Introduce interpreter factories
[deliverable/binutils-gdb.git] / gdb / mi / mi-interp.c
1 /* MI Interpreter Definitions and Commands for GDB, the GNU debugger.
2
3 Copyright (C) 2002-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "interps.h"
22 #include "event-top.h"
23 #include "event-loop.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "ui-out.h"
27 #include "top.h"
28 #include "mi-main.h"
29 #include "mi-cmds.h"
30 #include "mi-out.h"
31 #include "mi-console.h"
32 #include "mi-common.h"
33 #include "observer.h"
34 #include "gdbthread.h"
35 #include "solist.h"
36 #include "gdb.h"
37 #include "objfiles.h"
38 #include "tracepoint.h"
39 #include "cli-out.h"
40 #include "thread-fsm.h"
41
42 /* These are the interpreter setup, etc. functions for the MI
43 interpreter. */
44
45 static void mi_execute_command_wrapper (const char *cmd);
46 static void mi_execute_command_input_handler (char *cmd);
47 static void mi_command_loop (void *data);
48
49 /* These are hooks that we put in place while doing interpreter_exec
50 so we can report interesting things that happened "behind the MI's
51 back" in this command. */
52
53 static int mi_interp_query_hook (const char *ctlstr, va_list ap)
54 ATTRIBUTE_PRINTF (1, 0);
55
56 static void mi_insert_notify_hooks (void);
57 static void mi_remove_notify_hooks (void);
58
59 static void mi_on_signal_received (enum gdb_signal siggnal);
60 static void mi_on_end_stepping_range (void);
61 static void mi_on_signal_exited (enum gdb_signal siggnal);
62 static void mi_on_exited (int exitstatus);
63 static void mi_on_normal_stop (struct bpstats *bs, int print_frame);
64 static void mi_on_no_history (void);
65
66 static void mi_new_thread (struct thread_info *t);
67 static void mi_thread_exit (struct thread_info *t, int silent);
68 static void mi_record_changed (struct inferior*, int, const char *,
69 const char *);
70 static void mi_inferior_added (struct inferior *inf);
71 static void mi_inferior_appeared (struct inferior *inf);
72 static void mi_inferior_exit (struct inferior *inf);
73 static void mi_inferior_removed (struct inferior *inf);
74 static void mi_on_resume (ptid_t ptid);
75 static void mi_solib_loaded (struct so_list *solib);
76 static void mi_solib_unloaded (struct so_list *solib);
77 static void mi_about_to_proceed (void);
78 static void mi_traceframe_changed (int tfnum, int tpnum);
79 static void mi_tsv_created (const struct trace_state_variable *tsv);
80 static void mi_tsv_deleted (const struct trace_state_variable *tsv);
81 static void mi_tsv_modified (const struct trace_state_variable *tsv);
82 static void mi_breakpoint_created (struct breakpoint *b);
83 static void mi_breakpoint_deleted (struct breakpoint *b);
84 static void mi_breakpoint_modified (struct breakpoint *b);
85 static void mi_command_param_changed (const char *param, const char *value);
86 static void mi_memory_changed (struct inferior *inf, CORE_ADDR memaddr,
87 ssize_t len, const bfd_byte *myaddr);
88 static void mi_on_sync_execution_done (void);
89
90 static int report_initial_inferior (struct inferior *inf, void *closure);
91
92 static void *
93 mi_interpreter_init (struct interp *interp, int top_level)
94 {
95 struct mi_interp *mi = XNEW (struct mi_interp);
96 const char *name;
97 int mi_version;
98
99 /* Assign the output channel created at startup to its own global,
100 so that we can create a console channel that encapsulates and
101 prefixes all gdb_output-type bits coming from the rest of the
102 debugger. */
103
104 raw_stdout = gdb_stdout;
105
106 /* Create MI console channels, each with a different prefix so they
107 can be distinguished. */
108 mi->out = mi_console_file_new (raw_stdout, "~", '"');
109 mi->err = mi_console_file_new (raw_stdout, "&", '"');
110 mi->log = mi->err;
111 mi->targ = mi_console_file_new (raw_stdout, "@", '"');
112 mi->event_channel = mi_console_file_new (raw_stdout, "=", 0);
113
114 name = interp_name (interp);
115 /* INTERP_MI selects the most recent released version. "mi2" was
116 released as part of GDB 6.0. */
117 if (strcmp (name, INTERP_MI) == 0)
118 mi_version = 2;
119 else if (strcmp (name, INTERP_MI1) == 0)
120 mi_version = 1;
121 else if (strcmp (name, INTERP_MI2) == 0)
122 mi_version = 2;
123 else if (strcmp (name, INTERP_MI3) == 0)
124 mi_version = 3;
125 else
126 gdb_assert_not_reached ("unhandled MI version");
127
128 mi->mi_uiout = mi_out_new (mi_version);
129 mi->cli_uiout = cli_out_new (mi->out);
130
131 /* There are installed even if MI is not the top level interpreter.
132 The callbacks themselves decide whether to be skipped. */
133 observer_attach_signal_received (mi_on_signal_received);
134 observer_attach_end_stepping_range (mi_on_end_stepping_range);
135 observer_attach_signal_exited (mi_on_signal_exited);
136 observer_attach_exited (mi_on_exited);
137 observer_attach_no_history (mi_on_no_history);
138
139 if (top_level)
140 {
141 observer_attach_new_thread (mi_new_thread);
142 observer_attach_thread_exit (mi_thread_exit);
143 observer_attach_inferior_added (mi_inferior_added);
144 observer_attach_inferior_appeared (mi_inferior_appeared);
145 observer_attach_inferior_exit (mi_inferior_exit);
146 observer_attach_inferior_removed (mi_inferior_removed);
147 observer_attach_record_changed (mi_record_changed);
148 observer_attach_normal_stop (mi_on_normal_stop);
149 observer_attach_target_resumed (mi_on_resume);
150 observer_attach_solib_loaded (mi_solib_loaded);
151 observer_attach_solib_unloaded (mi_solib_unloaded);
152 observer_attach_about_to_proceed (mi_about_to_proceed);
153 observer_attach_traceframe_changed (mi_traceframe_changed);
154 observer_attach_tsv_created (mi_tsv_created);
155 observer_attach_tsv_deleted (mi_tsv_deleted);
156 observer_attach_tsv_modified (mi_tsv_modified);
157 observer_attach_breakpoint_created (mi_breakpoint_created);
158 observer_attach_breakpoint_deleted (mi_breakpoint_deleted);
159 observer_attach_breakpoint_modified (mi_breakpoint_modified);
160 observer_attach_command_param_changed (mi_command_param_changed);
161 observer_attach_memory_changed (mi_memory_changed);
162 observer_attach_sync_execution_done (mi_on_sync_execution_done);
163
164 /* The initial inferior is created before this function is
165 called, so we need to report it explicitly. Use iteration in
166 case future version of GDB creates more than one inferior
167 up-front. */
168 iterate_over_inferiors (report_initial_inferior, mi);
169 }
170
171 return mi;
172 }
173
174 static int
175 mi_interpreter_resume (void *data)
176 {
177 struct mi_interp *mi = (struct mi_interp *) data;
178 struct ui *ui = current_ui;
179
180 /* As per hack note in mi_interpreter_init, swap in the output
181 channels... */
182 gdb_setup_readline ();
183
184 /* These overwrite some of the initialization done in
185 _intialize_event_loop. */
186 ui->call_readline = gdb_readline_no_editing_callback;
187 ui->input_handler = mi_execute_command_input_handler;
188 async_command_editing_p = 0;
189 /* FIXME: This is a total hack for now. PB's use of the MI
190 implicitly relies on a bug in the async support which allows
191 asynchronous commands to leak through the commmand loop. The bug
192 involves (but is not limited to) the fact that sync_execution was
193 erroneously initialized to 0. Duplicate by initializing it thus
194 here... */
195 sync_execution = 0;
196
197 gdb_stdout = mi->out;
198 /* Route error and log output through the MI. */
199 gdb_stderr = mi->err;
200 gdb_stdlog = mi->log;
201 /* Route target output through the MI. */
202 gdb_stdtarg = mi->targ;
203 /* Route target error through the MI as well. */
204 gdb_stdtargerr = mi->targ;
205
206 /* Replace all the hooks that we know about. There really needs to
207 be a better way of doing this... */
208 clear_interpreter_hooks ();
209
210 deprecated_show_load_progress = mi_load_progress;
211
212 return 1;
213 }
214
215 static int
216 mi_interpreter_suspend (void *data)
217 {
218 gdb_disable_readline ();
219 return 1;
220 }
221
222 static struct gdb_exception
223 mi_interpreter_exec (void *data, const char *command)
224 {
225 mi_execute_command_wrapper (command);
226 return exception_none;
227 }
228
229 void
230 mi_cmd_interpreter_exec (char *command, char **argv, int argc)
231 {
232 struct interp *interp_to_use;
233 int i;
234 char *mi_error_message = NULL;
235 struct cleanup *old_chain;
236
237 if (argc < 2)
238 error (_("-interpreter-exec: "
239 "Usage: -interpreter-exec interp command"));
240
241 interp_to_use = interp_lookup (current_ui, argv[0]);
242 if (interp_to_use == NULL)
243 error (_("-interpreter-exec: could not find interpreter \"%s\""),
244 argv[0]);
245
246 /* Note that unlike the CLI version of this command, we don't
247 actually set INTERP_TO_USE as the current interpreter, as we
248 still want gdb_stdout, etc. to point at MI streams. */
249
250 /* Insert the MI out hooks, making sure to also call the
251 interpreter's hooks if it has any. */
252 /* KRS: We shouldn't need this... Events should be installed and
253 they should just ALWAYS fire something out down the MI
254 channel. */
255 mi_insert_notify_hooks ();
256
257 /* Now run the code. */
258
259 old_chain = make_cleanup (null_cleanup, 0);
260 for (i = 1; i < argc; i++)
261 {
262 struct gdb_exception e = interp_exec (interp_to_use, argv[i]);
263
264 if (e.reason < 0)
265 {
266 mi_error_message = xstrdup (e.message);
267 make_cleanup (xfree, mi_error_message);
268 break;
269 }
270 }
271
272 mi_remove_notify_hooks ();
273
274 if (mi_error_message != NULL)
275 error ("%s", mi_error_message);
276 do_cleanups (old_chain);
277 }
278
279 /* This inserts a number of hooks that are meant to produce
280 async-notify ("=") MI messages while running commands in another
281 interpreter using mi_interpreter_exec. The canonical use for this
282 is to allow access to the gdb CLI interpreter from within the MI,
283 while still producing MI style output when actions in the CLI
284 command change GDB's state. */
285
286 static void
287 mi_insert_notify_hooks (void)
288 {
289 deprecated_query_hook = mi_interp_query_hook;
290 }
291
292 static void
293 mi_remove_notify_hooks (void)
294 {
295 deprecated_query_hook = NULL;
296 }
297
298 static int
299 mi_interp_query_hook (const char *ctlstr, va_list ap)
300 {
301 return 1;
302 }
303
304 static void
305 mi_execute_command_wrapper (const char *cmd)
306 {
307 mi_execute_command (cmd, stdin == instream);
308 }
309
310 /* Observer for the synchronous_command_done notification. */
311
312 static void
313 mi_on_sync_execution_done (void)
314 {
315 /* If MI is sync, then output the MI prompt now, indicating we're
316 ready for further input. */
317 if (!mi_async_p ())
318 {
319 fputs_unfiltered ("(gdb) \n", raw_stdout);
320 gdb_flush (raw_stdout);
321 }
322 }
323
324 /* mi_execute_command_wrapper wrapper suitable for INPUT_HANDLER. */
325
326 static void
327 mi_execute_command_input_handler (char *cmd)
328 {
329 mi_execute_command_wrapper (cmd);
330
331 /* Print a prompt, indicating we're ready for further input, unless
332 we just started a synchronous command. In that case, we're about
333 to go back to the event loop and will output the prompt in the
334 'synchronous_command_done' observer when the target next
335 stops. */
336 if (!sync_execution)
337 {
338 fputs_unfiltered ("(gdb) \n", raw_stdout);
339 gdb_flush (raw_stdout);
340 }
341 }
342
343 static void
344 mi_command_loop (void *data)
345 {
346 /* Turn off 8 bit strings in quoted output. Any character with the
347 high bit set is printed using C's octal format. */
348 sevenbit_strings = 1;
349
350 /* Tell the world that we're alive. */
351 fputs_unfiltered ("(gdb) \n", raw_stdout);
352 gdb_flush (raw_stdout);
353
354 start_event_loop ();
355 }
356
357 static void
358 mi_new_thread (struct thread_info *t)
359 {
360 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
361 struct inferior *inf = find_inferior_ptid (t->ptid);
362 struct cleanup *old_chain;
363
364 gdb_assert (inf);
365
366 old_chain = make_cleanup_restore_target_terminal ();
367 target_terminal_ours_for_output ();
368
369 fprintf_unfiltered (mi->event_channel,
370 "thread-created,id=\"%d\",group-id=\"i%d\"",
371 t->global_num, inf->num);
372 gdb_flush (mi->event_channel);
373
374 do_cleanups (old_chain);
375 }
376
377 static void
378 mi_thread_exit (struct thread_info *t, int silent)
379 {
380 struct mi_interp *mi;
381 struct inferior *inf;
382 struct cleanup *old_chain;
383
384 if (silent)
385 return;
386
387 inf = find_inferior_ptid (t->ptid);
388
389 mi = (struct mi_interp *) top_level_interpreter_data ();
390 old_chain = make_cleanup_restore_target_terminal ();
391 target_terminal_ours_for_output ();
392
393 fprintf_unfiltered (mi->event_channel,
394 "thread-exited,id=\"%d\",group-id=\"i%d\"",
395 t->global_num, inf->num);
396 gdb_flush (mi->event_channel);
397
398 do_cleanups (old_chain);
399 }
400
401 /* Emit notification on changing the state of record. */
402
403 static void
404 mi_record_changed (struct inferior *inferior, int started, const char *method,
405 const char *format)
406 {
407 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
408 struct cleanup *old_chain;
409
410 old_chain = make_cleanup_restore_target_terminal ();
411 target_terminal_ours_for_output ();
412
413 if (started)
414 {
415 if (format != NULL)
416 {
417 fprintf_unfiltered (
418 mi->event_channel,
419 "record-started,thread-group=\"i%d\",method=\"%s\",format=\"%s\"",
420 inferior->num, method, format);
421 }
422 else
423 {
424 fprintf_unfiltered (
425 mi->event_channel,
426 "record-started,thread-group=\"i%d\",method=\"%s\"",
427 inferior->num, method);
428 }
429 }
430 else
431 {
432 fprintf_unfiltered (mi->event_channel,
433 "record-stopped,thread-group=\"i%d\"", inferior->num);
434 }
435
436
437 gdb_flush (mi->event_channel);
438
439 do_cleanups (old_chain);
440 }
441
442 static void
443 mi_inferior_added (struct inferior *inf)
444 {
445 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
446 struct cleanup *old_chain;
447
448 old_chain = make_cleanup_restore_target_terminal ();
449 target_terminal_ours_for_output ();
450
451 fprintf_unfiltered (mi->event_channel,
452 "thread-group-added,id=\"i%d\"",
453 inf->num);
454 gdb_flush (mi->event_channel);
455
456 do_cleanups (old_chain);
457 }
458
459 static void
460 mi_inferior_appeared (struct inferior *inf)
461 {
462 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
463 struct cleanup *old_chain;
464
465 old_chain = make_cleanup_restore_target_terminal ();
466 target_terminal_ours_for_output ();
467
468 fprintf_unfiltered (mi->event_channel,
469 "thread-group-started,id=\"i%d\",pid=\"%d\"",
470 inf->num, inf->pid);
471 gdb_flush (mi->event_channel);
472
473 do_cleanups (old_chain);
474 }
475
476 static void
477 mi_inferior_exit (struct inferior *inf)
478 {
479 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
480 struct cleanup *old_chain;
481
482 old_chain = make_cleanup_restore_target_terminal ();
483 target_terminal_ours_for_output ();
484
485 if (inf->has_exit_code)
486 fprintf_unfiltered (mi->event_channel,
487 "thread-group-exited,id=\"i%d\",exit-code=\"%s\"",
488 inf->num, int_string (inf->exit_code, 8, 0, 0, 1));
489 else
490 fprintf_unfiltered (mi->event_channel,
491 "thread-group-exited,id=\"i%d\"", inf->num);
492 gdb_flush (mi->event_channel);
493
494 do_cleanups (old_chain);
495 }
496
497 static void
498 mi_inferior_removed (struct inferior *inf)
499 {
500 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
501 struct cleanup *old_chain;
502
503 old_chain = make_cleanup_restore_target_terminal ();
504 target_terminal_ours_for_output ();
505
506 fprintf_unfiltered (mi->event_channel,
507 "thread-group-removed,id=\"i%d\"",
508 inf->num);
509 gdb_flush (mi->event_channel);
510
511 do_cleanups (old_chain);
512 }
513
514 /* Return the MI interpreter, if it is active -- either because it's
515 the top-level interpreter or the interpreter executing the current
516 command. Returns NULL if the MI interpreter is not being used. */
517
518 static struct interp *
519 find_mi_interpreter (void)
520 {
521 struct interp *interp;
522
523 interp = top_level_interpreter ();
524 if (ui_out_is_mi_like_p (interp_ui_out (interp)))
525 return interp;
526
527 interp = command_interp ();
528 if (ui_out_is_mi_like_p (interp_ui_out (interp)))
529 return interp;
530
531 return NULL;
532 }
533
534 /* Return the MI_INTERP structure of the active MI interpreter.
535 Returns NULL if MI is not active. */
536
537 static struct mi_interp *
538 mi_interp_data (void)
539 {
540 struct interp *interp = find_mi_interpreter ();
541
542 if (interp != NULL)
543 return (struct mi_interp *) interp_data (interp);
544 return NULL;
545 }
546
547 /* Observers for several run control events that print why the
548 inferior has stopped to both the the MI event channel and to the MI
549 console. If the MI interpreter is not active, print nothing. */
550
551 /* Observer for the signal_received notification. */
552
553 static void
554 mi_on_signal_received (enum gdb_signal siggnal)
555 {
556 struct mi_interp *mi = mi_interp_data ();
557
558 if (mi == NULL)
559 return;
560
561 print_signal_received_reason (mi->mi_uiout, siggnal);
562 print_signal_received_reason (mi->cli_uiout, siggnal);
563 }
564
565 /* Observer for the end_stepping_range notification. */
566
567 static void
568 mi_on_end_stepping_range (void)
569 {
570 struct mi_interp *mi = mi_interp_data ();
571
572 if (mi == NULL)
573 return;
574
575 print_end_stepping_range_reason (mi->mi_uiout);
576 print_end_stepping_range_reason (mi->cli_uiout);
577 }
578
579 /* Observer for the signal_exited notification. */
580
581 static void
582 mi_on_signal_exited (enum gdb_signal siggnal)
583 {
584 struct mi_interp *mi = mi_interp_data ();
585
586 if (mi == NULL)
587 return;
588
589 print_signal_exited_reason (mi->mi_uiout, siggnal);
590 print_signal_exited_reason (mi->cli_uiout, siggnal);
591 }
592
593 /* Observer for the exited notification. */
594
595 static void
596 mi_on_exited (int exitstatus)
597 {
598 struct mi_interp *mi = mi_interp_data ();
599
600 if (mi == NULL)
601 return;
602
603 print_exited_reason (mi->mi_uiout, exitstatus);
604 print_exited_reason (mi->cli_uiout, exitstatus);
605 }
606
607 /* Observer for the no_history notification. */
608
609 static void
610 mi_on_no_history (void)
611 {
612 struct mi_interp *mi = mi_interp_data ();
613
614 if (mi == NULL)
615 return;
616
617 print_no_history_reason (mi->mi_uiout);
618 print_no_history_reason (mi->cli_uiout);
619 }
620
621 static void
622 mi_on_normal_stop (struct bpstats *bs, int print_frame)
623 {
624 /* Since this can be called when CLI command is executing,
625 using cli interpreter, be sure to use MI uiout for output,
626 not the current one. */
627 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
628
629 if (print_frame)
630 {
631 struct thread_info *tp;
632 int core;
633
634 tp = inferior_thread ();
635
636 if (tp->thread_fsm != NULL
637 && thread_fsm_finished_p (tp->thread_fsm))
638 {
639 enum async_reply_reason reason;
640
641 reason = thread_fsm_async_reply_reason (tp->thread_fsm);
642 ui_out_field_string (mi_uiout, "reason",
643 async_reason_lookup (reason));
644 }
645 print_stop_event (mi_uiout);
646
647 /* Breakpoint hits should always be mirrored to the console.
648 Deciding what to mirror to the console wrt to breakpoints and
649 random stops gets messy real fast. E.g., say "s" trips on a
650 breakpoint. We'd clearly want to mirror the event to the
651 console in this case. But what about more complicated cases
652 like "s&; thread n; s&", and one of those steps spawning a
653 new thread, and that thread hitting a breakpoint? It's
654 impossible in general to track whether the thread had any
655 relation to the commands that had been executed. So we just
656 simplify and always mirror breakpoints and random events to
657 the console.
658
659 OTOH, we should print the source line to the console when
660 stepping or other similar commands, iff the step was started
661 by a console command, but not if it was started with
662 -exec-step or similar. */
663 if ((bpstat_what (tp->control.stop_bpstat).main_action
664 == BPSTAT_WHAT_STOP_NOISY)
665 || !(tp->thread_fsm != NULL
666 && thread_fsm_finished_p (tp->thread_fsm))
667 || (tp->control.command_interp != NULL
668 && tp->control.command_interp != top_level_interpreter ()))
669 {
670 struct mi_interp *mi
671 = (struct mi_interp *) top_level_interpreter_data ();
672
673 print_stop_event (mi->cli_uiout);
674 }
675
676 tp = inferior_thread ();
677 ui_out_field_int (mi_uiout, "thread-id", tp->global_num);
678 if (non_stop)
679 {
680 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
681 (mi_uiout, "stopped-threads");
682
683 ui_out_field_int (mi_uiout, NULL, tp->global_num);
684 do_cleanups (back_to);
685 }
686 else
687 ui_out_field_string (mi_uiout, "stopped-threads", "all");
688
689 core = target_core_of_thread (inferior_ptid);
690 if (core != -1)
691 ui_out_field_int (mi_uiout, "core", core);
692 }
693
694 fputs_unfiltered ("*stopped", raw_stdout);
695 mi_out_put (mi_uiout, raw_stdout);
696 mi_out_rewind (mi_uiout);
697 mi_print_timing_maybe ();
698 fputs_unfiltered ("\n", raw_stdout);
699 gdb_flush (raw_stdout);
700 }
701
702 static void
703 mi_about_to_proceed (void)
704 {
705 /* Suppress output while calling an inferior function. */
706
707 if (!ptid_equal (inferior_ptid, null_ptid))
708 {
709 struct thread_info *tp = inferior_thread ();
710
711 if (tp->control.in_infcall)
712 return;
713 }
714
715 mi_proceeded = 1;
716 }
717
718 /* When the element is non-zero, no MI notifications will be emitted in
719 response to the corresponding observers. */
720
721 struct mi_suppress_notification mi_suppress_notification =
722 {
723 0,
724 0,
725 0,
726 };
727
728 /* Emit notification on changing a traceframe. */
729
730 static void
731 mi_traceframe_changed (int tfnum, int tpnum)
732 {
733 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
734 struct cleanup *old_chain;
735
736 if (mi_suppress_notification.traceframe)
737 return;
738
739 old_chain = make_cleanup_restore_target_terminal ();
740 target_terminal_ours_for_output ();
741
742 if (tfnum >= 0)
743 fprintf_unfiltered (mi->event_channel, "traceframe-changed,"
744 "num=\"%d\",tracepoint=\"%d\"\n",
745 tfnum, tpnum);
746 else
747 fprintf_unfiltered (mi->event_channel, "traceframe-changed,end");
748
749 gdb_flush (mi->event_channel);
750
751 do_cleanups (old_chain);
752 }
753
754 /* Emit notification on creating a trace state variable. */
755
756 static void
757 mi_tsv_created (const struct trace_state_variable *tsv)
758 {
759 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
760 struct cleanup *old_chain;
761
762 old_chain = make_cleanup_restore_target_terminal ();
763 target_terminal_ours_for_output ();
764
765 fprintf_unfiltered (mi->event_channel, "tsv-created,"
766 "name=\"%s\",initial=\"%s\"\n",
767 tsv->name, plongest (tsv->initial_value));
768
769 gdb_flush (mi->event_channel);
770
771 do_cleanups (old_chain);
772 }
773
774 /* Emit notification on deleting a trace state variable. */
775
776 static void
777 mi_tsv_deleted (const struct trace_state_variable *tsv)
778 {
779 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
780 struct cleanup *old_chain;
781
782 old_chain = make_cleanup_restore_target_terminal ();
783 target_terminal_ours_for_output ();
784
785 if (tsv != NULL)
786 fprintf_unfiltered (mi->event_channel, "tsv-deleted,"
787 "name=\"%s\"\n", tsv->name);
788 else
789 fprintf_unfiltered (mi->event_channel, "tsv-deleted\n");
790
791 gdb_flush (mi->event_channel);
792
793 do_cleanups (old_chain);
794 }
795
796 /* Emit notification on modifying a trace state variable. */
797
798 static void
799 mi_tsv_modified (const struct trace_state_variable *tsv)
800 {
801 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
802 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
803 struct cleanup *old_chain;
804
805 old_chain = make_cleanup_restore_target_terminal ();
806 target_terminal_ours_for_output ();
807
808 fprintf_unfiltered (mi->event_channel,
809 "tsv-modified");
810
811 ui_out_redirect (mi_uiout, mi->event_channel);
812
813 ui_out_field_string (mi_uiout, "name", tsv->name);
814 ui_out_field_string (mi_uiout, "initial",
815 plongest (tsv->initial_value));
816 if (tsv->value_known)
817 ui_out_field_string (mi_uiout, "current", plongest (tsv->value));
818
819 ui_out_redirect (mi_uiout, NULL);
820
821 gdb_flush (mi->event_channel);
822
823 do_cleanups (old_chain);
824 }
825
826 /* Emit notification about a created breakpoint. */
827
828 static void
829 mi_breakpoint_created (struct breakpoint *b)
830 {
831 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
832 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
833 struct cleanup *old_chain;
834
835 if (mi_suppress_notification.breakpoint)
836 return;
837
838 if (b->number <= 0)
839 return;
840
841 old_chain = make_cleanup_restore_target_terminal ();
842 target_terminal_ours_for_output ();
843
844 fprintf_unfiltered (mi->event_channel,
845 "breakpoint-created");
846 /* We want the output from gdb_breakpoint_query to go to
847 mi->event_channel. One approach would be to just call
848 gdb_breakpoint_query, and then use mi_out_put to send the current
849 content of mi_outout into mi->event_channel. However, that will
850 break if anything is output to mi_uiout prior to calling the
851 breakpoint_created notifications. So, we use
852 ui_out_redirect. */
853 ui_out_redirect (mi_uiout, mi->event_channel);
854 TRY
855 {
856 gdb_breakpoint_query (mi_uiout, b->number, NULL);
857 }
858 CATCH (e, RETURN_MASK_ERROR)
859 {
860 }
861 END_CATCH
862
863 ui_out_redirect (mi_uiout, NULL);
864
865 gdb_flush (mi->event_channel);
866
867 do_cleanups (old_chain);
868 }
869
870 /* Emit notification about deleted breakpoint. */
871
872 static void
873 mi_breakpoint_deleted (struct breakpoint *b)
874 {
875 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
876 struct cleanup *old_chain;
877
878 if (mi_suppress_notification.breakpoint)
879 return;
880
881 if (b->number <= 0)
882 return;
883
884 old_chain = make_cleanup_restore_target_terminal ();
885 target_terminal_ours_for_output ();
886
887 fprintf_unfiltered (mi->event_channel, "breakpoint-deleted,id=\"%d\"",
888 b->number);
889
890 gdb_flush (mi->event_channel);
891
892 do_cleanups (old_chain);
893 }
894
895 /* Emit notification about modified breakpoint. */
896
897 static void
898 mi_breakpoint_modified (struct breakpoint *b)
899 {
900 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
901 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
902 struct cleanup *old_chain;
903
904 if (mi_suppress_notification.breakpoint)
905 return;
906
907 if (b->number <= 0)
908 return;
909
910 old_chain = make_cleanup_restore_target_terminal ();
911 target_terminal_ours_for_output ();
912
913 fprintf_unfiltered (mi->event_channel,
914 "breakpoint-modified");
915 /* We want the output from gdb_breakpoint_query to go to
916 mi->event_channel. One approach would be to just call
917 gdb_breakpoint_query, and then use mi_out_put to send the current
918 content of mi_outout into mi->event_channel. However, that will
919 break if anything is output to mi_uiout prior to calling the
920 breakpoint_created notifications. So, we use
921 ui_out_redirect. */
922 ui_out_redirect (mi_uiout, mi->event_channel);
923 TRY
924 {
925 gdb_breakpoint_query (mi_uiout, b->number, NULL);
926 }
927 CATCH (e, RETURN_MASK_ERROR)
928 {
929 }
930 END_CATCH
931
932 ui_out_redirect (mi_uiout, NULL);
933
934 gdb_flush (mi->event_channel);
935
936 do_cleanups (old_chain);
937 }
938
939 static int
940 mi_output_running_pid (struct thread_info *info, void *arg)
941 {
942 ptid_t *ptid = (ptid_t *) arg;
943
944 if (ptid_get_pid (*ptid) == ptid_get_pid (info->ptid))
945 fprintf_unfiltered (raw_stdout,
946 "*running,thread-id=\"%d\"\n",
947 info->global_num);
948
949 return 0;
950 }
951
952 static int
953 mi_inferior_count (struct inferior *inf, void *arg)
954 {
955 if (inf->pid != 0)
956 {
957 int *count_p = (int *) arg;
958 (*count_p)++;
959 }
960
961 return 0;
962 }
963
964 static void
965 mi_on_resume (ptid_t ptid)
966 {
967 struct thread_info *tp = NULL;
968
969 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
970 tp = inferior_thread ();
971 else
972 tp = find_thread_ptid (ptid);
973
974 /* Suppress output while calling an inferior function. */
975 if (tp->control.in_infcall)
976 return;
977
978 /* To cater for older frontends, emit ^running, but do it only once
979 per each command. We do it here, since at this point we know
980 that the target was successfully resumed, and in non-async mode,
981 we won't return back to MI interpreter code until the target
982 is done running, so delaying the output of "^running" until then
983 will make it impossible for frontend to know what's going on.
984
985 In future (MI3), we'll be outputting "^done" here. */
986 if (!running_result_record_printed && mi_proceeded)
987 {
988 fprintf_unfiltered (raw_stdout, "%s^running\n",
989 current_token ? current_token : "");
990 }
991
992 if (ptid_get_pid (ptid) == -1)
993 fprintf_unfiltered (raw_stdout, "*running,thread-id=\"all\"\n");
994 else if (ptid_is_pid (ptid))
995 {
996 int count = 0;
997
998 /* Backwards compatibility. If there's only one inferior,
999 output "all", otherwise, output each resumed thread
1000 individually. */
1001 iterate_over_inferiors (mi_inferior_count, &count);
1002
1003 if (count == 1)
1004 fprintf_unfiltered (raw_stdout, "*running,thread-id=\"all\"\n");
1005 else
1006 iterate_over_threads (mi_output_running_pid, &ptid);
1007 }
1008 else
1009 {
1010 struct thread_info *ti = find_thread_ptid (ptid);
1011
1012 gdb_assert (ti);
1013 fprintf_unfiltered (raw_stdout, "*running,thread-id=\"%d\"\n",
1014 ti->global_num);
1015 }
1016
1017 if (!running_result_record_printed && mi_proceeded)
1018 {
1019 running_result_record_printed = 1;
1020 /* This is what gdb used to do historically -- printing prompt even if
1021 it cannot actually accept any input. This will be surely removed
1022 for MI3, and may be removed even earlier. SYNC_EXECUTION is
1023 checked here because we only need to emit a prompt if a
1024 synchronous command was issued when the target is async. */
1025 if (!target_can_async_p () || sync_execution)
1026 fputs_unfiltered ("(gdb) \n", raw_stdout);
1027 }
1028 gdb_flush (raw_stdout);
1029 }
1030
1031 static void
1032 mi_solib_loaded (struct so_list *solib)
1033 {
1034 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
1035 struct ui_out *uiout = interp_ui_out (top_level_interpreter ());
1036 struct cleanup *old_chain;
1037
1038 old_chain = make_cleanup_restore_target_terminal ();
1039 target_terminal_ours_for_output ();
1040
1041 fprintf_unfiltered (mi->event_channel, "library-loaded");
1042
1043 ui_out_redirect (uiout, mi->event_channel);
1044
1045 ui_out_field_string (uiout, "id", solib->so_original_name);
1046 ui_out_field_string (uiout, "target-name", solib->so_original_name);
1047 ui_out_field_string (uiout, "host-name", solib->so_name);
1048 ui_out_field_int (uiout, "symbols-loaded", solib->symbols_loaded);
1049 if (!gdbarch_has_global_solist (target_gdbarch ()))
1050 {
1051 ui_out_field_fmt (uiout, "thread-group", "i%d",
1052 current_inferior ()->num);
1053 }
1054
1055 ui_out_redirect (uiout, NULL);
1056
1057 gdb_flush (mi->event_channel);
1058
1059 do_cleanups (old_chain);
1060 }
1061
1062 static void
1063 mi_solib_unloaded (struct so_list *solib)
1064 {
1065 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
1066 struct ui_out *uiout = interp_ui_out (top_level_interpreter ());
1067 struct cleanup *old_chain;
1068
1069 old_chain = make_cleanup_restore_target_terminal ();
1070 target_terminal_ours_for_output ();
1071
1072 fprintf_unfiltered (mi->event_channel, "library-unloaded");
1073
1074 ui_out_redirect (uiout, mi->event_channel);
1075
1076 ui_out_field_string (uiout, "id", solib->so_original_name);
1077 ui_out_field_string (uiout, "target-name", solib->so_original_name);
1078 ui_out_field_string (uiout, "host-name", solib->so_name);
1079 if (!gdbarch_has_global_solist (target_gdbarch ()))
1080 {
1081 ui_out_field_fmt (uiout, "thread-group", "i%d",
1082 current_inferior ()->num);
1083 }
1084
1085 ui_out_redirect (uiout, NULL);
1086
1087 gdb_flush (mi->event_channel);
1088
1089 do_cleanups (old_chain);
1090 }
1091
1092 /* Emit notification about the command parameter change. */
1093
1094 static void
1095 mi_command_param_changed (const char *param, const char *value)
1096 {
1097 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
1098 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
1099 struct cleanup *old_chain;
1100
1101 if (mi_suppress_notification.cmd_param_changed)
1102 return;
1103
1104 old_chain = make_cleanup_restore_target_terminal ();
1105 target_terminal_ours_for_output ();
1106
1107 fprintf_unfiltered (mi->event_channel,
1108 "cmd-param-changed");
1109
1110 ui_out_redirect (mi_uiout, mi->event_channel);
1111
1112 ui_out_field_string (mi_uiout, "param", param);
1113 ui_out_field_string (mi_uiout, "value", value);
1114
1115 ui_out_redirect (mi_uiout, NULL);
1116
1117 gdb_flush (mi->event_channel);
1118
1119 do_cleanups (old_chain);
1120 }
1121
1122 /* Emit notification about the target memory change. */
1123
1124 static void
1125 mi_memory_changed (struct inferior *inferior, CORE_ADDR memaddr,
1126 ssize_t len, const bfd_byte *myaddr)
1127 {
1128 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
1129 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
1130 struct obj_section *sec;
1131 struct cleanup *old_chain;
1132
1133 if (mi_suppress_notification.memory)
1134 return;
1135
1136 old_chain = make_cleanup_restore_target_terminal ();
1137 target_terminal_ours_for_output ();
1138
1139 fprintf_unfiltered (mi->event_channel,
1140 "memory-changed");
1141
1142 ui_out_redirect (mi_uiout, mi->event_channel);
1143
1144 ui_out_field_fmt (mi_uiout, "thread-group", "i%d", inferior->num);
1145 ui_out_field_core_addr (mi_uiout, "addr", target_gdbarch (), memaddr);
1146 ui_out_field_fmt (mi_uiout, "len", "%s", hex_string (len));
1147
1148 /* Append 'type=code' into notification if MEMADDR falls in the range of
1149 sections contain code. */
1150 sec = find_pc_section (memaddr);
1151 if (sec != NULL && sec->objfile != NULL)
1152 {
1153 flagword flags = bfd_get_section_flags (sec->objfile->obfd,
1154 sec->the_bfd_section);
1155
1156 if (flags & SEC_CODE)
1157 ui_out_field_string (mi_uiout, "type", "code");
1158 }
1159
1160 ui_out_redirect (mi_uiout, NULL);
1161
1162 gdb_flush (mi->event_channel);
1163
1164 do_cleanups (old_chain);
1165 }
1166
1167 static int
1168 report_initial_inferior (struct inferior *inf, void *closure)
1169 {
1170 /* This function is called from mi_intepreter_init, and since
1171 mi_inferior_added assumes that inferior is fully initialized
1172 and top_level_interpreter_data is set, we cannot call
1173 it here. */
1174 struct mi_interp *mi = (struct mi_interp *) closure;
1175 struct cleanup *old_chain;
1176
1177 old_chain = make_cleanup_restore_target_terminal ();
1178 target_terminal_ours_for_output ();
1179
1180 fprintf_unfiltered (mi->event_channel,
1181 "thread-group-added,id=\"i%d\"",
1182 inf->num);
1183 gdb_flush (mi->event_channel);
1184
1185 do_cleanups (old_chain);
1186 return 0;
1187 }
1188
1189 static struct ui_out *
1190 mi_ui_out (struct interp *interp)
1191 {
1192 struct mi_interp *mi = (struct mi_interp *) interp_data (interp);
1193
1194 return mi->mi_uiout;
1195 }
1196
1197 /* Save the original value of raw_stdout here when logging, so we can
1198 restore correctly when done. */
1199
1200 static struct ui_file *saved_raw_stdout;
1201
1202 /* Do MI-specific logging actions; save raw_stdout, and change all
1203 the consoles to use the supplied ui-file(s). */
1204
1205 static int
1206 mi_set_logging (struct interp *interp, int start_log,
1207 struct ui_file *out, struct ui_file *logfile)
1208 {
1209 struct mi_interp *mi = (struct mi_interp *) interp_data (interp);
1210
1211 if (!mi)
1212 return 0;
1213
1214 if (start_log)
1215 {
1216 /* The tee created already is based on gdb_stdout, which for MI
1217 is a console and so we end up in an infinite loop of console
1218 writing to ui_file writing to console etc. So discard the
1219 existing tee (it hasn't been used yet, and MI won't ever use
1220 it), and create one based on raw_stdout instead. */
1221 if (logfile)
1222 {
1223 ui_file_delete (out);
1224 out = tee_file_new (raw_stdout, 0, logfile, 0);
1225 }
1226
1227 saved_raw_stdout = raw_stdout;
1228 raw_stdout = out;
1229 }
1230 else
1231 {
1232 raw_stdout = saved_raw_stdout;
1233 saved_raw_stdout = NULL;
1234 }
1235
1236 mi_console_set_raw (mi->out, raw_stdout);
1237 mi_console_set_raw (mi->err, raw_stdout);
1238 mi_console_set_raw (mi->log, raw_stdout);
1239 mi_console_set_raw (mi->targ, raw_stdout);
1240 mi_console_set_raw (mi->event_channel, raw_stdout);
1241
1242 return 1;
1243 }
1244
1245 /* The MI interpreter's vtable. */
1246
1247 static const struct interp_procs mi_interp_procs =
1248 {
1249 mi_interpreter_init, /* init_proc */
1250 mi_interpreter_resume, /* resume_proc */
1251 mi_interpreter_suspend, /* suspend_proc */
1252 mi_interpreter_exec, /* exec_proc */
1253 mi_ui_out, /* ui_out_proc */
1254 mi_set_logging, /* set_logging_proc */
1255 mi_command_loop /* command_loop_proc */
1256 };
1257
1258 /* Factory for MI interpreters. */
1259
1260 static struct interp *
1261 mi_interp_factory (const char *name)
1262 {
1263 return interp_new (name, &mi_interp_procs, NULL);
1264 }
1265
1266 extern initialize_file_ftype _initialize_mi_interp; /* -Wmissing-prototypes */
1267
1268 void
1269 _initialize_mi_interp (void)
1270 {
1271 /* The various interpreter levels. */
1272 interp_factory_register (INTERP_MI1, mi_interp_factory);
1273 interp_factory_register (INTERP_MI2, mi_interp_factory);
1274 interp_factory_register (INTERP_MI3, mi_interp_factory);
1275 interp_factory_register (INTERP_MI, mi_interp_factory);
1276 }
This page took 0.079799 seconds and 5 git commands to generate.