCFG), 0x00000000 },
697 { CSR(CCFG), 0x00000000 },
698 { CSR(CSR29), 0xffffffff },
699 { CSR(CSR30), 0xffffffff },
700 { CSR(CSR31), 0xffffffff },
701 };
702
703
704 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
705 the number of the corresponding pseudoregister. Otherwise,
706 mep_raw_to_pseudo[R] == R. */
707 static int mep_raw_to_pseudo[MEP_NUM_REGS];
708
709 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
710 is the number of the underlying raw register. Otherwise
711 mep_pseudo_to_raw[R] == R. */
712 static int mep_pseudo_to_raw[MEP_NUM_REGS];
713
714 static void
715 mep_init_pseudoregister_maps (void)
716 {
717 int i;
718
719 /* Verify that mep_csr_registers covers all the CSRs, in order. */
720 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
721 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
722
723 /* Verify that the raw and pseudo ranges have matching sizes. */
724 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
725 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
726 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
727 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
728
729 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
730 {
731 struct mep_csr_register *r = &mep_csr_registers[i];
732
733 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
734 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
735 }
736
737 /* Set up the initial raw<->pseudo mappings. */
738 for (i = 0; i < MEP_NUM_REGS; i++)
739 {
740 mep_raw_to_pseudo[i] = i;
741 mep_pseudo_to_raw[i] = i;
742 }
743
744 /* Add the CSR raw<->pseudo mappings. */
745 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
746 {
747 struct mep_csr_register *r = &mep_csr_registers[i];
748
749 mep_raw_to_pseudo[r->raw] = r->pseudo;
750 mep_pseudo_to_raw[r->pseudo] = r->raw;
751 }
752
753 /* Add the CR raw<->pseudo mappings. */
754 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
755 {
756 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
757 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
758 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
759 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
760 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
761
762 /* Truly, the raw->pseudo mapping depends on the current module.
763 But we use the raw->pseudo mapping when we read the debugging
764 info; at that point, we don't know what module we'll actually
765 be running yet. So, we always supply the 64-bit register
766 numbers; GDB knows how to pick a smaller value out of a
767 larger register properly. */
768 mep_raw_to_pseudo[raw] = pseudo64;
769 mep_pseudo_to_raw[pseudo32] = raw;
770 mep_pseudo_to_raw[pseudofp32] = raw;
771 mep_pseudo_to_raw[pseudo64] = raw;
772 mep_pseudo_to_raw[pseudofp64] = raw;
773 }
774
775 /* Add the CCR raw<->pseudo mappings. */
776 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
777 {
778 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
779 int pseudo = MEP_FIRST_CCR_REGNUM + i;
780 mep_raw_to_pseudo[raw] = pseudo;
781 mep_pseudo_to_raw[pseudo] = raw;
782 }
783 }
784
785
786 static int
787 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
788 {
789 /* The debug info uses the raw register numbers. */
790 return mep_raw_to_pseudo[debug_reg];
791 }
792
793
794 /* Return the size, in bits, of the coprocessor pseudoregister
795 numbered PSEUDO. */
796 static int
797 mep_pseudo_cr_size (int pseudo)
798 {
799 if (IS_CR32_REGNUM (pseudo)
800 || IS_FP_CR32_REGNUM (pseudo))
801 return 32;
802 else if (IS_CR64_REGNUM (pseudo)
803 || IS_FP_CR64_REGNUM (pseudo))
804 return 64;
805 else
806 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
807 }
808
809
810 /* If the coprocessor pseudoregister numbered PSEUDO is a
811 floating-point register, return non-zero; if it is an integer
812 register, return zero. */
813 static int
814 mep_pseudo_cr_is_float (int pseudo)
815 {
816 return (IS_FP_CR32_REGNUM (pseudo)
817 || IS_FP_CR64_REGNUM (pseudo));
818 }
819
820
821 /* Given a coprocessor GPR pseudoregister number, return its index
822 within that register bank. */
823 static int
824 mep_pseudo_cr_index (int pseudo)
825 {
826 if (IS_CR32_REGNUM (pseudo))
827 return pseudo - MEP_FIRST_CR32_REGNUM;
828 else if (IS_FP_CR32_REGNUM (pseudo))
829 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
830 else if (IS_CR64_REGNUM (pseudo))
831 return pseudo - MEP_FIRST_CR64_REGNUM;
832 else if (IS_FP_CR64_REGNUM (pseudo))
833 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
834 else
835 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
836 }
837
838
839 /* Return the me_module index describing the current target.
840
841 If the current target has registers (e.g., simulator, remote
842 target), then this uses the value of the 'module' register, raw
843 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
844 from the ELF header's e_flags field of the current executable
845 file. */
846 static CONFIG_ATTR
847 current_me_module (void)
848 {
849 if (target_has_registers)
850 {
851 ULONGEST regval;
852 regcache_cooked_read_unsigned (get_current_regcache (),
853 MEP_MODULE_REGNUM, &regval);
854 return regval;
855 }
856 else
857 return gdbarch_tdep (target_gdbarch ())->me_module;
858 }
859
860
861 /* Return the set of options for the current target, in the form that
862 the OPT register would use.
863
864 If the current target has registers (e.g., simulator, remote
865 target), then this is the actual value of the OPT register. If the
866 current target does not have registers (e.g., an executable file),
867 then use the 'module_opt' field we computed when we build the
868 gdbarch object for this module. */
869 static unsigned int
870 current_options (void)
871 {
872 if (target_has_registers)
873 {
874 ULONGEST regval;
875 regcache_cooked_read_unsigned (get_current_regcache (),
876 MEP_OPT_REGNUM, &regval);
877 return regval;
878 }
879 else
880 return me_module_opt (current_me_module ());
881 }
882
883
884 /* Return the width of the current me_module's coprocessor data bus,
885 in bits. This is either 32 or 64. */
886 static int
887 current_cop_data_bus_width (void)
888 {
889 return me_module_cop_data_bus_width (current_me_module ());
890 }
891
892
893 /* Return the keyword table of coprocessor general-purpose register
894 names appropriate for the me_module we're dealing with. */
895 static CGEN_KEYWORD *
896 current_cr_names (void)
897 {
898 const CGEN_HW_ENTRY *hw
899 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
900
901 return register_set_keyword_table (hw);
902 }
903
904
905 /* Return non-zero if the coprocessor general-purpose registers are
906 floating-point values, zero otherwise. */
907 static int
908 current_cr_is_float (void)
909 {
910 const CGEN_HW_ENTRY *hw
911 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
912
913 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
914 }
915
916
917 /* Return the keyword table of coprocessor control register names
918 appropriate for the me_module we're dealing with. */
919 static CGEN_KEYWORD *
920 current_ccr_names (void)
921 {
922 const CGEN_HW_ENTRY *hw
923 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
924
925 return register_set_keyword_table (hw);
926 }
927
928
929 static const char *
930 mep_register_name (struct gdbarch *gdbarch, int regnr)
931 {
932 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
933
934 /* General-purpose registers. */
935 static const char *gpr_names[] = {
936 "r0", "r1", "r2", "r3", /* 0 */
937 "r4", "r5", "r6", "r7", /* 4 */
938 "fp", "r9", "r10", "r11", /* 8 */
939 "r12", "tp", "gp", "sp" /* 12 */
940 };
941
942 /* Special-purpose registers. */
943 static const char *csr_names[] = {
944 "pc", "lp", "sar", "", /* 0 csr3: reserved */
945 "rpb", "rpe", "rpc", "hi", /* 4 */
946 "lo", "", "", "", /* 8 csr9-csr11: reserved */
947 "mb0", "me0", "mb1", "me1", /* 12 */
948
949 "psw", "id", "tmp", "epc", /* 16 */
950 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
951 "dbg", "depc", "opt", "rcfg", /* 24 */
952 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
953 };
954
955 if (IS_GPR_REGNUM (regnr))
956 return gpr_names[regnr - MEP_R0_REGNUM];
957 else if (IS_CSR_REGNUM (regnr))
958 {
959 /* The 'hi' and 'lo' registers are only present on processors
960 that have the 'MUL' or 'DIV' instructions enabled. */
961 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
962 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
963 return "";
964
965 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
966 }
967 else if (IS_CR_REGNUM (regnr))
968 {
969 CGEN_KEYWORD *names;
970 int cr_size;
971 int cr_is_float;
972
973 /* Does this module have a coprocessor at all? */
974 if (! (current_options () & MEP_OPT_COP))
975 return "";
976
977 names = current_cr_names ();
978 if (! names)
979 /* This module's coprocessor has no general-purpose registers. */
980 return "";
981
982 cr_size = current_cop_data_bus_width ();
983 if (cr_size != mep_pseudo_cr_size (regnr))
984 /* This module's coprocessor's GPR's are of a different size. */
985 return "";
986
987 cr_is_float = current_cr_is_float ();
988 /* The extra ! operators ensure we get boolean equality, not
989 numeric equality. */
990 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
991 /* This module's coprocessor's GPR's are of a different type. */
992 return "";
993
994 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
995 }
996 else if (IS_CCR_REGNUM (regnr))
997 {
998 /* Does this module have a coprocessor at all? */
999 if (! (current_options () & MEP_OPT_COP))
1000 return "";
1001
1002 {
1003 CGEN_KEYWORD *names = current_ccr_names ();
1004
1005 if (! names)
1006 /* This me_module's coprocessor has no control registers. */
1007 return "";
1008
1009 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1010 }
1011 }
1012
1013 /* It might be nice to give the 'module' register a name, but that
1014 would affect the output of 'info all-registers', which would
1015 disturb the test suites. So we leave it invisible. */
1016 else
1017 return NULL;
1018 }
1019
1020
1021 /* Custom register groups for the MeP. */
1022 static struct reggroup *mep_csr_reggroup; /* control/special */
1023 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1024 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1025
1026
1027 static int
1028 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1029 struct reggroup *group)
1030 {
1031 /* Filter reserved or unused register numbers. */
1032 {
1033 const char *name = mep_register_name (gdbarch, regnum);
1034
1035 if (! name || name[0] == '\0')
1036 return 0;
1037 }
1038
1039 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1040 the existing behavior, so we'd want to run that by them. */
1041 if (group == general_reggroup)
1042 return (IS_GPR_REGNUM (regnum)
1043 || IS_CSR_REGNUM (regnum));
1044
1045 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1046 else if (group == all_reggroup)
1047 return (IS_GPR_REGNUM (regnum)
1048 || IS_CSR_REGNUM (regnum)
1049 || IS_CR_REGNUM (regnum)
1050 || IS_CCR_REGNUM (regnum));
1051
1052 /* All registers should be saved and restored, except for the raw
1053 CSR's.
1054
1055 This is probably right if the coprocessor is something like a
1056 floating-point unit, but would be wrong if the coprocessor is
1057 something that does I/O, where register accesses actually cause
1058 externally-visible actions. But I get the impression that the
1059 coprocessor isn't supposed to do things like that --- you'd use a
1060 hardware engine, perhaps. */
1061 else if (group == save_reggroup || group == restore_reggroup)
1062 return (IS_GPR_REGNUM (regnum)
1063 || IS_CSR_REGNUM (regnum)
1064 || IS_CR_REGNUM (regnum)
1065 || IS_CCR_REGNUM (regnum));
1066
1067 else if (group == mep_csr_reggroup)
1068 return IS_CSR_REGNUM (regnum);
1069 else if (group == mep_cr_reggroup)
1070 return IS_CR_REGNUM (regnum);
1071 else if (group == mep_ccr_reggroup)
1072 return IS_CCR_REGNUM (regnum);
1073 else
1074 return 0;
1075 }
1076
1077
1078 static struct type *
1079 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1080 {
1081 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1082 long. So for them, the raw registers are always 64 bits long (to
1083 keep the 'g' packet format fixed), and the pseudoregisters vary
1084 in length. */
1085 if (IS_RAW_CR_REGNUM (reg_nr))
1086 return builtin_type (gdbarch)->builtin_uint64;
1087
1088 /* Since GDB doesn't allow registers to change type, we have two
1089 banks of pseudoregisters for the coprocessor general-purpose
1090 registers: one that gives a 32-bit view, and one that gives a
1091 64-bit view. We hide or show one or the other depending on the
1092 current module. */
1093 if (IS_CR_REGNUM (reg_nr))
1094 {
1095 int size = mep_pseudo_cr_size (reg_nr);
1096 if (size == 32)
1097 {
1098 if (mep_pseudo_cr_is_float (reg_nr))
1099 return builtin_type (gdbarch)->builtin_float;
1100 else
1101 return builtin_type (gdbarch)->builtin_uint32;
1102 }
1103 else if (size == 64)
1104 {
1105 if (mep_pseudo_cr_is_float (reg_nr))
1106 return builtin_type (gdbarch)->builtin_double;
1107 else
1108 return builtin_type (gdbarch)->builtin_uint64;
1109 }
1110 else
1111 gdb_assert_not_reached ("unexpected cr size");
1112 }
1113
1114 /* All other registers are 32 bits long. */
1115 else
1116 return builtin_type (gdbarch)->builtin_uint32;
1117 }
1118
1119
1120 static CORE_ADDR
1121 mep_read_pc (struct regcache *regcache)
1122 {
1123 ULONGEST pc;
1124 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1125 return pc;
1126 }
1127
1128 static enum register_status
1129 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1130 struct regcache *regcache,
1131 int cookednum,
1132 void *buf)
1133 {
1134 enum register_status status;
1135 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1136 /* Read the raw register into a 64-bit buffer, and then return the
1137 appropriate end of that buffer. */
1138 int rawnum = mep_pseudo_to_raw[cookednum];
1139 gdb_byte buf64[8];
1140
1141 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1142 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1143 status = regcache_raw_read (regcache, rawnum, buf64);
1144 if (status == REG_VALID)
1145 {
1146 /* Slow, but legible. */
1147 store_unsigned_integer (buf, 4, byte_order,
1148 extract_unsigned_integer (buf64, 8, byte_order));
1149 }
1150 return status;
1151 }
1152
1153
1154 static enum register_status
1155 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1156 struct regcache *regcache,
1157 int cookednum,
1158 void *buf)
1159 {
1160 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1161 }
1162
1163
1164 static enum register_status
1165 mep_pseudo_register_read (struct gdbarch *gdbarch,
1166 struct regcache *regcache,
1167 int cookednum,
1168 gdb_byte *buf)
1169 {
1170 if (IS_CSR_REGNUM (cookednum)
1171 || IS_CCR_REGNUM (cookednum))
1172 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1173 else if (IS_CR32_REGNUM (cookednum)
1174 || IS_FP_CR32_REGNUM (cookednum))
1175 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1176 else if (IS_CR64_REGNUM (cookednum)
1177 || IS_FP_CR64_REGNUM (cookednum))
1178 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1179 else
1180 gdb_assert_not_reached ("unexpected pseudo register");
1181 }
1182
1183
1184 static void
1185 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1186 struct regcache *regcache,
1187 int cookednum,
1188 const void *buf)
1189 {
1190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1191 int size = register_size (gdbarch, cookednum);
1192 struct mep_csr_register *r
1193 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1194
1195 if (r->writeable_bits == 0)
1196 /* A completely read-only register; avoid the read-modify-
1197 write cycle, and juts ignore the entire write. */
1198 ;
1199 else
1200 {
1201 /* A partially writeable register; do a read-modify-write cycle. */
1202 ULONGEST old_bits;
1203 ULONGEST new_bits;
1204 ULONGEST mixed_bits;
1205
1206 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1207 new_bits = extract_unsigned_integer (buf, size, byte_order);
1208 mixed_bits = ((r->writeable_bits & new_bits)
1209 | (~r->writeable_bits & old_bits));
1210 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1211 }
1212 }
1213
1214
1215 static void
1216 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1217 struct regcache *regcache,
1218 int cookednum,
1219 const void *buf)
1220 {
1221 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1222 /* Expand the 32-bit value into a 64-bit value, and write that to
1223 the pseudoregister. */
1224 int rawnum = mep_pseudo_to_raw[cookednum];
1225 gdb_byte buf64[8];
1226
1227 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1228 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1229 /* Slow, but legible. */
1230 store_unsigned_integer (buf64, 8, byte_order,
1231 extract_unsigned_integer (buf, 4, byte_order));
1232 regcache_raw_write (regcache, rawnum, buf64);
1233 }
1234
1235
1236 static void
1237 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1238 struct regcache *regcache,
1239 int cookednum,
1240 const void *buf)
1241 {
1242 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1243 }
1244
1245
1246 static void
1247 mep_pseudo_register_write (struct gdbarch *gdbarch,
1248 struct regcache *regcache,
1249 int cookednum,
1250 const gdb_byte *buf)
1251 {
1252 if (IS_CSR_REGNUM (cookednum))
1253 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1254 else if (IS_CR32_REGNUM (cookednum)
1255 || IS_FP_CR32_REGNUM (cookednum))
1256 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1257 else if (IS_CR64_REGNUM (cookednum)
1258 || IS_FP_CR64_REGNUM (cookednum))
1259 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1260 else if (IS_CCR_REGNUM (cookednum))
1261 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1262 else
1263 gdb_assert_not_reached ("unexpected pseudo register");
1264 }
1265
1266
1267 \f
1268 /* Disassembly. */
1269
1270 /* The mep disassembler needs to know about the section in order to
1271 work correctly. */
1272 static int
1273 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1274 {
1275 struct obj_section * s = find_pc_section (pc);
1276
1277 if (s)
1278 {
1279 /* The libopcodes disassembly code uses the section to find the
1280 BFD, the BFD to find the ELF header, the ELF header to find
1281 the me_module index, and the me_module index to select the
1282 right instructions to print. */
1283 info->section = s->the_bfd_section;
1284 info->arch = bfd_arch_mep;
1285
1286 return print_insn_mep (pc, info);
1287 }
1288
1289 return 0;
1290 }
1291
1292 \f
1293 /* Prologue analysis. */
1294
1295
1296 /* The MeP has two classes of instructions: "core" instructions, which
1297 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1298 which are mostly concerned with moving data in and out of
1299 coprocessor registers, and branching on coprocessor condition
1300 codes. There's space in the instruction set for custom coprocessor
1301 instructions, too.
1302
1303 Instructions can be 16 or 32 bits long; the top two bits of the
1304 first byte indicate the length. The coprocessor instructions are
1305 mixed in with the core instructions, and there's no easy way to
1306 distinguish them; you have to completely decode them to tell one
1307 from the other.
1308
1309 The MeP also supports a "VLIW" operation mode, where instructions
1310 always occur in fixed-width bundles. The bundles are either 32
1311 bits or 64 bits long, depending on a fixed configuration flag. You
1312 decode the first part of the bundle as normal; if it's a core
1313 instruction, and there's any space left in the bundle, the
1314 remainder of the bundle is a coprocessor instruction, which will
1315 execute in parallel with the core instruction. If the first part
1316 of the bundle is a coprocessor instruction, it occupies the entire
1317 bundle.
1318
1319 So, here are all the cases:
1320
1321 - 32-bit VLIW mode:
1322 Every bundle is four bytes long, and naturally aligned, and can hold
1323 one or two instructions:
1324 - 16-bit core instruction; 16-bit coprocessor instruction
1325 These execute in parallel.
1326 - 32-bit core instruction
1327 - 32-bit coprocessor instruction
1328
1329 - 64-bit VLIW mode:
1330 Every bundle is eight bytes long, and naturally aligned, and can hold
1331 one or two instructions:
1332 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1333 These execute in parallel.
1334 - 32-bit core instruction; 32-bit coprocessor instruction
1335 These execute in parallel.
1336 - 64-bit coprocessor instruction
1337
1338 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1339 instruction, so I don't really know what's up there; perhaps these
1340 are always the user-defined coprocessor instructions. */
1341
1342
1343 /* Return non-zero if PC is in a VLIW code section, zero
1344 otherwise. */
1345 static int
1346 mep_pc_in_vliw_section (CORE_ADDR pc)
1347 {
1348 struct obj_section *s = find_pc_section (pc);
1349 if (s)
1350 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1351 return 0;
1352 }
1353
1354
1355 /* Set *INSN to the next core instruction at PC, and return the
1356 address of the next instruction.
1357
1358 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1359 instructions are encoded as one or two two-byte parts, and each
1360 part is byte-swapped independently. Thus:
1361
1362 void
1363 foo (void)
1364 {
1365 asm ("movu $1, 0x123456");
1366 asm ("sb $1,0x5678($2)");
1367 asm ("clip $1, 19");
1368 }
1369
1370 compiles to this big-endian code:
1371
1372 0: d1 56 12 34 movu $1,0x123456
1373 4: c1 28 56 78 sb $1,22136($2)
1374 8: f1 01 10 98 clip $1,0x13
1375 c: 70 02 ret
1376
1377 and this little-endian code:
1378
1379 0: 56 d1 34 12 movu $1,0x123456
1380 4: 28 c1 78 56 sb $1,22136($2)
1381 8: 01 f1 98 10 clip $1,0x13
1382 c: 02 70 ret
1383
1384 Instructions are returned in *INSN in an endian-independent form: a
1385 given instruction always appears in *INSN the same way, regardless
1386 of whether the instruction stream is big-endian or little-endian.
1387
1388 *INSN's most significant 16 bits are the first (i.e., at lower
1389 addresses) 16 bit part of the instruction. Its least significant
1390 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1391 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1392 are fetched using the current endianness.
1393
1394 So, the *INSN values for the instruction sequence above would be
1395 the following, in either endianness:
1396
1397 0xd1561234 movu $1,0x123456
1398 0xc1285678 sb $1,22136($2)
1399 0xf1011098 clip $1,0x13
1400 0x70020000 ret
1401
1402 (In a sense, it would be more natural to return 16-bit instructions
1403 in the least significant 16 bits of *INSN, but that would be
1404 ambiguous. In order to tell whether you're looking at a 16- or a
1405 32-bit instruction, you have to consult the major opcode field ---
1406 the most significant four bits of the instruction's first 16-bit
1407 part. But if we put 16-bit instructions at the least significant
1408 end of *INSN, then you don't know where to find the major opcode
1409 field until you know if it's a 16- or a 32-bit instruction ---
1410 which is where we started.)
1411
1412 If PC points to a core / coprocessor bundle in a VLIW section, set
1413 *INSN to the core instruction, and return the address of the next
1414 bundle. This has the effect of skipping the bundled coprocessor
1415 instruction. That's okay, since coprocessor instructions aren't
1416 significant to prologue analysis --- for the time being,
1417 anyway. */
1418
1419 static CORE_ADDR
1420 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1421 {
1422 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1423 int pc_in_vliw_section;
1424 int vliw_mode;
1425 int insn_len;
1426 gdb_byte buf[2];
1427
1428 *insn = 0;
1429
1430 /* Are we in a VLIW section? */
1431 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1432 if (pc_in_vliw_section)
1433 {
1434 /* Yes, find out which bundle size. */
1435 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1436
1437 /* If PC is in a VLIW section, but the current core doesn't say
1438 that it supports either VLIW mode, then we don't have enough
1439 information to parse the instruction stream it contains.
1440 Since the "undifferentiated" standard core doesn't have
1441 either VLIW mode bit set, this could happen.
1442
1443 But it shouldn't be an error to (say) set a breakpoint in a
1444 VLIW section, if you know you'll never reach it. (Perhaps
1445 you have a script that sets a bunch of standard breakpoints.)
1446
1447 So we'll just return zero here, and hope for the best. */
1448 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1449 return 0;
1450
1451 /* If both VL32 and VL64 are set, that's bogus, too. */
1452 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1453 return 0;
1454 }
1455 else
1456 vliw_mode = 0;
1457
1458 read_memory (pc, buf, sizeof (buf));
1459 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1460
1461 /* The major opcode --- the top four bits of the first 16-bit
1462 part --- indicates whether this instruction is 16 or 32 bits
1463 long. All 32-bit instructions have a major opcode whose top
1464 two bits are 11; all the rest are 16-bit instructions. */
1465 if ((*insn & 0xc0000000) == 0xc0000000)
1466 {
1467 /* Fetch the second 16-bit part of the instruction. */
1468 read_memory (pc + 2, buf, sizeof (buf));
1469 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1470 }
1471
1472 /* If we're in VLIW code, then the VLIW width determines the address
1473 of the next instruction. */
1474 if (vliw_mode)
1475 {
1476 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1477 coprocessor half of a core / copro bundle. */
1478 if (vliw_mode == MEP_OPT_VL32)
1479 insn_len = 4;
1480
1481 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1482 coprocessor half of a core / copro bundle. */
1483 else if (vliw_mode == MEP_OPT_VL64)
1484 insn_len = 8;
1485
1486 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1487 else
1488 gdb_assert_not_reached ("unexpected vliw mode");
1489 }
1490
1491 /* Otherwise, the top two bits of the major opcode are (again) what
1492 we need to check. */
1493 else if ((*insn & 0xc0000000) == 0xc0000000)
1494 insn_len = 4;
1495 else
1496 insn_len = 2;
1497
1498 return pc + insn_len;
1499 }
1500
1501
1502 /* Sign-extend the LEN-bit value N. */
1503 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1504
1505 /* Return the LEN-bit field at POS from I. */
1506 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1507
1508 /* Like FIELD, but sign-extend the field's value. */
1509 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1510
1511
1512 /* Macros for decoding instructions.
1513
1514 Remember that 16-bit instructions are placed in bits 16..31 of i,
1515 not at the least significant end; this means that the major opcode
1516 field is always in the same place, regardless of the width of the
1517 instruction. As a reminder of this, we show the lower 16 bits of a
1518 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1519
1520 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1521 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1522 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1523
1524 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1525 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1526 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1527 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1528 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1529 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1530 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1531 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1532 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1533
1534 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1535 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1536 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1537 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1538
1539 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1540 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1541 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1542 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1543
1544 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1545 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1546 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1547 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1548
1549 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1550 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1551 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1552 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1553 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1554
1555 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1556 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1557 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1558 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1559
1560 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1561 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1562 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1563 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1564
1565 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1566 imm5 = I||i[7:4] */
1567 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1568 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1569 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1570
1571 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1572 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1573 #define LW_TARGET(i) (FIELD (i, 24, 4))
1574 #define LW_BASE(i) (FIELD (i, 20, 4))
1575 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1576
1577 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1578 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1579 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1580 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1581
1582 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1583 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1584 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1585
1586
1587 /* This structure holds the results of a prologue analysis. */
1588 struct mep_prologue
1589 {
1590 /* The architecture for which we generated this prologue info. */
1591 struct gdbarch *gdbarch;
1592
1593 /* The offset from the frame base to the stack pointer --- always
1594 zero or negative.
1595
1596 Calling this a "size" is a bit misleading, but given that the
1597 stack grows downwards, using offsets for everything keeps one
1598 from going completely sign-crazy: you never change anything's
1599 sign for an ADD instruction; always change the second operand's
1600 sign for a SUB instruction; and everything takes care of
1601 itself. */
1602 int frame_size;
1603
1604 /* Non-zero if this function has initialized the frame pointer from
1605 the stack pointer, zero otherwise. */
1606 int has_frame_ptr;
1607
1608 /* If has_frame_ptr is non-zero, this is the offset from the frame
1609 base to where the frame pointer points. This is always zero or
1610 negative. */
1611 int frame_ptr_offset;
1612
1613 /* The address of the first instruction at which the frame has been
1614 set up and the arguments are where the debug info says they are
1615 --- as best as we can tell. */
1616 CORE_ADDR prologue_end;
1617
1618 /* reg_offset[R] is the offset from the CFA at which register R is
1619 saved, or 1 if register R has not been saved. (Real values are
1620 always zero or negative.) */
1621 int reg_offset[MEP_NUM_REGS];
1622 };
1623
1624 /* Return non-zero if VALUE is an incoming argument register. */
1625
1626 static int
1627 is_arg_reg (pv_t value)
1628 {
1629 return (value.kind == pvk_register
1630 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1631 && value.k == 0);
1632 }
1633
1634 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1635 probably spilling an argument register to its stack slot in STACK.
1636 Such instructions should be included in the prologue, if possible.
1637
1638 The store is a spill if:
1639 - the value being stored is REG's original value;
1640 - the value has not already been stored somewhere in STACK; and
1641 - ADDR is a stack slot's address (e.g., relative to the original
1642 value of the SP). */
1643 static int
1644 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1645 struct pv_area *stack)
1646 {
1647 return (is_arg_reg (value)
1648 && pv_is_register (addr, MEP_SP_REGNUM)
1649 && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1650 }
1651
1652
1653 /* Function for finding saved registers in a 'struct pv_area'; we pass
1654 this to pv_area_scan.
1655
1656 If VALUE is a saved register, ADDR says it was saved at a constant
1657 offset from the frame base, and SIZE indicates that the whole
1658 register was saved, record its offset in RESULT_UNTYPED. */
1659 static void
1660 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1661 {
1662 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1663
1664 if (value.kind == pvk_register
1665 && value.k == 0
1666 && pv_is_register (addr, MEP_SP_REGNUM)
1667 && size == register_size (result->gdbarch, value.reg))
1668 result->reg_offset[value.reg] = addr.k;
1669 }
1670
1671
1672 /* Analyze a prologue starting at START_PC, going no further than
1673 LIMIT_PC. Fill in RESULT as appropriate. */
1674 static void
1675 mep_analyze_prologue (struct gdbarch *gdbarch,
1676 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1677 struct mep_prologue *result)
1678 {
1679 CORE_ADDR pc;
1680 unsigned long insn;
1681 int rn;
1682 int found_lp = 0;
1683 pv_t reg[MEP_NUM_REGS];
1684 struct pv_area *stack;
1685 struct cleanup *back_to;
1686 CORE_ADDR after_last_frame_setup_insn = start_pc;
1687
1688 memset (result, 0, sizeof (*result));
1689 result->gdbarch = gdbarch;
1690
1691 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1692 {
1693 reg[rn] = pv_register (rn, 0);
1694 result->reg_offset[rn] = 1;
1695 }
1696
1697 stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1698 back_to = make_cleanup_free_pv_area (stack);
1699
1700 pc = start_pc;
1701 while (pc < limit_pc)
1702 {
1703 CORE_ADDR next_pc;
1704 pv_t pre_insn_fp, pre_insn_sp;
1705
1706 next_pc = mep_get_insn (gdbarch, pc, &insn);
1707
1708 /* A zero return from mep_get_insn means that either we weren't
1709 able to read the instruction from memory, or that we don't
1710 have enough information to be able to reliably decode it. So
1711 we'll store here and hope for the best. */
1712 if (! next_pc)
1713 break;
1714
1715 /* Note the current values of the SP and FP, so we can tell if
1716 this instruction changed them, below. */
1717 pre_insn_fp = reg[MEP_FP_REGNUM];
1718 pre_insn_sp = reg[MEP_SP_REGNUM];
1719
1720 if (IS_ADD (insn))
1721 {
1722 int rn = ADD_TARGET (insn);
1723 CORE_ADDR imm6 = ADD_OFFSET (insn);
1724
1725 reg[rn] = pv_add_constant (reg[rn], imm6);
1726 }
1727 else if (IS_ADD3_16 (insn))
1728 {
1729 int rn = ADD3_16_TARGET (insn);
1730 int imm7 = ADD3_16_OFFSET (insn);
1731
1732 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1733 }
1734 else if (IS_ADD3_32 (insn))
1735 {
1736 int rn = ADD3_32_TARGET (insn);
1737 int rm = ADD3_32_SOURCE (insn);
1738 int imm16 = ADD3_32_OFFSET (insn);
1739
1740 reg[rn] = pv_add_constant (reg[rm], imm16);
1741 }
1742 else if (IS_SW_REG (insn))
1743 {
1744 int rn = SW_REG_SOURCE (insn);
1745 int rm = SW_REG_BASE (insn);
1746
1747 /* If simulating this store would require us to forget
1748 everything we know about the stack frame in the name of
1749 accuracy, it would be better to just quit now. */
1750 if (pv_area_store_would_trash (stack, reg[rm]))
1751 break;
1752
1753 if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1754 after_last_frame_setup_insn = next_pc;
1755
1756 pv_area_store (stack, reg[rm], 4, reg[rn]);
1757 }
1758 else if (IS_SW_IMMD (insn))
1759 {
1760 int rn = SW_IMMD_SOURCE (insn);
1761 int offset = SW_IMMD_OFFSET (insn);
1762 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1763
1764 /* If simulating this store would require us to forget
1765 everything we know about the stack frame in the name of
1766 accuracy, it would be better to just quit now. */
1767 if (pv_area_store_would_trash (stack, addr))
1768 break;
1769
1770 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1771 after_last_frame_setup_insn = next_pc;
1772
1773 pv_area_store (stack, addr, 4, reg[rn]);
1774 }
1775 else if (IS_MOV (insn))
1776 {
1777 int rn = MOV_TARGET (insn);
1778 int rm = MOV_SOURCE (insn);
1779
1780 reg[rn] = reg[rm];
1781
1782 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1783 after_last_frame_setup_insn = next_pc;
1784 }
1785 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1786 {
1787 int rn = SWBH_32_SOURCE (insn);
1788 int rm = SWBH_32_BASE (insn);
1789 int disp = SWBH_32_OFFSET (insn);
1790 int size = (IS_SB (insn) ? 1
1791 : IS_SH (insn) ? 2
1792 : (gdb_assert (IS_SW (insn)), 4));
1793 pv_t addr = pv_add_constant (reg[rm], disp);
1794
1795 if (pv_area_store_would_trash (stack, addr))
1796 break;
1797
1798 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1799 after_last_frame_setup_insn = next_pc;
1800
1801 pv_area_store (stack, addr, size, reg[rn]);
1802 }
1803 else if (IS_LDC (insn))
1804 {
1805 int rn = LDC_TARGET (insn);
1806 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1807
1808 reg[rn] = reg[cr];
1809 }
1810 else if (IS_LW (insn))
1811 {
1812 int rn = LW_TARGET (insn);
1813 int rm = LW_BASE (insn);
1814 int offset = LW_OFFSET (insn);
1815 pv_t addr = pv_add_constant (reg[rm], offset);
1816
1817 reg[rn] = pv_area_fetch (stack, addr, 4);
1818 }
1819 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1820 {
1821 /* When a loop appears as the first statement of a function
1822 body, gcc 4.x will use a BRA instruction to branch to the
1823 loop condition checking code. This BRA instruction is
1824 marked as part of the prologue. We therefore set next_pc
1825 to this branch target and also stop the prologue scan.
1826 The instructions at and beyond the branch target should
1827 no longer be associated with the prologue.
1828
1829 Note that we only consider forward branches here. We
1830 presume that a forward branch is being used to skip over
1831 a loop body.
1832
1833 A backwards branch is covered by the default case below.
1834 If we were to encounter a backwards branch, that would
1835 most likely mean that we've scanned through a loop body.
1836 We definitely want to stop the prologue scan when this
1837 happens and that is precisely what is done by the default
1838 case below. */
1839 next_pc = pc + BRA_DISP (insn);
1840 after_last_frame_setup_insn = next_pc;
1841 break;
1842 }
1843 else
1844 /* We've hit some instruction we don't know how to simulate.
1845 Strictly speaking, we should set every value we're
1846 tracking to "unknown". But we'll be optimistic, assume
1847 that we have enough information already, and stop
1848 analysis here. */
1849 break;
1850
1851 /* If this instruction changed the FP or decreased the SP (i.e.,
1852 allocated more stack space), then this may be a good place to
1853 declare the prologue finished. However, there are some
1854 exceptions:
1855
1856 - If the instruction just changed the FP back to its original
1857 value, then that's probably a restore instruction. The
1858 prologue should definitely end before that.
1859
1860 - If the instruction increased the value of the SP (that is,
1861 shrunk the frame), then it's probably part of a frame
1862 teardown sequence, and the prologue should end before that. */
1863
1864 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1865 {
1866 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1867 after_last_frame_setup_insn = next_pc;
1868 }
1869 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1870 {
1871 /* The comparison of constants looks odd, there, because .k
1872 is unsigned. All it really means is that the new value
1873 is lower than it was before the instruction. */
1874 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1875 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1876 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1877 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1878 after_last_frame_setup_insn = next_pc;
1879 }
1880
1881 pc = next_pc;
1882 }
1883
1884 /* Is the frame size (offset, really) a known constant? */
1885 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1886 result->frame_size = reg[MEP_SP_REGNUM].k;
1887
1888 /* Was the frame pointer initialized? */
1889 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1890 {
1891 result->has_frame_ptr = 1;
1892 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1893 }
1894
1895 /* Record where all the registers were saved. */
1896 pv_area_scan (stack, check_for_saved, (void *) result);
1897
1898 result->prologue_end = after_last_frame_setup_insn;
1899
1900 do_cleanups (back_to);
1901 }
1902
1903
1904 static CORE_ADDR
1905 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1906 {
1907 const char *name;
1908 CORE_ADDR func_addr, func_end;
1909 struct mep_prologue p;
1910
1911 /* Try to find the extent of the function that contains PC. */
1912 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1913 return pc;
1914
1915 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1916 return p.prologue_end;
1917 }
1918
1919
1920 \f
1921 /* Breakpoints. */
1922
1923 static const unsigned char *
1924 mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1925 {
1926 static unsigned char breakpoint[] = { 0x70, 0x32 };
1927 *lenptr = sizeof (breakpoint);
1928 return breakpoint;
1929 }
1930
1931
1932 \f
1933 /* Frames and frame unwinding. */
1934
1935
1936 static struct mep_prologue *
1937 mep_analyze_frame_prologue (struct frame_info *this_frame,
1938 void **this_prologue_cache)
1939 {
1940 if (! *this_prologue_cache)
1941 {
1942 CORE_ADDR func_start, stop_addr;
1943
1944 *this_prologue_cache
1945 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1946
1947 func_start = get_frame_func (this_frame);
1948 stop_addr = get_frame_pc (this_frame);
1949
1950 /* If we couldn't find any function containing the PC, then
1951 just initialize the prologue cache, but don't do anything. */
1952 if (! func_start)
1953 stop_addr = func_start;
1954
1955 mep_analyze_prologue (get_frame_arch (this_frame),
1956 func_start, stop_addr, *this_prologue_cache);
1957 }
1958
1959 return *this_prologue_cache;
1960 }
1961
1962
1963 /* Given the next frame and a prologue cache, return this frame's
1964 base. */
1965 static CORE_ADDR
1966 mep_frame_base (struct frame_info *this_frame,
1967 void **this_prologue_cache)
1968 {
1969 struct mep_prologue *p
1970 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1971
1972 /* In functions that use alloca, the distance between the stack
1973 pointer and the frame base varies dynamically, so we can't use
1974 the SP plus static information like prologue analysis to find the
1975 frame base. However, such functions must have a frame pointer,
1976 to be able to restore the SP on exit. So whenever we do have a
1977 frame pointer, use that to find the base. */
1978 if (p->has_frame_ptr)
1979 {
1980 CORE_ADDR fp
1981 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1982 return fp - p->frame_ptr_offset;
1983 }
1984 else
1985 {
1986 CORE_ADDR sp
1987 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1988 return sp - p->frame_size;
1989 }
1990 }
1991
1992
1993 static void
1994 mep_frame_this_id (struct frame_info *this_frame,
1995 void **this_prologue_cache,
1996 struct frame_id *this_id)
1997 {
1998 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1999 get_frame_func (this_frame));
2000 }
2001
2002
2003 static struct value *
2004 mep_frame_prev_register (struct frame_info *this_frame,
2005 void **this_prologue_cache, int regnum)
2006 {
2007 struct mep_prologue *p
2008 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
2009
2010 /* There are a number of complications in unwinding registers on the
2011 MeP, having to do with core functions calling VLIW functions and
2012 vice versa.
2013
2014 The least significant bit of the link register, LP.LTOM, is the
2015 VLIW mode toggle bit: it's set if a core function called a VLIW
2016 function, or vice versa, and clear when the caller and callee
2017 were both in the same mode.
2018
2019 So, if we're asked to unwind the PC, then we really want to
2020 unwind the LP and clear the least significant bit. (Real return
2021 addresses are always even.) And if we want to unwind the program
2022 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2023
2024 Tweaking the register values we return in this way means that the
2025 bits in BUFFERP[] are not the same as the bits you'd find at
2026 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2027 do this. */
2028 if (regnum == MEP_PC_REGNUM)
2029 {
2030 struct value *value;
2031 CORE_ADDR lp;
2032 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2033 MEP_LP_REGNUM);
2034 lp = value_as_long (value);
2035 release_value (value);
2036 value_free (value);
2037
2038 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2039 }
2040 else
2041 {
2042 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2043 struct value *value;
2044
2045 /* Our caller's SP is our frame base. */
2046 if (regnum == MEP_SP_REGNUM)
2047 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2048
2049 /* If prologue analysis says we saved this register somewhere,
2050 return a description of the stack slot holding it. */
2051 if (p->reg_offset[regnum] != 1)
2052 value = frame_unwind_got_memory (this_frame, regnum,
2053 frame_base + p->reg_offset[regnum]);
2054
2055 /* Otherwise, presume we haven't changed the value of this
2056 register, and get it from the next frame. */
2057 else
2058 value = frame_unwind_got_register (this_frame, regnum, regnum);
2059
2060 /* If we need to toggle the operating mode, do so. */
2061 if (regnum == MEP_PSW_REGNUM)
2062 {
2063 CORE_ADDR psw, lp;
2064
2065 psw = value_as_long (value);
2066 release_value (value);
2067 value_free (value);
2068
2069 /* Get the LP's value, too. */
2070 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2071 lp = value_as_long (value);
2072 release_value (value);
2073 value_free (value);
2074
2075 /* If LP.LTOM is set, then toggle PSW.OM. */
2076 if (lp & 0x1)
2077 psw ^= 0x1000;
2078
2079 return frame_unwind_got_constant (this_frame, regnum, psw);
2080 }
2081
2082 return value;
2083 }
2084 }
2085
2086
2087 static const struct frame_unwind mep_frame_unwind = {
2088 NORMAL_FRAME,
2089 default_frame_unwind_stop_reason,
2090 mep_frame_this_id,
2091 mep_frame_prev_register,
2092 NULL,
2093 default_frame_sniffer
2094 };
2095
2096
2097 /* Our general unwinding function can handle unwinding the PC. */
2098 static CORE_ADDR
2099 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2100 {
2101 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2102 }
2103
2104
2105 /* Our general unwinding function can handle unwinding the SP. */
2106 static CORE_ADDR
2107 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2108 {
2109 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2110 }
2111
2112
2113 \f
2114 /* Return values. */
2115
2116
2117 static int
2118 mep_use_struct_convention (struct type *type)
2119 {
2120 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2121 }
2122
2123
2124 static void
2125 mep_extract_return_value (struct gdbarch *arch,
2126 struct type *type,
2127 struct regcache *regcache,
2128 gdb_byte *valbuf)
2129 {
2130 int byte_order = gdbarch_byte_order (arch);
2131
2132 /* Values that don't occupy a full register appear at the less
2133 significant end of the value. This is the offset to where the
2134 value starts. */
2135 int offset;
2136
2137 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2138 pointed to by R0. */
2139 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2140
2141 if (byte_order == BFD_ENDIAN_BIG)
2142 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2143 else
2144 offset = 0;
2145
2146 /* Return values that do fit in a single register are returned in R0. */
2147 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2148 offset, TYPE_LENGTH (type),
2149 valbuf);
2150 }
2151
2152
2153 static void
2154 mep_store_return_value (struct gdbarch *arch,
2155 struct type *type,
2156 struct regcache *regcache,
2157 const gdb_byte *valbuf)
2158 {
2159 int byte_order = gdbarch_byte_order (arch);
2160
2161 /* Values that fit in a single register go in R0. */
2162 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2163 {
2164 /* Values that don't occupy a full register appear at the least
2165 significant end of the value. This is the offset to where the
2166 value starts. */
2167 int offset;
2168
2169 if (byte_order == BFD_ENDIAN_BIG)
2170 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2171 else
2172 offset = 0;
2173
2174 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2175 offset, TYPE_LENGTH (type),
2176 valbuf);
2177 }
2178
2179 /* Return values larger than a single register are returned in
2180 memory, pointed to by R0. Unfortunately, we can't count on R0
2181 pointing to the return buffer, so we raise an error here. */
2182 else
2183 error (_("\
2184 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2185 calling conventions do not provide enough information to do this.\n\
2186 Try using the 'return' command with no argument."));
2187 }
2188
2189 static enum return_value_convention
2190 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2191 struct type *type, struct regcache *regcache,
2192 gdb_byte *readbuf, const gdb_byte *writebuf)
2193 {
2194 if (mep_use_struct_convention (type))
2195 {
2196 if (readbuf)
2197 {
2198 ULONGEST addr;
2199 /* Although the address of the struct buffer gets passed in R1, it's
2200 returned in R0. Fetch R0's value and then read the memory
2201 at that address. */
2202 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2203 read_memory (addr, readbuf, TYPE_LENGTH (type));
2204 }
2205 if (writebuf)
2206 {
2207 /* Return values larger than a single register are returned in
2208 memory, pointed to by R0. Unfortunately, we can't count on R0
2209 pointing to the return buffer, so we raise an error here. */
2210 error (_("\
2211 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2212 calling conventions do not provide enough information to do this.\n\
2213 Try using the 'return' command with no argument."));
2214 }
2215 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2216 }
2217
2218 if (readbuf)
2219 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2220 if (writebuf)
2221 mep_store_return_value (gdbarch, type, regcache, writebuf);
2222
2223 return RETURN_VALUE_REGISTER_CONVENTION;
2224 }
2225
2226 \f
2227 /* Inferior calls. */
2228
2229
2230 static CORE_ADDR
2231 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2232 {
2233 /* Require word alignment. */
2234 return sp & -4;
2235 }
2236
2237
2238 /* From "lang_spec2.txt":
2239
2240 4.2 Calling conventions
2241
2242 4.2.1 Core register conventions
2243
2244 - Parameters should be evaluated from left to right, and they
2245 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2246 after should be held in the stack. If the size is larger than 4
2247 bytes in the first four parameters, the pointer should be held in
2248 the registers instead. If the size is larger than 4 bytes in the
2249 fifth parameter or after, the pointer should be held in the stack.
2250
2251 - Return value of a function should be held in register $0. If the
2252 size of return value is larger than 4 bytes, $1 should hold the
2253 pointer pointing memory that would hold the return value. In this
2254 case, the first parameter should be held in $2, the second one in
2255 $3, and the third one in $4, and the forth parameter or after
2256 should be held in the stack.
2257
2258 [This doesn't say so, but arguments shorter than four bytes are
2259 passed in the least significant end of a four-byte word when
2260 they're passed on the stack.] */
2261
2262
2263 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2264 large to fit in a register, save it on the stack, and place its
2265 address in COPY[i]. SP is the initial stack pointer; return the
2266 new stack pointer. */
2267 static CORE_ADDR
2268 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2269 CORE_ADDR copy[])
2270 {
2271 int i;
2272
2273 for (i = 0; i < argc; i++)
2274 {
2275 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2276
2277 if (arg_len > MEP_GPR_SIZE)
2278 {
2279 /* Reserve space for the copy, and then round the SP down, to
2280 make sure it's all aligned properly. */
2281 sp = (sp - arg_len) & -4;
2282 write_memory (sp, value_contents (argv[i]), arg_len);
2283 copy[i] = sp;
2284 }
2285 }
2286
2287 return sp;
2288 }
2289
2290
2291 static CORE_ADDR
2292 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2293 struct regcache *regcache, CORE_ADDR bp_addr,
2294 int argc, struct value **argv, CORE_ADDR sp,
2295 int struct_return,
2296 CORE_ADDR struct_addr)
2297 {
2298 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2299 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2300 CORE_ADDR func_addr = find_function_addr (function, NULL);
2301 int i;
2302
2303 /* The number of the next register available to hold an argument. */
2304 int arg_reg;
2305
2306 /* The address of the next stack slot available to hold an argument. */
2307 CORE_ADDR arg_stack;
2308
2309 /* The address of the end of the stack area for arguments. This is
2310 just for error checking. */
2311 CORE_ADDR arg_stack_end;
2312
2313 sp = push_large_arguments (sp, argc, argv, copy);
2314
2315 /* Reserve space for the stack arguments, if any. */
2316 arg_stack_end = sp;
2317 if (argc + (struct_addr ? 1 : 0) > 4)
2318 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2319
2320 arg_reg = MEP_R1_REGNUM;
2321 arg_stack = sp;
2322
2323 /* If we're returning a structure by value, push the pointer to the
2324 buffer as the first argument. */
2325 if (struct_return)
2326 {
2327 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2328 arg_reg++;
2329 }
2330
2331 for (i = 0; i < argc; i++)
2332 {
2333 ULONGEST value;
2334
2335 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2336 if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2337 value = extract_unsigned_integer (value_contents (argv[i]),
2338 TYPE_LENGTH (value_type (argv[i])),
2339 byte_order);
2340
2341 /* Arguments too large to fit in a GPR get copied to the stack,
2342 and we pass a pointer to the copy. */
2343 else
2344 value = copy[i];
2345
2346 /* We use $1 -- $4 for passing arguments, then use the stack. */
2347 if (arg_reg <= MEP_R4_REGNUM)
2348 {
2349 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2350 arg_reg++;
2351 }
2352 else
2353 {
2354 gdb_byte buf[MEP_GPR_SIZE];
2355 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2356 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2357 arg_stack += MEP_GPR_SIZE;
2358 }
2359 }
2360
2361 gdb_assert (arg_stack <= arg_stack_end);
2362
2363 /* Set the return address. */
2364 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2365
2366 /* Update the stack pointer. */
2367 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2368
2369 return sp;
2370 }
2371
2372
2373 static struct frame_id
2374 mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2375 {
2376 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2377 return frame_id_build (sp, get_frame_pc (this_frame));
2378 }
2379
2380
2381 \f
2382 /* Initialization. */
2383
2384
2385 static struct gdbarch *
2386 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2387 {
2388 struct gdbarch *gdbarch;
2389 struct gdbarch_tdep *tdep;
2390
2391 /* Which me_module are we building a gdbarch object for? */
2392 CONFIG_ATTR me_module;
2393
2394 /* If we have a BFD in hand, figure out which me_module it was built
2395 for. Otherwise, use the no-particular-me_module code. */
2396 if (info.abfd)
2397 {
2398 /* The way to get the me_module code depends on the object file
2399 format. At the moment, we only know how to handle ELF. */
2400 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2401 me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2402 else
2403 me_module = CONFIG_NONE;
2404 }
2405 else
2406 me_module = CONFIG_NONE;
2407
2408 /* If we're setting the architecture from a file, check the
2409 endianness of the file against that of the me_module. */
2410 if (info.abfd)
2411 {
2412 /* The negations on either side make the comparison treat all
2413 non-zero (true) values as equal. */
2414 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2415 {
2416 const char *module_name = me_module_name (me_module);
2417 const char *module_endianness
2418 = me_module_big_endian (me_module) ? "big" : "little";
2419 const char *file_name = bfd_get_filename (info.abfd);
2420 const char *file_endianness
2421 = bfd_big_endian (info.abfd) ? "big" : "little";
2422
2423 fputc_unfiltered ('\n', gdb_stderr);
2424 if (module_name)
2425 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2426 "%s is %s-endian."),
2427 module_name, module_endianness,
2428 file_name, file_endianness);
2429 else
2430 warning (_("the selected MeP module is %s-endian, but the "
2431 "executable\n"
2432 "%s is %s-endian."),
2433 module_endianness, file_name, file_endianness);
2434 }
2435 }
2436
2437 /* Find a candidate among the list of architectures we've created
2438 already. info->bfd_arch_info needs to match, but we also want
2439 the right me_module: the ELF header's e_flags field needs to
2440 match as well. */
2441 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2442 arches != NULL;
2443 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2444 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2445 return arches->gdbarch;
2446
2447 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2448 gdbarch = gdbarch_alloc (&info, tdep);
2449
2450 /* Get a CGEN CPU descriptor for this architecture. */
2451 {
2452 const char *mach_name = info.bfd_arch_info->printable_name;
2453 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2454 ? CGEN_ENDIAN_BIG
2455 : CGEN_ENDIAN_LITTLE);
2456
2457 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2458 CGEN_CPU_OPEN_ENDIAN, endian,
2459 CGEN_CPU_OPEN_END);
2460 }
2461
2462 tdep->me_module = me_module;
2463
2464 /* Register set. */
2465 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2466 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2467 set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2468 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2469 set_gdbarch_register_name (gdbarch, mep_register_name);
2470 set_gdbarch_register_type (gdbarch, mep_register_type);
2471 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2472 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2473 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2474 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2475 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2476
2477 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2478 reggroup_add (gdbarch, all_reggroup);
2479 reggroup_add (gdbarch, general_reggroup);
2480 reggroup_add (gdbarch, save_reggroup);
2481 reggroup_add (gdbarch, restore_reggroup);
2482 reggroup_add (gdbarch, mep_csr_reggroup);
2483 reggroup_add (gdbarch, mep_cr_reggroup);
2484 reggroup_add (gdbarch, mep_ccr_reggroup);
2485
2486 /* Disassembly. */
2487 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2488
2489 /* Breakpoints. */
2490 set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2491 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2492 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2493
2494 /* Frames and frame unwinding. */
2495 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2496 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2497 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2498 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2499 set_gdbarch_frame_args_skip (gdbarch, 0);
2500
2501 /* Return values. */
2502 set_gdbarch_return_value (gdbarch, mep_return_value);
2503
2504 /* Inferior function calls. */
2505 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2506 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2507 set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2508
2509 return gdbarch;
2510 }
2511
2512 /* Provide a prototype to silence -Wmissing-prototypes. */
2513 extern initialize_file_ftype _initialize_mep_tdep;
2514
2515 void
2516 _initialize_mep_tdep (void)
2517 {
2518 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2519 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2520 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2521
2522 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2523
2524 mep_init_pseudoregister_maps ();
2525 }
This page took 0.088473 seconds and 5 git commands to generate.